
Game Theory - Midterm Examination 1

Date: September 1, 2018

Total marks: 24

Duration: 10:00 AM to Noon

Note: Answer all questions clearly using pen. Please avoid unnecessary discussions. In all

the questions, unless mentioned explicitly, do not consider mixed strategies (mixed

extension) of a game.

1. There are two agents: N = {1, 2}. They need to travel from point a to b. Consider

the left (road) network in Figure 1, where there are two possible paths: (1) Path U :

a → x → b and (2) Path D: a → y → b. The right network in Figure 1 has an

additional path; Path M : a → x → y → b. The costs of travel in these paths is

sum of costs of travel in each of the edges on these paths. In particular, cost of each

edge is c(α), where α ∈ {0, 1
2
, 1} is the fraction of agents who travel on these edges.

The respective costs of edges are shown in Figure 1. The value of travel from a to b

(independent of the path) is 2 units for both the agents. So, the payoff from traveling

from a to b to both the agents is the value of travel minus the cost of travel.
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Figure 1: Two possible networks

(a) Describe the underlying strategic form games for both the networks. (2 marks)

Answer. For both the networks, N = {1, 2} are the set of agents. The strategies

in the left network to both the agents are {U,D}, where U and D refers to the

paths as defined before. The strategies in the right network to both the agents
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U D

U (0, 0) (0.5, 0.5)

D (0.5, 0.5) (0, 0)

Table 1: Strategic form game of left network

U D M

U (0, 0) (0.5, 0.5) (0, 0.5)

D (0.5, 0.5) (0, 0) (0, 0.5)

M (0.5, 0) (0.5, 0) (0, 0)

Table 2: Strategic form game of right network

are {U,D,M}, where M is the new path defined as before. The payoffs are as

shown in Table 1 and Table 2.

(b) What are the Nash equilibria in each of these games? For every agent, compare

her worst payoff among all equilibria of the game in the left network and the game

in the right network. (3 marks)

Answer. In the game of Table 1, two Nash equilibria: (U,D) and (D,U) - both

give a payoff of 0.5 to each agent. In game of Table 2, everything except (U,U)

and (D,D) are Nash equiliria. In particular, (M,M) is a Nash equilibrium giving

the worst possible payoff of zero to each agent.

(c) What are the Nash equilibria in the mixed extension of the game in the right

network? (3 marks)

Answer. Since the game is symmetric, both the agents have the same best

response maps. It is easy to see that M is always in the best response map (a

weakly dominant strategy). Now, U is in the best response map if the opponent

plays U with zero probability and D is in the best response map if the opponent

plays D with zero probability. This best response map (same for both the players)

is shown in Figure 2.

We can use this to compute all mixed strategy Nash equilibria - pure strategies

have been already shown. We consider all cases for mixed strategy Nash equilibria.

• Equilibria where one player mixes only U and D. The best response map

shows that this can only happen if the other player plays pureM . If a players

mixes U and D, the best response is indeed M . Hence, one player plays M
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Figure 2: Best response map for game in right network

and the other player mixes U and D (in any probability) is a mixed strategy

Nash equilibrium.

• Equilibria where one player mixes only U and M . This happens if the other

player mixes D and M . Conversely, if a player mixes U and M , the other

player’s best response includes both D and M . Hence, one player mixing U

and M (in any probability) and the other player mixing D and M (in any

probability) is a mixed strategy Nash equilibrium.

• Equilibria where one player mixes only D and M . This is the same as the

previous case.

• Equilibria where one player mixes all U,M,D. This can only happen if the

other player plays M . Further, if a player mixes all U,M,D, then the other

player has M as the unique best response. So, one player playing M and

the other player mixing U,M,D in any probability is a mixed strategy Nash

equilirium.

(d) Consider the following strategy profiles (a strategy profile is a pair of paths) for

the game in the right network of Figure 1:

C := {(U,U), (U,D), (U,M), (D,U), (M,U)}.

Describe all the correlated equilibria whose support is exactly C. (3 marks)

Answer. There are no correlated equilibria whose support is exactly C. To see

this, since the support is exactly C, let p(U,U) > 0 be the probability of (U,U)

being recommended. When an agent observes U , his conditional belief that others
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received U,D,M are respectively denoted by πU , πD, πM . His expected payoff from

obeying is 0.5πD. By deviating to M , the agent gets 0.5(πU + πD) > 0.5πD since

πU > 0. So, no such correlated equilibrium can exist.

(e) What is the largest set of rationalizable strategies for the agents in the game in

the right network of Figure 1? Explain your answer. (3 marks)

Answer. From the best response maps of Figure 2, it is clear that every strategy

of an agent is a best response with respect to some belief over others strategy.

Hence, largest set of rationalizable strategies for each player is {U,D,M}.

2. Suppose Γ = (N, {Si}i∈N , {ui}i∈N) is a finite strategic form game. Show that for each

Player i ∈ N , her payoff in any correlated equilibrium of Γ is greater than or equal to

her max-min value in the mixed extension of Γ ( i.e., maxσi∈∆Si
minσ−i∈∆S−i

Ui(σi, σ−i)).

Hint. You may use the fact

max
σi∈∆Si

min
σ−i∈∆S−i

Ui(σi, σ−i) = max
σi∈∆Si

min
s−i∈S−i

Ui(σi, s−i).

(5 marks)

Answer. Let p ∈ ∆
∏

i∈N Si be a correlated equilibrium. Notations: we will write for

every i ∈ N , for every si ∈ Si,

πi(si) :=
∑

s−∈S−i

p(si, s−i),

and

p(si|s−i) :=
p(si, s−i)

πi(si)
∀ s−i.

Now, fix a player i ∈ N . By definition of the correlated equilibrium, for every

si, s
′
i ∈ Si, we have∑

s−i∈S−i

p(si, s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)ui(s
′
i, s−i)

Dividing throughout by πi(si), we get for every si, s
′
i ∈ Si, we have∑

s−i∈S−i

p(si|s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si|s−i)ui(s′i, s−i)
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Now, pick any mixed strategy σi and let supp(σi) be the set of pure strategies in Si

such that σi(si) > 0. The above inequality holds for all s′i ∈ supp(σi) for a given si.

Hence, we can write∑
s′i∈supp(σi)

σi(s
′
i)

∑
s−i∈S−i

p(si|s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si|s−i)
∑

s′i∈supp(σi)

σi(s
′
i)ui(s

′
i, s−i)

=
∑

s−i∈S−i

p(si|s−i)Ui(σi, s−i).

Using
∑

s′i∈supp(σi)
σi(s

′
i) = 1, this gives us that for all si and for all σi, we have∑

s−i∈S−i

p(si|s−i)ui(si, s−i) ≥
∑

s−i∈S−i

p(si|s−i)Ui(σi, s−i).

Using the fact that
∑

s−i∈S−i
p(si|s−i) = 1 and Ui(σi, s−i) ≥ mins−i∈S−i

Ui(σi, s−i), the

above inequality simplifies to∑
s−i∈S−i

p(si|s−i)ui(si, s−i) ≥ min
s−i∈S−i

Ui(σi, s−i).

This further implies that for every i ∈ N and every si ∈ Si, we have∑
s−i∈S−i

p(si|s−i)ui(si, s−i) ≥ max
σi∈∆Si

min
s−i∈S−i

Ui(σi, s−i) = max
σi∈∆Si

min
σ−i∈∆S−i

Ui(σi, σ−i),

where we used our hint for the equality. Then, the payoff of a player i in this correlated

equilibrium is given by:∑
s∈

∏
i∈N Si

p(s)ui(s) =
∑
si∈Si

πi(si)
∑

s−i∈S−i

p(si|s−i)ui(si, s−i)

≥
∑
si∈Si

πi(si) max
σi∈∆Si

min
σ−i∈∆S−i

Ui(σi, σ−i)

= max
σi∈∆Si

min
σ−i∈∆S−i

Ui(σi, σ−i),

where the last equality follows from the fact that
∑

si∈S πi(si) = 1.

3. Suppose Γ = (N, {Si}i∈N , {ui}i∈N) is finite strategic form game. A Nash equilibrium

s∗ of Γ is strict if ui(s
∗) > ui(si, s

∗
−i) for all i ∈ N and for all si ∈ Si \{s∗i }. Suppose we

iteratively eliminate strictly dominated strategies from Γ (a strategy si of Player i is

strictly dominated if there exists another strategy s′i such that ui(s
′
i, s−i) > ui(si, s−i)

for all s−i) and this leads to a unique strategy profile s∗. Show that s∗ is a strict Nash

equilibrium, and it is the unique Nash equilibrium of Γ. (5 marks)
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Answer. Suppose s∗ is not a strict Nash equilibrium. Then, there is some player i

and si such that ui(si, s
∗
−i) = maxs′i∈Si

ui(s
′
i, s
∗
−i) ≥ ui(s

∗
i , s
∗
−i). Since s∗ is the unique

surviving strategy profile, there is an iteration where si is eliminated and the entire

strategy profile s∗ is present in that iteration. Since si is eliminated, there is a strategy

s′′i such that ui(s
′′
i , s
∗
−i) > ui(si, s

∗
−i). But this contadicts the fact si is a best response

to s∗−i. Hence, s∗ is a strict Nash equilibrium.

Now, pick a strict Nash equilibrium s∗. By definition, for every i ∈ N and for every

si 6= s∗i , we have ui(s
∗
i , s
∗
−i) > ui(si, s

∗
−i). Hence, s∗i is a unique best response to s∗−i.

Hence, in no iteration of iterated elimination, s∗i is strictly dominated. This implies

that s∗ survives iterated elimination of strictly dominated strategies. Since the set of

strategies that survive iterated elimination of strictly dominated strategies is unique,

there is a unique strict Nash equilibrium.
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