
Game Theory - Midterm Examination 2

Date: October 13, 2019

Total marks: 30

Duration: 10 AM to 12:30 PM

Note: Answer all questions clearly using pen. Please avoid unnecessary discussions.

1. Suppose Γ is a finite strategic form game and p is a correlated equilibrium of Γ. Suppose

p(s) > 0 for some pure strategy profile s. Then prove or provide a counter-example to

the following claim: s survives iterated elimination of strictly dominated pure strategies

in ∆Γ. (5 marks)

Answer. Fix agent i and let si be a strategy of Player i in the support of p. Define

π(si) :=
∑

t−i
p(si, t−i). By the definition of correlated equilibrium, we know that for

all s′i ∈ Si, the following holds:∑
s−i∈S−i

ui(si, s−i)p(si, s−i) ≥
∑

s−i∈S−i

ui(s
′
i, s−i)p(si, s−i)

⇔
∑

s−i∈S−i

ui(si, s−i)
p(si, s−i)

π(si)
≥

∑
s−i∈S−i

ui(s
′
i, s−i)

p(si, s−i)

π(si)

Now define the following belief µi of Player i: for every s−i ∈ S−i, let µi(s−i) =
p(si,s−i)
π(si)

. Note that
∑

s−i
µi(s−i) = 1

π(si)

∑
s−i

p(si, s−i) = 1, and hence µi is a probability

distribution over S−i. Thus, we have∑
s−i∈S−i

ui(si, s−i)µi(s−i) ≥
∑

s−i∈S−i

ui(s
′
i, s−i)µi(s−i) ∀ s′i ∈ Si.

Hence, strategy si is correlated rationalizable. But any strategy which is correlated

rationalizable survives iterated elimination of strictly dominated pure strategies in ∆Γ.

This completes the proof.

2. There are two agents who want to complete a task. Each agent can either work or

shirk. So, the possible set of actions for each agent is {0, 1}, where 0 corresponds to

shirking and 1 corresponds to working. The task can be completed if any agent works.

Working is costly - each agent i ∈ {1, 2} incurs a cost ci if he works. If the two agents
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choose actions (x1, x2), where xi ∈ {0, 1} for each i ∈ {1, 2}, then the utility of each

agent i ∈ {1, 2} is given by

ui(x1, x2) =

{
1− xici if x1 + x2 > 0

0 if x1 + x2 = 0

(a) Suppose the cost of agent 1 is publicly known and assume that c1 > 0. On the

other hand, suppose cost of agent 2 is his private information, but it is commonly

known that c2 is drawn from [0.5, 1.5] using uniform distribution. Describe all

Bayes Nash equilibria of this game. Are there values of c1 for which all Bayes

Nash equilibria involve Player 2 shirking at all types? (5+2 marks)

Answer. A strategy for agent 1 is s1 ∈ {0, 1}. A strategy for agent 2 is a

map s2 : [0.5, 1.5] → {0, 1}. If s1 = 1, then all types of agent 2 must choose

s2(c2) = 0 as a best response (since c2 > 0). Hence, in the strategy profile

(s1 = 1, s2(c2) = 0 ∀ c2) the payoff of agent 1 is 1− c1. If agent 2 follows s2, the

payoff of agent 1 by choosing strategy 0 is 0. As a result choosing, s1 = 1 is a

best response if c1 ≤ 1. So, one Bayes Nash equilibrium is when

c1 ≤ 1 : s1 = 1, s2(c2) = 0 ∀ c2.

If s1 = 0, then agent 2 gets non-negative payoff if 1 − c2 ≥ 0 or c2 ≤ 1. So,

s2(c2) = 1 if c2 < 1 and s2(c2) = 0 if c2 > 1 is a best response. If c2 = 1, then

agent 2 can choose either action. So, any Bayes Nash equilibrium with s1 = 0

must have this strategy for agent 2. Hence, expected payoff of agent 1 from s1 = 0

is 1
2
× 1 = 1

2
, where 1

2
is the probability with which agent 2 is likely to choose 1.

Agent 1’s expected payoff from choosing 1 is 1− c1. So, if s1 = 0 is a Bayes Nash

equilibrium, then 1 − c1 ≤ 1
2

or c1 ≥ 1
2
. So, another Bayes Nash equilibrium is

when

c1 ≥
1

2
: s1 = 0, s2(c2) = 1 ∀ c2 ∈ [0.5, 1), s2(c2) = 0 ∀ c2 ∈ (1, 1.5].

If c1 < 0.5, all equilibria must involve s1 = 1 and s2(c2) = 0 for all c2.

(b) Suppose the costs of both the agents are their respective private information. Fur-

ther, each agent’s cost is drawn from [0.5, 1.5] using a uniform distribution. Call

a strategy of an agent i a cutoff strategy if there is a number c∗i ∈ [0.5, 1.5] such

that for all types with cost less than c∗i , i chooses one action and for all types

with cost greater than c∗i , he chooses the other action. Compute all Bayes Nash
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equilibria of this game where agents use cutoff strategies. (5 marks)

Answer. From the earlier part, every Bayes Nash equilibria must involve cutoff

strategies. Let (s1, s2) be a Bayes Nash equilibria with cutoffs (c∗1, c
∗
2). Then,

π(si) = c∗i − 1
2

for each i ∈ {1, 2}. The best response condition requires that agent

i should be indifferent between choosing 1 or 0 at ci = c∗i :

1− c∗i = π(sj) = c∗j −
1

2
.

That is: c∗1 + c∗2 = 3
2
.

Hence, every Bayes Nash equilibria are with cutoff strategies (c∗1, c
∗
2) with

c∗1, c
∗
2 ∈ [0.5, 1.5], c∗1 + c∗2 = 1.5.

Finally, we verify that each of them is indeed a Bayes Nash equilibrium. To

see this, take agent i ∈ {1, 2}. His expected payoff at ci < c∗i by choosing 1:

1−ci ≥ 1−c∗i = c∗j−0.5. But c∗j−0.5 is the payoff of choosing 0. Hence, choosing

1 is best response. Similarly, if ci > c∗i , identical argument shows that choosing 0

is a best response. At ci = c∗i , both are best responses. This completes the proof.

3. Consider the stage game G shown in Table 1.

L C R

T 2,2 2,1 0,0

M 1,2 1,1 -1,0

B 0,0 0,-1 -1,-1

Table 1: A Stage game

(a) What is the minmax payoff of each player? What action should Player 1 play to

restrict (punish) Player 2 to her minmax payoff? Similarly, what action should

Player 2 play to restrict (punish) Player 1 to her minmax payoff? (3 marks)

Answer. The minmax payoff each player is 0. Player 1 should play B to minmax

Player 2. Player 2 should play R to minmax Player 1.

(b) Describe a strategy profile s∗ of G∞ and a lower bound on discounting value δ

such that
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(i) s∗ is a Nash equilibrium of G∞ with discounting δ and

(ii) along the equilibrium path of s∗, action profile (M,L) is played in odd periods

and action profile (T,C) is played in even periods. (5 marks)

Answer. The usual trigger strategy works. Maintain two states: normal and

punishment. Intial state is normal. In normal state: play (M,L) in odd

period and (T,C) in even period. In punishment state: Player 1 plays B and

Player 2 plays R.

The histories are assigned to states as follows. For every history in period t, there

is a history in period (t − 1) that leads to this history, called the predecessor. A

history is normal if (i) its predecessor is normal and (ii) action at predecessor

history is (M,L) if the previous period is odd and (T,C) if the previous period is

odd. Else, history is punishment.

We show that this trigger strategy is a Nash equilibrium. Since the game is

symmetric, we only look at Player 1. Suppose Player 2 follows the trigger strategy.

The payoff of Player 1 by following trigger strategy is:

(1− δ)
[
1 + 2δ + δ2 + 2δ3 + δ4 + . . . ...

]
= (1− δ)(1 + 2δ)

[
1 + δ2 + δ4 + . . .

]
= (1− δ)(1 + 2δ)

1

1− δ2

=
1 + 2δ

1 + δ
.

Suppose Player 1 deviates. Any period she deviates, she gets punished from the

next period and restricted to payoff of zero from thereon. If she deviates in period

t and t is even, by playing trigger (which recommends (T,C)) she could have got

2 and by deviating she cannot get more than 2. So, deviating in even period is

strictly worse independent of value of δ. If she deviates in period t and t is odd,

by playing trigger (which recommends (M,L) in this period) she gets a payoff

stream: (1, 2, 1, 2, 1, 2, . . .). The payoff from period t onwards from this payoff

stream is 1+2δ
1+δ

.

By deviating, the maximum payoff she can get in period t is 2 (this can happen if

she plays T instead of recommended M). After that, she gets punished and gets

zero. So, her payoff stream from period t onwards is (2, 0, 0, 0, 0, . . .). For trigger
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to be optimal, we need

1 + 2δ

1 + δ
− 2(1− δ) ≥ 0

⇔ 1 + 2δ − 2 + 2δ2 ≥ 0

⇔ 2δ2 + 2δ − 1 ≥ 0

⇔ δ ≥
√

3− 1

2

(c) Consider the following carrot-and-stick strategy. This strategy assigns each history

in each period one of two states: (a) normal state (b) punishment state. The

strategy profile recommends players to play (M,C) in a history which is assigned

normal state and to play (B,R) in a history which is assigned punishment

state. The initial period (with null history) is a normal state.

Now, we can recursively assign the state of every history. For every history in

period t, there is a history in period (t − 1) that leads to this history, called

the predecessor. If the predecessor is in normal state, and agents play (M,C),

the current history (of period t) becomes a normal state. If the predecessor

is in punishment state, and agents play (B,R), the current history becomes a

normal state. Else, the current history becomes punishment state.

Player 1 considers another strategy, which we call the flip-flop strategy. In the

flip-flop strategy, Player 1 plays T in odd periods and plays B in even periods.

Suppose Player 2 follows the carrot-and-stick strategy. Find the values of δ ∈ (0, 1)

for which the carrot-and-stick strategy is weakly better than the flip-flop strategy

for Player 1 (when Player 2 follows the carrot-and-stick strategy). (5 marks)

Answer. Player 1 gets a payoff of 1 by following carrot-and-stick. Given that

Player 2 is playing carrot-and-stick, this is how the states will change if Player 2

plays flip-flop.

• First period is normal. Resulting action profile (T,C). Payoff for Player 1:

2.

• Second period is punishment since Player 1 deviates in first period. Result-

ing action profile (B,R). Payoff for Player 1: −1.

• Since (B,R) was played in punishment state, third period is normal state.

Resulting action profile (T,C). Payoff for Player 1: 2.

• Since Player 1 deviated in period 3, state is punishment. Resulting action

profile (B,R). Payoff for Player 1: −1.
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• . . .

Summarizing, in odd periods, we will see (T,C) being played with payoff of 2 for

Player 1 and in even periods, we will see (B,R) being played with payoff of −1

for Player 1. The resulting payoff stream is (2,−1, 2,−1, . . .) whose value is

(1− δ)
(
2− δ + 2δ2 − δ3 + . . .

)
= (1− δ)(2− δ)(1 + δ2 + δ4 + . . .)

= (1− δ)(2− δ) 1

1− δ2

=
2− δ
1 + δ

For carrot-and-stick to do better than flip-flop, we will need, 2 − δ ≤ 1 + δ or

δ ∈ [1
2
, 1).
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