1. Consider a two agent model with three alternatives \(\{a, b, c\} \). Table 1 shows two preference profiles of preferences. Suppose \(f(P_1, P_2) = a \). Show that if \(f \) is strategy-proof then \(f(P_1', P_2') = b \). You are allowed to use the result that for any preference profile \((\bar{P}_1, \bar{P}_2) \), \(f(\bar{P}_1, \bar{P}_2) \in \{\bar{P}_1(1), \bar{P}_2(1)\} \) (but do not use any other result from the lectures).

\[
\begin{array}{c|cc}
P_1 & P_2 & P_1' & P_2' \\
\hline
a & c & b & c \\
b & b & a & a \\
c & a & c & b \\
\end{array}
\]

Table 1: Two Preference Profiles

2. Let \(X \) be a set of projects. A social choice function chooses a non-empty subset of projects. Agent \(i \) has a linear ordering \(P_i \) over the set of projects \(X \). Agent \(i \) evaluates subsets of projects by extending \(P_i \) in the following manner: for any pair of subsets of projects \(S, T \subseteq X \), \(S \) is preferred to \(T \) if the highest ranked project in \(S \) (according to \(P_i \)) is better than the highest ranked project in \(T \) - if these two projects are the same, then \(S \) and \(T \) are indifferent.

Suppose \(|X| \geq 2 \). Will the Gibbard-Satterthwaite result apply here? Discuss your answer.

3. Consider the unanimous SCF \(f \) defined as follows. If \(P_1(1) = \ldots = P_n(1) = a \), then \(f(P_1, \ldots, P_n) = a \). Else, \(f(P_1, \ldots, P_n) = b \) for some alternative \(b \in A \). In other words, \(f \) satisfies unanimity wherever possible and picks a “status-quo” alternative \(b \) otherwise. Argue how \(f \) can be manipulated if there are at least three alternatives?

4. Let \(A \) be a finite set of alternatives and \(f : \mathcal{P}^n \rightarrow A \) be a social choice function that is unanimous and strategy-proof. Suppose \(|A| \geq 3 \).

Now, consider another social choice function \(g : \mathcal{P}^2 \rightarrow A \) defined as follows. The scf \(g \) only considers profiles of two agents, denote these two agents as 1 and 2. For any \((P_1, P_2) \in \mathcal{P}^2 \), let

\[
g(P_1, P_2) = f(P_1, P_2, P_1, \ldots, P_1),
\]

i.e., the outcome of \(g \) at \((P_1, P_2) \) coincides with the outcome of \(f \) at the profile where agents 1 and 2 have types \(P_1 \) and \(P_2 \) respectively, and all other agents have type \(P_1 \). Show that \(g \) is a dictatorship scf.
5. Let the number of alternatives be m. Show that the number of single-peaked preference orderings with respect to $<$ (an exogenously given ordering of alternatives) is 2^{m-1}.

6. Consider the single-peaked domain model. A social choice function f is manipulable by a group of agents $K \subseteq N$ if for some preference profile (P_K, P_{-K}) there exists some preference profile P'_K of agents in K such that $f(P'_K, P_{-K}) P_i f(P_K, P_{-K})$ for all $i \in K$. A social choice function f is **group strategy-proof** if cannot be manipulated by any group of agents. Is the median voter SCF group strategy-proof?

7. Let $A = [0, 1]$ and assume that agents have single peaked preferences over $A = [0, 1]$. Consider the following social choice function.

Definition 1 A social choice function f is a **generalized median voter social choice function** if there exists weights y_S for every $S \subseteq N$ satisfying

(a) $y_\emptyset = 0$, $y_N = 1$ and
(b) $y_S \leq y_T$ for all $S \subseteq T$

such that for all preference profile P, $f(P) = \max_{S \subseteq N} z(S)$, where $z(S) = \min\{y_S, P_i(1) : i \in S\}$.

Show that a generalized median voter SCF is strategy-proof.

8. Let A be a finite set of alternatives and \succ be a linear order over A. Suppose $a_L, a_R \in A$ be two alternatives such that $a \succ a_L$ for all $a \in A \setminus \{a_L\}$ and $a_R \succ a$ for all $a \in A \setminus \{a_R\}$ - in other words, a_L is the “left-most” alternative and a_R is the “right-most” alternative with respect to \succ.

Let S be the set of all possible single-peaked strict orderings over A with respect to \succ. An SCF $f : S^n \rightarrow A$ maps the set of preference profiles of n agents to A.

Let $P_i(1)$ denote the peak of agent i in P_i. Suppose f satisfies the following property (call it property II). There is an alternative $a^* \in A$ such that for any preference profile $(P_1, \ldots, P_n) \in S^n$, where $P_i(1) \in \{a_L, a_R\}$ for all $i \in N$ with at least one agent’s peak at a_L and at least one agent’s peak at a_R, $f(P_1, \ldots, P_n) = a^*$.

(a) Suppose f is strategy-proof, efficient, anonymous, and satisfies property II. Then, give a precise (simplified) description of f (using a^*), i.e., for every preference profile P, what is $f(P)$?

(b) Can f be strategy-proof, anonymous, and satisfy property II, but not efficient (give a formal argument or an example)?