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 Abstract This note uses the Theorem of the Alternative to prove new results on the
 implementability of general, asymmetric auctions, and to provide simpler proofs
 of known results for symmetric auctions. The tradeoff is that type spaces are taken
 to be finite.

 Keywords Asymmetric auction ? Reduced form auction ? Theorem of the
 alternative

 JEL Classification Number D44

 1 Auctions

 An auction is an institution (set of rules) for selling an object to a group of potential
 buyers or bidders. The most familiar example is the first-price auction, in which the
 bidders submit monetary bids, and the object is sold to the highest bidder at the price
 he bid. Ties are resolved by lot. Another example is the second-price auction, in
 which the highest bidder is sold the object at a price equal to the second-highest bid.

 An archetypal problem in incentive design is to determine which auction yields
 the highest expected revenue to the seller. This is not the place for a review of all
 the literature on auctions, but a brief summary is in order. It is assumed that there
 is a known number of bidders, indexed by / = 1,..., N. Each bidder / has a

 type belonging to a set 7) that influences his willingness to pay for the object. For
 this note, we assume each that each type set 7} is finite. A profile of types is simply
 an element t of the product

 = T\ ? ? ? Tn.
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 168  . C. Border

 It is assumed that the seller and the bidders view the profile of bidders' types as
 being selected by nature at random, according to the probability measure on

 . The pair ( , ) specifies the environment. In this framework each institution
 defines a Bayesian game, and it assumed that bidders play a Nash equilibrium of
 this game. The seemingly limitless variety of auctions can be reduced to a small

 manageable class through the application of the "revelation principle." This implies
 that we can limit discussion to the class of mechanisms where the bidders are asked

 to reveal their type, the mechanism determines the probability of selling to each
 bidder and the price paid, and the mechanism provides no incentives to lie, provided
 the other bidders are truthful.

 Following Maskin and Riley (1984), Matthews (1984), and Border (1991), we
 formally define an auction to be an ordered list of functions = (p\, ? ?, Pn)>
 p? : -> [0, 1], / = 1,..., N, satisfying the feasibility condition

 0< (f)
 /=i

 for each t e T. Here p?(t) is the probability that bidder / wins the auction in
 profile t. The feasibility condition f is just that the probability of selling the object
 cannot exceed unity. It may be less than unity if there are circumstances under
 which the seller keeps the object. Note that we have left the payments out of the
 definition. It is well known that given the probability functions p, the payments
 can be inferred from the self-selection constraints that it is an equilibrium for each
 bidder to truthfully reveal his type.

 From bidder /'s point of view, what is important to him about the auction
 is the conditional probability that he wins given his type. To facilitate the discus
 sion of these probabilities, we write ( ) instead of ({ })* and define as usual
 T~l =Y\ j.j^j Tj, and write t~l for a typical element of T~l. We also write t e
 as (*/, t~l) T? and more generally ( , t~l) is the tuple t with t? =
 and/j = tj1 for j /.Let * denote the marginal probability on T] and ,?( ~' | )
 denote the conditional probability of t~l given that bidder / has type r. That is,

 ?( )= ( , -''), /(^'| ) = ^ if ?( ) > 0. ^ . i ( )

 Notice that I have not defined probability conditional on types of probability zero.
 If we are careful, the existence of zero probability types is not an issue.

 An ordered list of functions = (Pi, ..., 0, where each P? : 7]? ~> [0, 1]
 is the reduced form of the auction = (p\,..., p^), if for each bidder / and each
 type Tj,

 ?(r)= ( , ) ( \ ) if ?( ) > 0. (R)
 t-??T-?

 That is, Pi ( ) is a bidder's expected probability of winning given his own type is
 for types with positive probability. If the probability is zero, no restriction is placed
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 Reduced form auctions revisited  169

 on Pi ( ) (other than 0 < /( ) ^ 1, which is implied by Pj : 7/ -? [0, 1]). If is
 the reduced form of some auction /?, we may also say that is implementable.

 Maskin and Riley (1984) showed that using the reduced form of an auction
 (along with the self-selection constraints) leads to a tractable analytic problem for
 solving the expected revenue maximization problem. It is therefore highly desir
 able to find a simple criterion for whether or not is a reduced form of some
 auction p.

 The literature starting with Maskin and Riley (1984) dealt with environments
 where types are independently and identically distributed (i.i.d.). They showed
 that in that literature for this class of environments, for most reasonable seller's

 objective functions, it is enough to consider only symmetric auctions. That is, P?
 can taken to be independent of i. But for general environments, symmetric auc
 tions are not general enough, and even in the i.i.d. case, the seller may wish to
 discriminate on something other than the bidder's type. For instance, the seller
 may prefer to sell to someone of his own ethnic group, or more virtuously, as in the
 case of the FCC recently, the seller may wish to advantage businesses owned by
 underrepresented minorities. One could attempt to finesse this problem by making
 these nonbehavioral attributes part of the type - indeed one could incorporate the
 bidder's name into his type. Doing so makes the i.i.d. assumption invalid, so the
 results for i.i.d. environments do not apply.

 For i.i.d. environments with symmetric auctions, Matthews (1984) conjectured
 that the only restriction on for implementability was the necessary condition
 that the probability that the "winner" had a type in the a subset A could not exceed
 the probability that there was a bidder with type in A (the MRM condition). Ma
 skin and Riley (1984, Theorem 7) proved something like this result for increasing
 step functions on the unit interval. Their proof is long, tedious, and unintuitive.

 Matthews extended their result to general increasing functions on the unit interval,
 and conjectured this form of the theorem. Border (1991) proved the conjecture
 for general abstract measure spaces of types, which need not have an order, so the
 notion of increasing need not be defined. All these papers rely heavily on symmetry
 and the latter papers use topological and/or functional analytic techniques and are
 mildly opaque.

 However when is a finite set (ordered or not), is a reduced form if the
 finite system (F)-(R) of linear inequalities in has a nonnegative solution. By the
 Theorem of the Alternative, if this system has no nonnegative solution, then its
 dual system possesses a solution. The proof of sufficiency thus reduces to showing
 that the existence of a solution to the dual implies that the MRM condition must be
 violated. Given this insight, the proof practically writes itself. In this framework,
 the general result. Theorem 3 below, is easier to prove than the symmetric case,
 which is presented in Theorem 1. The main problem with carrying out this program
 of proof in i.i.d. environments with symmetric auctions is notational. The natural
 system of inequalities together with the symmetry conditions on are unwieldy.
 It is actually simpler to recognize that for a symmetric auction, only a bidder's
 own type and the distribution of the other bidders' types matters, and to rewrite the
 problem in these terms.

 Section 2 deals with i.i.d. environments and symmetric auctions. Section 3 deals
 with the general case. An appendix states the particular variant of the Theorem of
 the Alternative that is used.
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 170  . C. Border

 2 Symmetric auctions in i.i.d. environments

 An environment is i.i.d. if 7} = for each i = 1,..., (so = TN), and
 is a product measure / on TN, where is a probability on . (Types are inde
 pendently and identically distributed.) Let * denote the support of the probability
 measure , that is, * = { e : ( ) > 0}. An auction is symmetric if for each
 permutation on {1,..., N], each profile t , and each bidder /,

 /?/(*!,..., = Ptt-U?)^1)' * ? ? ? (S)

 That is, a player's number does not matter, only his type. A symmetric auction is
 completely determined by p\, which we may refer to simply as p. Likewise the
 reduced form can be summarized by P\, which we shall refer to as simply P. Thus
 we may say that a function : -> [0, 1] is the reduced form of the symmetric
 auction /? = (/ ,..., m ) if

 ( )= X Pi^rV'-V1) (R')
 for each *. Clearly not every : -> [0, 1] is a reduced form. For instance,
 let = {r}. Then ( ) = 1 cannot be a reduced form (unless there is only one
 bidder), for every bidder would have to win with probability one.

 Theorem 1 (Maskin-Riley-Matthews-Border) For an i id. environment, a func
 tion : ?> [0, 1] is the reduced form of a symmetric auction if and only if for
 every subset A of T, it satisfies the Maskin?Riley?Matthews (MRM) condition

 ( ) ( ) < 1 - a(AC)N. (MRM)

 For the remainder of this section, I shall also abuse notation and identify the
 set of types with the set integers {1,..., T}. That is, denotes both the number
 of types and the set of types,

 r = {i,...,n.

 You should not get confused.

 2.1 Reformulation in terms of censuses

 For i.i.d. environments with symmetric auctions, all that matters to bidder / about a
 profile is his own type and the number of other bidders of each type. Let us call the
 information about the number of bidders of each type a census. Formally, a census
 is a nonnegative integer-valued measure on 7, which we can think of as an element
 of V = 7, where = {(), 1,2,...} is the set of natural numbers including 0.
 Given a census d, write dT instead of d({r}), and define the size of the census by

 \d\=d(T),
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 Reduced form auctions revisited  171

 and

 Vn = {d V : \d\ = n}.

 The set T>n is the set of censuses that can arise from draws (with replacement)
 from T. We shall be mainly interested in the two cases = ? 1 and = TV .

 Now instead of profiles being drawn at random from ^, we may think of cen
 suses as being drawn at random from a multinomial distribution. The chance that
 the census d results from \d\ i.i.d. draws (with replacement) from is

 c(d) =  \d\\

 d\\--dT\
 (1) di  ( ) dj  (i)

 Thus

 Let : U~, T?

 X cid) = 1  for each .

 V assign to each profile t Tn its census. That is,

 Krit) = \{j :tj = r}\.

 where | ? | denotes the cardinality of a set.
 Given a type e and census d , the census d 0 in X>w+i that results

 by adding an individual of type is given by

 47
 a ? .

 Likewise, given a census m ?>/i+i and a type , if/ ? > 0 define the census
 /7? in X>/7 that results by removing an individual of type by

 On ) = m0
 m  = .

 Clearly

 (m ) = m, (d ) = rf,

 and there is a one-to-one correspondence between {( , m) e Vn : raT > 0}
 and D?_i via ( , m) ?-> ( , m ).

 Direct computation yields the following useful results.

 cid )  (\d\ + \)c(d)X(r)
 dr + ]

 and if m > 0, then

 c(m ) = mxc(m)
 ( )  provided ( ) > 0.

 (2)

 (3)
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 172  . C. Border

 We may now recast the discussion of symmetric auctions in an i.i.d. environ
 ment in terms of censuses rather than profiles.

 Start with the MRM condition. The term X(AC)N is the probability that in
 i.i.d. draws from no element of A appears, in other words, the census m of types
 has m = 0 for all A. Thus 1 - X(AC)N is just the probability that m(A) > 0
 (that is, there is at least one type in the set A), so the MRM condition can be
 rewritten as

 ^ ( ) ( ) < ] c(m). (MRM')
 reA meVN:m(A)>0

 We now describe auctions in terms of censuses rather than profiles. Define the
 function r : x VN~\ -> [0, 1] by

 r(r; d) = ( , tj, ? ? ?, t^), where ( *..., ?n) = d>

 Symmetry guarantees that this is well defined. We can recover = p\ from r by

 P)(t) =r(tx\K(t2,...JN)).

 We can express the feasibility condition F on in terms of r as follows. Let t!
 be derived from t by interchanging t\ and t?. Then ( ) = K(tf) and

 Pi(t) = pi(t') = r(t\;K(tr) = r(t?* ( ) //).

 Thus

 ] Pi (t) = ] mTr(r; m ) < 1 for all m VN. (F)
 / = 1 : >0

 The reduced form condition R can be rewritten in terms of r by means of a

 standard multinomial probability calculation.

 ( )= />i(T,f-Vi(*-l|r)
 /-'er-1

 = ] ^^'^ ??^^)
 = r(x\d)c{d). (R")
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 2.2 Restatement

 In light of the discussion above, we have shown that an equivalent definition of
 reduced form auctions is the following proposition.

 Proposition 1 For an i.i.d. environment, a function : -> [0, 1] is a reduced
 form symmetric auction if there exists a function r : XV- -> [0, 1 ] satisfying

 P(r) = ^ r(r; d)c(d) (for e *), (R")

 and

 (dT + l)r(r; ?/) = mrr(r; m ) < 1 for all m e VN. (F')
 cI?Vn-i : >0

 The theorem can be now be written as follows.

 Theorem 2 (MRMB theorem recast) For an lid. environment, a function
 : ?> [0, 1] is the reduced form of a symmetric auction, that is, it satisfies

 conditions R" and F', if and only if for every subset A ofT, it satisfies

 ^ ( ) ( ) ^ (MRM')
 TEA msT>N:

 m(A)>0

 The proof is presented in two parts.

 Proposition 2 (Necessity) If is a reduced form, then it satisfies the MRM'
 condition.

 Proof For an i.i.d. environment, if is a reduced form, then

 ( ) = r(r; d^d>> if ( ) > ?' so

 ( ) ( )= r(T\d)c(d)k(T)
 deVN-i

 = r^d>-? d T>n-]

 / ( ; ra r)c(ra)
 ?

 me'DN:
 m >0

 where the second equality follows from equation (2) and the fact that ??/| = TV ? 1.
 Let us agree to interpretmxr(x\ mQx) = 0 when mT = 0, even though r(r; )
 is not defined. Then we may write
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 ^XWW = X rnTr(x\mQT)c{m)
 TG A m P,v:

 mT>0

 < 22 22 mTr(T? m r)c(m)
 w(A)>0

 = 22 c (m ) 22 m r ( > m )
 /( )>0

 c(in),
 rt?M)>0

 where the second inequality follows ?rom (F'). But this is just the MRM' condition.

 Proposition3 (sufficiency) For an i.i.d. environment, if satisfies the MRM'
 condition, then it is a reduced form.

 Proof We shall prove the contrapositive, namely, if is not a reduced form, then
 the MRM' condition is violated.

 The function Pisa reduced form if and only the system of linear inequalities
 (F')-(R") has a nonnegative solution r. We can express this system in matrix tenus
 as follows. Columns are indexed by ( ; d) e V^-\. There are rows indexed
 by * that express condition R" and rows indexed by m e that express
 condition F'.

 indices  (t:c1)

 m eV

 eTxV,  -

 r(T-,d)

 ( )

 (4)

 where 8 is the Kronecker symbol, 8aj} = 1 if a = b and is zero otherwise.

 2.2. 7 The dual system

 Assume now that is not a reduced form, that is, assume that the system (4) has
 no nonnegative solution. Then from the Theorem of the Alternative (see Lemma 1
 in the Appendix), the dual system has a solution. The dual system has variables

 = ( ) ? * (unrestricted signs) and nonnegative variables u = (wm)wepv, and
 consists of:

 c{d) - ^ SmMTmTum ^ 0. V(t; d) VN~\ (5)
 aeT* meVN
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 and

 ( )- um >0, (6)

 and the nonnegativity condition u ^ 0.
 Now equation (5) has an inequality for each ( ; d) e XV-i- There are

 two cases. If ( ) > 0, that is. e *, then the ( , d) inequalities can be written

 ZTc{m ) ^ mxum V(r, in) e * ?>/V : wr > 0. (5')

 But if ( ) = 0, equation (5) reduces to 0 ^ (dT + l)um, which is redundant.

 2.2.2 Properties of the dual solution

 The first thing to note is that if the dual system has a solution (Z, u), then by
 increasing u if needed, there is a solution with ^ 0 for every *. To see
 this just note that if < 0, then setting = 0 only strengthens inequalities
 (6), and the nonnegativity of u makes (5 ) superfluous. Now observe that given a
 nonnegative solution, by increasing each um slightly, we can increase each Za to
 get a solution with Za > 0 for every e *. Finally, given a solution with each

 > 0, fixing Z, we can look for a minimal u that solves the dual.
 Let ?>* = {in e VN : c(m) > ()}. Thus if m V* and mT > 0, then *.

 Since each ( ) ^ 0 and each um > 0, equation (6) implies the stronger inequality

 ^ - M*>0?
 7'* m eV*

 We now proceed to break up these sums into pieces. Renumbering the members
 of * if necessary, we may assume the types are numbered so that ( ) > 0 and
 Zx > 0 for = ?,..., = \T% and

 ^ * * ' ^ 77777 > ?- (7) (1) ( )
 (Note that ^ 1.) Then

 (1) + ?.. + */>(*)- ^>a (8)

 Now let us break up X>* into pieces. Let

 E] = {m e ?>* : m\ > 0},

 and recursively define E\,..., E by

 ?T+1 = {m D* \ (E U . - ? U E ) : mT+1 > 0}.

 That is, m e T>* belongs to ET if and only if mT > 0 and = 0 for < so
 the sets ?T are disjoint. Two key properties are that

 E U -. ? U Ek = {m ?>* : raT > 0 for some < it}, (9)
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 and

 ?|U-U?jf = ?>*.
 Now from equation (5'),

 ZTc(m ) wm ^ - Vr : mT > 0,
 mT

 so for m eV*.by equation (3),

 ( )
 Therefore, to find a solution with minimal u,?, we may decrease um until we have

 equality in (10) for the type with the largest value of the ratio 7777^. But this is
 how we constructed the ET sets, so

 ZTc(m) if m e E , then um = ' , = 1,..., . ( )
 Thus equation (8) becomes

 c (m ) ? A- c (m ) _L_L_?-y A r X(l)N ?? ( ) met] met
 > o,

 or

 X^y(^VP(r)?(r)-c(?r)) >0, (11)
 where c(ET) = cim).

 Now here comes the crux of the argument - it corresponds to Lemma 5.3
 in Border (1991). Observe that if for some k we have

 k

 ^ ( ) ( )- (? )>0,
 then by equation (9) we have a violation of condition MRM', for A = {1,..., k).
 In particular, if = 1, then equation (11) implies that we have a violation of the

 MRM' condition for A = {!}.
 So assume that for > 1 and for k = 1,..., ? 1,

 k

 ^ ( ) ( )- (E )^0. (12)
 Now take the r = 1 term in equation (11) to the right hand side and divide by

 ZiA(l)toget

 ^( ^ ^ - c^) > C^E^ - ^OUd) > 0. (13) " ( ) V /
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 where the second inequality follow from the hypothesis (12). Now multiply the
 left-hand side of equation (13) by \ (2)/ 2 (1) ^ 1 [by equation (7)] to get a
 stronger inequality. Take the = 2 term to the right to get

 > c(E?)-NP(?)X(]) + c(E2)-NP(2)X(2) > 0,

 Continue in this fashion until reaching the contradiction

 0 > c(Ei) - 7VP(1)?(1) + - - - + c(EK) - ( ) ( ) ^ 0.

 This contradiction means that for some k = 1,..., K. condition (12) is false, and
 thus the MRM' condition is violated for some A ? E\ U ? ? ? U ??.

 To summarize, we have shown that if is not a reduced form, then the dual
 system has a solution, so the MRM' condition is violated. Thus by contraposition,
 if the MRM' condition is satisfied, then is a reduced form.

 3 General environments

 The statement of the implementation condition for general environments is similar
 to the MRM condition, but the role of is replaced by the collection of bidder-type
 pairs, T, defined as

 = (J{0 Ti: = {(/, ) : 1 * i ^ , e 7?}.
 ?=]

 Let

 * = {(/, ) G : ?( ) > ()}.

 Then the general implementation condition can be written as follows.

 Theorem 3 (general implementation) The list = (Pi,..., Pn) of functions is
 the reduced form of a general auction = (p\,..., ) if and only if for eveiy
 subset A C of individual-type pairs, we have

 ( ) ?( ) < ({ e : 3( , ) e , /,? = }). (Gl)

 The proof is divided into two parts.

 Proposition 4 (necessity) Let = (Pi,..., Pn) be the reducedform of a general
 auction. Then it satisfies condition GL
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 Proof Let = (P\,..., P,\<) be the reduced form of the symmetric auction
 = (/?],.... ph). Let A CT. Then

 />.( ) ?( )= V
 (7. )

 ^ ^ ,( ,* ') ,?( ) ?( )

 (/. ) ^-/ 7,~'

 (/, ) 4 t~'eT~'

 < ({* : 3(/\ ) 6 /I, */ = }).

 Proposition 5 (sufficiency) // satisfies condition Gl, /?<?/7 // /s A^ reduced form
 of some auction p.

 Proof The proof of sufficiency of condition GI proceeds by contraposition. That
 is, we shall prove that if is not implementable, then condition GI is violated.
 Thus by contraposition, if condition GI is satisfied, then is implementable.

 So assume that is not implementable. Then the implementation and feasibil
 ity conditions R and F have no nonnegative solution (pj(t)) jgn . The conditions
 can be written in matrix form, with columns indexed by ( j, t) e and one set
 of rows indexed by (/, ) e * expressing (R), and other rows indexed by s
 expressing (F):

 indices

 (/.T)eT*

 seT

 (Jj)eNxT

 SijSTj}?i(t j\t) ??

 <>SJ

 jit)

 ? ( )  (R)

 (F)

 where again 8 is the Kronecker symbol, 8aj7 = 1, if a = h and is zero otherwise.
 Since this system has no solution, then by the Theorem of the Alternative

 (Lemma 1 in the Appendix) the dual system must have a solution. The dual vari
 ables are /. > where (/, ) e * and us > 0, s e T. The dual system is

 Z}jj?j(t-'j\tj) - ut ^ 0 V0\ t) : 0\ ?j) *,  (14)

 /, /( )? ^ >a
 (/, ) * teT

 (15)
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 3.1 Properties of the dual solution

 If the dual system has a solution, it has a solution with each ut as small as possible,
 namely

 ut = max {Zjjj?jir^tpivO. (16)

 We can use this now to partition . Start by enumerating the elements of T* as
 {(/ , ),..., (?'m* ^m)} in such a way that

 -, ( ) ?( 2) ?* (^ ) * + ( + ) * ( )
 [By (15) for at at least one (/, r) 6 T* we must have Z/,T > 0. In fact, if there
 are any solutions at all, there is at least one with ^ > 0 for all (/, r) T*.]
 If ut > 0, then by (16), there is at least one (4, *) for which = r? and
 w? = Zik^kiJLik(t~lk\xk). Let 7(?) denote the least k for which this is true, and let
 Ek = {t : I(t) = k], k = 1,..., K. By construction these sets are disjoint. By
 equation (14), we have

 Ziti
 J 7 ?(*/)

 for each ( j, tj) T*, so it follows that:

 For all e and all ? = 1,..., tik = * r E\ U--UEk.
 That is, E],..., is a partition of [t : ut > 0}.

 Then(14)-(16) imply

 ( ) + ??? + ( )
 > W/ ^? +

 = ^^ ^_/ | ) + ???+ ^ ( \ )
 teEi teEfc

 7 1'* " , , NT* y
 refi, { ) teEK ^?KiTK)

 Thus
 * (ri) P?k&k)

 k=? ^ikKTk)

 I now claim that for some k < we have
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 k

 Y^PiJtni?liTn) - (E ) > 0.
 w=1

 For suppose that

 k

 ( ) ( )-?(E )^0 (18)
 77 = 1

 for all k < K. Then multiply equation (17) by * ( ,?, )/Z?] > 1 and rearrange to get

 ^^ ( ,>) (^( ^ ^ ,) - (?/?)) > (?]) - /, ( ,?,) ? ( /,) ^ 0,

 where the second inequality is just equation (18) for k = 1. Now multiply the
 Z/, r, * ( ,0 )

 left-hand side by -7--hrfr ^ 1 to strengthen the inequality and rearrange to get

 ?-^-(P,?(T?)M-(rn)-M(??)) ?:3 *"

 > (? )- /!( / ) ; ( / ) + (?2)- ?2( /2) ?( /2 ^ 0.
 where the second inequality is just equation ( 18) for k = 2. Continue in this fashion
 until reaching the conclusion

 0 > (E ) - /^ ^ ? ( ,,) + ? ? ? + (E ) ? /* ( ) (r/jf ).
 That is, if equation (18) holds for /c = 1,..., ? 1, it fails for k ~ . Thus for

 some k it must be that equation (18) fails. But this just says that condition GI is
 violated for A ? {(/ , ),..., (z?, *)}. This completes the proof of sufficiency.

 A Theorem of the Alternative

 The variant of the Theorem of the Alternative we use is this.

 Lemma 1 Either the (inequalities

 Ax = h, Bx ^ c

 have a nonnegative solution ^ 0, or else the inequalities

 A*y - B*u <; 0, y ? h - u ? c> 0

 have a solution (y, u) with u ^ 0 (but not both).

 Here A* is the transpose of A. This follows from a more standard version, e.g.,
 Franklin (2002, p. 56) by introducing slack variables.
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