
Theory of mechanism design

Final Examination

April 26, 2019; Duration: 3 hours; Total marks: 40

Write your answers clearly without unnecessary arguments.

1. Consider a single object allocation model with one agent. Suppose the agent’s prefer-

ence over allocation and transfer satisfies quasilinearity, and the value of the agent is

drawn from V ≡ [0, 1]. Consider an implementable allocation rule f : V → [0, 1] such

that f(v) /∈ {0, 1} for some v ∈ V .

(a) Construct two other (different from f) implementable allocation rules f ′ : V →
[0, 1] and f ′′ : V → [0, 1] such that for all v ∈ V

f(v) =
1

2

[
f ′(v) + f ′′(v)

]
.

Hint. The following function may be useful. Define a function h : V → [0, 1] as

follows. For all v ∈ V

h(v) =

1− f(v) if f(v) > 0.5

f(v) otherwise

[7 marks]

Answer. Let f ′(v) = f(v) + h(v) for all v ∈ [0, 1]. Then, f ′(v) = 2f(v) if

f(v) ≤ 0.5 and f ′(v) = 1 otherwise. This is clearly monotone since f is monotone

(f is implementable). Similarly, define f ′′(v) = f(v)− h(v) for all v ∈ [0, 1]. This

gives us f ′′(v) = 0 if f(v) ≤ 0.5 and f ′′(v) = 2f(v) − 1 if f(v) > 0.5. Again, f ′′

is monotone since f is monotone. Hence, f ′ and f ′′ are implementable. Further,

f(v) = 1
2
(f ′(v) + f ′′(v)) for all v.

(b) What does the above result say about the set of implementable allocation rules?

[3 marks]

Answer. Notice that f 6= f ′′ and f 6= f ′ when f(v) ∈ (0, 1) for some v (i.e.,

f is a random allocation rule), this means that every random allocation rule

can be expressed as a convex combination of two other implemtable allocation

rules. This is not true if f itself is a deterministic rule – in that case, h(v) = 0 for
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all v. Hence, every extreme point of the set of implementable allocation rules is a

deterministic implementable allocation rule, where by extreme point we mean that

it cannot be expressed as a convex combination of two different implementable

allocation rules.

2. Let A be a finite set of alternatives and T ⊆ R|A| be a polygonally connected

type space, i.e., for any pair of types s, t ∈ T , there exists a finite sequence of types

(s = s0, s1, . . . , sk, sk+1 = t), such that for each j ∈ {0, 1, . . . , k}, the line segment

connecting sj and sj+1 (denoted by L(sj, sj+1)) lies in T .

Suppose f : T → A is an implementable allocation rule. Consider a payment rule

p : T → R such that for every s, t ∈ T , (f, p) restricted to L(s, t) is incentive

compatible. Show that (f, p) is incentive compatible on the whole of T . [10 marks]

Answer. There are many ways to show this. Here is one way. Take any s, t ∈
T , and we need to show that the incentive constraint between s and t holds in

(f, p). By polygonally connectedness property, there is a finite sequence of types

(s = s0, s1, . . . , sk, sk+1 = t), such that for each j ∈ {0, 1, . . . , k}, the line segment

connecting sj and sj+1 (denoted by L(sj, sj+1)) lies in T . Hence, the incentive con-

straints along each of the line segment L(sj, sj+1) for j ∈ {0, 1, . . . , k} hold. Fur-

ther, since f is implementable, there is a mechanism (f, q) which is incentive compat-

ible. But for the mechanism (f, q), the incentive constraints on L(sj, sj+1) hold for all

j ∈ {0, 1, . . . , k}. But each L(sj, sj+1) is a convex set, and revenue equivalence holds in

such a type space. Hence, by restricting (f, p) and (f, q) to L(sj, sj+1), we obtain that

p(sj) − p(sj+1) = q(sj) − q(sj+1) for all j ∈ {0, 1, . . . , k}. Adding over all j, we get a

telescopic sum on each side, which gives us p(s)− p(t) = q(s)− q(t). But since (f, q) is

(globally) incentive compatible, we know that s·f(s)−s·f(t) ≥ q(s)−q(t) = p(s)−p(t).

Hence, incentive constraint s→ t holds for (f, p). An identical argument shows incen-

tive constraint t→ s also holds

3. Consider the strategic voting model where agents have single peaked preferences. Let

N be the set of n agents and A be a set of finite alternatives ordered according to an

ordering �. Let S be the set of all single peaked preferences with respect to �. Each

agent i has a preference in S.
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For every agent i ∈ N , let Pi(1) denote the peak alternative in preference Pi. Let

P 0 denote the single peaked preference where an agent has the peak at the lowest

alternative with respect to � and P 1 denote the single peaked preference where an

agent has the peak at the highest alternative with respect to �.

Suppose f : Sn → A be a strategy-proof and peaks-only social choice function (note:

f need not be unanimous or anonymous). Show that for every i ∈ N and at every

preference profile P−i of other agents, the following holds:

f(Pi, P−i) = median(f(P 0, P−i), Pi(1), f(P 1, P−i)).

[10 marks]

Answer. For such proofs, it is better to draw figures for each step and see what is

going on.

Fix agent i and P−i, and denote a0 = f(P 0, P−i) and a1 = f(P 1, P−i). First, we show

that a1 = a0 or a1 � a0. If a0 � a1, then agent i will manipulate at (P 0, P−i) to

(P 1, P−i) - a contradiction to strtaegy-proofness.

Next, choose any preference ordering Pi such that a0 = Pi(1) or a0 � Pi(1). We claim

that f(Pi, P−i) = a0. Denote f(Pi, P−i) = a. If a0 � a, then agent i manipulates at

(P 0, P−i) to (Pi, P−i). If a � a0, then agent i manipulates at (Pi, P−i) to (P 0, P−i).

Hence, strategy-proofness implies that a0 = a. This also means that f(Pi, P−i) = a0 =

med(Pi(1), a0, a1).

An analogous argument establishes that f(Pi, P−i) = a1 if a1 = Pi(1) or Pi(1) � a1.

This also means that f(Pi, P−i) = a1 = med(Pi(1), a0, a1).

So, we are left with the case when a1 � Pi(1) � a0. Notice that med(a0, Pi(1), a1) =

Pi(1). Let f(P ) = a. Assume for contradiction a 6= Pi(1). Then, there are two cases,

a � Pi(1) or Pi(1) � a. We give a proof for a � Pi(1) - the other case is analogous. If

a � Pi(1), then a � a0. Consider a preference ordering P ′i of agent i such that a0 P ′i a

and P ′i (1) = Pi(1) - this is possible in the single peaked domain since a0 and a lie

in opposite sides of Pi(1). By peaks-only property, f(P ′i , P−i) = f(Pi, P−i) = a. But

a0 P ′i a implies that agent i will manipulate at (P ′i , P−i) to (P 0, P−i).
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4. Consider the one-sided matching problem with 4 agents and 4 objects {a, b, c, d}. Con-

sider a preference profile �≡ (�1,�2,�3,�4) defined as follows:

a �j b �j c �j d if j ∈ {1, 2}

b �j a �j d �j c if j ∈ {3, 4}

Consider the uniform randomization over the 24 priorities of agents and the corre-

sponding uniform random priority rule. Let Q(�) be the random matching produced

by the uniform priority rule at this profile.

(a) Write down the bistochastic matrix Q(�). [3 marks]

There are 24 possible priorities. Out of it, 6 of them agent 1 is ranked first. So, he

gets a. Another 4 priorties, agent 3 or 4 are ranked first and he is ranked second.

So, he gets a in them too. He gets a in 10 priorities. If he is ranked second and

agent 2 is ranked first, he gets b, and this happens 2 priorities. If he is ranked

third, he gets c, which happens in 6 priorities. If he is ranked fourth, agent 2 is

not ranked third, agent 1 gets c also. This happens in 4 priorities. So, he gets

c in 10 priorities. The rest 2 priorities he gets d. The calculation for agent 2 is

identical. Calculations for agents 3 and 4 are identical with the role of a and b

switched and c and d switched.

Consider the following bistochastic matrix where rows are for agents (respectively,

1,2,3,4) and columns are objects (a, b, c, d).

Q(�) =


10
24

2
24

10
24

2
24

10
24

2
24

10
24

2
24

2
24

10
24

2
24

10
24

2
24

10
24

2
24

10
24


(b) Construct a random matching (a bistochastic matrix) Q′ such that for every agent

i, Q′i first-order-stochastic-dominates Qi(�), where Q′i denotes the probability

distribution over objects for agent i in matching Q′. [4 marks]

Answer. Consider the following bistochastic matrix Q′.
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Q′ =


11
24

1
24

10
24

2
24

11
24

1
24

10
24

2
24

1
24

11
24

2
24

10
24

1
24

11
24

2
24

10
24


Clearly Q′i FOSD Qi(�) for each i according to the preference �i.

(c) Does this suggest that the uniform random priority rule may not generate an

“efficient” random assignment? Clearly define the notion of efficiency used here.

[3 marks]

Answer. This suggest a notion of efficiency, usually called ordinal efficiency,

which is violated here. We say a matching Q is ordinally efficient at � if there

does not exist another matching Q′ such that Q′i FOSD Qi according to �i for

each i. The above example shows that uniform random priority is not ordinally

efficient.
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