THEORY OF MECHANISM DESIGN
Final Examination
April 26, 2019; Duration: 3 hours; Total marks: 40

Write your answers clearly without unnecessary arguments.

1. Consider a single object allocation model with one agent. Suppose the agent’s prefer-
ence over allocation and transfer satisfies quasilinearity, and the value of the agent is
drawn from V = [0, 1]. Consider an implementable allocation rule f : V' — [0, 1] such
that f(v) ¢ {0,1} for some v € V.

(a) Construct two other (different from f) implementable allocation rules f' : V —
[0,1) and f”:V — [0,1] such that for all v € V'

F0) = 5[F@) + ')

Hint. The following function may be useful. Define a function h : V' — [0, 1] as
follows. For all v € V

1—f(v) if f(v) >05

f(v) otherwise

[7 marks]
Answer. Let f'(v) = f(v) 4+ h(v) for all v € [0,1]. Then, f'(v) = 2f(v) if
f(v) <0.5and f'(v) = 1 otherwise. This is clearly monotone since f is monotone
(f is implementable). Similarly, define f”(v) = f(v) — h(v) for all v € [0,1]. This
gives us f"(v) = 0 if f(v) < 0.5 and f"(v) = 2f(v) — 1 if f(v) > 0.5. Again, f”
is monotone since f is monotone. Hence, f’ and f” are implementable. Further,
f(v) = 3(f"(v) + f"(v)) for all v.
(b) What does the above result say about the set of implementable allocation rules?
[3 marks]
Answer. Notice that f # f” and f # f' when f(v) € (0,1) for some v (i.e.,
f is a random allocation rule), this means that every random allocation rule
can be expressed as a convex combination of two other implemtable allocation

rules. This is not true if f itself is a deterministic rule — in that case, h(v) = 0 for

1



all v. Hence, every extreme point of the set of implementable allocation rules is a
deterministic implementable allocation rule, where by extreme point we mean that
it cannot be expressed as a convex combination of two different implementable

allocation rules.

2. Let A be a finite set of alternatives and 77 C R/4! be a polygonally connected
type space, i.e., for any pair of types s,t € T, there exists a finite sequence of types
(s = 8% st,...,8% "1 = t), such that for each j € {0,1,...,k}, the line segment

connecting s and s'™! (denoted by L(s’, s7™1)) lies in T

Suppose f : T — A is an implementable allocation rule. Consider a payment rule
p : T — R such that for every s,t € T, (f,p) restricted to L(s,t) is incentive
compatible. Show that (f,p) is incentive compatible on the whole of 7. [10 marks]

Answer. There are many ways to show this. Here is one way. Take any s,t €
T, and we need to show that the incentive constraint between s and ¢ holds in
(f,p). By polygonally connectedness property, there is a finite sequence of types
(s = s st ... 8% s**1 = t), such that for each j € {0,1,...,k}, the line segment
connecting s/ and s/™! (denoted by L(s’,s’*1)) lies in T. Hence, the incentive con-
straints along each of the line segment L(s/,s’™!) for j € {0,1,...,k} hold. Fur-
ther, since f is implementable, there is a mechanism (f, ¢) which is incentive compat-
ible. But for the mechanism (f, ¢), the incentive constraints on L(s’, s7™!) hold for all
j€1{0,1,...,k}. But each L(s’,s’™) is a convex set, and revenue equivalence holds in
such a type space. Hence, by restricting (f,p) and (f,q) to L(s?, s’™!), we obtain that
p(s?) — p(s7th) = q(s7) — q(s’11) for all j € {0,1,...,k}. Adding over all j, we get a
telescopic sum on each side, which gives us p(s) — p(t) = ¢(s) —¢q(t). But since (f, q) is
(globally) incentive compatible, we know that s- f(s)—s-f(t) > q(s)—q(t) = p(s)—p(t).
Hence, incentive constraint s — ¢ holds for (f,p). An identical argument shows incen-

tive constraint ¢ — s also holds

3. Consider the strategic voting model where agents have single peaked preferences. Let
N be the set of n agents and A be a set of finite alternatives ordered according to an
ordering >=. Let S be the set of all single peaked preferences with respect to >. Each

agent ¢ has a preference in S.



For every agent i € N, let P;(1) denote the peak alternative in preference P;. Let
P? denote the single peaked preference where an agent has the peak at the lowest
alternative with respect to = and P! denote the single peaked preference where an

agent has the peak at the highest alternative with respect to >.

Suppose f : 8" — A be a strategy-proof and peaks-only social choice function (note:
f need not be unanimous or anonymous). Show that for every i € N and at every

preference profile P_; of other agents, the following holds:
(P, P;) = median(f(PO, P_;), P(1), f(P', P;)).

[10 marks]

Answer. For such proofs, it is better to draw figures for each step and see what is

going on.

Fix agent i and P_;, and denote ag = f(P° P_;) and a; = f(P', P_;). First, we show
that a; = ag or a1 = ag. If ap = ay, then agent ¢ will manipulate at (P° P_;) to

(P!, P_;) - a contradiction to strtaegy-proofness.

Next, choose any preference ordering P; such that ag = P;(1) or ag = P;(1). We claim
that f(P;, P_;) = ag. Denote f(P;, P_;) = a. If ag > a, then agent i manipulates at
(P, P_;) to (P, P_;). If a = ag, then agent i manipulates at (P;, P_;) to (P° P_;).
Hence, strategy-proofness implies that ap = a. This also means that f(P;, P_;) = ap =
med(P;(1), ag,aq).

An analogous argument establishes that f(P;, P_;) = a1 if a1 = P;(1) or Pi(1) > a;.
This also means that f(P;, P_;) = a; = med(P;(1), ag, ay).

So, we are left with the case when a; > P;(1) > ag. Notice that med(ag, P;(1),a;1) =
P;(1). Let f(P) = a. Assume for contradiction a # P;(1). Then, there are two cases,
a > Pi(1) or Pi(1) > a. We give a proof for a = P;(1) - the other case is analogous. If
a > P;(1), then a > ag. Consider a preference ordering P! of agent i such that ay P/ a
and P/(1) = P;(1) - this is possible in the single peaked domain since ag and a lie
in opposite sides of P;(1). By peaks-only property, f(P!, P_;) = f(F;, P_;) = a. But
ag P! a implies that agent ¢ will manipulate at (P/, P_;) to (P°, P_;).



4. Consider the one-sided matching problem with 4 agents and 4 objects {a, b, ¢,d}. Con-
sider a preference profile == (1, >2, >3, >=4) defined as follows:

a>jb>-jc>jd 1f]€{1,2}

b>-jCL>-jd>-jC 1fj€{3,4}

Consider the uniform randomization over the 24 priorities of agents and the corre-
sponding uniform random priority rule. Let Q(>) be the random matching produced

by the uniform priority rule at this profile.

(a) Write down the bistochastic matrix Q(>). [3 marks]

There are 24 possible priorities. Out of it, 6 of them agent 1 is ranked first. So, he
gets a. Another 4 priorties, agent 3 or 4 are ranked first and he is ranked second.
So, he gets a in them too. He gets a in 10 priorities. If he is ranked second and
agent 2 is ranked first, he gets b, and this happens 2 priorities. If he is ranked
third, he gets ¢, which happens in 6 priorities. If he is ranked fourth, agent 2 is
not ranked third, agent 1 gets ¢ also. This happens in 4 priorities. So, he gets
¢ in 10 priorities. The rest 2 priorities he gets d. The calculation for agent 2 is
identical. Calculations for agents 3 and 4 are identical with the role of a and b

switched and ¢ and d switched.

Consider the following bistochastic matrix where rows are for agents (respectively,

1,2,3,4) and columns are objects (a, b, ¢, d).

10 2 10 2
24 24 24 24
10 2 10 2

24 24 24 24
Q<>)_z@zm
24 24 24 24
2 10 2 10
24 24 24 24

(b) Construct a random matching (a bistochastic matrix) )’ such that for every agent
i, Q. first-order-stochastic-dominates Q;(>), where @ denotes the probability

distribution over objects for agent ¢ in matching @’. [4 marks|

Answer. Consider the following bistochastic matrix @)'.



11 1 10 2

24 24 24
11 10 2
Q' _ 24 24 24 24

112 10
24 24 24 24
11 2 10
24 24 24 24

Clearly @} FOSD Q;(>) for each i according to the preference >;.

Does this suggest that the uniform random priority rule may not generate an
“efficient” random assignment? Clearly define the notion of efficiency used here.

[3 marks]

Answer. This suggest a notion of efficiency, usually called ordinal efficiency,
which is violated here. We say a matching @) is ordinally efficient at > if there
does not exist another matching @' such that @, FOSD @), according to >; for
each 7. The above example shows that uniform random priority is not ordinally

efficient.



