
Theory of Mechanism Design

Debasis Mishra1

November 13, 2014

1Economics and Planning Unit, Indian Statistical Institute, 7 Shahid Jit Singh Marg, New Delhi

110016, India, E-mail: dmishra@isid.ac.in

http://www.isid.ac.in/~dmishra

2

Contents

1 Introduction to Mechanism Design 7

1.1 Introduction . 7

1.1.1 Private Information and Utility Transfers 8

1.1.2 Examples in Practice . 9

1.2 A General Model of Mechanism Design . 10

1.3 Dominant Strategy Incentive Compatibility 13

1.4 Bayesian Incentive Compatibility . 15

2 Mechanism Design without Transfers 17

2.1 The Strategic Voting Model . 17

2.1.1 Examples of Social Choice Functions 19

2.1.2 Implications of Properties . 20

2.1.3 The Gibbard-Satterthwaite Theorem 22

2.1.4 Proof of the Gibbard-Satterthwaite Theorem 25

2.2 Single Peaked Domain of Preferences . 30

2.2.1 Possibility Examples in Single-Peaked Domains 32

2.2.2 Median Voter Result . 33

2.2.3 Properties of Social Choice Functions 34

2.2.4 Characterization Result . 37

2.3 Private Good Allocation . 39

2.3.1 Allocating a Divisible Commodity . 40

2.4 One Sided Matching - Object Allocation Mechanisms 44

2.4.1 Top Trading Cycle Mechanism with Fixed Endowments 47

2.4.2 Stable House Allocation with Existing Tenants 52

2.4.3 Generalized TTC Mechanisms . 54

2.5 The Two-sided Matching Model . 56

2.5.1 Stable Matchings in Marriage Market 56

3

2.5.2 Deferred Acceptance Algorithm . 58

2.5.3 Stability and Optimality of Deferred Acceptance Algorithm 60

2.5.4 Strategic Issues in Deferred Acceptance Algorithm 61

2.5.5 Extensions with Quotas and Individual Rationality 63

2.6 Applications of Various Matching Models . 64

2.7 Randomized Social Choice Function . 65

2.7.1 Defining Strategy-proof RSCF . 66

2.7.2 Randomization over DSCFs . 68

2.7.3 The Counterpart of Gibbard-Satterthwaite Theorem 69

3 Mechanism Design with Transfers and Quasilinearity 73

3.1 A General Model . 74

3.1.1 Allocation Rules . 74

3.1.2 Payment Functions . 76

3.1.3 Incentive Compatibility . 76

3.1.4 An Example . 77

3.1.5 Two Properties of Payments . 78

3.1.6 Efficient Allocation Rule is Implementable 79

3.2 The Vickrey-Clarke-Groves Mechanism . 81

3.2.1 Illustration of the VCG (Pivotal) Mechanism 82

3.2.2 The VCG Mechanism in the Combinatorial Auctions 84

3.2.3 The Sponsored Search Auctions . 85

3.3 Affine Maximizer Allocation Rules are Implementable 87

3.3.1 Public Good Provision . 88

3.3.2 Restricted and Unrestricted Type Spaces 89

4 Mechanism Design for Selling a Single Object 91

4.1 The Single Object Auction Model . 91

4.1.1 The Vickrey Auction . 91

4.1.2 Facts from Convex Analysis . 92

4.1.3 Monotonicity and Revenue Equivalence 95

4.1.4 The Efficient Allocation Rule and the Vickrey Auction 99

4.1.5 Deterministic Allocations Rules . 99

4.1.6 Individual Rationality . 101

4.2 Optimal Auction Design . 101

4.2.1 Auctions for a Single Indivisible Object 101

4

4.2.2 The Model . 104

4.2.3 The Direct Mechanisms . 104

4.2.4 Bayesian Incentive Compatible Mechanisms 105

4.2.5 Optimal Mechanisms . 108

4.3 Impossibility of Efficiency and Budget-balance 115

4.3.1 A General Model and Characterization of Budget-Balance 116

4.3.2 The Modified Pivotal Mechanism . 117

4.3.3 The AGV Mechanism . 118

4.3.4 Impossibility in Bilateral Trading . 122

4.3.5 Impossibility in Choosing a Public Project 124

5 Multidimensional Mechanism Design 127

5.0.6 Incentive Compatible Mechanisms . 128

5.0.7 The Implementation Problem . 132

5.0.8 Optimal Multi-Object Auction . 135

5

6

Chapter 1

Introduction to Mechanism Design

Consider a seller who owns an indivisible object, say a house, and wants to sell it to a set

of buyers. Each buyer has a value for the object, which is the utility of the house to the

buyer. The seller wants to design a selling procedure, an auction for example, such that he

gets the maximum possible price (revenue) by selling the house. If the seller knew the values

of the buyers, then he would simply offer the house to the buyer with the highest value

and give him a “take-it-or-leave-it” offer at a price equal to that value. Clearly, the (highest

value) buyer has no incentive to reject such an offer. Now, consider a situation where the

seller is unaware of the values of the buyers. What selling procedure will give the seller the

maximum possible revenue? A clear answer is impossible if the seller knows nothing about

the values of the buyer. However, the seller may have some information about the values of

the buyers. For example, the possible range of values, the probability of having these values

etc. Given these information, is it possible to design a selling procedure that guarantees

maximum (expected) revenue to the seller?

In this example, the seller had a particular objective in mind - maximizing revenue. Given

his objective he wanted to design a selling procedure such that when buyers participate in

the selling procedure and try to maximize their own payoffs within the rules of the selling

procedure, the seller will maximize his expected revenue over all such selling procedures.

The study of mechanism design looks at such issues. A planner (mechanism designer)

needs to design a mechanism (a selling procedure in the above example) where strategic

agents can interact. The interactions of agents result in some outcome. While there are

several possible ways to design the rules of the mechanism, the planner has a particular

objective in mind. For example, the objective can be utilitarian (maximization of the total

utility of agents) or maximization of his own utility (as was the case in the last example) or

some fairness objective. Depending on the objective, the mechanism needs to be designed in

7

a manner such that when strategic agents interact, the resulting outcome gives the desired

objective. One can think of mechanism design as the reverse engineering of game theory. In

game theory terminology, a mechanism induces a game-form whose equilibrium outcome is

the objective that the mechanism designer has set.

1.0.1 Private Information and Utility Transfers

The main input to a mechanism design problem is the set of possible outcomes or alternatives.

Agents have preferences over the set of alternatives. These preferences are unknown to the

mechanism designer. Mechanism design problems can be classified based on the amount of

information asymmetry present between the agents and the mechanism designer.

1. Complete Information: Consider a setting where an accident takes place on the

road. Three parties (agents) are involved in the accident. Everyone knows perfectly

who is at fault, i.e., who is responsible to what extent for the accident. The traffic

police comes to the site but is unaware of the information agents have. The mechanism

design problem is to design a set of rules where the traffic police’s objective (to punish

the true offenders) can be realized. The example given here falls in a broad class of

problems where agents perfectly know all the information between themselves, but the

mechanism designer does not know this information.

This class of problems is usually termed as the implementation problem. It is usually

treated separately from mechanism design because of strong requirements in equilib-

rium properties in this literature. We will not touch on the implementation problem

in this course.

2. Private Information and Interdependence: Consider the sale of a single object.

The utility of an agent for the object is his private information. This utility information

may be known to him completely, but usually not known to other agents and the

mechanism designer. There are instances where the utility information of an agent

may not be perfectly known to him. Consider the case where a seat in a flight is

being sold by a private airlines. An agent who has never flown this airlines does not

completely know his utility for the flight seat. However, there are other agents who

have flown this airlines and have better utility information for the flight seat. So, the

utility of an agent is influenced by the information of other agents. Still the mechanism

designer is not aware of any information agents have.

8

Besides the type of information asymmetry, mechanism design problems can also be

classified based on whether monetary transfers are involved or not. Transfers are a means to

redistribute utility among agents.

1. Models without transfers. Consider a setting where a set of agents are deciding

to choose a candidate in an election. There is a set of candidates in the election, and

each of them is an alternative. Agents have preference over the candidates. Usually

monetary transfers are not allowed in such voting problems.

2. Models with transfers and quasi-linear utility. The single object auction

is a classic example where monetary transfers are allowed. If an agent buys the object

he is expected to pay an amount to the seller. The net utility of the agent in that

case is his utility for the object minus the payment he has to make. Such net utility

functions are linear in the payment component, and is referred to as the quasi-linear

utility functions.

In this course, we will focus on (a) voting models without transfers and (b) models

with transfers and quasi-linear utility. In voting models, we will mainly deal with or-

dinal preferences, i.e., intensities of preferences will not matter. We will mainly focus on

the case where agents have private information about their preferences over alter-

natives. Note that such private information is completely known to the respective agents

but not known to other agents and the mechanism designer.

1.0.2 Examples in Practice

The theory of mechanism design is probably the most successful story of game theory. Its

practical applications are found in many places. Below, we will look at some of the applica-

tions.

1. Matching. Consider a setting where students need to be matched to schools. Stu-

dents have preferences over schools and schools have preference over students. What

mechanisms must be used to match students to schools? This is a model without any

transfers. Lessons from mechanism design theory has been used to design centralized

matching mechanisms for major US cities like Boston and New York. Such mechanisms

and its variants are also used to match kidney donors to patients, doctors to hospitals,

and many more.

9

2. Sponsored Search Auction. If you search for a particular keyword on Google, once

the search results are displayed, one sees a list of advertisements on the right of the

search results. Such slots for advertisements are dynamically sold to potential buyers

(advertising companies) as the search takes place. One can think of the slots on a page

of search result as a set of indivisible objects. So, the sale of slots on a page can be

thought of as simultaneous sale of a set of indivisible objects to a set of buyers. This

is a model where buyers make payments to Google. Google uses a variant of a well

studied auction in the auction theory literature. Bulk of Google’s revenues come from

such auctions.

3. Spectrum Auction. Airwave frequencies are important for communication. Tradition-

ally, Govt. uses these airwaves for defense communication. In late 1990s, various

Govts. started selling (auctioning) airwaves for private communication. Airwaves for

different areas were sold simultaneously. For example, India is divided into various

“circles” like Delhi, Punjab, Haryana etc. A communication company can buy the air-

waves for one or more circles. Adjacent circles have synergy effects and distant circles

have substitutes effects on utility. Lessons from auction theory were used to design

auctions for such spectrum sale in US, UK, India, and many other European countries.

The success of some of these auctions have become the biggest advertisement of game

theory.

1.1 A General Model of Mechanism Design

We will now formally define a model that will set up some basic ingredients to study mecha-

nism design. The model will be general enough to cover cases where transfers are permitted

and where it is excluded.

Let N := {1, . . . , n} be a set of n agents. Let X be the set of possible outcomes. Every

agent has some private information, which is called his type. The type of agent i is denoted

by θi. Let Θi be the set of all possible types of agent i - Θi is usually referred to as the type

space of agent i. The mechanism designer has complete information about the type space

Θi of every agent i, but does not know the types of the agent. A type profile will be denoted

as θ ≡ (θ1, . . . , θn). Let Θ := Θ1 × . . .× Θn be the set of type profiles of agents.

Given the type of an agent, it evaluates its utility from every outcome using a utility

function. Let ui : X×Θi → R denote the utility function of agent i. Though the mechanism

designer is unaware of the type of the agent, it knows the form of its utility function. In

some models, it is customary to allow the utility of an agent to depend on the types of all

10

the agents - such models are called interdependent value models. We will mainly focus on

the case where utility of an agent only depends on his own type - this is called the private

values model.

We give some classic examples to clarify the model before proceeding further.

1. Voting. In the voting model, X may represent the set of candidates in an election

and N the set of voters. The type θi of agent i is a ranking (ordering) of the set of

candidates. Then, the utility function ui is any utility function that represents θi. For

instance if X = {a, b, c} and θi is an ordering � such that a � b, b � c, a � c, then ui

can be any function satisfying ui(a, θi) ≥ ui(b, θi) ≥ ui(c, θi).

2. Single object sale/allocation. In this model, we consider sale or allocation

of a single indivisible object to a set of buyers. Usually, this also involves payment

or transfer. Hence, an outcome here consists of two components: (a) an allocation

decision and (b) a payment amount decision. Abstractly, an outcome x ∈ X consists

of two vectors a and p, where a ≡ (a1, . . . , an) the allocation vector with ai ∈ {0, 1}

for all i ∈ N and
∑

i∈N ai ≤ 1 and p ≡ (p1, . . . , pn) with pi denoting the payment of

agent i. The set of outcomes X is the set of all such (a, p) pairs.

The type θi here denotes the value of agent i for the object. A familiar utility function

in this setting is

ui((a, p), θi) := aiθi − pi.

This is called the quasi-linear utility function. Whenever transfers/payments are

allowed, we will make use of this form of utility function.

3. Choosing a public project. In this model, citizens of a city are deciding whether to

build a public project (park, bridge, museum etc.) or not. This is usually accompanied

by a decision on the amount of tax each citizen must pay to finance the project.

Formally, N is the set of citizens and X consists of outcomes which are pairs of the

form (a, p) with a ∈ {0, 1} and p ≡ (p1, . . . , pn) is the payment vector satisfying
∑

i∈N pi ≥ C, where C is the cost of the project. The type θi of agent i denotes the

value from the public project. Assuming quasi-linear utility, the utility of agent i from

an outcome (a, p) is given by ui((a, p), θi) = aθi − pi.

4. Choosing one out of many public projects. In this model, citizens of a city

are deciding to choose one out of many public projects. Let A be the set of public

projects. An outcome consists of a pair (f, p), where for every a ∈ A, fa ∈ {0, 1}

11

denotes whether project a is chosen or not with
∑

a∈A fa = 1 and p is the payment

vector satisfying
∑

i∈N pi ≤ C · f with C being the cost vector of projects.

The type θi of agent i is a vector in R|A| in this model with θi(a) denoting the value

of agent i for project a ∈ A. Type of this form are called multidimensional types.

Assuming quasi-linear utility function, the utility of an outcome (f, p) to agent i is

given by ui((f, p), θi) = f · θi − pi.

A similar model will can be used to describe a setting where a set of objects are being

assigned to a set of buyers. Here, type of an agent will represent the values of the

agent for each of the objects. An outcome will consist of a feasible assignment and a

payment vector.

A social choice function (SCF) is a map F : Θ → X. Hence, an scf chooses an

outcome for every type profile of agents. An SCF is supposed to capture all the objectives of

a mechanism designer. If the types of the agents were known to the designer, the outcome

chosen by the SCF reflects what the designer would like to do at that type profile.

In settings where transfers are allowed, it is convenient to think of an SCF F as (f, p1, . . . , pn),

where f : Θ → A with A being a set of decisions/alternatives and pi : Θ → R being the

payment function of agent i. In settings where transfers are not permitted, X ≡ A and

F ≡ f .

Given an SCF F , the utility of an agent i with type θi when agents report θ̂ to the SCF

is given by

Ui(θ̂, θi;F) := ui(F (θ̂), θi).

A mechanism is a more complicated object than an SCF. The main objective of a mech-

anism is to set up rules of interaction between agents. These rules are often designed with

the objective of realizing the outcomes of a social choice function. The basic ingredient

in a mechanism is a message. A message is a communication between the agent and the

mechanism designer. A mechanism must specify the message space - the set of all possi-

ble messages. Given a message profile, the mechanism must choose an outcome. Hence, a

mechanism is defined as M ≡ (M1, . . . ,Mn, g), where for every i ∈ N , Mi is the message

space of agent i and g : M1 × . . .×Mn → X is the decision rule.

A special form of mechanism is a direct mechanism, where Mi = Θi for every i ∈ N .

So, in a direct mechanism every agent communicates a type from his type space to the

mechanism designer. Hence, the decision rule in a direct mechanism is an SCF.

However, the message space of a mechanism can be quite complicated. Consider the sale

of a single object by a “price-based” procedure. The mechanism designer announces a price

12

and asks every buyer to communicate if it wants to buy the object at the announced price.

The price is raised if more than one buyer expresses interest in buying the object, and the

procedure is repeated till exactly one buyer shows interest. The message space in such a

mechanism is quite complicated.

1.2 Dominant Strategy Incentive Compatibility

The goal of mechanism design is to design the message space and outcome function in a way

such that when agents participate in the mechanism they have (best) strategies (messages)

that they can choose as a function of their private types such that the desired outcome is

achieved. The most fundamental, though somewhat demanding, notion in mechanism design

is the notion of dominant strategies. A strategy mi ∈Mi is a dominant strategy at θi ∈ Θi

in a mechanism (M1, . . . ,Mn, g) if for every m−i ∈M−i
1 we have

ui(g(mi, m−i), θi) ≥ ui(g(m̂i, m−i), θi) ∀ m̂i ∈Mi.

Alternatively, a strategy mi ∈ Mi is a dominant strategy at θi ∈ Θi in a mechanism

(M1, . . . ,Mn, g) if for every m−i ∈M−i

ui(g(mi, m−i), θi) = max
m̂i∈Mi

ui(g(m̂i, m−i), θi).

Notice the strong requirement that mi has to be the best strategy for every strategy profile

of other agents. Such a strong requirement limits the settings where dominant strategies

exist.

A social choice function F is implemented in dominant strategies by a mechanism

M ≡ (M1, . . . ,Mn, g) if there exists mappings for every agent i ∈ N , mi : Θi → Mi such

that mi(θi) is a dominant strategy at θi for every θi ∈ Θi and g(m(θ)) = F (θ) for all θ ∈ Θ.

A direct mechanism (or associated social choice function) is strategy-proof or incentive

compatible if for every agent i ∈ N and every θi ∈ Θi, θi is a dominant strategy at θi.

In other words, F is strategy-proof if for every agent i ∈ N , every θ−i ∈ Θ−i, and every

θi, θ
′
i ∈ Θi, we have

ui(F (θi, θ−i), θi) ≥ ui(F (θ′i, θ−i), θi),

i.e., truth-telling is a dominant strategy.

1 Here, m−i is the profile of messages of agents except agent i and M−i is the cross product of message

spaces of agents except agent i.

13

So, to verify whether a social choice function is implementable or not, we need to search

over infinite number of mechanisms whether any of them implements this SCF. A fundamen-

tal result in mechanism design says that one can restrict attention to the direct mechanisms.

Proposition 1 (Revelation Principle) If a mechanism M ≡ (M1, . . . ,Mn, g) imple-

ments a social choice function F in dominant strategies then the direct mechanism F is

strategy-proof.

Proof : Fix an agent i ∈ N . Consider two types θi, θ
′
i ∈ Θi. Consider θ−i to be the report of

other agents. Let mi(θi) = mi and m−i(θ−i) = m−i, where for all j ∈ N , mj is the dominant

strategy message function of agent j ∈ N . Similarly, mi(θ
′
i) = m′

i. Then, using the fact that

F is implemented by M ≡ (M1, . . . ,Mn, g) in dominant strategies, we get

ui(F (θi, θ−i), θi) = ui(g(mi, m−i), θi)

≥ ui(g(m
′
i, m−i), θi)

= ui(F (θ′i, θ−i), θi).

Hence, F is strategy-proof. �

Thus, a social choice function F is implementable in dominant strategies if and only if the

direct mechanism F is strategy-proof. Revelation principle is a central result in mechanism

design. One of its implications is that if we wish to find out what social choice functions can

be implemented in dominant strategies, we can restrict attention to direct mechanisms. This

is because, if some non-direct mechanism implements a social choice function in dominant

strategies, revelation principle says that the corresponding direct mechanism is also strategy-

proof.

Of course, a drawback is that a direct mechanism may leave out some equilibria of the

main mechanism. The original mechanism may have some equilibria that may get ruled

out because of restricting to the direct mechanism since it has smaller strategy space. In

general, this is a criticism of the mechanism design theory. Even in a direct mechanism,

incentive compatibility only insists that truth-telling is an equilibrium but there may be

other equilibria of the mechanism which may not implement the given social choice function.

These stronger requirement that every equilibria, truth-telling or non-truth-telling, must

correspond to the social choice function outcome is the cornerstone of the implementation

literature.

14

1.3 Bayesian Incentive Compatibility

Bayesian incentive compatibility was introduced in Harsanyi (1967-68). It is a weaker re-

quirement than the dominant strategy incentive compatibility. While dominant strategy

incentive compatibility required the equilibrium strategy to be the best strategy under all

possible strategies of opponents, Bayesian incentive compatibility requires this to hold in

expectation. This means that in Bayesian incentive compatibility, an equilibrium strategy

must give the highest expected utility to the agent, where we take expectation over types of

other agents. To be able to take expectation, agents must have information about the prob-

ability distributions from which types of other agents are drawn. Hence, Bayesian incentive

compatibility is informationally demanding. In dominant strategy incentive compatibility

the mechanism designer needed information on the type space of agents, and every agent

required no prior information of other agents to compute his equilibrium. In Bayesian incen-

tive compatibility, every agent and the mechanism designer needs to know the distribution

from which agents’ types are drawn.

To understand Bayesian incentive compatibility, fix a mechanism (M, g). A Bayesian

strategy for such a mechanism is a vector of mappings mi : Θi → Mi for every i ∈ N . A

profile of such mapping (m1, . . . , mn) is a Bayesian equilibrium if for all i ∈ N , for all

θi ∈ Θi, and for all m̂i ∈Mi we have

E−i

[

ui(g(m−i(θ−i), mi(θi)), θi)|θi

]

≥ E−i

[

ui(g(m−i(θ−i), m̂i)), θi)|θi

]

,

where E−i[·] denotes the expectation over type profile θ−i conditional on the fact that i has

type θi. If all θis are drawn independently, then we need not condition in the expectation.

A direct mechanism (social choice function) F is Bayesian incentive compatible if

mi(θi) = θi for all i ∈ N and for all θi ∈ Ti is a Bayesian equilibrium, i.e., for all i ∈ N and

for all θi, θ̂i ∈ Θi we have

E−i

[

ui(F (θ−i, θi), θi)|θi

]

≥ E−i

[

ui(F (θ−i, θ̂i), θi)|θi

]

A dominant strategy incentive compatible mechanism is Bayesian incentive compatible. A

mechanism (M, g) realizes a social choice function F in Bayesian equilibrium if there exists

a Bayesian equilibrium m : Θ → M of (M, g) such that g(m(θ)) = F (θ) for all i ∈ N

and for all θ ∈ Θ. Analogous to the revelation principle for dominant strategy incentive

compatibility, we also have a revelation principle for Bayesian incentive compatibility. The

proof is similar to Proposition 1 and is skipped.

15

Proposition 2 (Revelation Principle) If a mechanism (M, g) realizes a social choice

function F in Bayesian equilibrium, then the direct mechanism F is Bayesian incentive

compatible.

Like the revelation principle of dominant strategy incentive compatibility, the revelation

principle for Bayesian incentive compatibility is not immune to criticisms for multiplicity of

equilibria.

16

Chapter 2

Mechanism Design without Transfers

2.1 The Strategic Voting Model

We now discuss a general model of voting and examine the consequence of incentive com-

patibility in this model. The model is very general and introduces us to the rich literature

on strategic voting models where monetary transfers are excluded.

Let A be a finite set of alternatives with |A| = m. Let N be a finite set of individuals

or agents or voters with |N | = n. Every agent has a preference over the set of alternatives.

Let Pi denote the preference of agent i. The preferences can be represented in many ways.

Here is one plausible way of representing the preferences. A preference relation Ri of agent

i is called an ordering if it satisfies the following properties:

• Completeness: For all a, b ∈ A either aRib or bRia.

• Reflexivity: For all a ∈ A, aRia.

• Transitivity: For all a, b, c ∈ A,
[

aRib, bRic
]

⇒
[

aRic
]

.

We will denote the set of all orderings over A as R. By definition, an ordering gives ordered

pairs of A. An ordering Ri is a linear ordering if for any a, b ∈ A, aRib and bRia means

a = b, i.e., indifference is not allowed.

We assume that the preference ordering of every agent is a linear ordering. Given a

preference ordering Pi of agent i, we say aPib if and only if a is strictly preferred to b under

Pi. Further, the top ranked element of this ordering is denoted by Pi(1), the second ranked

element by Pi(2), and so on. Let P be the set of all strict preference orderings over A. A

profile of preference orderings (or simply a preference profile) is denoted as P ≡ (P1, . . . , Pn).

So, Pn is the set of all preference profiles. A social choice function (SCF) is a mapping

17

f : Pn → A. Note that this definition of a social choice function implicitly assumes that

all possible profiles of linear orderings are permissible. This is known as the unrestricted

domain assumption in the strategic voting (social choice) literature. Later, we will study

some interesting settings where the domain of the social choice function is restricted.

Every agent knows his own preference ordering but does not know the preference ordering

of other agents, and the mechanism designer (planner) does not know the preference orderings

of agents. This is a very common situation in many voting scenarios: electing a candidate

among a set of candidates, selecting a project among a finite set of projects for a company,

selecting a public facility location among a finite set of possible locations, etc. Monetary

transfers are precluded in these settings. The objective of this section is to find out which

social choice functions are implementable in dominant strategies in such strategic voting

scenarios.

We first describe several desirable properties of an SCF. The first property is an efficiency

property. We say an alternative a ∈ A is Pareto dominated at a preference profile P if

there exists an alternative b ∈ A such that bPia for all i ∈ N . Efficiency requires that no

Pareto dominated alternative must be chosen.

Definition 1 A social choice function f is efficient 1 if for every profile of preferences P

and every a ∈ A, if a is Pareto dominated at P then f(P) 6= a.

The next property requires to respect unanimity.

Definition 2 A social choice function f is unanimous if for every preference profile P ≡

(P1, . . . , Pn) with P1(1) = P2(1) = . . . = Pn(1) = a we have f(P) = a.

Note that this version of unanimity is a stronger version than requiring that if the preference

ordering of all agents is the same, then the top ranked alternative must be chosen. This def-

inition requires only the top to be the same, but other alternatives can be ranked differently

by different agents.

Next, we define the strategic property of a social choice function.

Definition 3 A social choice function f is manipulable by agent i at profile P ≡

(Pi, P−i)
2 by preference ordering P ′

i if f(P ′
i , P−i)Pif(P). A social choice function f is

strategy-proof if it is not manipulable by any agent i at any profile P by any preference

ordering P ′
i .

1Such a social choice function is also called Pareto optimal or Pareto efficient or ex-post efficient.
2 We use the standard notation P−i to denote the preference profile of agents other than agent i.

18

This notion of strategy-proofness is the dominant strategy requirement since no manipulation

is possible for every agent for every possible profile of other agents.

Finally, we define a technical property on the social choice function.

Definition 4 A social choice function f is onto if for every a ∈ A there exists a profile of

preferences P ∈ Pn such that f(P) = a.

2.1.1 Examples of Social Choice Functions

We give some examples of social choice functions.

• Constant SCF. A social choice function f c is a constant SCF if there is some alter-

native a ∈ A such that for every preference profile P , we have f c(P) = a. This SCF is

strategy-proof but not unanimous.

• Dictatorship SCF. A social choice function fd is a dictatorship if there exists an

agent i, called the dictator, such that for every preference profile P , we have fd(P) =

Pi(1). Dictatorship is strategy-proof and onto. Moreover, as we will see later, they are

also efficient and unanimous.

• Plurality SCF (with fixed tie-breaking). Plurality is a popular way of electing

an alternative. Here, we present a version that takes care of tie-breaking carefully. For

every preference profile P and every alternative a ∈ A, define the score of a in P as

s(a, P) = |{i ∈ N : Pi(1) = a}|. Define τ(P) = {a ∈ A : s(a, P) ≥ s(b, P) ∀ b ∈ A}

for every preference profile P , and note that τ(P) is non-empty. Let ≻T be a linear

ordering over alternatives A that we will use to break ties. . A social choice function

f p is called a plurality SCF with tie-breaking according to ≻T if for every preference

profile P , f p(P) = a, where a ∈ τ(P) and a ≻T b for all b ∈ τ(P) \ {a}.

Though the plurality SCF is onto, it is not strategy-proof. To see this, consider an

example with three agents {1, 2, 3} and three alternatives {a, b, c}. Let ≻T be defined

as: a ≻T b ≻T c. Consider two preference profiles shown in Table 2.1. We note first

that f(P) = a and f(P ′) = b. Since bP3a, agent 3 can manipulate at P by P ′
3.

• Borda SCF (with fixed tie-breaking). The Borda SCF is a generalization of the

Plurality voting SCF. The tie-breaking in this SCF is defined similar to Plurality SCF.

Let ≻T be a linear ordering over alternatives A that we will use to break ties. Fix a

preference profile P . For every alternative a ∈ A, the rank of a in Pi for agent i is given

by r(a, Pi) = k, where Pi(k) = a. From this, the score of alternative a in preference

19

P1 P2 P3 P ′
1 = P1 P ′

2 = P2 P ′
3

a b c a b b

b c b b c a

c a a c a c

Table 2.1: Plurality SCF is manipulable.

profile P is computed as s(a, P) =
∑

i∈N [|A| − r(a, Pi)]. Define for every preference

profile P , τ(P) = {a ∈ A : s(a, P) ≥ s(b, P) ∀b ∈ A}. A social choice function f b is

called a Borda SCF with tie-breaking according to ≻T if for every preference profile P ,

f b(P) = a where a ∈ τ(P) and a ≻T b for all b ∈ τ(P) \ {a}.

Like the Plurality SCF, the Borda SCF is onto but manipulable. To see this, consider

an example with three agents {1, 2, 3} and three alternatives {a, b, c}. Let ≻T be

defined as: c ≻T b ≻T a. Consider two preference profiles shown in Table 2.2. We note

first that f(P) = b and f(P ′) = c. Since cP1b, agent 1 can manipulate at P by P ′
1.

P1 P2 P3 P ′
1 P ′

2 = P2 P ′
3 = P3

a b b c b b

c c c a c c

b a a b a a

Table 2.2: Borda SCF is manipulable.

2.1.2 Implications of Properties

We now examine the implications of these properties. We start out with a simple character-

ization of strategy-proof social choice functions using the following monotonicity property.

Such monotonicity properties are heart of every incentive problem - though the nature of

monotonicity may differ from problem to problem.

For any alternative a ∈ A, let B(a, Pi) be the set of alternatives below a in preference

ordering Pi. Formally, B(a, Pi) := {b ∈ A : aPib}.

Definition 5 A social choice function f is monotone if for any two profiles P and P ′

with B(f(P), Pi) ⊆ B(f(P), P ′
i) for all i ∈ N , we have f(P) = f(P ′).

Note that in the definition of monotonicity when we go from a preference profile P to P ′

with f(P) = a, whatever was below a in P for every agent continues to be below it in P ′

20

also, but other relations may change. For example, the following is a valid P and P ′ in the

definition of monotonicity with f(P) = a (see Table 2.3).

P1 P2 P3 P ′
1 P ′

2 P ′
3

a b c a a a

b a a b c c

c c b c b b

Table 2.3: Two valid profiles for monotonicity

Theorem 1 A social choice function f : Pn → A is strategy-proof if and only if it is

monotone.

Proof : Consider social choice function f : Pn → A which is strategy-proof. Consider two

preference profiles P and P ′ such that f(P) = a and B(a, Pi) ⊆ B(a, P ′
i) for all i ∈ N . We

define (n− 1) new preference profiles. Define preference profile P 1 as follows: P 1
1 = P ′

1 and

P 1
i = Pi for all i > 1. Define preference profile P k for k ∈ {1, . . . , n− 1} as P k

i = P ′
i if i ≤ k

and P k
i = Pi if i > k. Set P 0 = P and P n = P ′. Note that if we pick two preference profiles

P k and P k+1 for any k ∈ {0, . . . , n−1}, then preference of all agents other than agent (k+1)

are same in P k and P k+1, and preference of agent (k + 1) is changing from Pk+1 in P k to

P ′
k+1 in P k+1.

We will show that f(P k) = a for all k ∈ {0, . . . , n}. We know that f(P 0) = f(P) = a,

and consider k = 1. Assume for contradiction f(P 1) = b 6= a. If bP1a, then agent 1 can

manipulate at P 0 by P 1. If aP1b, then aP 1
1 b, and agent 1 can manipulate at P 1 by P 0

1 . This

is a contradiction since f is strategy-proof.

We can repeat this argument by assuming that f(P q) = a for all q ≤ k < n, and showing

that f(P k+1) = a. Assume for contradiction f(P k+1) = b 6= a. If bPk+1a, then agent (k + 1)

can manipulate at P k by P k+1. If aPk+1b then aP ′
k+1b. This means agent (k + 1) can

manipulate at P k+1 by P k
k+1. This is a contradiction since f is strategy-proof.

Hence, by induction, f(P n) = f(P ′) = a, and f is monotone.

Now suppose, f : Pn → A is a monotone social choice function. Assume for contradiction

that f is not strategy-proof. In particular, agent i can manipulate at preference profile P

by a preference ordering P ′
i . Let P ′ ≡ (P ′

i , P−i). Suppose f(P) = a and f(P ′) = b, and by

assumption bPia. Consider a preference profile P ′′ ≡ (P ′′
i , P−i), where P ′′

i is any preference

ordering satisfying P ′′
i (1) = b and P ′′

i (2) = a. By monotonicity, f(P ′′) = f(P ′) = b and

f(P ′′) = f(P) = a, which is a contradiction. �

21

Theorem 1 is a strong result. The necessity of monotonicity is true in any domain - even

if a subset of all possible preference profiles are permissible. Even for sufficiency, we just

need a domain where we are able to rank any pair of alternatives first and second.

We now explore the implications of other properties.

Lemma 1 If an SCF f is monotone and onto then it is efficient.

Proof : Consider a, b ∈ A and a preference profile P such that aPib for all i ∈ N . Assume

for contradiction f(P) = b. Since f is onto, there exists a preference profile P ′ such that

f(P ′) = a. We construct another preference profile P ′′ ≡ (P ′′
1 , . . . , P

′′
n) as follows. For all

i ∈ N , let P ′′
i (1) = a, P ′′

i (2) = b, and P ′′
i (j) for j > 2 can be set to anything. Since f is

monotone, f(P ′′) = f(P) = b, and also, f(P ′′) = f(P ′) = a. This is a contradiction. �

Lemma 2 If an SCF f is efficient then it is unanimous.

Proof : Consider a preference profile P ≡ (P1, . . . , Pn) with P1(1) = P2(1) = . . . = Pn(1) =

a. Consider any b 6= a. By definition, aPib for all i ∈ N . By efficiency, f(P) 6= b. Hence,

f(P) = a. �

Lemma 3 If a social choice function is unanimous then it is onto.

Proof : Take any alternative a ∈ A and a social choice function f . Consider a profile P

such that Pi(1) = a for all i ∈ N . Then f(P) = a by unanimity. So, f is onto. �

We can summarize these results in the following proposition.

Proposition 3 Suppose f : Pn → A is a strategy-proof social choice function. Then, f is

onto if and only if it is efficient if and only if it is unanimous.

Proof : Suppose f is strategy-proof. By Theorem 1, it is monotone. Then, Lemmas 1, 2,

and 3 establish the result. �

2.1.3 The Gibbard-Satterthwaite Theorem

Theorem 2 (Gibbard-Satterthwaite Theorem) Suppose |A| ≥ 3. A social choice func-

tion f : Pn → A is onto and strategy-proof if and only if it is a dictatorship.

22

Before we discuss the proof, we make the following observations about the Gibbard-

Satterthwaite (GS) theorem.

1. |A| = 2. The GS theorem fails when there are only two alternatives. An example of a

non-dictatorial social choice function which is onto and strategy-proof is the plurality

social choice function with a fixed tie-breaking. (The proof of this fact is an exercise.)

2. Unrestricted domain. The assumption that the type space of each agent consists

of all possible strict orderings over A is critical in the GS theorem. Before we proceed

to discuss restricted domains in the next section, we discuss here (in full generality)

the implications of restricting domains. Suppose F : Θ → X be an arbitrary direct

mechanism (social choice function). Consider another type space Θ′ ⊆ Θ. Let F ′

be the restriction of F to Θ′, i.e., F ′(θ) := F (θ) for all θ ∈ Θ′. Now, it is easy

to see that if F is incentive compatible, F ′ is also incentive compatible. However,

the set of incentive compatible social choice functions may expand as we restrict our

type space. For instance, in the degenerate case, where the type space consists of a

singleton element, the mechanism designer perfectly knows the type of the agent and

can implement any social choice function.

The intuition about why the set of strategy-proof social choice functions become larger

as we restrict the type space is very simple. In a smaller type space, agents have less

opportunity to manipulate a social choice functions and, hence, it is easier for incentive

constraints to hold.

It is because of this reason, the GS theorem fails in various restricted domains. In

particular, a domain D ⊆ R is called a restricted domain if P * D. This will be the

focus of discussion in the next section. We will show that various non-dictatorial social

choice functions can be strategy-proof in these domains.

3. Indifference. Suppose every agent has a preference ordering which is not necessar-

ily anti-symmetric, i.e., there are ties between alternatives. Let R be the set of all

preference orderings. Note that P (R. Now, consider a domain D ⊆ R such that

P ⊆ D. Call such a domain admissible. A social choice function f : Dn → A is

admissible if D is admissible. In other words, if the domain of preference orderings

include all possible linear orderings, then such a domain is admissible. The GS theorem

is valid in admissible domains, i.e., if |A| ≥ 3 and f : Dn → A is admissible, onto, and

strategy-proof, then it is a dictatorship. The proof follows from the observation that

the proof of GS-Theorem only requires existence of certain strict preference orderings.

So, as long as such preference orderings exist, the GS-Theorem proof goes through.

23

However, dictatorship may not be strategy-proof when indifference is permitted. For

instance, consider the dictatorship SCF f as follows. It always selects an alternative

in agent 1’s top - so, agent 1 is the dictator. However, if there are more than one

alternative in agent 1’s top, then the following tie-breaking rule is followed. Let ≻

be a linear ordering over A. Consider a profile P such that P1(1) has more than one

element 3. Then, consider P2(1). If P2(1)∩P1(1) is non-empty, choose an element from

P2(1) ∩ P1(1) using ≻, i.e., breaking ties according to ≻. Else, choose an alternative

from P1(1) using ≻. As an example, suppose agent 1’s top consists of {a, b, c}. Agent

2’s top consists of b and c. The tie-breaking is done using ≻, and it has b ≻ c. So, the

outcome at this profile must be b. If agent 2’s top did not have an element in {a, b, c}

and a ≻ b ≻ c, then the outcome will be a.

Such dictatorship SCFs are manipulable. To see this, consider a setting with three

alternatives {a, b, c} and two agents. Suppose we use the dictatorship of the previous

example with a ≻ b ≻ c. Consider a profile where agent 1’s top consists of b and c.

But agent 2’s top has a followed by c, and then followed by b at the bottom. Then,

according to the SCF, b will be the outcome. Note that b is the worst alternative for

agent 2. He can improve it by reporting c as his unique top since the outcome will now

change to c.

4. Cardinalization. Instead of types to be strict orderings, we can think of types to be

utility numbers on alternatives consistent with some ordering. For instance, let U be

the set of all utility functions u : A → R. We can assume that the type space of each

agent is U instead of P. In that case, the scf is no longer ordinal since it considers

cardinal utility of each agent.

The following simple argument illustrates that as long as the solution concept is domi-

nant strategies, considering cardinal scfs does not expand the set of strategy-proof scfs.

To see this, consider agent i and let the utility functions of other agents be fixed at

u−i. Suppose f is a strategy-proof scf. Let ui and u′i be to utility functions of agent i

representing the same strict ordering over alternatives, i.e., for any a, b ∈ A, we have

ui(a) > ui(b) if and only if u′i(a) > u′i(b). We will argue that f(ui, u−i) = f(u′i, u−i).

Assume for contradiction f(ui, u−i) = a 6= b = f(u′i, u−i). If ui(a) < ui(b), then agent i

manipulates at (ui, u−i) by u′i. If ui(a) > ui(b), then u′i(a) < u′i(b), and agent i manip-

ulates at (u′i, u−i) by ui. This is a contradiction. This shows that f must be ordinal,

i.e., must ignore cardinal intensities. Hence, it is without loss of generality to assume

3Since we allow for indifference, Pi(1) for any agent i is a subset of alternatives.

24

that the type space of each agent is a set of preference orderings.

2.1.4 Proof of the Gibbard-Satterthwaite Theorem

We do the proof using induction on number of agents. We first analyze the case when n = 2.

Lemma 4 Suppose |A| ≥ 3 and N = {1, 2}. Suppose f is an onto and strategy-proof social

choice function. Then for every preference profile P , f(P) ∈ {P1(1), P2(1)}.

Proof : Fix a preference profile P = (P1, P2). If P1(1) = P2(1), the claim is due to unanimity

P1 P2 P1 P ′
2 P ′

1 P ′
2 P ′

1 P2

a b a b a b a b

· · · a b a b ·

· · · · · · · ·

Table 2.4: Preference profiles required in proof of Lemma 10.

(Proposition 3). Else, let P1(1) = a and P2(1) = b, where a 6= b. Assume for contradiction

f(P) = c /∈ {a, b}. We will use the preference profiles shown in Table 2.4.

Consider a preference ordering P ′
2 for agent 2 where P ′

2(1) = b, P ′
2(2) = a, and the

remaining ordering can be anything. By efficiency, f(P1, P
′
2) ∈ {a, b}. Further f(P1, P

′
2) 6= b

since agent 2 can then manipulate at P by P1. So, f(P1, P
′
2) = a.

Now, consider a preference ordering P ′
1 for agent 1 where P ′

1(1) = a, P ′
1(2) = b, and

the remaining ordering can be anything. Using an analogous argument, we can show that

f(P ′
1, P2) = b. Now, consider the preference profile (P ′

1, P
′
2). By monotonicity (implied by

strategy-proofness - Theorem 1) , f(P ′
1, P

′
2) = f(P1, P

′
2) = a and f(P ′

1, P
′
2) = f(P ′

1, P2) = b.

This is a contradiction. �

Lemma 5 Suppose |A| ≥ 3 and N = {1, 2}. Suppose f is onto and strategy-proof social

choice function. Consider a profile P such that P1(1) = a 6= b = P2(1). Consider a preference

profile P ′ = (P ′
1, P

′
2) with P ′

1(1) = c and P ′
2(1) = d. If f(P) = a, then f(P ′) = c and if

f(P) = b then f(P ′) = d.

Proof : We can assume that c 6= d, since the claim is true due to unanimity when c = d.

We do the proof for different possible cases.

25

Case 1: c = a, d = b. This case establishes a tops-only property. From Lemma 10,

f(P ′) ∈ {a, b}. Assume for contradiction f(P ′) = b (i.e., agent 2’s top is chosen). Consider

a preference profile P̂ ≡ (P̂1, P̂2) such that P̂1(1) = a, P̂1(2) = b and P̂2(1) = b, P̂2(2) = a

(See Table 2.5). By monotonicity, f(P̂) = f(P ′) = f(P), which is a contradiction.

P1 P2 P ′
1 P ′

2 P̂1 P̂2

a b a b a b

· · · · b a

· · · · · ·

Table 2.5: Preference profiles required in Case 1.

Case 2: c 6= a, d = b. Consider any profile P̂ = (P̂1, P̂2), where P̂1(1) = c 6= a, P̂1(2) = a,

and P̂2(1) = b (See Table 2.6).

P1 P2 P ′
1 P ′

2 P̂1 P̂2

a b c 6= a d = b c b

· · · · a ·

· · · · · ·

Table 2.6: Preference profiles required in Case 2.

By Lemma 10, f(P̂) ∈ {b, c}. Suppose f(P̂) = b. Then, agent 1 can manipulate by

reporting any preference ordering where his top is a, and this will lead to a as the outcome

(Case 1). Hence, f(P̂) = c = P̂1(1). Using Case 1, f(P ′) = c.

Case 3: c /∈ {a, b}, d 6= b 4. Consider a preference profile P̂ such that P̂1(1) = c, P̂2(1) =

d, P̂2(2) = b (See Table 2.7).

P1 P2 P ′
1 P ′

2 P̂1 P̂2 P̂1 P̂ ′
2

a b c 6= {a, b} d 6= b c d c b

· · · · · b · d

· · · · · · · ·

Table 2.7: Preference profiles required in Case 3.

4This case actually covers two cases: one where d = a and the other where d /∈ {a, b}.

26

By Lemma 10, f(P̂) ∈ {c, d}. Suppose f(P̂) = d. Then consider P̂ ′
2 such that P̂ ′

2(1) = b

and P̂ ′
2(2) = d (See Table 2.7). By Case 2, f(P̂1, P̂

′
2) = c. Since dP̂ ′

2c, agent 2 will manipu-

late at (P̂1, P̂
′
2) by P̂2. Hence, f(P̂) = c. Using Lemma Case 1, f(P ′) = c.

Case 4: c = a, d 6= b. By Lemma 10, f(P ′) ∈ {a, d}. Assume for contradiction f(P ′) = d.

Consider a preference ordering P̂2 such that P̂2(1) = b and P̂2(2) = d (See Table 2.8).

P1 P2 P ′
1 P ′

2 P ′
1 P̂2

a b c = a d 6= b a b

· · · · · d

· · · · · ·

Table 2.8: Preference profiles required in Case 4.

Now, by Case 1, f(P ′
1, P̂2) = a. But dP̂2a. Hence, agent 2 can manipulate at (P ′

1, P̂2) by

P ′
2, which is a contradiction. Using Case 1, f(P ′) = a.

Case 5: c = b, d 6= a. By Lemma 10, f(P ′) ∈ {b, d}. Assume for contradiction f(P ′) = d.

Consider a preference ordering P̂1 such that P̂1(1) = b and P̂1(2) = a, and P̂2 such that

P̂2(1) = d. Consider another preference ordering P̂ ′
1 such that P̂ ′

1(1) = a (See Table 2.9).

P1 P2 P ′
1 P ′

2 P̂1 P̂2 P̂ ′
1 P̂2

a b c = b d 6= a b d a d

· · · · a · · ·

· · · · · · · ·

Table 2.9: Preference profiles required in Case 5.

By Cases 1 and 4, f(P̂ ′
1, P̂2) = a. But aP̂1d. So, agent 1 can manipulate (P̂1, P̂2) by P̂ ′

1.

This is a contradiction. Using Case 1, f(P ′) = b

Case 6: c = b, d = a. Since there are at least three alternatives, consider x /∈ {a, b}.

Consider a preference ordering P̂1 such that P̂1(1) = b and P̂1(2) = x (See Table 2.10).

By Lemma 10, f(P̂1, P
′
2) ∈ {b, a}. Assume for contradiction f(P̂1, P

′
2) = a. Consider a

preference ordering P̂ ′
1 such that P̂ ′

1(1) = x (See Table 2.10). By Case 3, f(P̂ ′
1, P

′
2) = x.

But xP̂1a. Hence, agent 1 can manipulate (P̂1, P
′
2) by P̂ ′

1. This is a contradiction. Hence,

f(P̂1, P
′
2) = b. By Case 1, f(P ′) = b. �

27

P1 P2 P ′
1 P ′

2 P̂1 P ′
2 P̂ ′

1 P ′
2

a b c = b d = a b a x a

· · · · x · · ·

· · · · · · · ·

Table 2.10: Preference profiles required in Case 6.

Proposition 4 Suppose |A| ≥ 3 and n = 2. A social choice function is onto and strategy-

proof if and only if it is dictatorship.

Proof : This follows directly from Lemmas 10 and 11 and unanimity (implied by onto and

strategy-proofness - Proposition 3). �

Once we have the theorem for n = 2 case, we can apply induction on the number of

agents. In particular, we prove the following proposition.

Proposition 5 Let n ≥ 3. Consider the following statements.

(a) For all positive integer k < n, we have if f : Pk → A is onto and strategy-proof, then

f is dictatorial.

(b) If f : Pn → A is onto and strategy-proof, then f is dictatorial.

Statement (a) implies statement (b).

Proof : Suppose statement (a) holds. Let f : Pn → A be an onto and strategy-proof social

choice function. We construct another social choice function g : Pn−1 → A from f by merging

agents 1 and 2 as one agent. In particular, g(P1, P3, P4, . . . , Pn) = f(P1, P1, P3, P4, . . . , Pn)

for all preference profiles (P1, P3, P4, . . . , Pn). So agents 1 and 2 are “coalesced” in social

choice function g, and will be referred to as agent 1 in SCF g.

We do the proof in two steps. In the first step, we show that g is onto and strategy-proof.

We complete the proof in the second step, i.e., show that f is dictatorship.

Step 1: It is clear that agents 3 through n cannot manipulate in g (if they can manipulate in

g, they can also manipulate in f , which is a contradiction). Consider an arbitrary preference

profile of n− 1 agents (P1, P3, P4, . . . , Pn). Suppose

f(P1, P1, P3, P4, . . . , Pn) = g(P1, P3, P4, . . . , Pn) = a.

28

Consider any arbitrary preference ordering P̄1 of agent 1. Let

f(P1, P̄1, P3, P4, . . . , Pn) = b.

Let

f(P̄1, P̄1, P3, P4, . . . , Pn) = g(P̄1, P3, P4, . . . , Pn) = c.

If a = c, then agent 1 cannot manipulate g at (P1, P3, P4, . . . , Pn) by P̄1. So, assume a 6= c.

Suppose a = b 6= c. Then, agent 1 cannot manipulate f at (P1, P̄1, P3, P4, . . . , Pn) by P̄1. So,

a = bP1c. Hence, agent 1 cannot manipulate g at (P1, P3, P4, . . . , Pn) by P̄1. A similar logic

works for the case when b = c.

Now, assume that a, b, and c are distinct. Since f is strategy-proof, agent 2 cannot

manipulate f at (P1, P1, P3, P4, . . . , Pn) by P̄1. So, aP1b. Similarly, agent 1 cannot manipulate

f at (P1, P̄1P3, P4, . . . , Pn) by P̄1. So, bP1c. By transitivity, aP1c. Hence, agent 1 cannot

manipulate g at (P1, P3, P4, . . . , Pn) by P̄1. This shows that g is strategy-proof.

It is straightforward to show that if f is onto, then g is onto (follows from unanimity of f).

Step 2: By our induction hypothesis, g is dictatorship. Suppose j is the dictator. There

are two cases to consider.

Case A: Suppose j ∈ {3, 4, . . . , n} is the dictator in g. We claim that j is also the dictator

in f . Assume for contradiction that there is a preference profile P ≡ (P1, P2, . . . , Pn) such

that

f(P) = b and Pj(1) = a 6= b.

Since g is dictatorship, we get

f(P1, P1, P3, P4, . . . , Pn) = g(P1, P3, P4, . . . , Pn) = a,

f(P2, P2, P3, P4, . . . , Pn) = g(P2, P3, P4, . . . , Pn) = a.

We get bP1a, since f is strategy-proof, and agent 1 cannot manipulate f at (P1, P2, P3, P4, . . . , Pn)

by P2. Similarly, agent 2 cannot manipulate at (P1, P1, P3, P4, . . . , Pn) by P2. So, aP1b. This

is a contradiction.

Case B: Suppose j = 1 is the dictator in g. In this case, we construct a 2-agent social choice

function h as follows: for every preference profile (P1, P2, . . . , Pn), we define

hP−12(P1, P2) = f(P1, P2, . . . , Pn).

29

Since agent 1 is the dictator in g, hP−12 is onto. Moreover, hP−12 is strategy-proof: if any

of the agents can manipulate in hP−12 , they can also manipulate in f . By our induction

hypothesis, hP−12 is dictatorship. But hP−12 was defined for every n− 2 agent profile P−12 ≡

(P3, P4, . . . , Pn). We show that the dictator does not change across two n− 2 agent profiles.

Assume for contradiction that agent 1 is the dictator for profile (P3, P4, . . . , Pn) but agent

2 is the dictator for profile (P̄3, P̄4, . . . , P̄n). Now, progressively change the preference profile

(P3, P4, . . . , Pn) to (P̄3, P̄4, . . . , P̄n), where in each step, we change the preference of one agent

j from Pj to P̄j. Then, there must exist a profile (P̄3, P̄4, P̄j−1, Pj, Pj+1, . . . , Pn) where agent

1 dictates and another profile (P̄3, P̄4, P̄j−1, P̄j, Pj+1, . . . , Pn) where agent 2 dictates with

3 ≤ j ≤ n. Consider a, b ∈ A such that aPjb. Pick P1 and P2 such that P1(1) = b and

P2(1) = a with a 6= b. By definition,

f(P1, P2, P̄3, P̄4, P̄j−1, Pj, Pj+1, . . . , Pn) = P1(1) = b,

f(P1, P2, P̄3, P̄4, P̄j−1, P̄j, Pj+1, . . . , Pn) = P2(1) = a.

This means agent j can manipulate in SCF f at (P1, P2, P̄3, P̄4, P̄j−1, Pj, Pj+1, . . . , Pn) by P̄j.

This is a contradiction since f is strategy-proof. This shows that f is also a dictatorship.

This completes the proof of the proposition. �

The proof of the Gibbard-Satterthwaite theorem follows from Propositions 4 and 5, and

from the fact that the proof is trivial for n = 1.

Note that the induction step must start at n = 2, and not n = 1, since the induction

argument going from k to k + 1 works for k ≥ 2 only.

2.2 Single Peaked Domain of Preferences

We will now study an important restricted domain where the Gibbard-Satterthwaite theorem

does not apply. This is the domain where preferences of agents exhibit single-peaked prop-

erty. To understand single-peaked preferences, consider an election with several candidates

(possibly infinite). Candidates are ordered on a line so that candidate on left is the most

leftist, and candidates become more and more right wing as we move to right. Now, it is

natural to assume that every voter has an ideal political position. As one moves away from

his ideal political position, either to left or to right, his preference decreases.

To be more precise, let {a, b, c} be three candidates, with a to extreme left, b in the

center, and c to extreme right. Now, suppose a voter’s ideal position is b. Then, he likes b

over a and b over c, but can have any preference over a and c. On the other hand, suppose

30

a voter likes a the most. Then, the only possible ordering is a better than b better than c.

Hence, when a is on top, c cannot be better than b. This restriction shows that this is a

domain which is restricted, and the Gibbard-Satterthwaite theorem does not apply.

We now formally define the single-peaked preferences. Let N = {1, . . . , n} be the set

of agents. Let A be a set of alternatives. All the results we state will hold for A finite or

infinite. Consider the linear order < induced by less than relation on [0, 1]. We map the set

of alternatives in A onto [0, 1] (this is only for convenience - we can pick any linear order ≻ on

A and work with that). A preference ordering Pi (a linear order over the set of alternatives

A) of agent i is single peaked with respect to < if there exists an alternative pi ∈ A, called

the peak, such that

• for all b, c ∈ A with b < c < pi we have piPic and cPib, and

• for all b, c ∈ A with pi > b > c we have piPib and bPic.

So, preferences away from peak decreases, but no restriction is put for comparing alter-

natives when one of them is on the left to the peak, but the other one is on the right of the

peak. We show some preference relations in Figure 2.1, and color the single-peaked ones in

green.

0 1

Figure 2.1: Examples of single-peaked preferences

Since we fix the order < on [0, 1], we will just say single-peaked preferences instead

of single-peaked with respect to <. Note that if we have some finite set of alternatives,

then single-peaked preference first maps each of the alternative onto [0, 1], which induces the

ordering <, and then single-peaked preferences can be defined in the usual way. We illustrate

the idea with four alternatives A = {a, b, c, d}. Let us put the alternatives on [0, 1] such that

a < b < c < d. With respect to <, we give the permissible single peaked preferences in

Table 2.11. There are sixteen more preference orderings that are not permissible here. For

example, bPidPiaPic is not permissible since c, d are on the same side of peak, and in that

case c is nearer to b than d is to b. So, cPid, which is not the case here.

31

a b b b c c c d

b a c c d b b c

c c d a b a d b

d d a d a d a a

Table 2.11: Single-peaked preferences

We now give some more examples of single-peaked preferences.

• An amount of public good (number of buses in the city) needs to be decided. Every

agent has an optimal level of public good that needs to be consumed. The preferences

decrease as the difference of the decided amount and optimal level increases.

• If we are locating a facility along a line then agents can have single-peaked preferences.

For every agent, there is an optimal location along a line where he wants the facility,

and the preference decreases as the distance from the optimal location increases in one

direction.

• Something as trivial as setting the room temperature of a building by a group of

agents exhibit single-peaked preferences. Everyone has an ideal temperature, and as

the difference from the ideal temperature increases, the preference decreases.

Let S be the set of all single-peaked preferences. A social choice function f is a mapping

f : Sn → A. An SCF f is manipulable by i at (Pi, P−i) if there exists another single-

peaked preference P̂i such that f(P̂i, P−i)Pif(Pi, P−i). An SCF is strategy-proof if it is not

manipulable by any agent at any preference profile.

2.2.1 Possibility Examples in Single-Peaked Domains

We start with an example to illustrate that many non-dictatorial social choice functions are

strategy-proof in this setting. For any single-peaked preference ordering Pi, we let Pi(1) to

denote its peak. Now, consider the following SCF f : for every preference profile P , f(P) is

the minimal element with respect to < among {P1(1), P2(1), . . . , Pn(1)}. First, this is not a

dictatorship since at every profile, a different agent can have its peak to the left. Second,

it is strategy-proof. To see this, note that the agent whose peak coincides with the chosen

alternative has no incentive to deviate. If some other agent deviates, then the only way to

change the outcome is to place his peak to the left of chosen outcome. But that will lead

to an outcome which is even more left to his peak, which he prefers less than the current

outcome. Hence, no manipulation is possible.

32

One can generalize this further. Pick an integer k ∈ {1, . . . , n}. In every prefer-

ence profile, the SCF picks the k-th lowest peak. Formally, f(P1, . . . , Pn) chooses among

{P1(1), . . . , Pn(1)} the k-th lowest alternative according to <. To understand why this SCF

is manipulable, note that those agents whose peak coincides with the k-th lowest peak have

no incentive to manipulate. Consider an agent i, which lies to the left of k-th lowest peak.

The only way he can change the outcome is to move to the right of the k-th lowest peak. In

that case, an outcome which is even farther away from his peak will be chosen. According to

single-peaked preferences, he prefers this less. A symmetric argument applies to the agents

who are on to the right of k-th lowest peak.

2.2.2 Median Voter Result

We now define the notion of a median voter. Consider any sequence of pointsB ≡ (x1, . . . , x2k+1)

such that for all j ∈ {1, . . . , 2k + 1}, we have xj ∈ A. Now b ∈ B is the median if

|{x ∈ B : x < b or x = b}| ≥ k + 1 and |{x ∈ B : x > b or x = b}| ≥ k + 1. The median

of a sequence of points B will be denoted as med(B). Also, for any profile (P1, . . . , Pn), we

denote the sequence of peaks as peak(P) ≡ (P1(1), . . . , Pn(1)).

Definition 6 A social choice function f : Sn → A is a median voter social choice func-

tion if there exists B = (y1, . . . , yn−1) such that f(P) = med(B, peak(P)) for all preference

profiles P . The alternatives in B are called the peaks of phantom voters.

Note that by adding (n−1) phantom voters, we have (2n−1) (odd) peaks, and a median

exists. We give an example to illustrate the ideas. Figure 2.2 shows the peak of 4 agents (in

green). Then, we add 3 phantom voters, whose peaks are shown (in brown). The median

voter SCF chooses the median of this set, which is shown to be the peak of the 3rd phantom

voter in Figure 2.2.

Of course, the median voter SCF is a class of SCFs. A median voter SCF must specify

the peaks of the phantom voters (it cannot change across profiles). We can simulate the k-th

lowest peak social choice function that we described earlier by placing the phantom voters

suitably. In particular, place peaks of (n − k) phantom voters at 0 (or lowest alternative

according to <) and the remaining (k−1) peaks of phantom voters at 1 (or highest alternative

according to <). It is clear that the median of this set lies at the kth lowest peak of agents.

Proposition 6 Every median voter social choice function is strategy-proof.

Proof : Consider any profile of single-peaked preferences P = (P1, . . . , Pn). Let f be a

median voter SCF, and f(P) = a. Consider agent i. Agent i has no incentive to manipulate

33

0 1p_1 p_3 p_4y_1 y_2 p_2y_3

Median

Figure 2.2: Phantom voters and the median voter

if Pi(1) = a. Suppose agent i’s peak is to the left of a. The only way he can change the

outcome is by changing the median, which he can only do by changing his peak to the right

of a. But that will shift the median to the right of a which he does not prefer to a. So, he

cannot manipulate. A symmetric argument applies if i’s peak is to the right of a. �

One may wonder if one introduces an arbitrary number of phantom voters. Will the

corresponding social choice function be still strategy-proof? We assume that whenever there

are even number of agents (including the phantom voters), we pick the minimum of two

medians. Along the lines of proof of Proposition 6, one can show that even this social choice

function is strategy-proof.

We then ask what is unique about the median voter social choice function (where we

take n− 1 phantom voters). We next intend to characterize the median voter social choice

function.

2.2.3 Properties of Social Choice Functions

We first define some desirable properties of a social choice function. Most of these properties

have already been discussed earlier for the Gibbard-Satterthwaite result.

Definition 7 A social choice function f : Sn → A is onto if for every a ∈ A, there exists

a profile P ∈ Sn such that f(P) = a.

Onto rules out constant social choice functions.

Definition 8 A social choice function f : Sn → A is unanimous if for every profile P

with P1(1) = P2(1) = . . . = Pn(1) = a we have f(P) = a.

34

Definition 9 A social choice function f : Sn → A is efficient if for every profile of

preferences P and every b ∈ A, if there exists a 6= b such that aPib for all i ∈ N , then

f(P) 6= b.

Denote by [a, b], the set of all alternatives which lie between a and b (including a and b)

according to <.

Lemma 6 For every preference profile P , let pmin and pmax denote the smallest and largest

peak (according to <) respectively in P . A social choice function f : Sn → A is efficient if

and only if for every profile P , f(P) ∈ [pmin, pmax].

Proof : Suppose f is efficient. Fix a preference profile P . If f(P) < pmin, then choosing

pmin is better for all agents. Similarly, if f(P) > pmax, then choosing pmax is better for all

agents. Hence, by efficiency, f(P) ∈ [pmin, pmax]. For the converse, if f(P) ∈ [pmin, pmax],

then any alternative other than f(P) will move it away from either pmin or pmax. Hence, f

is efficient. �

Median voting with arbitrary number of phantom voters may be inefficient. Consider the

median voting with (3n− 1) phantom voters. Suppose we put all the phantoms at zero, and

consider the instance where the peaks of the agents are arbitrarily close to 1. The outcome

in this case is zero. But choosing one of the agents’ peaks make every agent better off.

Definition 10 A social choice function f : Sn → A is monotone if for any two profiles

P and P ′ with f(P) = a and for all b 6= a, aP ′
i b if aPib we have f(P ′) = a.

Like in the unrestricted domain, strategy-proofness implies monotonicity.

Lemma 7 If a social choice function f : Sn → A is strategy-proof, then it is monotone.

Proof : The proof is exactly similar to the necessary part of Theorem 1. We take two

preference profiles P, P ′ ∈ Sn such that f(P) = a and aP ′
i b if aPib for all b 6= a. As in the

proof of Theorem 1, we can consider P and P ′ to be different in agent j’s preference ordering

only (else, we construct a series of preference profiles each different from the previous one by

just one agent’s preference). Assume for contradiction f(P ′) = b 6= a.

If bPja, then agent j can manipulate at P by P ′. Hence, aPjb. But that means aP ′
jb. In

such a case, agent j will manipulate at P ′ by P . This is a contradiction. �

Like in the unrestricted domain, some of these properties are equivalent in the presence

of strategy-proofness.

35

Proposition 7 Suppose f : Sn → A is a strategy-proof social choice function. Then, f is

onto if and only if it is unanimous if and only if it is efficient.

Proof : Consider a strategy-proof social choice function f : Sn → A. We do the proof in

three steps.

Unanimity implies onto. Fix an alternative a ∈ A. Consider a single peaked preference

profile P where every agent has his peak at a. By unanimity, f(P) = a.

Onto implies efficiency. Consider a preference profile P such that f(P) = b but there

exists a a 6= b such that aPib for all i ∈ N . By single-peakedness, there is an alternative c

which is a neighbor of b in < and cPib for all i ∈ N . 5 Since f is onto, there exists a profile

P ′ such that f(P ′) = c. Consider another preference profile P ′′ such that the peaks of every

agent is c, but the second ranked alternative is b - such a preference is possible in a single-

peaked domain. By Lemma 7, f is monotone. By monotonicity, we get f(P ′′) = f(P ′) = c

and f(P ′′) = f(P) = b. This is a contradiction.

Efficiency implies unanimity. In any profile, where peaks are the same, efficiency will

imply that the peak is chosen. �

We now define a new property which will be crucial. For this, we need some definitions.

A permutation of agents is denoted by a bijective mapping σ : N → N . We apply a

permutation σ to a profile P to construct another profile as follows: the preference ordering

of agent i goes to agent σ(i) in the new preference profile. We denote this new preference

profile as P σ.

Table 2.12 shows a pair of profiles, one of which is obtained by permuting the other. We

consider N = {1, 2, 3} and σ as σ(1) = 2, σ(2) = 3, σ(3) = 1.

P1 P2 P3 P σ
1 P σ

2 P σ
3

a b b b a b

b a c c b a

c c a a c c

Table 2.12: Example of permuted preferences

5Two alternatives x and y are neighbors in < if x < y and there is no alternative z such that x < z < y

or x > y and there is no alternative z such that x > z > y.

36

Definition 11 A social choice function f : Sn → A is anonymous if for every profile P

and every permutation σ such that P σ ∈ Sn, we have f(P σ) = f(P).

Anonymous social choice functions require that the identity of agents are not important,

and does not discriminate agents on that basis. Dictatorial social choice functions are not

anonymous (it favors the dictator). Any social choice function which ignores the preferences

of some agent is not anonymous.

2.2.4 Characterization Result

We show now that the only strategy-proof social choice function which is onto and anonymous

is the median voter.

Theorem 3 A strategy-proof social choice function is onto and anonymous if and only if it

is the median voter social choice function.

We discuss the necessity of all the properties. First, a dictatorial social choice function

is onto and strategy-proof. So, anonymity is crucial in the characterization. Second, putting

arbitrarily large number of phantoms at the lowest alternative according to <, and then

taking the median is anonymous and strategy-proof, but it is not onto - it always selects the

lowest alternative according to <. Hence, all the conditions are necessary in the result. We

now give the proof.

Proof : It is clear that the median voter social choice function is strategy-proof (Proposition

6), onto (all the peaks in one alternative will mean that is the median), and anonymous (it

does not distinguish between agents). We now show the converse.

Suppose f : Sn → A is a strategy-proof, onto, and anonymous social choice function.

The following two preference orderings are of importance for the proof:

• P 0
i : this is the unique preference ordering where the peak of agent i is at the lowest

alternative according to <.

• P 1
i : this is the unique preference ordering where the peak of agent i is at the highest

alternative according to <.

Finding the phantoms. For any j ∈ {1, . . . , n− 1}, define yj as follows:

yj = f(P 0
1 , . . . , P

0
n−j, P

1
n−j+1, . . . , P

1
n).

37

So, yj is the chosen alternative, when (n− j) agents have their peak at the lowest alternative

and the remaining j agents have their peak at the highest alternative. Notice that which of

the j agents have their peaks at the highest alternative does not matter due to anonymity

of f .

Further, we show that yj = yj+1 or yj < yj+1 for any j ∈ {1, . . . , n− 1}. To see this con-

sider two profiles P = (P 0
1 , . . . , P

0
n−j, P

1
n−j+1, . . . , P

1
n) and P ′ = (P 0

1 , . . . , P
0
n−j−1, P

1
n−j, . . . , P

1
n).

Only preference ordering of agent k ≡ n− j is changing from P to P ′. Note that f(P) = yj

and f(P ′) = yj+1. Since f is strategy-proof, yjP
0
k yj+1. But the peak of agent k in P 0

k is at

the lowest alternative according to <. So, either yj = yj+1 or yj < yj+1.

Now, we consider a preference profile P = (P1, . . . , Pn), where Pi(1) = pi. We wish to

show that

f(P) = med(p1, . . . , pn, y1, . . . , yn−1).

Assume without loss of generality (due to anonymity) that p1 ≤ p2 ≤ . . . ≤ pn. We let

a = med(p1, . . . , pn, y1, . . . , yn−1), and consider two possible cases.

Median is phantom peak. Suppose a = yj for some j ∈ {1, . . . , n − 1}. Since we are

taking median of 2n−1 points, and exactly j−1 phantom voters are to left of a and n−j−1

phantom voters to right (monotonicity of yjs), we must have n − j agent peaks to the left

and the remaining to the right. This means, pn−j ≤ a = yj ≤ pn−j+1 due to monotonicity of

agent peaks.

Now, we consider two preference profiles where preference ordering of agent 1 is different:

P ′ = (P 0
1 , . . . , P

0
n−j, P

1
n−j+1, . . . , P

1
n) and P ′′ = (P1, P

0
2 , . . . , P

0
n−j, P

1
n−j+1, . . . , P

1
n). Note that

f(P ′) = yj. Let f(P ′′) = b. Since f is strategy-proof, yjP
0
1 b or yj ≤ b. Also, strategy-

proofness implies that bP1yj. But p1 ≤ yj. This implies that b ≤ yj. Hence, b = yj .

Now, we consider another preference profile P ′′′ = (P1, P2, P
0
3 , . . . , P

0
n−j, P

1
n−j+1, . . . , P

1
n),

and repeat the previous argument for P ′′ and P ′′′. Repeating this way, we get yj =

f(P1, . . . , Pn−j, P
1
n−j+1, . . . , P

1
n).

Now, let P ′ = (P1, . . . , Pn−j, P
1
n−j+1, . . . , P

1
n) and P ′′ = (P1, . . . , Pn−j, P

1
n−j+1, . . . , Pn).

By assumption, yj = f(P ′). Let f(P ′′) = b. Since f is strategy-proof, yjP
1
nb, which implies

that yj ≥ b. Again, applying f to be strategy-proof, we get that bPnyj. But, by assumption,

yj ≤ pn. This implies that yj ≤ b. This shows that b = yj. Repeating this argument for all

agents greater than j, we conclude that f(P) = yj.

Median is agent peak. We do this part of the proof for two agents. Suppose N = {1, 2}.

We first show a claim that shows peaks-only property of a strategy-proof and efficient social

38

choice function.

Claim 1 Suppose N = {1, 2} and f is a strategy-proof and efficient social choice function.

Let P and P ′ be two profiles such that Pi(1) = P ′
i (1) for all i ∈ N . Then, f(P) = f(P ′).

Proof : Consider preference profiles P and P ′ such that P1(1) = P ′
1(1) = a and P2(1) =

P ′
2(1) = b. Consider the preference profile (P ′

1, P2), and let f(P) = x but f(P ′
1, P2) = y. By

strategy-proofness, xP1y and yP ′
1x. This implies, if x and y belong to the same side of a,

then x = y. Then, the only other possibility is x and y belong to the different sides of a. We

will argue that this is not possible. Assume without loss of generality x < a < y. Suppose,

without loss of generality, b < a. Then, by efficiency (Lemma 6) at profile P ′
1, P2, we must

have y ∈ [b, a]. This is a contradiction since a < y. Hence, it is not possible that x and y

belong to the different sides of a. Thus, x = y or f(P1, P2) = f(P ′
1, P2).

Now, we can replicate this argument by going from (P ′
1, P2) to (P ′

1, P
′
2). This will show

that f(P ′
1, P

′
2) = x = f(P1, P2). �

Now, consider a profile (P1, P2) such that P1(1) = a, P2(1) = b, and y1 is the phantom

peak. By our assumption, the median of (a, b, y1) is an agent peak. Suppose that peak is a.

Let f(P1, P2) = c. By efficiency, c ∈ [a, b]. Assume for contradiction that c > a. Consider

another single-peaked preference ordering P ′
1 for agent 1 such that P ′

1(1) = a = P1(1) and

y1P
′
1c - this is possible since c and y1 are on different sides of a. By Claim 1, f(P ′

1, P2) = c.

Now, consider the preference profile (P 0
1 , P2). By definition, the median of P 0

1 (1), P2(1) = b,

and y1 is y1. By the earlier case of the proof, f(P 0
1 , P2) = y1. Since y1P

′
1c, agent 1 will

manipulate at (P ′
1, P2) via P 0

1 . This is a contradiction since f is strategy-proof. �

The peaks of the phantom voters reflect the degree of compromise the social choice

function has when agents have extreme preferences. If j agents have the highest alternative

as the peak, and the remaining n − j agents have the lowest alternative as the peak, then

which alternative is chosen? A true median will choose the peak which has more agents, but

the median voter social choice function may do something intermediate.

2.3 Private Good Allocation

The private good allocation problem allocates a set of private goods to agents. In the abstract

problem formulation, let A be a set of private goods. Each agent has a preference ordering

over the set of private goods A. Denote by ≻i the preference of agent i over A. A social

choice function in this case chooses a private good in A for every agent. In other words, an

39

outcome consists of an element in An, where n is the number of agents. Of course, not every

element in An may be feasible - for instance, when we are allocating indivisible objects, we

cannot allocate the same object to more than one agent. So, the feasible set of outcomes

will be a subset F ⊆ An, where F will vary from problem to problem.

Notice that agents have preference over A, but the set of possible outcomes is F . This

preference induces a preference over F in a natural way because we will assume no exter-

nalities, i.e., every agent only cares about his allocation and not what others get. However,

we get many indifferences. For instance, let a, b ∈ F be two possible outcomes, where the

allocation of an agent is the same in a and b. By the no externality assumption, whatever

the preference of this agent be, he will be indifferent between a and b. For this particular rea-

son, the private good allocation problems have inherent domain restrictions and the results

for the public good problems (e.g., the Gibbard-Satterthwaite theorem) cannot be directly

applied.

2.3.1 Allocating a Divisible Commodity

We begin by discussing a private good problem, which is an extension of the single-peaked

domain problem we discussed earlier. The single-peaked domain can be considered to be an

instance of a domain where a public good is being allocated. Consider a problem where an

infinitely divisible private good has to be allocated among n agents.

A classical application of this problem is time sharing. Suppose a task needs to be

completed. Without loss of generality, assume that the task takes one unit of time. There

are n agents. The problems is to assign each agent i with a share of time si ∈ [0, 1] such that

the sum of times assigned to all the agents is one, i.e., the task is completed or
∑

j sj = 1.

Each agent has single peaked preference over his share of time. This is usually the case if

there is some trade off over cost and value for the time share. For instance, suppose working

for θi ∈ [0, 1] unit gives agent i wage of θiw, where w is per unit time wage and he incurs a

cost of κθ2
i . Then, his net utility is wθi − κθ2

i , whose peak is at θ∗i = w
2κ

and preferences are

single peaked from the peak.

However, as we show next, this does not translate to a single-peaked preference ordering

over the set of alternatives. Hence, earlier results cannot be applied.

Here, every alternative is a vector s = (s1, . . . , sn) such that
∑

i∈N si = 1 and si ≥ 0 for

all i ∈ N . So, the set of alternatives is

A = {(s1, . . . , sn) : si ≥ 0 ∀ i ∈ N,
∑

i∈N

si = 1}.

40

Suppose agents preferences are not known (but only known to be single-peaked), and agents

care only about their own shares. If agents only care about their own shares, then the

preferences over A cannot be single-peaked because two alternatives with same share to an

agent must be same for that agent. Hence, the earlier results on single-peaked domains do

not apply.

However, for various possible shares of agent i, that agent has a preference ordering ≻i

over [0, 1] with a peak at pi(≻i), and single-peaked. Denote by S the set of all single-peaked

preferences over [0, 1]. A social choice function is a mapping f : Sn → A. The share

allocation to agent i at preference profile ≻ is denoted by fi(≻) ∈ [0, 1].

We first look at the implication of efficiency in this setting. Without formally defining

it, an allocation is efficient if there does not exist another allocation which makes everyone

better off with at least one agent getting strictly better. If
∑

i∈N pi(≻i) = 1, then efficiency

directs us to allocate pi(≻i) to agents i for all i ∈ N . If
∑

i∈N pi(≻i) > 1, then for some

agent k ∈ N , fk(≻) < pk(≻k). In that case, no agent j 6= k must be getting fj(≻) > pj(≻j).

Because in that case, decreasing agent j’s share and increasing agent k’s share makes both

of them better off. So, in this case, we must have fj(≻) ≤ pj(≻j) for all j ∈ N . Similarly, if
∑

i∈N pi(≻i) < 1, we must have fj(≻) ≥ pj(≻j) for all j ∈ N .

There are many possible social choice functions that one can imagine for this situation.

We give some examples first.

1. Serial Dictatorship. In this social choice function, agents are ordered using some

permutation σ : N → N . The first agent in the permutation σ(1) chooses his peak

amount. The next agent chooses minimum of his peak amount and left over amount

and so on. This is a very standard method to allocate private goods. It is fairly clear

that such a social choice function is strategy-proof and Pareto efficient (we will discuss

this in detail later). However, it heavily favors agents who are earlier in the order σ.

2. Proportional. The proportional social choice function looks at the peak of each agent

and assigns every agent a fraction of the divisible good in proportion of their peaks. If

all the peaks are at zero then, it assigns equal amount to all the agents. Although this

social choice function looks fair, it can be manipulated (argue why).

We now define a social choice function that is strategy-proof and satisfies some other

desirable properties. It is referred to as the uniform rule social choice function and denoted

41

as fu. For any profile ≻, we define for every i ∈ N ,

fu
i (≻) = pi(≻i) if

∑

i∈N

pi(≻i) = 1

fu
i (≻) = max(pi(≻i), µ(≻)) if

∑

i∈N

pi(≻i) < 1

fu
i (≻) = min(pi(≻i), λ(≻)) if

∑

i∈N

pi(≻i) > 1,

where µ(≻) solves
∑

i∈N max(pi(≻i), µ(≻)) = 1 in the second case and λ(≻) solves
∑

i∈N min(pi(≻i

), λ(≻)) = 1 in the third case. It can be verified that these quantities have a unique solution.

The uniform rule SCF has a nice interpretation. Every agent has a bucket of 1 unit

capacity. There is a mark at pi(≻i) in every bucket i. If the sum of these marks are equal

to 1, we fill the buckets with water till their marks. If the sum of these marks are greater

than 1, we fill water in the buckets at equal rate, till one of the buckets hits the mark. We

stop filling that bucket, but fill the other buckets at equal rate, till we hit another mark, and

so on till the sum of water in the buckets is 1. The water level in the buckets at the end

indicate the final allocation.

When sum of the marks is less than 1, we fill the buckets completely and empty them

uniformly till the sum is equal to 1. We stop filling a bucket once we hit the mark. Then,

we continue emptying the other buckets at a uniform rate, and so on till the sum of water

in the buckets is 1. The water level in the buckets at the end indicate the final allocation.

Proposition 8 The uniform rule social choice function is efficient, anonymous, and strategy-

proof.

Proof : The uniform rule social choice function is anonymous since only the peaks of agents

matter but not the identity of the “owners” of peaks. Consider a preference profile ≻.

Efficiency is equivalent to verifying the following two cases.

• When
∑

i∈N pi(≻i) < 1, then fu
i (≻) ≥ pi(≻i) for all i ∈ N . This is true because in this

case, we empty the buckets uniformly, and stop as soon as a bucket hits the peak.

• When
∑

i∈N pi(≻i) > 1, then fu
i (≻) ≤ pi(≻i) for all i ∈ N . This is true because in this

case, we fill the buckets uniformly, and stop as soon as a bucket hits the peak.

• When
∑

i∈N pi(≻i) = 1, then fu
i (≻) = pi(≻i) for all i ∈ N . This is true by definition

of fu.

To verify strategy-proofness, consider agent j at a preference profile ≻. We consider three

cases separately.

42

• If
∑

i∈N pi(≻i) = 1, then fu
j (≻) = pj(≻j). Hence, agent j has no incentive to manipu-

late.

• If
∑

i∈N pi(≻i) < 1, then fu
j (≻) ≥ pj(≻j). He will like to manipulate if fu

j (≻) > pj(≻j).

Since fu only depends on the peaks of agents, the only way to manipulate is to change

the peak. Suppose agent j reports ≻′
j with peak pj(≻

′
j). If pj(≻

′
j) ≤ fu

j (≻), then we

will still have
∑

i6=j pi(≻i) + pj(≻
′
j) ≤

∑

i6=j f
u
i (≻j ,≻−j) + fu

j (≻j ,≻−j) = 1. Hence, we

will again empty the buckets. Since pj(≻
′
j) ≤ fu

j (≻), the outcome will not change.

If pj(≻
′
j) > fu

j (≻), the share of j will only increase, which he prefers less. To see why

j’s share will increase we consider two cases.

–
∑

i6=j pi(≻i) + pj(≻
′
j) < 1. This implies that we will again empty the buckets. By

efficiency, fu
j (≻′

j ,≻−j) ≥ pj(≻
′
j) > fu

j (≻) ≥ pj(≻j). Hence, agent j does not like

this outcome compared to fu
j (≻).

–
∑

i6=j pi(≻i) + pj(≻
′
j) > 1. In this case, we fill the buckets. If we hit the peak of

agent j, then clearly fu
j (≻′

j ,≻−j) = pj(≻
′
j) > fu

j (≻) ≥ pj(≻j). So, agent j does

not like fu
j (≻′

j ,≻−j) compared to fu
j (≻).

If we do not hit the peak, then it is the highest share amongst all agents in profile

(≻′
j ,≻−j). More specifically, 1 =

∑

i6=j f
u
i (≻′

j ,≻−j) + fu
j (≻′

j ,≻−j) ≤ nfu
j (≻′

j ,≻−j

). On the other hand, since fu
j (≻) > pj(≻j), it is the lowest share amongst all

agents in profile (≻). More specifically, 1 =
∑

i6=j f
u
i (≻) + fu

j (≻) ≥ nfu
j (≻).

Hence, we again get fu
j (≻′

j ,≻−j) ≥ fu
j (≻). As a result, fu

j (≻′
j ,≻−j) > fu

j (≻) ≥

pj(≻j), and again, agent j does not like fu
j (≻′

j ,≻−j) compared to fu
j (≻)

• If
∑

i∈N pi(≻i) > 1, then fu
i (≻) ≤ pi(≻i) for all i ∈ N . Using a symmetric argument

as the previous case, we can show that no agent j can manipulate.

�

The converse of Proposition 8 is known to be true also. In particular, the following

theorem is true, whose proof is skipped.

Theorem 4 A social choice function is strategy-proof, efficient, and anonymous if and only

if it is the uniform rule.

43

2.4 One Sided Matching - Object Allocation Mechanisms

In this section, we look at an important model where the GS theorem does not hold. There is

a finite set of objects M = {a1, . . . , am} and a finite set of agents N = {1, . . . , n}. We assume

that m ≥ n. The objects can be houses, jobs, projects, positions, candidates or students etc.

Each agent has a linear order over the set of objects, i.e., a complete, transitive, and anti-

symmetric binary relation. In this model, this ordering represents the preference of agents,

and is the private information of agents. The preference ordering of agent i will be denoted

as ≻i. A profile of preferences will be denoted as ≻≡ (≻1, . . . ,≻n). The set of all preference

orderings over M will be denoted as M. The top element amongst a set of objects S ⊆ M

according to ordering ≻i is denoted as ≻i (1, S), and the k-th ranked object by ≻i (k, S).

The main departure of this model is that agents do not have direct preference over

alternatives. We need to extract their preference over alternatives from their preference over

objects. What are the alternatives? An alternative is a feasible matching, i.e., an injective

mapping from N to M . The set of alternatives will be denoted as A, and this is the set of

all injective mappings from N to M . For a given alternative a ∈ A, if a(i) = j ∈ M , then

we say that agent i is assigned object j (in a).

Consider two alternatives a and b. Suppose agent 1 is is assigned the same object in both

a and b (this is possible if there are at least three objects). Then, it is reasonable to assume

that agent 1 will always be indifferent between a and b. Hence, for any preference ordering

of agent 1, aP1b and bP1a are not permissible. This restriction implies that the domain of

preference orderings over alternatives is not the unrestricted domain, which was the case in

the GS theorem. Because of this reason, we cannot apply the GS theorem. Indeed, we will

show that non-dictatorial social choice functions are strategy-proof in these settings.

A social choice function f is a mapping f : Mn → A. We now define a fixed priority

(serial dictatorship) mechanism. We call this a mechanism but not a social choice function

since it is not a direct revelation mechanism. A priority is a bijective mapping σ : N → N ,

i.e., an ordering over the set of agents. The fixed priority mechanism is defined inductively.

44

Fix a preference profile ≻. We now construct an alternative a as follows:

a(σ(1)) =≻σ(1) (1, N)

a(σ(2)) =≻σ(2) (1, N \ {a(σ(1))})

a(σ(3)) =≻σ(3) (1, N \ {a(σ(1)), a(σ(2))})

.

a(σ(i)) =≻σ(i) (1, N \ {a(σ(1)), . . . , a(σ(i− 1))}

.

a(σ(n)) =≻σ(n) (1, N \ {a(σ(1)), . . . , a(σ(n− 1))}.

Now, the fixed priority mechanism (and the underlying SCF) assigns fσ(≻) = a.

Let us consider an example. We start with an example. The ordering over houses

{a1, a2, . . . , a6} of agents {1, 2, . . . , 6} is shown in Table 2.13. Fix a priority σ as follows:

≻1 ≻2 ≻3 ≻4 ≻5 ≻6

a3 a3 a1 a2 a2 a1

a1 a2 a4 a1 a1 a3

a2 a1 a3 a5 a6 a2

a4 a5 a2 a4 a4 a4

a5 a4 a6 a3 a5 a6

a6 a6 a5 a6 a3 a5

Table 2.13: An example for housing model

σ(i) = i for all i ∈ N . According to this priority, the fixed priority mechanism will let

agent 1 choose his best object first, which is a3. Next, agent 2 chooses his best object

among remaining objects, which is a2. Next, agent 3 gets his best object among remaining

objects {a1, a4, a5, a6}, which is a1. Next, agent 4 gets his object among remaining objects

{a4, a5, a6}, which is a5. Next, agent 5 gets his best object among remaining objects {a4, a6},

which is a6. So, agent 6 gets a4.

Note that a fixed priority mechanism is a generalization of dictatorship. We show below

(quite obvious) that a fixed priority mechanism is strategy-proof. Moreover, it is efficient in

the following sense.

Definition 12 A social choice function f is efficient (in the house allocation model) if for

all preference profiles ≻ and all matchings a, if there exists another matching a′ 6= a such

that either a′(i) ≻i a(i) or a′(i) = a(i) for all i ∈ N , then f(≻) 6= a.

45

Proposition 9 Every fixed priority social choice function (mechanism) is strategy-proof

and efficient.

A word of caution here about strategy-proof notion of the fixed priority social choice function.

The fixed priority mechanism is not a direct mechanism. However, using revelation principle,

one can think of the associated direct mechanism - agents report their entire ordering, and

the mechanism designer executes the fixed priority SCF on this ordering. Whenever, we

say that the fixed priority mechanism is strategy-proof, we mean that the underlying direct

mechanism is strategy-proof.

Proof : Fix a priority σ, and consider fσ- the associated fixed priority mechanism. The

strategy of any agent i is any ordering over M . Suppose agent i wants to deviate. When

agent i is truthful, let M−i be the set of objects allocated to agents who have higher priority

than i (agent j has higher priority than agent i if and only if σ(j) < σ(i)). So, by being

truthful, agent i get ≻i (1,M \M−i). When agent i deviates, any agent j who has a higher

priority than agent i continues to get the same object that he was getting when agent i was

truthful. So, agent i gets an object in M \M−i. Hence, deviation cannot be better.

To show efficiency, assume for contradiction that fσ is not efficient. Consider a profile ≻

such that f(≻) = a. Let a′ be another matching satisfying a′(i) ≻i a(i) or a′(i) = a(i) for

all i ∈ N . Then, consider the first agent j in the priority σ such that a′(j) ≻j a(j). Since

agents before j in priority σ got the objects of matching a′, object a′(j) was still available

to agent j. This is a contradiction since agent j chose a(j) with a′(j) ≻j a(j). �

Note that every fixed priority mechanism fσ is a dictatorship. In the fixed priority

mechanism fσ corresponding to priority σ, agent σ(1) gives his top house, and hence, his

top alternative. So, σ(1) is a dictator in fσ. As we have already seen, not every dictatorship

is strategy-proof when indifference is allowed in preference orderings. However, Proposition

9 shows that fixed priority mechanism is strategy-proof in the housing allocation model.

One can construct social choice functions which are strategy-proof but not a fixed priority

mechanism in this model. We show this by an example. Let N = {1, 2, 3} and M =

{a1, a2, a3}. The social choice function we consider is f , and is almost a fixed priority SCF.

Fix a priority σ as follows: σ(i) = i for all i ∈ N . Another priority is σ′: σ′(1) = 2, σ′(2) =

1, σ′(3) = 3. The SCF f generates the same outcome as fσ whenever ≻2 (1,M) 6= a1. If

≻2 (1,M) = a1, then it generates the same outcome as fσ′

. To see that this is strategy-proof,

it is clear that agents 1 and 3 cannot manipulate since they cannot change the priority. Agent

2 can change the priority. But, can he manipulate? If his top ranked house is a1, he gets it,

46

and he cannot manipulate. If his top ranked house is ∈ {a2, a3}, then he cannot manipulate

without changing the priority. If he does change the priority, then he gets a1. But being

truthful, either he gets his top ranked house or second ranked house. So, he gets a house

which is either a1 or some house which he likes more than a1. Hence, he cannot manipulate.

2.4.1 Top Trading Cycle Mechanism with Fixed Endowments

The top trading cycle mechanism (TTC) with fixed endowment is a class of general mecha-

nisms which are strategy-proof, and has some nice properties. We will study them in detail

here.

We assume here m = n for simplicity. In the next subsection, we show how to relax this

assumption. To explain the mechanism, we start with the example in Table 2.13. In the

first step of the TTC mechanism, agents are endowed with a house each. Suppose the fixed

endowment for this example is a∗: a∗(1) = a1, a
∗(2) = a3, a

∗(3) = a2, a
∗(4) = a4, a

∗(5) =

a5, a
∗(6) = a6.

The TTC mechanism goes in steps. In each step, a set of houses are assigned to a set

of agents, and they are excluded from the subsequent steps of the mechanism. Hence, the

mechanism maintains a set of “remaining agents” and a set of “remaining houses” in each

step.

At every step, a directed graph is constructed. The set of nodes in this directed graph is

the same as the set of remaining agents. Initially, the set of remaining agents is N . Then,

there is a directed edge from agent i to agent j if and only if agent j is endowed with agent i’s

top ranked house amongst the remaining houses (initially, all houses are remaining houses).

Formally, if H ⊆M is the set of remaining houses in any step, then the directed graph in this

iteration has an edge from agent i to agent j (i can be j also) if and only if ≻i (1, H) = a∗(i).

Note that such a graph will have exactly one outgoing edge from every node (though possibly

many incoming edges to a node). Further, there may be an edge from a node to itself (this

will be treated as cycle, and called a loop). It is clear that such a graph will always have a

cycle.

Figure 2.3 shows the directed graph for the first step of the example in Table 2.13. The

only cycle in this graph is a loop involving agent 2. So, agent 2 gets his endowment, which

is house a3. Agent 2 is eliminated from the graph, and house a3 is eliminated from the

problem. Now, the graph for the next step is constructed. Now, every agent points to his

top ranked house amongst houses remaining (which is the houses except house a3). This

graph is shown in Figure 2.4. Here, the only cycle is a loop involving agent 1. So, agent

1 gets his endowment a1. Agent 1 and house a1 is eliminated from the problem. Next,

47

the graph for the next step is constructed, which is shown in Figure 2.5. There is a cycle

involving agents 3 and 4. So, agent 3 gets the endowment of agent 4 (a4) and agent 4 gets

the endowment of agent 3 (a2). These agents and houses are eliminated from the problem,

and the next graph is constructed as shown in Figure 2.6. This graph has a loop involving

agent 6. So, agent 6 gets his endowment a6, and the only remaining house a5 goes to agent

5.

1

2

3

4

5

6

Figure 2.3: Cycle in Step 1 of the TTC mechanism

1

3

4

5

6

Figure 2.4: Cycle in Step 2 of the TTC mechanism

We now formally describe the TTC mechanism. Fix an endowment of agents a∗. The

mechanism maintains the remaining set of houses Mk and remaining set of agent Nk in every

Step k of the mechanism.

48

3

4

5

6

Figure 2.5: Cycle in Step 3 of the TTC mechanism

5

6

Figure 2.6: Cycle in Step 4 of the TTC mechanism

• Step 1: Set M1 = M and N1 = N . Construct a directed graph G1 with nodes N1.

There is a directed edge from node (agent) i ∈ N1 to agent j ∈ N1 if and only if

≻i (1,M1) = a∗(j).

Allocate houses along every cycle of graph G1. Formally, if (i1, i2, . . . , ip, i1) is a cycle

in G1 then set a(i1) = a∗(i2), a(i2) = a∗(i3), . . . , a(ip−1) = a∗(ip), a(ip) = a∗(i1). Let

N̂1 be the set of agents allocated in such cycles in G1, and M̂1 be the set of houses

assigned in a to N1.

Set N2 = N1 \ N̂1 and M2 = M1 \ M̂1.

• Step k: Construct a directed graph Gk with nodes Nk. There is a directed edge from

node (agent) i ∈ Nk to agent j ∈ Nk if and only if ≻i (1,Mk) = a∗(j).

Allocate houses along every cycle of graph Gk. Formally, if (i1, i2, . . . , ip, i1) is a cycle

in Gk then set a(i1) = a∗(i2), a(i2) = a∗(i3), . . . , a(ip−1) = a∗(ip), a(ip) = a∗(i1). Let

N̂k be the set of agents allocated in such cycles in Gk, and M̂k be the set of houses

assigned in a to Nk.

49

Set Nk+1 = Nk \ N̂k and Mk+1 = Mk \ M̂k. If Nk+1 is empty, stop, and a is the final

matching chosen. Else, repeat.

Proposition 10 TTC with fixed endowment mechanism is strategy-proof and efficient.

Proof : Consider agent i who wants to deviate. Suppose agent i is getting assigned in Step

k of the TTC mechanism if he is truthful. Given the preferences of the other agents, suppose

agent i reports a preference ordering different from his true preference ordering. Let Hk−1 be

the set of houses assigned in Steps 1 through k−1 when agent i is truthful. If the deviation of

agent i results in no change of his strategy (pointing to the most preferred remaining house)

before Step k, then the allocation of houses in Hk−1 will not change due to his deviation.

As a result agent i will get an object from M \Hk−1. Since agent i gets his most preferred

object from M \Hk−1 if he is truthful, this is not a successful manipulation. Hence, we focus

on the case where the deviation of agent i result in a change of his strategy before Step k.

Suppose r < k is the first step in the TTC mechanism where the underlying allocation

in that step changes due to this deviation. Notice that the only change in graph Gr in cases

where agent i is truthful and where he is deviating is the outgoing edge of agent i. Consider

the case when agent i is truthful. In that case since agent i is not allocated in Step r,

he is not involved in any cycle in Gr. But there may be sequence of nodes of the nature

(i1, i2, . . . , ip, i), where i1 has no incoming edge, but edges exist from i1 to i2, and i2 to i3,

and so on. Call such sequence of nodes i-paths. Let Pi be the set of all nodes in all the

i-paths - Pi includes i also.

Figure 2.7 gives an illustration. Here, Pi = {i1, i2, i3, i5, i6, i}.

i6

i1 i2 i3 i i4

i5

Figure 2.7: i-Paths in a Step

Note that if agent i’s deviation does not lead agent i to point to an agent in Pi, then the

allocations in Step r is unchanged because of his deviation. This follows from the fact that

the only way i can change allocation in Step r is by creating a new cycle involving himself

- he cannot break cycles which does not involve him. As a result, the only way to change

50

the allocation in Step r is to deviate by pointing to an agent in Pi. In that case, a subset

of agents in Pi which includes i, call them Cr, will form a cycle, and get assigned in Step

r. We argue that agents in Cr must be unassigned (i.e., part of the “remaining agents”) in

Step k when agent i is truthful. To see this, consider any agent i1 ∈ Pi. By definition, there

is a path from i1 to i - say, (i1, i2, . . . , ip, i). Since house of i is available till Step k, ip will

continue to point to i. Hence, the house of ip is available till Step k. As a result, ip−1 will

continue to point to ip till Step k, and so on. Hence, the path (i1, i2, . . . , ip, i) will continue to

exist in Step k. This shows that agent in Cr are unassigned in Step k. Hence, the allocation

achieved by agent i by his deviation in Step r can also achieved by deviating in Step k. But,

we know that if he deviates in Step k, then it is not a successful manipulation. So, the only

possibility is that he deviates by pointing to an agent not in Pi, in which case he does not

alter the allocation in Step r. As a result, the cycles in subsequent rounds also do not change

due to deviations.

Hence, all the agents who were assigned in Steps 1 through (k − 1) still get assigned the

same houses. By definition, agent k gets his top ranked object amongst M \ Hk−1 if he is

truthful. By deviating he will get an object in M \Hk−1. Hence, deviation cannot be better.

Now, we prove efficiency. Let a be a matching produced by the TTC mechanism for

preference profile ≻. Assume for contradiction that this matching is not efficient, i.e., there

exists a different matching a′ such that a′(i) ≻i a(i) or a′(i) = a(i) for all i ∈ N . Consider

the first step of the TTC mechanism where some agent i gets a(i) 6= a′(i). Since all the

agents get the same object in a and a′ before this step, object a′(i) is available in this step,

and since a′(i) ≻i a(i), agent i cannot have an edge from i to the “owner” of a(i) in this step.

This means that agent i cannot be assigned to a(i). This gives a contradiction. �

Note that a TTC mechanism need not be a dictatorship. To see this, suppose there are

three agents and three houses. Fix an endowment a∗ as a∗(i) = ai for all i ∈ {1, 2, 3}. Let

us examine the TTC mechanism corresponding to a∗. Consider the profile (≻1,≻2,≻3) such

that ≻i (1, N) = a1 for all i ∈ {1, 2, 3}, i.e., every agent has object a1 as his top ranked

object. Clearly, only agent 1 gets one of this top ranked alternatives (matchings) in this

profile according to this TTC mechanism. Now, consider the profile (≻′
1,≻

′
2,≻

′
3) such that

≻′
i (1, N) = a2 for all i ∈ {1, 2, 3}, i.e., every agent has object a2 as his top ranked object.

Then, only agent 2 gets one of his top ranked alternatives (matchings) according to this TTC

mechanism. Hence, this TTC mechanism is not a dictatorship.

51

2.4.2 Stable House Allocation with Existing Tenants

We consider a variant of the house allocation problem. In this model, each agent already

has a house that he owns - if an agent i owns house j then he is called the tenant of j.

Immediately, one sees that the TTC mechanism can be applied in this setting with initial

endowment given by the house-tenant relationship. This is, as we have shown, strategy-proof

and efficient (Proposition 10).

We address another concern here, that of stability. In this model, agents own resources

that are allocated. So, it is natural to impose some sort of stability condition on the mech-

anism. Otherwise, a group of agents can break away and trade their houses amongst them-

selves.

Consider the example in Table 2.13. Let the existing tenants of the houses be given by

matching a∗: a∗(1) = a1, a
∗(2) = a3, a

∗(3) = a2, a
∗(4) = a4, a

∗(5) = a5, a
∗(6) = a6. Consider

a matching a as follows: a(i) = ai for all i ∈ N . Now consider the coalition of agents {3, 4}.

In the matching a, we have a(3) = a3 and a(4) = a4. But agents 3 and 4 can reallocate the

houses they own among themselves in a manner to get a better matching for themselves.

In particular, agent 3 can get a4 (house owned by agent 4) and agent 4 can get a2 (house

owned by agent 3. Note that a4 ≻3 a3 and a2 ≻4 a4. Hence, both the agents are better

off trading among themselves. So, they can potentially block matching a. We formalize this

idea of blocking below.

Let a∗ denote the matching reflecting the initial endowment of agents. We will use the

notation aS for every S ⊆ N , to denote a matching of agents in S to the houses owned by

agents in S. Whenever we write a matching a without any superscript we mean a matching

of all agents. Formally, a coalition (group of agents) S ⊆ N can block a matching a at a

preference profile ≻ if there exists a matching aS such that aS(i) ≻i a(i) or aS(i) = a(i) for

all i ∈ S with aS(j) ≻j a(j) for some j ∈ S. A matching a is in the core at a preference

profile ≻ if no coalition of agents can block a at ≻. A social choice function f is stable if

for all preference profile ≻, f(≻) is in the core at preference profile ≻. Note that stability

implies efficiency - efficiency requires that the grand coalition cannot block.

We will now analyze if the TTC mechanism is stable. Note that when we say a TTC

mechanism, we mean the TTC mechanism where the initial endowment is the endowment

given by the house-tenant relationship.

Theorem 5 The TTC mechanism is stable. Moreover, there is a unique core matching for

every preference profile.

Proof : Assume for contradiction that the TTC mechanism is not stable. Then, there exists

52

a preference profile ≻, where the matching a produced by the TTC mechanism at ≻ is not

in the core. Let coalition S block this matching a at ≻. This means there exists another

matching aS such that aS(i) ≻i a(i) or aS(i) = a(i) for all i ∈ S, with equality not holding

for all i ∈ S. Let T = {i ∈ S : aS(i) ≻i a(i)}. Assume for contradiction T = ∅.

To remind notation, we denote N̂k to be the set of agents allocated houses in Step k

of the TTC mechanism, and M̂k be the set of these houses. Clearly, agents in S ∩ N̂1 are

getting their respective top ranked houses. So, (S ∩ N̂1) ⊆ (S \ T). Define Sk = S ∩ N̂k for

each stage k of the TTC mechanism. We now complete the proof using induction. Suppose

(S1 ∪ . . . ∪ Sk−1) ⊆ (S \ T) for some stage k. We show that Sk ⊆ (S \ T). Now, agents in

S∩N̂k are getting their respective top ranked houses amongst houses in M \(M̂1∪ . . .∪M̂k).

Given that agents in (S1 ∪ . . . ∪ Sk−1) get the same set of houses in aS and a, any agent in

Sk cannot be getting a better house in aS than his house in a. Hence, again Sk ⊆ (S \ T).

By induction, S ⊆ (S \ T) or T = ∅, which is a contradiction.

Finally, we show that the core matching returned by the TTC mechanism is the unique

one. Suppose the core matching returned by the TTC mechanism is a, and let a′ be another

core matching for preference profile ≻. Note that (a) in every Step k of the TTC mechanism

agents in N̂k get allocated to houses owned by agents in N̂k, and (b) agents in N̂1 get their

top ranked houses. Hence, if a(i) 6= a′(i) for any i ∈ N̂1, then agents in N̂1 will block a′. So,

a(i) = a′(i) for all i ∈ N̂1.

Now, we use induction. Suppose, a(i) = a′(i) for all i ∈ N̂1 ∪ . . . ∪ N̂k−1. We will

argue that a(i) = a′(i) for all i ∈ N̂k. Agents in N̂k get their highest ranked house from

M \ M̂1 ∪ . . .∪ M̂k−1. So, given that agents in N̂1 ∪ . . .∪ N̂k−1 get the same houses in a and

a′, if some agent i ∈ N̂k get different houses in a and a′, then it must be a(i) ≻i a
′(i). This

means, agents in N̂k will block a′. This contradicts the fact that a′ is a core matching.

This shows that a = a′, a contradiction. �

The TTC mechanism with existing tenants has another nice property. Call a mechanism

f individually rational if at every profile ≻, the matching f(≻) ≡ a satisfies a(i) ≻i a
∗(i)

or a(i) = a∗(i) for all i ∈ N , where a∗ is the matching given by the initial endowment or

existing tenants.

Clearly, the TTC mechanism is individually rational. To see this, consider a profile ≻

and let f(≻) = a. Note that the TTC mechanism has this property that if the house owned

by an agent i is matched in Step k, then agent i is matched to a house in Step k too. If

a(i) 6= a∗(i) for some i, then agent i must be part of a trading cycle where he is pointing to

a house better than a∗(i). Hence, a(i) ≻i a
∗(i).

This also follows from the fact that the TTC mechanism is stable and stability implies

53

individual rationality - individual rationality means no coalition of single agent can block.

In the model of house allocation with existing tenants, the TTC mechanism satisfies three

compelling properties along with stability - it is strategy-proof, efficient, and individually

rational. Remarkably, these three properties characterize the TTC mechanism in the existing

tenant model. We skip the proof.

Theorem 6 A mechanism is strategy-proof, efficient, and individually rational if and only

if it is the TTC mechanism.

Note that the serial dictatorship with a fixed priority is strategy-proof and efficient but

not individually rational. The “status-quo mechanism”where everyone is assigned the houses

they own is strategy-proof and individually rational but not efficient. So, the properties of

individual rationality and efficiency are crucial for the characterization of Theorem 6.

2.4.3 Generalized TTC Mechanisms

In this section, we generalize the TTC mechanisms in a natural way so that one extreme

covers the TTC mechanism we discussed and the other extreme covers the fixed priority

mechanism. We can now handle the case where the number of objects is not equal to the

number of agents. We now define fixed priority TTC (FPTTC) mechanisms. In a

FPTTC mechanism, each house aj is endowed with a priority σj : N → N over agents. This

generates a profile of priorities σ ≡ (σ1, . . . , σn).

The FPTTC mechanism then goes in stages, with each stage executing a TTC mechanism

but the endowments in each stage changing with the fixed priority profile σ.

We first illustrate the idea with the example in Table 2.14.

≻1 ≻2 ≻3 ≻4

a3 a2 a2 a1

a2 a3 a4 a4

a1 a4 a3 a3

a4 a1 a1 a2

Table 2.14: An example for housing model

Consider two priorities σ1 and σ2, where σ1(i) = i for all i ∈ N and σ2 is defined as

σ2(1) = 2, σ2(2) = 1, σ2(3) = 4, σ2(4) = 3. Suppose houses a1 and a2 are assigned priority σ1

but houses a3 and a4 are assigned priority σ2.

54

In stage 1, the endowments are derived from the priorities of houses. Since houses a1 and

a2 have agent 1 as top in their priority σ1, agent 1 is endowed with these houses. Similarly,

agent 2 is endowed houses a3 and a4 by priority σ2. Now, the TTC phase of stage 1 begins.

By the preferences of agents, each agent points to agent 1, except agent 1, who points to

agent 2 (agent 2 is endowed house a3, which is agent 1’s top ranked house). So, trade takes

place between agents 1 and 2. This is shown in Figure 2.8 - the endowments of agents are

shown in square brackets. The edges also reflect which object it is pointing to.

[a3,a4]1 2

3

4

[a1,a2]

Figure 2.8: Cycle in stage 1 of the FPTTC mechanism

In the next stage, only agents 3 and 4 remain. Also, only houses a1 and a4 remain. We

look at the priority of σ1 of house a1. Of the remaining agents, agent 3 is the top. Then,

for priority σ2 of house a4, the top agent among remaining agent is agent 4. So, the new

endowment is agent 3 gets a1 and agent 4 gets a4. We run the TTC phase now. Agent 3

points to agent 4 and agent 4 points to agent 3. So, they trade, and the FPTTC mechanism

gives the following matching ā: ā(1) = a3, ā(2) = a2, ā(3) = a4, ā(3) = a1. This is shown in

Figure 2.9.

[a1]

3 4 [a4]

Figure 2.9: Cycle in stage 2 of the FPTTC mechanism

If all the houses have the same fixed priority, then we recover the fixed priority mechanism.

To see this, notice that because of identical priority of houses, all the houses are endowed

to the same agent in every stage of the FPTTC mechanism. As a result, at stage i, the ith

55

agent in the priority gets his top-ranked house. Hence, we recover the fixed priority (serial

dictatorship) mechanism.

On the other extreme, if all the houses have priorities such that the top ranked agents in

the priorities are distinct (i.e., for any two houses aj , ak with priorities σj and σk, we have

σj(1) 6= σk(1)), then the endowments of the agents do not change over stages if the number of

houses is equal to the number of agents. If there are more houses than number of agents, the

endowment of each agent increases (in terms of set inclusion) across stages. So, we recover

the traditional TTC mechanism for the case of equal number of agents and houses.

The following proposition can now be proved using steps similar to Proposition 10.

Proposition 11 The FPTTC mechanism is strategy-proof and efficient.

2.5 The Two-sided Matching Model

The house allocation model is a model of one-sided matching - only agents (one side of the

market) had preference over the houses. In many situations, the matching market can be

partitioned into two sides, and an agent on one side will have preference over agents on the

other side. For instance, consider the scenario where students are matched to schools. It is

plausible that not only students have preferences over the schools but schools also have a

preferences over students. Other applications of two-sided matching include job applicants

matched to firms, doctoral students matched to faculty etc.

Let M be a set of men and W be a set of women. For simplicity, we will assume that

|M | = |W | - but this is not required to derive the results. Every man m ∈ M has a strict

preference ordering ≻m over the set of women W . So, for x, y ∈ W , x ≻m y will imply that

m ranks x over y. A matching is a bijective mapping µ : M →W , i.e., every man is assigned

to a unique woman. If µ is a matching, then µ(m) denotes the woman matched to man m

and µ−1(w) denotes the man matched to woman w. This model is often called the “marriage

market” model or “two-sided matching” model. We first discuss the stability aspects of this

model, and then discuss the strategic aspects.

2.5.1 Stable Matchings in Marriage Market

As in the house allocation model with existing tenants, the resources to be allocated to agents

in the marriage market model are owned by agents themselves. Hence, stability becomes an

important criteria for designing any mechanism.

56

We consider an example with three men and three women. Let M = {m1, m2, m3} and

W = {w1, w2, w3}. Their preferences are shown in Table 2.15.

≻m1
≻m2

≻m3
≻w1

≻w2
≻w3

w2 w1 w1 m1 m3 m1

w1 w3 w2 m3 m1 m3

w3 w2 w3 m2 m2 m2

Table 2.15: Preference orderings of men and women

Consider the following matching µ: µ(m1) = w1, µ(m2) = w2, µ(m3) = w3. This matching

is unstable in the following sense. The pair (m1, µ(m2) = w2) will block this matching (ex

post) since m1 likes w2 over µ(m1) = w1 and w2 likes m1 over µ−1(w2) = m2. So, (m1, w2)

will break away, and form a new pair. This motivates the following definition of stability.

Definition 13 A matching µ is pairwise unstable at preference profile (≻) if there exists

m,m′ ∈M such that (a) µ(m′) ≻m µ(m) and (b) m ≻µ(m′) m
′. The pair (m,µ(m′)) is called

a blocking pair of µ at (≻). If a matching µ has no blocking pairs at a preference profile

≻, then it is called a pairwise stable matching at ≻.

The following matching µ′ is a pairwise stable matching at ≻: µ′(m1) = w1, µ
′(m2) =

w3, µ
′(m3) = w2 for the example in Table 2.15. The question is: Does a pairwise stable

matching always exist? The answer to this question is remarkably yes, as we will show next.

One can imagine a stronger requirement of stability, where groups of agents block instead

of just pairwise blocking. We say that a coalition S ⊆ (M ∪W) blocks a matching µ at a

profile ≻ if there exists another matching µ′ such that (i) for all m ∈M ∩S, µ′(m) ∈W ∩S

and for all w ∈ W ∩ S, µ′−1(w) ∈ M ∩ S, and (ii) for all m ∈ M ∩ S, µ′(m) ≻m µ(m) and

for all w ∈ M ∩ S, µ′−1(w) ≻w µ−1(w). We say a matching µ is in core at a profile ≻ if no

coalition can block µ at ≻. The following theorem suggests that this notion of stability is

equivalent to the pairwise notion of stability we have initially defined.

Theorem 7 A matching is pairwise stable at a profile if and only if it belongs to the core

at that profile.

Proof : Consider a matching µ which is pairwise stable at ≻. Assume for contradiction that

µ is not in the core at ≻. Then, there must exist S ⊆ (M ∪W) and a matching µ̂ such that

for all m ∈ M ∩ S and for all w ∈ W ∩ S with µ̂(m), µ̂−1(w) ∈ S we have µ̂(m) ≻m µ(m)

and µ̂−1(w) ≻w µ−1(w). This means for some m ∈ S we have µ̂(m) ∈ W ∩S. Let µ̂(m) = w.

57

We know w ≻m µ(m). Then, we have m ≻w µ−1(w). Hence, (m,w) is a blocking pair at ≻

for µ. This implies that µ is not pairwise stable, which is a contradiction.

The other direction of the proof is trivial. �

For this reason, we will say a matching is stable at a preference profile if it is pairwise

stable at that preference profile. We will also drop that qualified “at a preference profile” at

some places where the preference profile in question is clear from the context.

2.5.2 Deferred Acceptance Algorithm

In this section, we show that a stable matching always exists in the marriage market model.

The fact that a stable matching always exists is proved by constructing an algorithm to find

such a matching (this algorithm is due to David Gale and Lloyd Shapley, and also called

the Gale-Shapley algorithm). There are two versions of this algorithm. In one version men

propose to women and women either accept or reject the proposal. In another version, women

propose to men and men either accept or reject the proposal. We describe the men-proposal

version.

• S1. First, every man proposes to his top ranked woman.

• S2. Then, every woman who has at least one proposal keeps (tentatively) the top man

amongst these proposals and rejects the rest.

• S3. Then, every man who was rejected in the last round, proposes to the top woman

amongst those women who have not rejected him in earlier rounds.

• S4. Then, every woman who has at least two proposals, including any proposal ten-

tatively kept from earlier rounds, keeps (tentatively) the top man amongst these pro-

posals and rejects the rest. The process is then repeated from Step S3 till each woman

has a proposal, at which point, the tentative proposal accepted by a woman becomes

permanent.

Since each woman is allowed to keep only one proposal in every round, no woman will

be assigned to more than one man. Since a man can propose only one woman at a time, no

man will be assigned to more than one woman. Since the number of men and women are

the same, this algorithm will terminate at a matching. Also, the algorithm will terminate

finitely since in every round, the set of women a man can propose does not increase, and

strictly decreases for at least one man.

58

We illustrate the algorithm for the example in Table 2.15. A proposal from m ∈ M to

w ∈W will be denoted by m→ w.

• In the first round, every man proposes to his best woman. So, m1 → w2, m2 →

w1, m3 → w1.

• Hence, w1 has two proposals: {m2, m3}. Since m3 ≻w1
m2, w1 rejects m2 and keeps

m3.

• Now, m2 is left to choose from {w2, w3}. Since w3 ≻m2
w2, m2 now proposes to w3.

• Now, every woman has exactly one proposal. So the algorithm stops with the matching

µm given by µm(m1) = w2, µm(m2) = w3, µm(m3) = w1.

It can be verified that µm is a stable matching. Also, note that µm is a different stable

matching than the stable matching µ′ which we discussed earlier. Hence, there can be more

than one stable matching.

One can also state a women proposing version of the deferred acceptance algorithm. Let

us run the women proposing version for the example in Table 2.15. As before, a proposal

from w ∈W to m ∈M will be denoted by w → m.

• In the first round, every woman proposes to her top man. So, w1 → m1, w2 → m3, w3 →

m1.

• So, m1 has two proposals: {w1, w3}. We note that w1 ≻m1
w3. Hence, m1 rejects w3

and keeps w1.

• Now, w3 is left to choose from {m2, m3}. Since m3 ≻w3
m2, w3 proposes to m3.

• This implies that m3 has two proposals: {w2, w3}. Since w2 ≻m3
w3, m3 rejects w3 and

keeps w2.

• Now, w3 is left to choose only m2. So, the algorithm terminates with the matching µw

given by µw(m1) = w1, µw(m2) = w3, µw(m3) = w2.

Note that µw is a stable matching and µm 6= µw.

59

2.5.3 Stability and Optimality of Deferred Acceptance

Algorithm

Theorem 8 At every preference profile, the Deferred Acceptance Algorithm terminates at a

stable matching for that profile.

Proof : Consider the Deferred Acceptance Algorithm where men propose (a similar proof

works if women propose) for a preference profile ≻. Let µ be the final matching of the

algorithm. Assume for contradiction that µ is not a stable matching. This implies that there

exists a pair m ∈M and w ∈W such that (m,w) is a blocking pair. By definition µ(m) 6= w

and w ≻m µ(m). This means that w rejected m earlier in the algorithm (else m would have

proposed to w at the end of the algorithm). But a woman rejects a man only if she gets

a better proposal, and her proposals improve in every round. This implies that w must be

assigned to a better man than m, i.e., µ−1(w) ≻w m. This contradicts the fact that (m,w)

is a blocking pair. �

The men-proposing and the women-proposing versions of the Deferred Acceptance Algo-

rithm may output different stable matchings. Is there a reason to prefer one of the stable

matchings over the other? Put differently, should we use the men-proposing version of the

algorithm or the women-proposing version?

To answer this question, we start with some notations. A matching µ is men-optimal

stable matching if µ is stable and for every other stable matching µ′ we have µ(m) ≻m µ′(m)

or µ(m) = µ′(m) for all man m ∈ M . Similarly, a matching µ is women-optimal stable

matching if µ is stable and for every other stable matching µ′ we have µ(w) ≻m µ′(w) or

µ(w) = µ′(w) for all woman w ∈W .

Note that by definition, a men-optimal stable matching is unique - if there are two men

optimal stable matchings µ, µ′, then they must differ by at least one man’s match and this

man must be worse in one of the matchings. Similarly, there is a unique women-optimal

stable matching.

Theorem 9 The men-proposing version of the Deferred Acceptance Algorithm terminates

at the unique men-optimal stable matching and the women-proposing version of the Deferred

Acceptance Algorithm terminates at the unique women-optimal stable matching.

Proof : We do the proof for men-proposing version of the algorithm. The proof is similar

for the women-proposing version. Let µ̂ be the stable matching obtained at the end of the

60

men-proposing Deferred Acceptance Algorithm. Assume for contradiction that µ̂ is not men-

optimal. Then, there exists a stable matching µ such that for some m ∈M , µ(m) ≻m µ̂(m).

Let M ′ = {m ∈M : µ(m) ≻m µ̂(m)}. Hence, M ′ 6= ∅.

Now, for every m ∈ M ′, since µ(m) ≻m µ̂(m), we know that m is rejected by µ(m) in

some round of the algorithm. Denote the round in which m ∈M ′ is rejected by µ(m) by tm.

Choose m′ ∈ arg minm∈M ′ tm, i.e., choose a man m′ who is the first to be rejected by µ(m′)

among all men in M ′. Since µ(m′) rejects m′, she must have got a better proposal from some

other man m′′, i.e.,

m′′ ≻µ(m′) m
′. (2.1)

Now, consider µ(m′) and µ(m′′). If m′′ /∈M ′, then µ̂(m′′) = µ(m′′) or µ̂(m′′) ≻m′′ µ(m′′).

Since m′′ is eventually assigned to µ̂(m′′), it must be the last woman that m′′ must have

proposed in DAA. The fact that m′′ proposed to µ(m′) earlier means µ(m′) ≻m′′ µ̂(m′′).

Using, µ̂(m′′) = µ(m′′) or µ̂(m′′) ≻m′′ µ(m′′), we get

µ(m′) ≻m′′ µ(m′′).

If m′′ ∈ M ′, then, since tm′′ > tm′ , m′′ has not been rejected by µ(m′′) till round tm′ .

This means, again, m′′ proposed to µ(m′) before proposing to µ(m′′). Hence, as in the earlier

case, we get

µ(m′) ≻m′′ µ(m′′). (2.2)

By Equations 2.1 and 2.2, (m′′, µ(m′)) forms a blocking pair. Hence, µ is not stable. This is

a contradiction. �

The natural question is then whether there exists a stable matching that is optimal

for both men and women. The answer is no. The example in Table 2.15 has two stable

matchings, one is optimal for men but not for women and one is optimal for women but not

for men. Also, there is a unique men-optimal stable matching and a unique women-optimal

stable matching (the proof of this fact is skipped).

2.5.4 Strategic Issues in Deferred Acceptance Algorithm

We next turn to strategic properties of the Deferred Acceptance Algorithm (DAA). We first

consider the men-proposing version. We define the notion of strategyproofness informally

here. Strategyproofness is with respect to the direct revelation mechanism. The DAA is

61

strategy-proof if reporting a non-truthful preference ordering does not result in a better

outcome for an agent for any reported preferences of other agents.

We first show that the men-proposing version of the Deferred Acceptance Algorithm is

not strategyproof for women (i.e., women can manipulate). Let us return to the example in

Table 2.15. We know if everyone is truthful, then the matching is: µ(m1) = w2, µ(m2) =

w3, µ(m3) = w1. We will show that w1 can get a better outcome by not being truthful. We

show the steps here.

• In the first round, every man proposes to his best woman. So, m1 → w2, m2 →

w1, m3 → w1.

• Next, w2 only has one proposal (fromm1) and she accepts it. But w1 has two proposals:

{m2, m3}. If she is truthful, she should accept m3. We will see what happens if she is

not truthful. So, she accepts m2.

• Now, m3 has two choices: {w2, w3}. He likes w2 over w3. So, he proposes to w2.

• Now, w2 has two proposals: {m1, m3}. Since she likes m3 over m1, she accepts m3.

• Now, m1 has a choice between w1 and w3. Since he likes w1 over w3, he proposes to

w1.

• Now, w1 has two proposal: {m1, m2}. Since she prefers m1 over m2 she accepts m1.

• So, m2 is only left with {w2, w3}. Since he likes w3 over w2 he proposes to w3, which

she accepts. So, the final matching µ̂ is given by µ̂(m1) = w1, µ̂(m2) = w3, µ̂(m3) = w2.

Hence, w1 gets m1 in µ̂ but was getting m3 earlier. The fact that m1 ≻w1
m3 shows that

not being truthful helps w1. However, the same result does not hold for men. Similarly, the

women-proposing DAA is not strategy-proof for men.

Theorem 10 The men-proposing version of the Deferred Acceptance Algorithm is strate-

gyproof for men. The women-proposing version of the Deferred Acceptance Algorithm is

strategyproof for women.

Proof : Suppose there is a profile π = (≻m1
, . . . ,≻mn

,≻w1
, . . . ,≻wn

) such that man m1 can

misreport his preference to be ≻∗, and obtain a better matching. Let this preference profile

be π′. Let µ be the stable matching obtained by the men-proposing deferred acceptance

algorithm when applied to π. Let ν be the stable matching obtained by the men-proposing

62

algorithm when applied to π′. We show that if ν(m1) ≻m1
µ(m1), then ν is not stable at π′,

which is a contradiction.

Let R = {m : ν(m) ≻m µ(m)}. Since m1 ∈ R, R is not empty. We show that {w :

ν−1(w) ∈ R} = {w : µ−1(w) ∈ R}. Take any ν−1(w) ∈ R, we will show that µ−1(w) ∈ R,

and this will establish the claim. If µ−1(w) = m1, then we are done by definition. Else, let

w = ν(m) and m′ = µ−1(w). Since w ≻m µ(m), stability of µ at π implies that m′ ≻w m.

Stability of ν at π′ implies that ν(m′) ≻m′ w. Therefore, m′ ∈ R. Let S = {w : ν−1(w) ∈

R} = {w : µ−1(w) ∈ R}.

By definition ν(m) ≻m µ(m) for any m ∈ R. By stability of µ, we then have µ−1(w) ≻w

ν−1(w) for all w ∈ S. Now, pick any w ∈ S. By definition, w ≻ν−1(w) µ(ν−1(w)). This

implies that during the execution of the men-proposing deferred acceptance algorithm at

π, ν−1(w) ∈ R must have proposed to w which she had rejected. Let m ∈ R be the last

man in R to make a proposal during the execution of the men-proposing deferred acceptance

algorithm at π. Suppose this proposal is made to w = µ(m) ∈ S. As argued, w rejected

ν−1(w) earlier. This means that when m proposed to w, she had some proposal, say from

m′, which she rejected. By definition, m′ cannot be in R. This means that m′ 6= ν−1(w),

and hence, m′ ≻w ν−1(w). Since m′ /∈ R, µ(m′) ≻m′ ν(m′) or µ(m′) = ν(m′). Also, since

w rejects m′, w ≻m′ µ(m′). This shows that w ≻m′ ν(m′). This shows that (m′, w) form a

blocking pair for ν at π′. �

Does this mean that no mechanism can be both stable and be strategyproof to all agents?

The answer is yes.

Theorem 11 No mechanism which gives a stable matching can be strategy-proof for both

men and women.

However, one can trivially construct strategy-proof mechanisms for both men and women.

Consider a mechanism which ignores all men (or women) orderings. Then, it can run a fixed

priority mechanism for men (or women) or a TTC mechanism with fixed endowments for

men (or women) to get a strategy-proof mechanism.

2.5.5 Extensions with Quotas and Individual Rationality

The deferred acceptance algorithm can be suitably modified to handle some generalizations.

One such generalization is used in school choice problems. In a school choice problem, a set

of students (men) and a set of schools (women) have preference ordering over each other.

Each school has a quota, i.e., the maximum number of students it can take. In particular,

63

every school i has a quota of qi ≥ 1. Now, colleges need to have preferences over sets of

students. For this, we need to extend preferences over students to subsets of students. There

are many ways to do it. The standard restriction is responsive preferences: suppose S is a

set of students and s /∈ S but t ∈ S, then S \ {t} ∪ {s} is preferred to S if and only if s is

preferred to t. Usually, colleges do not like some students. This is modeled by allowing only

acceptable students preferences. In the preference relation, we put the ∅ symbol to reflect

this - i.e., any students who are worse than this are not acceptable. Again, a set of students

S is worse than S ∪ {s} if and only if s is acceptable.

Students, on the other hand, have a set of schools that are acceptable and another set

which is not acceptable, i.e., on top of the usual linear order over the set of schools, each

student also has a cut-off school, below which he prefers to not attend any school. The

preferences of agents are handled by adding a dummy school 0, whose quota is the number

of students (so this school can admit possibly all students). An admission in the dummy

school indicates that the student is not assigned any school. Now, each student has a

preference ordering over the set of schools and the dummy school. All the schools below

dummy school are never preferred by the student.

The deferred acceptance algorithm can be modified in a straightforward way in these

settings. Each student proposes to its favorite remaining acceptable school. A proposal to

the dummy school is always accepted. Any other school k evaluates the set of proposals it

has, and accepts the top min(qk, number of proposals) acceptable proposals. The procedure

is repeated as was described earlier. One can extend the stability, student-optimal stability,

and strategy-proofness results of previous section to this setting in a straightforward way.

Another important property of a mechanism in such a set up is individual rationality.

Individual rationality says that no student should get a school lower than the dummy school.

It is clear that the deferred acceptance algorithm produces an individually rational matching.

2.6 Applications of Various Matching Models

The matching theory is one of those theories which have been applied extensively in practice.

We give some examples.

• Deferred Acceptance Algorithm. Deferred acceptance algorithm (DAA) has

been successfully used in assigning students to schools in New York City (high school)

and Boston (all public schools). It is also used in assigning medical interns (doctors) to

hospitals in US medicine schools. The US medical community has been at the forefront

of implementing DAA - it is used in residents matching, doctor assignments to jobs,

64

and many other markets.

• Versions of Serial Dictatorship. Some (random) version of serial dictatorship

(priority) mechanism is widely used in US Universities like Yale, Princeton, CMU, Har-

vard, Duke, Michigan to allocate graduate housing to graduate students. The version

that is used is called random serial dictatorship with squatting rights. In this version,

first existing tenants are given the option of entering the mechanism or going away

with their existing house. After everyone announces their willingness to participate in

the mechanism, an ordering of (participating) students is done uniformly at random.

Then, serial dictatorship is applied on this ordering.

• Kindney Exchange. The kidney exchange problem can be modeled as a house

allocation problem with existing tenants. In a kidney exchange problem, each patient

(agent) can come with an incompatible donor agent (house which is endowed to him),

and there is a set of donor agents (vacant houses). Patients have preference over donors

(houses). A matching in this case is an assignment of patients to donors. There are two

major differences from the model of house allocation with existing tenants: (i) not all

houses have tenants (ii) number of houses is more than the number of agents. Variants

of top trading cycle algorithm has been proposed, and run in US hospital systems to

match kidney patients to donors.

2.7 Randomized Social Choice Function

Randomization is a way of expanding the set of possible strategy-proof social choice function.

Lotteries are also common in practice. So, it makes sense to study the effects of randomization

on strategy-proofness.

As before let A = {a, b, c, . . .} be a finite set of alternatives with |A| = m and N =

{1, . . . , n} be the set of agents. Let L(A) denote the set of all probability distributions over

A. We will refer to this set as the set of lotteries over A. A particular element λ ∈ L(A) is

a probability distribution over A, and λa denotes the probability of alternative a. Of course

λa ≥ 0 for all a ∈ A and
∑

a∈A λa = 1. As before, every agent i has a linear order over A,

which is his preference ordering. A randomized social choice function picks a lottery over A

at every profile of preference orderings. Hence, the set of outcomes is the set of all lotteries

over A, i.e., L(A). Note that we have not defined a preference ordering over L(A). Hence, a

crucial component of analyzing randomized social choice functions is

65

how should two lotteries λ, λ′ ∈ L(A) be compared given a preference ordering over A?

We discuss below a very basic way of making such a comparison. Let P is the set of all

linear orders over A. The domain of interest may be any subset D ⊆ P. A randomized

social choice function (RSCF) f is a mapping f : Dn → L(A). 6 We let fa(P) to denote

the probability of alternative a being chosen at profile P . To avoid confusion, we refer to

f : Dn → A as a deterministic social choice function (DSCF).

2.7.1 Defining Strategy-proof RSCF

There are several meaningful ways to define strategy-proofness in this setting. We follow one

of the first-proposed approaches (by Gibbard). It requires that an RSCF be non-manipulable

for every utility representation of linear orders when lotteries are evaluated using the ex-

pected utility criteria.

A utility function u : A → R represents a preference ordering Pi ∈ D if for all a, b ∈ A,

u(a) > u(b) if and only if aPib. Given a utility representation u of Pi, the utility from a

lottery λ ∈ A is computed using the expected utility criteria, and is given by

∑

a∈A

λau(a).

Notice that this is a domain restriction - the utility of a lottery outcome is restricted

to be the expected utility of the alternatives in its support. Hence, analysis of randomized

social choice function is similar to analyzing restricted domains, and therefore, we hope to

uncover more social choice functions than in the deterministic case.

Now, it is easy to define the notion of strategy-proofness. An RSCF is strategy-proof if

for every possible representation of orderings, the expected utility of telling the truth is not

less than the expected utility of lying.

Definition 14 An RSCF f : Dn → L(A) is strategy-proof if for all i ∈ N , all P−i ∈

Dn−1, for all Pi ∈ D, and for all utility functions u : A→ R representing Pi, we have

∑

a∈A

u(a)fa(Pi, P−i) ≥
∑

a∈A

u(a)fa(P
′
i , P−i) ∀ P ′

i ∈ D.

For the strategy-proofness of DSCF, we did not require this utility representation. However,

it is easy to verify that a DSCF is strategy-proof in the sense of Definition 3 if and only if it

6 Though, we assumed that the domain of every agent is the same D, this is not required for the results

we state here, and assumed for simplicity of notation.

66

is strategy-proof in the sense of Definition 14. Also, the qualifier “for all utility functions” in

the above definitions is extremely important. It underlines the fact that we are considering

ordinal social choice functions. If we were using “cardinal” social choice functions, then we

will elicit utility functions from the agents instead of preference orderings.

It is well known that the above formulation of strategy-proofness is equivalent to first-

order stochastic dominance. To define this formally, let B(a, Pi) = {b ∈ A : b = a or bPia}.

We can define the strategy-proofness in the following equivalent way.

Definition 15 An RSCF f : Dn → L(A) is strategy-proof if for all i ∈ N , all P−i ∈

Dn−1, for all Pi ∈ D, and for all a ∈ A, we have

∑

b∈B(a,Pi)

fb(Pi, P−i) ≥
∑

b∈B(a,Pi)

fb(P
′
i , P−i) ∀ P ′

i ∈ D.

The necessity of this first-order stochastic dominance is easy to derive. Fix some i ∈ N ,

some P−i, some Pi and some alternative a ∈ A. A particular u that represents Pi is of the

following form: u(b) → 1 for all b ∈ B(a, Pi) and u(b) → 0 for all b /∈ B(a, Pi). Then,

strategy-proofness gives that for every P ′
i , we must have

∑

b∈A

u(b)fb(Pi, P−i) ≥
∑

b∈A

u(b)fb(P
′
i , P−i).

Substituting for u, we get

∑

b∈B(a,Pi)

fb(Pi, P−i) ≥
∑

b∈B(a,Pi)

fb(P
′
i , P−i).

It can also be shown that the first-order stochastic dominance condition is sufficient for

strategy-proofness (see Chapter 6 in Mas-Collel-Whinston-Green).

To understand this definition a little better let us take an example with two agents {1, 2}

and three alternatives {a, b, c}. The preference of agent 2 is fixed at P2 given by aP2bP2c.

Let us consider two preference orderings of agent 1: P1 : bP1cP1a and P ′
1 : cP1aP1b. Denote

P = (P1, P2) and P ′ = (P ′
1, P2). Suppose fa(P) = 0.6 and fb(P) = 0.1 and fc(P) = 0.3.

First order stochastic dominance requires the following.

fb(P) = 0.1 ≥ fb(P
′)

fb(P) + fc(P) = 0.4 ≥ fb(P
′) + fc(P

′).

Summarizing, we consider randomization but ordinal social choice functions. Agents have

preferences over alternatives and use that to evaluate lotteries. Our idea of truthfulness says

67

that the lottery given by the scf from truthtelling must first-order stochastically dominate

every other lottery that this agent can get from lying. This notion of strategy-proofness is

equivalent to preventing manipulation for all cardinalization of preferences when agents use

expected utility to evaluate lotteries.

Of course, we can think of other notions of strategy-proofness. For instance, fix agent i

and fix the preferences of other agents at P−i. We can say that agent i manipulates f at

(Pi, P−i) if there exists P ′
i such that the lottery f(P ′

i , P−i) first order stochastically dominates

f(Pi, P−i). Then, we can say that f is strategy-proof if no agent can manipulate it at any

profile. This will be a weaker notion of strategy-proofness than what we use.

Another method of defining strategy-proofness is lexicographic. Again, fix agent i and

fix the preferences of other agents at P−i. Take two preferences Pi, P
′
i of agent i. Then,

defines a binary relation over every pair of lotteries using Pi in a lexicographic manner. It

evaluates lotteries f(Pi, P−i) and f(P ′
i , P−i) in the following way: it first looks at Pi(1) - the

top ranked alternative in Pi, and compares the two lotteries; if they are the same, then it

looks at Pi(2), and so on. We can define strategy-proofness easily now - f(Pi, P−i) must be

lexicographically better than f(P ′
i , P−i), where the lexicographic comparison is done using

Pi.

2.7.2 Randomization over DSCFs

A natural way to construct an RSCF is to take a collection of DSCFs and randomize over

them. We show a general result on strategy-proofness of RSCFs which can be expressed as

a convex combination of other strategy-proof RSCFs.

Proposition 12 Let f 1, f 2, . . . , fk be a set of k strategy-proof RSCFs, all defined on the

domain Dn. Let f : Dn → L(A) be defined as: for all P ∈ Dn and for all a ∈ A, fa(P) =
∑k

j=1 λjf
j
a(P), where λj ∈ [0, 1] for all j ∈ {1, . . . , k} and

∑k
j=1 λj = 1. Then, f is strategy-

proof.

68

Proof : Fix an agent i and a profile P−i. For some preference Pi consider a utility represen-

tation u : A→ R. Then, for any P ′
i ,

∑

a∈A

u(a)fa(P) =
∑

a∈A

u(a)

k
∑

j=1

λjf
j
a(P) =

k
∑

j=1

λj

∑

a∈A

u(a)f j
a(P)

≥
k

∑

j=1

λj

∑

a∈A

u(a)f j
a(P ′

i , P−i) =
∑

a∈A

u(a)

k
∑

j=1

λjf
j
a(P ′

i , P−i)

=
∑

a∈A

u(a)fa(P
′
i , P−i).

�

Another way to interpret Proposition 12 is that the set of strategy-proof RSCFs form a

convex set. Since a DSCF cannot be written as convex combination of other social choice

functions, a strategy-proof DSCF forms an extreme point of the set of strategy-proof RSCFs.

Knowing the deterministic strategy-proof social choice functions automatically gives you a

class of strategy-proof RSCFs.

2.7.3 The Counterpart of Gibbard-Satterthwaite Theorem

To understand the implication of randomization, we go back to the complete domain model

in the Gibbard-Satterthwaite theorem. First, we define the notion of unanimity that we will

use in this model. 7 The notion of unanimity we use is the exact version of unanimity we

used in the deterministic social choice functions.

Definition 16 An RSCF f : Pn → L(A) satisfies unanimity if for all i ∈ N , all P ∈ Pn

such that P1(1) = P2(1) = . . . = Pn(1) = a, we have fa(P) = 1.

As in the deterministic SCF case, we can see that the constant social choice function is

not unanimous. But there is even a bigger class of RSCFs which are strategy-proof but not

unanimous.

Definition 17 An RSCF f is a unilateral if there exists an agent i and α1 ≥ α2 ≥

. . . ≥ α|A| with αj ∈ [0, 1] and
∑|A|

j=1 αj = 1 such that for all P we have fPi(j) = αj for all

j ∈ {1, . . . , |A|}.

7In the deterministic model, there was an equivalence between unanimity, efficiency, and ontoness under

strategy-proofness - this is no longer true in the model with randomization.

69

In a unilateral RSCF, there is a weak dictator i such that top ranked alternative of

i gets probability α1, second ranked alternative of i gets probability α2, and so on. Notice

that every unilateral is strategy-proof, but not unanimous.

We now define another broad class of RSCFs which are strategy-proof and unanimous.

Definition 18 An RSCF f : Pn → L(A) is a random dictatorship if there exists weights

β1, . . . , βn ∈ [0, 1] with
∑

i∈N βi = 1 such that for all P ∈ Pn,

fa(P) =
∑

i∈N :Pi(1)=a

βi.

If a particular agent i has βi = 1, then such a random dictatorship is the usual dicta-

torship. A random dictatorship can be thought to be a randomization over deterministic

dictatorships, where βi reflects the probability with which agent i is a dictator. For ex-

ample, if N = {1, 2, 3} and A = {a, b, c} and β1 = 1
2
, β2 = β3 = 1

4
, then at a profile

P where P1(1) = a, P2(1) = a, P3(1) = c, the output of this random dictatorship will be

fa(P) = 1
2

+ 1
4

= 3
4

and fc(P) = 1
4
.

Random dictatorship can be thought of as a convex combination of dictatorships, where

βi is the probability with which agent i is the dictator. Since dictatorship is strategy-proof,

one can show that random dictatorship is also strategy-proof. As a corollary of Proposition

12, we get the following.

Corollary 1 Every random dictatorship is strategy-proof.

Proof : A random dictatorship is a convex combination of dictatorships. Hence, it is

strategy-proof by Proposition 12. �

We are now ready to state the counterpart of the Gibbard-Satterthwaite theorem for

RSCFs. This was proved by Gibbard.

Theorem 12 Suppose |A| ≥ 3. An RSCF is unanimous and strategy-proof if and only if it

is a random dictatorship.

The proof of this theorem is more involved than the Gibbard-Satterthwaite theorem. We

only do the case with two agents.

Proof : We have already shown that a random dictatorship is strategy-proof (Corollary 1).

It is also unanimous - if all agents have the same alternative as top ranked, βs will sum to 1

for that alternative. We now prove that any RSCF which is unanimous and strategy-proof

must be a random dictatorship for n = 2 case. We do the proof by showing two claims. Let

f be a strategy-proof and unanimous RSCF.

70

Claim 2 Let P ∈ P2 be a preference profile such that P1(1) 6= P2(1). If fa(P) > 0 then

a ∈ {P1(1), P2(1)}.

Proof : Consider a preference profile P such that P1(1) = a 6= b = P2(1). Let fa(P) = α

and fb(P) = β. Consider a preference ordering P ′
1 such that P ′

1(1) = P1(1) = a and

P ′
1(2) = P2(1) = b. Similarly, consider a preference ordering P ′

2 such that P ′
2(1) = P2(1) = b

and P ′
2(2) = P1(1) = a.

Strategy-proofness implies that fa(P
′
1, P2) = α. Also, by unanimity the outcome at

(P2, P2) is b. So, strategy-proofness implies that fa(P
′
1, P2) + fb(P

′
1, P2) ≥ fa(P2, P2) +

fb(P2, P2) = 1. Hence, fa(P
′
1, P2) + fb(P

′
1, P2) = 1.

Using a symmetric argument, we can conclude that fb(P1, P
′
2) = β and fa(P1, P

′
2) +

fb(P1, P
′
2) = 1.

Strategy-proofness implies that fb(P
′
1, P

′
2) = fb(P

′
1, P2) = 1 − α. and fa(P

′
1, P

′
2) =

fa(P1, P
′
2) = 1−β. But fa(P

′
1, P

′
2)+fb(P

′
1, P

′
2) ≤ 1 implies that α+β ≥ 1 and fa(P)+fb(P) ≤

1 implies α + β ≤ 1. Hence, α + β = 1. �

Claim 3 Let P, P̄ ∈ P2 be such that P1(1) = a 6= b = P2(1) and P̄1(1) = c 6= d = P̄2(1).

Then fa(P) = fc(P̄) and fb(P) = fd(P̄).

Proof : We consider various cases.

Case 1: c = a and d = b. Strategy-proofness implies that fa(P1, P2) = fa(P̄1, P2). By

Claim 2, fa(P1, P2)+fb(P1, P2) = fa(P̄1, P2)+fb(P̄1, P2) = 1. Hence, fb(P1, P2) = fb(P̄1, P2).

Repeating this argument for agent 2 while going from (P̄1, P2) to (P̄1, P̄2), we get that

fa(P̄) = fa(P) and fb(P̄) = fb(P).

Case 2: c = a or d = b. Suppose c = a. Consider a preference profile (P1, P̂2) such that

P̂2(1) = d /∈ {a, b} and P̂2(2) = b. Assume without loss of generality that P2(1) = b and

P2(2) = d. Then, strategy-proofness implies that fb(P1, P̂2) + fd(P1, P̂2) = fb(P) + fd(P).

By Claim 2, fb(P1, P̂2) = fd(P) = 0. Hence, fb(P) = fd(P1, P̂2). This further implies that

fa(P) = fa(P1, P̂2). By Case 1, fa(P) = fa(P̄) and fb(P) = fd(P̄). An analogous proof

works if d = b.

Case 3: c = b and d /∈ {a, b}. Let P̂ = (P1, P̄2). By Case 2, fa(P) = fa(P̂) and fb(P) =

fd(P̂). Again, applying Case 2, we get fa(P) = fa(P̂) = fb(P̄) and fb(P) = fd(P̂) = fd(P̄).

71

Case 4: c /∈ {a, b} and d = a. A symmetric argument to Case 3 can be made.

Case 5: c = b and d = a. Since there are at least three alternatives there is a x /∈ {a, b}.

We construct a profile P̂ = (P̂1, P̄2) such that P̂1(1) = x. By Case 4, fx(P̂) = fa(P)

and fb(P) = fa(P̂). Now, applying Case 2, we can conclude that fx(P̂) = fb(P̄) and

fa(P̂) = fa(P̄).

Case 6: c /∈ {a, b} and d /∈ {a, b}. Consider a profile P̂ = (P̂1, P2) such that P̂1(1) = c. By

Case 2, fc(P̂) = fa(P) and fb(P̂) = fb(P). Applying Case 2 again, we get fc(P̄) = fc(P̂) =

fa(P) and fd(P̄) = fb(P̂) = fb(P). �

Claims 2 and 3 establishes that f is a RSCF. �

As we have seen a unilateral SCF is not unanimous but strategy-proof. Hence, unanimity

is a crucial assumption in Theorem 12.

72

Chapter 3

Mechanism Design with Transfers and

Quasilinearity

We will now discuss mechanism design where transfers are allowed. We will continue to

restrict attention to private values setting, where the value of an agent for an alternative

depends on his own type only. If transfers are allowed, then we have two decisions to make

- (a) what alternative to choose (b) how much payment to make. In general, an agent i, can

have a general utility function Ui : Ti ×A×R → R, where A is the set of alternatives and Ti

is the type space of agent i. Here, Ui(ti, a, pi) will denote the payment of agent i with type ti

on alternative a when he makes a payment of pi. In this case, we can treat (a, pi) to be the

outcome. If Ui can be any function such that any ranking among the outcomes is possible,

then we will be back in the Gibbard-Satterthwaite framework.

Usually, it is plausible to assume that Ui has some particular structure (that is common

knowledge). We will make one such assumption. The crucial assumption we will make on

the utility function is that net utility is the value from the alternative minus the payment.

Suppose vi(a, ti) is the value of agent i from an alternative a when his type is ti and he makes

a payment of pi, then his net utility is

Ui(ti, a, pi) := vi(a, ti) − pi.

This assumption is called the quasi-linear utility assumption.

The crucial element of the quasi-linearity assumption is that we can separate the value

from the alternative and the utility from the payment. Moreover, now we cannot have

unrestricted ranking of outcomes - for instance if pi > p′i, we must always have (a, p′i)

preferred to (a, pi). The separability of value from alternative and the utility from payment

allows us to formulate incentive compatibility constraints in a more lucid manner.

73

3.1 A General Model

The set of agents is denoted by N = {1, . . . , n}. The set of potential social decisions or

outcomes or alternatives is denoted by the set A, which can be finite or infinite. For our

purposes, we will assume A to be finite. Every agent has a private information, called his

type. The type of agent i ∈ N is denoted by ti which lies in some set Ti, called the type

space. Type ti can be a multi-dimensional vector in RK , where K is some positive integer.

We denote a profile of types as t = (t1, . . . , tn) and the product of type spaces of all agents as

T n = ×i∈NTi. The type space Ti reflects the information the mechanism designer has about

agent i.

Agents have preferences over alternatives which depends on their respective types. This

is captured using a utility function. The utility function of agent i ∈ N is vi : A × Ti → R.

Thus, vi(a, ti) denotes the utility of agent i ∈ N for decision a ∈ A when his type is ti ∈ Ti.

Note that the mechanism designer knows Ti and the utility function vi. Of course, he does

not know the realizations of each agent’s type.

We will restrict attention to this setting, called the private values setting, where the

utility function of an agent is independent of the types of other agents, and is completely

known to him.

3.1.1 Allocation Rules

A decision rule or an allocation rule f is a mapping f : T n → A. Hence, an allocation

rule gives a decision as a function of the types of the agents. From every type profile matrix,

we construct a valuation matrix with n rows (one row for every agent) and |A| columns. An

entry in this matrix corresponding to type profile t, agent i, and a ∈ A has value vi(a, ti).

We show one valuation matrix for N = {1, 2} and A = {a, b, c} below.

[

v1(a, t1) v1(b, t1) v1(c, t1)

v2(a, t2) v2(b, t2) v2(c, t2)

]

Here, we give some examples of allocation rules.

• Constant allocation: The constant allocation rule f c allocates some a ∈ A for every

t ∈ T n. In particular, there exists a ∈ A such that for every t ∈ T we have

f c(t) = a.

74

• Dictator allocation: The dictator allocation rule fd allocates the best decision of

some dictator agent i ∈ N . In partcular, let i ∈ N be the dictator agent. Then, for

every ti ∈ Ti and every t−i ∈ T−i,

fd(ti, t−i) ∈ arg max
a∈A

vi(a, ti).

It picks a dictator i and always chooses the column in the valuation matrix for which

the i row has the maximum value in the valuation matrix.

• Efficient allocation: The efficient allocation rule f e is the one which maximizes the

sum of values of agents. In particular, for every t ∈ T n,

f e(t) ∈ arg max
a∈A

∑

i∈N

vi(a, ti).

This rule first sums the entries in each of the columns in the valuation matrix and picks

a column which has the maximum sum.

Hence, efficiency implies that the total value of agents is maximized in all states of the

world (i.e., for all possible type profiles of agents). We will discuss why this is Pareto

efficient later.

Consider an example where a seller needs to sell an object to a set of buyers. In any

allocation, one buyer gets the object and the others get nothing. The buyer who gets

the object realizes his value for the object, while others realize no utility. Clearly, to

maximize the total value of the buyers, we need to maximize this realized value, which

is done by allocating the object to the buyer with the highest value.

This particular allocation rule is also referred to as the utilitarianism allocation rule.

• Anti-efficient allocation: The anti-efficient allocation rule fa is the one which min-

imizes the sum of values of agents. In particular, for every t ∈ T n

fa(t) ∈ arg min
a∈A

∑

i∈N

vi(a, ti).

• Weighted efficient/utilitarianism allocation: The weighted efficient allocation

rule fw is the one which maximizes the weighted sum of values of agents. In particular,

there exists λ ∈ Rn
+ \ {0} such that for every t ∈ T n,

fw(t) ∈ arg max
a∈A

∑

i∈N

λivi(a, ti).

75

This rule first does a weighted sum of the entries in each of the columns in the valuation

matrix and picks a column which has the maximum weighted sum.

• Affine maximizer allocation: The affine maximizer allocation rule fa is the one

which maximizes the weighted sum of values of agents and a term for every allocation.

In particular, there exists λ ∈ Rn
+ \ {0} and κ : A→ R such that for every t ∈ T n,

fa(t) ∈ arg max
a∈A

[

∑

i∈N

λivi(a, ti) − κ(a)
]

.

This rule first does a weighted sum of the entries in each of the columns in the valuation

matrix and subtracts κ term corresponding to this column, and picks the column which

has this sum highest.

• Max-min (Rawls) allocation: The max-min (Rawls) allocation rule f r picks the

allocation which maximizes the minimum value of agents. In particular for every

t ∈ T n,

f r(t) ∈ arg max
a∈A

min
i∈N

vi(a, ti).

This rule finds the minimum entry in each column of the valuation matrix and picks

the column which has the maximum such minimum entry.

3.1.2 Payment Functions

We will now introduce the notion of payment function. A payment function of agent i is a

mapping pi : T n → R, where pi(t) represents the payment of agent i when type profile is

t ∈ T n. Note that pi(·) can be negative or positive or zero. A positive pi(·) indicates that

the agent is paying money.

In many situations, we want the total payment of agents to be either non-negative (i.e.,

decision maker does not incur a loss) or to be zero. A payment rule p = (p1, . . . , pn) is

feasible if
∑

i∈N pi(t) ≥ 0 for all t ∈ T n. Similarly, a payment rule p = (p1, . . . , pn) is

balanced if
∑

i∈N pi(t) = 0 for all t ∈ T n.

3.1.3 Incentive Compatibility

A social choice function is a pair F = (f, p = (p1, . . . , pn)), where f is an allocation rule

and p1, . . . , pn are payment functions of agents. Hence, the input to a social choice function

76

is the types of the agents. The output is a decision and payments given the reported types.

Under a social choice function F = (f, p) the utility of agent i ∈ N with type ti when all

agents “report” t̂ as their types is given by

ui(t̂, ti, F = (f, p)) = vi(f(t̂), ti) − pi(t̂).

This is the quasi-linear utility function, where net utility of the agent is linear in his payment.

The mechanism, as before, is a complicated object. But applying revelation principle, we

will focus on direct mechanisms. A direct mechanism is a social choice function F = (f, p =

(p1, . . . , pn)). A direct mechanism (or associated social choice function) is strategy-proof

or dominant strategy incentive compatible (DSIC) if for every agent i ∈ N , every

t−i ∈ T−i, and every si, ti ∈ Ti, we have

vi(f(ti, t−i), ti) − pi(ti, t−i) ≥ vi(f(si, t−i), ti) − pi(si, t−i),

i.e., truth-telling is a dominant strategy. In this case, we will say that the payment func-

tions (p1, . . . , pn) implement the allocation rule f (in dominant strategies) or, simply, f is

implementable. Sometimes, we will also say that (p1, . . . , pn) makes f DSIC.

The underlying idea is that if the mechanism designer had perfect information about the

types of agents, then he would have liked to implement f (this is sometimes referred to as

the first-best decision). However, since he does not have the type information, he will like to

implement f using payment functions.

3.1.4 An Example

Consider an example with two agents N = {1, 2} and two possible types for each agent

T1 = T2 = {tH , tL}. Let f : T1 × T2 → A be an allocation rule, where A is the set of

alternatives. In order that f is implementable, we must find payment functions p1 and p2

such that the following conditions hold. For every type t2 ∈ T2 of agent 2, agent 1 must

satisfy

v1(f(tH , t2), t
H) − p1(t

H , t2) ≥ v1(f(tL, t2), tH) − p1(t
L, t2),

v1(f(tL, t2), t
L) − p1(t

L, t2) ≥ v1(f(tH , t2), tL) − p1(t
H , t2).

Similarly, for every type t1 ∈ T2 of agent 1, agent 2 must satisfy

v2(f(t1, t
H), tH) − p2(t1, t

H) ≥ v2(f(t1, tL), tH) − p2(t1, t
L),

v2(f(t1, t
L), tL) − p2(t1, t

L) ≥ v2(f(t1, tH), tL) − p2(t1, t
H).

Here, we can treat p1 and p2 as variables. The existence of a solution to these linear

inequalities guarantee f to be implementable.

77

3.1.5 Two Properties of Payments

Suppose f is an implementable allocation rule. Then, there exists payment functions p ≡

(p1, . . . , pn) such that (f, p ≡ (p1, . . . , pn)) is strategy-proof. This means for every agent

i ∈ N and every t−i, we must have

vi(f(ti, t−i), ti) − pi(ti, t−i) ≥ vi(f(si, t−i), ti) − pi(si, t−i) ∀ si, ti ∈ Ti.

Using p, we define another set of payment functions. For every agent i ∈ N , we choose

an arbitrary function hi : T−i → R. So, hi(t−i) assigns a real number to every type profile

t−i of other agents. Now, define the new payment function qi of agent i as

qi(ti, t−i) = pi(ti, t−i) + hi(t−i). (3.1)

We will argue the following.

Lemma 8 If (f, p ≡ (p1, . . . , pn)) is strategy-proof, then (f, q ≡ (q1, . . . , qn)) is strategy-proof,

where q is defined as in Equation 3.1.

Proof : Fix agent i and type profile of other agents at t−i. To show (f, q) is strategy-proof,

note that for any pair of types ti, si ∈ Ti, we have

vi(f(ti, t−i), ti) − qi(ti, t−i) = vi(f(ti, t−i), ti) − pi(ti, t−i) − hi(t−i)

≥ vi(f(si, t−i), ti) − pi(si, t−i) − hi(t−i)

= vi(f(si, t−i), ti) − qi(si, t−i),

where the inequality followed from the fact that (f, p) is strategy-proof. �

This shows that if we find one set of payment functions which makes f DSIC, then we

can find an infinite set of payment functions which makes f DSIC. Moreover, these payments

differ by a constant for every i ∈ N and for every t−i. In particular, the payments p and q

defined above satisfy the property that for every i ∈ N and for every t−i,

pi(ti, t−i) − qi(ti, t−i) = pi(si, t−i) − qi(si, t−i) = hi(t−i) ∀ si, ti ∈ Ti.

We can ask the converse question. When is it that any two payments which make f DISC

differ by a constant? We will answer this question later.

The other property that we discuss of payments is the fact that they depend only on

allocations. Let (f, p) be strategy-proof. Consider an agent i ∈ N and a type profile t−i. Let

78

si and ti be two types of agent i such that f(si, t−i) = f(ti, t−i) = a. Then, the incentive

constraints give us the following.

vi(a, ti) − pi(ti, t−i) ≥ vi(a, ti) − pi(si, t−i)

vi(a, si) − pi(si, t−i) ≥ vi(a, si) − pi(ti, t−i).

This shows that pi(si, t−i) = pi(ti, t−i). Hence, for any pair of types si, ti ∈ Ti, f(si, t−i) =

f(ti, t−i) implies that pi(si, t−i) = pi(ti, t−i). So, payment is a function of types of other

agents and the allocation chosen.

3.1.6 Efficient Allocation Rule is Implementable

We discussed the efficient allocation rule earlier. Here, we show that there is a large class of

payment functions that can implement the efficient allocation rule. First, we show that the

efficient allocation rule is Pareto efficient.

Definition 19 An allocation rule f is Pareto efficient at a type profile t if for every pay-

ment vector (p1, . . . , pn), there exists no alternative b 6= f(t) and payment vector (p′1, . . . , p
′
n)

with
∑

i∈N p
′
i =

∑

i∈N pi, such that vi(f(t), ti) − pi ≤ vi(b, ti) − p′i for all i ∈ N with strict

inequality holding for at least one i ∈ N . An allocation rule f is Pareto efficient if it Pareto

efficient at every type profile t.

We argue that the efficient allocation rule is Pareto efficient. 1

Lemma 9 An allocation rule is Pareto efficient if and only if it is efficient.

Proof : Consider a profile t and let the outcome according to the efficient allocation rule be

a. Suppose alternative b is such that

∑

i∈N

vi(a, ti) >
∑

i∈N

vi(b, ti).

We will show that choosing b along with payment vector p̂1, . . . , p̂n) is not Pareto optimal.

So, the utility of agent i from this allocation is vi(b, ti) − p̂i.

Let

δ =
1

n

[

∑

i∈N

vi(a, ti) −
∑

i∈N

vi(b, ti)
]

.

1The notion of Pareto efficiency that we use here is a cardinal notion. Earlier, we used Pareto efficiency

in the models without transfers, and that was an ordinal notion of Pareto efficiency.

79

Note that δ > 0. Define a new payment of agent i as

qi = vi(a, ti) − vi(b, ti) + p̂i − δ.

Notice that
∑

i∈N qi =
∑

i∈N p̂i and vi(a, ti) − qi = vi(b, ti) − p̂i + δ > vi(b, ti) − p̂i. Hence,

with the same total payment, we can choose a as the outcome and strictly improve the utility

of every agent. So, choosing b is not Pareto optimal. This shows that every Pareto efficient

allocation rule must be efficient.

We now show that choosing a is Pareto optimal. Suppose the corresponding payment

vector is (p1, . . . , pn). Suppose choosing b at the same total payment Pareto dominates

choosing a. Then, it must be that there is some payment (q1, . . . , qn) with
∑

i∈N qi =
∑

i∈N pi

and vi(b, ti) − qi ≥ vi(a, ti) − pi for all i ∈ N with strict inequality holding for at least one

agent i ∈ N . Then, adding it over all i ∈ N , gives
∑

i∈N vi(b, ti)−
∑

i∈N qi >
∑

i∈N vi(a, ti)−
∑

i∈N pi. Using the fact that
∑

i∈N qi =
∑

i∈N pi, we get
∑

i∈N vi(b, ti) >
∑

i∈N vi(a, ti). This

contradicts the definition of a. �

We will now show that the efficient allocation rule is implementable. We know that in

case of sale of a single object efficient allocation rule can be implemented by the second-price

payment function. A fundamental result in mechanism design is that the efficient allocation

rule is always implementable (under private values and quasi-linear utility functions). For

this, a family of payment rules are known which makes the efficient allocation rule imple-

mentable. This family of payment rules is known as the Groves payment rules, and the

corresponding direct mechanisms are known as the Groves mechanisms (Groves, 1973).

For agent i ∈ N , for every t−i ∈ T−i, the payment in the Groves mechanism is:

pg
i (ti, t−i) = hi(t−i) −

∑

j 6=i

vj(f
e(ti, t−i), tj),

where hi is any function hi : T−i → R and f e is the efficient allocation rule.

We give an example in the case of single object auction. Let hi(t−i) = 0 for all i and for

all t−i. Let there be four buyers with values (types): 10,8,6,4. Then, efficiency requires us to

give the object to the first buyer. Now, the total value of buyers other than buyer 1 in the

efficient allocation is zero. Hence, the payment of buyer 1 is zero. The total value of buyers

other than buyer 2 (or buyer 3 or buyer 4) is the value of the first buyer (10). Hence, all the

other buyers are rewarded 10. Thus, this particular choice of hi functions led to the auction:

the highest bidder wins but pays nothing and those who do not win are awarded an amount

equal to the highest bid.

Theorem 13 Groves mechanisms are strategy-proof.

80

Proof : Consider an agent i ∈ N , si, ti ∈ Ti, and t−i ∈ T−i. Then, we have

vi(f
e(ti, t−i), ti) − pg

i (ti, t−i) =
∑

j∈N

vj(f
e(ti, t−i), tj) − hi(t−i)

≥
∑

j∈N

vj(f
e(si, t−i), tj) − hi(t−i)

= vi(f
e(si, t−i), ti) −

[

hi(t−i) −
∑

j 6=i

vj(f
e(si, t−i), tj)

]

= vi(f
e(si, t−i), ti) − pg(si, t−i),

where the inequality comes from efficiency. Hence, Groves mechanisms are strategy-proof.

�

An implication of this is that efficient allocation rule is implementable using the Groves

payment rules. The natural question to ask is whether there are payment rules besides

the Groves payment rules which make the efficient allocation rule DSIC. We will study this

question formally later. A quick answer is that it depends on the type spaces of agents

and the value function. For many reasonable type spaces and value functions, the Groves

payment rules are the only payment rules which make the efficient allocation rule DSIC.

3.2 The Vickrey-Clarke-Groves Mechanism

A particular mechanism in the class of Groves mechanism is intuitive and has many nice

properties. It is commonly known as the pivotal mechanism or the Vickrey-Clarke-Groves

(VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973). The VCG mechanism is

characterized by a unique hi(·) function. In particular, for every agent i ∈ N and every

t−i ∈ T−i,

hi(t−i) = max
a∈A

∑

j 6=i

vj(a, tj).

This gives the following payment function. For every i ∈ N and for every t ∈ T , the payment

in the VCG mechanism is

pvcg
i (t) = max

a∈A

∑

j 6=i

vj(a, tj) −
∑

j 6=i

vj(f
e(t), tj). (3.2)

Note that pvcg
i (t) ≥ 0 for all i ∈ N and for all t ∈ T n. Hence, the payment function in

the VCG mechanism is a feasible payment function.

81

A careful look at Equation 3.2 shows that the second term on the right hand side is the

sum of values of agents other than i in the efficient decision. The first term on the right hand

side is the maximum sum of values of agents other than i (note that this corresponds to an

efficient decision when agent i is excluded from the economy). Hence, the payment of agent

i in Equation 3.2 is the externality agent i inflicts on other agents because of his presence,

and this is the amount he pays. Thus, every agent pays his externality to other agents in

the VCG mechanism.

The payoff of an agent in the VCG mechanism has a nice interpretation too. Denote the

payoff of agent i in the VCG mechanism when his true type is ti and other agents report t−i

as πvcg
i (ti, t−i). By definition, we have

πvcg
i (ti, t−i) = vi(f

e(ti, t−i), ti) − pvcg
i (ti, t−i)

= vi(f
e(ti, t−i), ti) − max

a∈A

∑

j 6=i

vj(a, tj) +
∑

j 6=i

vj(f
e(ti, t−i), tj)

= max
a∈A

∑

j∈N

vj(a, tj) − max
a∈A

∑

j 6=i

vj(a, tj),

where the last equality comes from the definition of efficiency. The first term is the total value

of all agents in an efficient allocation rule. The second term is the total value of all agents

except agent i in an efficient allocation rule of the economy in which agent i is absent. Hence,

payoff of agent i in the VCG mechanism is his marginal contribution to the economy.

3.2.1 Illustration of the VCG (Pivotal) Mechanism

Consider the sale of a single object using the VCG mechanism. Fix an agent i ∈ N . Efficiency

says that the object must go to the bidder with the highest value. Consider the two possible

cases. In one case, bidder i has the highest value. So, when bidder i is present, the sum of

values of other bidders is zero (since no other bidder wins the object). But when bidder i

is absent, the maximum sum of value of other bidders is the second highest value (this is

achieved when the second highest value bidder is awarded the object). Hence, the externality

of bidder i is the second-higest value. In the case where bidder i ∈ N does not have the

highest value, his externality is zero. Hence, for the single object case, the VCG mechanism

is simple: award the object to the bidder with the highest (bid) value and the winner pays

the amount equal to the second highest (bid) value but other bidders pay nothing. This is the

well-known second-price auction or the Vickrey auction. By Theorem 13, it is strategy-proof.

Consider the case of choosing a public project. There are three possible projects - an

opera house, a park, and a museum. Denote the set of projects as A = {a, b, c}. The citizens

82

∅ {1} {2} {1, 2}

v1(·) 0 8 6 12

v2(·) 0 9 4 14

Table 3.1: An Example of VCG Mechanism with Multiple Objects

have to choose one of the projects. Suppose there are three citizens, and the values of citizens

are given as follows (row vectors are values of citizens and columns have three alternatives,

a first, b next, and c last column):

5 7 3

10 4 6

3 8 8

It is clear that it is efficient to choose alternative b. To find the payment of agent 1

according to the VCG mechanism, we find its externality on other agents. Without agent 1,

agents 2 and 3 can get a maximum total value of 14 (on project c). When agent 1 is included,

their total value is 12. So, the externality of agent 1 is 2, and hence, its VCG payment is 2.

Similarly, the VCG payments of agents 2 and 3 are respectively 0 and 4.

We illustrate the VCG mechanism for the sale of multiple objects by an example. Consider

the sale of two objects, with values of two agents on bundles of goods given in Table 3.1.

The efficient allocation in this example is to give bidder 1 object 2 and bidder 2 object 1

(this generates a total value of 6 + 9 = 15, which is higher than any other allocation). Let

us calculate the externality of bidder 1. The total value of bidders other than bidder 1,

i.e. bidder 2, in the efficient allocation is 9. When bidder 1 is removed, bidder 2 can get

a maximum value of 14 (when he gets both the objects). Hence, externality of bidder 1 is

14 − 9 = 5. Similarly, we can compute the externality of bidder 2 as 12− 6 = 6. Hence, the

payments of bidders 1 and 2 are 5 and 6 respectively.

Another simpler combinatorial auction setting is when agents or bidders are interested (or

can be allocated) in at most one object - this is the case in job markets or housing markets.

Then, every bidder has a value for every object but wants at most one object. Consider an

example with three agents and two objects. The valuations are given in Table 3.2. The total

value of agents in the efficient allocation is 5 + 4 = 9 (agent 1 gets object 1 and agent 2 gets

object 2, but agent 3 gets nothing). Agents 2 and 3 get a total value of 4 + 0 = 4 in this

efficient allocation. When we maximize over agents 2 and 3 only, the maximum total value

of agents 2 and 3 is 6 = 4 + 2 (agent 2 gets object 2 and agent 3 gets object 1). Hence,

externality of agent 1 on others is 6−4 = 2. Hence, VCG payment of agent 1 is 2. Similarly,

one can compute the VCG payment of agent 2 to be 2.

83

∅ {1} {2}

v1(·) 0 5 3

v2(·) 0 3 4

v3(·) 0 2 2

Table 3.2: An Example of VCG Mechanism with Multiple Objects

3.2.2 The VCG Mechanism in the Combinatorial Auctions

We have already shown that the VCG mechanism has several interesting properties: (a) it is

dominant strategy incentive compatible, (b) the allocation rule is efficient, and (c) payments

are non-negative, and hence, feasible. We discuss below a specific model and show that

stronger properties than these are also true in this model.

The particular model we discuss is the combinatorial auction problem. We now describe

the formal model. There is a set of objects M = {1, . . . , m}. The set of bundles is denoted

by Ω = {S : S ⊆ M}. The type of an agent i ∈ N is a vector ti ∈ R|Ω|
+ . Hence, T1 = . . . =

Tn = R|Ω|
+ . Here, ti(S) denotes the value of agent (bidder) i on bundle S. An allocation in

this case is a partitioning of the set of objects: X = (X0, X1, . . . , Xn), where Xi ∩ Xj = ∅

and ∪n
i=0Xi = M . Here, X0 is the unallocated set of objects and Xi (i 6= 0) is the bundle

allocated to agent i, where Xi can be empty set also. It is natural to assume ti(∅) = 0 for

all ti and for all i.

Let f e be the efficient allocation rule. Another crucial feature of the combinatorial auction

setting is it is externality free. Suppose f e(t) = X. Then vi(X, ti) = ti(Xi), i.e., utility of

agent i depends on the bundle allocated to agent i only, but not on the bundles allocated to

other agents.

The first property of the VCG mechanism we note in this setting is that the losers pay

zero amount. Suppose i is a loser (i.e., gets empty bundle in efficient allocation) when the

type profile is t = (t1, . . . , tn). Let f e(t) = X. By assumption, vi(Xi, ti) = ti(∅) = 0.

Let Y ∈ arg maxa

∑

j 6=i vj(a, tj). We need to show that pvcg
i (ti, t−i) = 0. Since the VCG

84

mechanism is feasible, we know that pvcg
i (ti, t−i) ≥ 0. Now,

pvcg
i (ti, t−i) = max

a∈A

∑

j 6=i

vj(a, tj) −
∑

j 6=i

vj(f
e(ti, t−i), tj)

=
∑

j 6=i

tj(Yj) −
∑

j 6=i

tj(Xj)

≤
∑

j∈N

tj(Yj) −
∑

j∈N

tj(Xj)

≤ 0,

where the first inequality followed from the facts that ti(Yi) ≥ 0 and ti(Xi) = 0, and the

second inequality followed from the efficiency of X. Hence, pvcg
i (ti, t−i) = 0.

An important property of a mechanism is individual rationality or voluntary par-

ticipation. Suppose by not participating in a mechanism an agent gets zero payoff. Then

the mechanism must give non-negative payoff to the agent in every state of the world (i.e.,

in every type profile of agents). The VCG mechanism in the combinatorial auction setting

satisfies individual rationality. Consider a type profile t = (t1, . . . , tn) and an agent i ∈ N .

Let Y ∈ arg maxa

∑

j 6=i vj(a, tj) and X ∈ arg maxa

∑

j∈N vj(a, tj). Now,

πvcg
i (t) = max

a

∑

j∈N

vj(a, tj) − max
a

∑

j 6=i

vj(a, tj)

=
∑

j∈N

tj(Xj) −
∑

j 6=i

tj(Yj)

≥
∑

j∈N

tj(Xj) −
∑

j∈N

tj(Yj)

≥ 0,

where the first inequality followed from the fact that tj(Yj) ≥ 0 and the second inequality

followed from efficiency of X. Hence, πvcg
i (t) ≥ 0, i.e., the VCG mechanism is individual

rational.

3.2.3 The Sponsored Search Auctions

Google sells advertisement slots to advertisers via auctions. The auctions are run for every

search phrase. Fix a particular search phrase, say, “hotels in New Delhi”. Once this phrase

is searched on Google, bidders (computer programmed agents of different companies) par-

ticipate in this auction. An advertisement that can appear along side a search page is called

a slot. For every search phrase, there is a fixed number of slots available and fixed number

85

of bidders interested. Suppose there are m slots and n bidders for the phrase “hotels in New

Delhi”. Assume n > m. The type of each bidder is a single number - θi for bidder i. Type of

an agent represents the value that agent derives when his advertisement is clicked. Every

slot has a probability of getting clicked. This is called the clickthrough rate (CTR). The

CTR of slot i is αi. The CTR vector α = (α1, . . . , αm) is known to everyone. The slots are

naturally ordered top to bottom, and assume that, let α1 > α2 > . . . > αm.

An alternative in this model represents an assignment of agents to slots (with some agents

not receiving any slot). Let A be the set of all alternatives. An alternative a ∈ A can be

described by a n dimensional vector integers in {0, 1, . . . , m}, where ai indicates the slot to

which agent i is assigned, and ai = 0 means agent i is not assigned to any slot. The value

function of agent i is his expected value vi(a, θi) = θiαai
, where α0 = 0.

Suppose n = 4 and m = 3. Let θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 5. Let α1 = 0.8, α2 =

0.6, α3 = 0.5. In efficiency, the slots should go to agents with top 3 θ-values, who are agents

1, 2, and 3.

The total value obtained in the efficient allocation is 10(0.8)+8(0.6)+6(0.5) = 15.8. So,

agents other than agent 1 get a total value of 8(0.6)+6(0.5) = 7.8. If agent 1 was not there,

then the total value obtained in the efficient allocation is 8(0.8) + 6(0.6) + 5(0.5) = 12.5.

Hence, his externality is 12.5− 7.8 = 4.7, and his VCG payment is thus 4.7. Similarly, VCG

payments of agents 2 and 3 are 3.1 and 2.5 respectively.

Generally, agents with top m θ values get the top m slots with ith (i ≤ m) highest θ

value agent getting the ith slot. Without loss of generality, assume that θ1 ≥ θ2 ≥ . . . θn.

In efficiency, agents 1 to m get a slot. In particular, agent j (j ≤ m) gets slot j with

clickthrough rate αj . Any agent j pays zero if he is not allocated a slot, i.e., j > m. For any

agent j ≤ m, we need to compute his externality. Note that the total value of agents other

than agent j in an efficient allocation is

j−1
∑

i=1

θiαi +

m
∑

i=j+1

θiαi.

If agent j is removed, then the total value of agents other than agent j in an efficient

allocation is
j−1
∑

i=1

θiαi +

m+1
∑

i=j+1

θiαi−1.

So, the externality of agent j is

θm+1αm +

m
∑

i=j+1

θi(αi−1 − αi),

86

where we assume that the summation term for j = m is zero.

Google uses something called a Generalized Second Price (GSP) auction: (a) agents

with top m θi values are given the slots with highest agent getting the top slot (i.e., slot with

highest CTR), second highest agent getting the next top slot, and so on, (b) if an agent wins

slot k with CTR αk, he pays θm+1αk (where θm+1 is the highest losing type).

In the previous example, agent 1 will pay 5(0.8) = 4 in the GSP. This is clearly different

from what he should pay in the VCG mechanism. In the example above, fix the bids of

agents other than agent 2 at (agent 1: 10, agent 3: 6, agent 4: 5). Now, let agent 2 not bid

truthfully, and bid 10+ ǫ (ǫ > 0) to become the highest bidder. So, he gets the top slot with

clickthrough rate 0.8. So, his value is now 8× 0.8 = 6.4 (remember, his true type is θ2 = 8).

He pays 5×0.8 = 4. So, his net utility is 2.4. If he is truthful he pays 5×0.6 = 3, and gets a

value of 8 × 0.6 = 4.8. So, his net utility of being truthful is 1.8. So, deviation is profitable,

and truth-telling is not a dominant strategy.

3.3 Affine Maximizer Allocation Rules are Implementable

As discussed earlier, an affine maximizer allocation rule is characterized by a vector of non-

negative weights λ ≡ (λ1, . . . , λn), not all equal to zero, for agents and a mapping κ : A→ R.

If λi = λj for all i, j ∈ N and κ(a) = 0 for all a ∈ A, we recover the efficient allocation rule.

When λi = 1 for some i ∈ N and λj = 0 for all j 6= i, and κ(a) = 0 for all a ∈ A, we get the

dictatorial allocation rule. Thus, the affine maximizer is a general class of allocation rules.

We show that there exists payment rules which implements the affine maximizer allocation

rule. For this we only consider a particular class of affine maximizers.

Definition 20 An affine maximizer allocation rule fa with weights λ1, . . . , λn and κ : A→

R satisfies independence of irrelevant agents (IIA) if for all i ∈ N with λi = 0, we

have that for all t−i and for all si, ti, f(si, t−i) = f(ti, t−i).

The IIA property is a consistent tie-breaking requirement. For instance, consider the

dictatorship allocation rule with two agents {1, 2}. Suppose agent 1 is the dictator: λ1 =

1, λ2 = 0 and suppose there are three alternatives {a, b, c}. Since the allocation rule is a

dictatorship, κ(a) = κ(b) = κ(c) = 0. The type of each agent is a vector in R3 describing

the value for each alternative. For instance t1 = (5, 5, 3) means, agent 1 has value 5 for

alternatives a and b and value 3 for alternative c. Since values on alternatives can be the

same, we can break the ties in this dictatorship by considering values of agent 2. In particular,

if there are more than one alternatives that maximize the value for agent 1, then we choose

87

an alternative that is the worst for agent 2. For instance, if t1 = (5, 5, 3) and t2 = (4, 3, 2),

then f(t1, t2) = b (since t2(b) = 3 < t2(a) = 4). But then, consider t′2 = (3, 4, 2) and note

that f(t1, t
′
2) = a. This is a violation of IIA.

Allocation rules violating IIA may not be implementable (i.e., there may not exist pay-

ment rules that make the resulting mechanism strategy-proof). However, we show that

every IIA affine maximizer is implementable. Fix an IIA affine maximizer allocation rule fa,

characterized by λ and κ. We generalize Groves payments for this allocation rule.

For agent i ∈ N , for every t−i ∈ T−i, the payment in the generalized Groves mechanism

is:

pgg
i (ti, t−i) =

{

hi(t−i) −
1
λi

[
∑

j 6=i λjvj(f
a(ti, t−i), tj) + κ(fa(ti, t−i))

]

if λi > 0

0 otherwise

where hi is any function hi : T−i → R and fa is the IIA affine maximizer allocation rule.

Theorem 14 An IIA affine maximizer allocation rule is implementable using the generalized

Groves mechanism.

Proof : Consider an agent i ∈ N , si, ti ∈ Ti, and t−i ∈ T−i. Suppose λi > 0. Then, we have

vi(f
a(ti, t−i), ti) − pgg

i (ti, t−i) =
1

λ i

[

∑

j∈N

λjvj(f
a(ti, t−i), tj) − κ(fa(ti, t−i))

]

− hi(t−i)

≥
1

λ i

[

∑

j∈N

λjvj(f
a(si, t−i), tj) − κ(fa(si, t−i))

]

− hi(t−i)

= vi(f
a(si, t−i), ti) − hi(t−i) +

1

λi

[

∑

j 6=i

λjvj(f
a(si, t−i), tj) + κ(fa(si, t−i))

]

= vi(f
a(si, t−i), ti) − pgg(si, t−i),

where the inequality comes from the definition of affine maximization. If λi = 0, then

fa(ti, t−i) = fa(si, t−i) for all si, ti ∈ Ti (by IIA). Also pgg
i (ti, t−i) = pgg

i (si, t−i) = 0 for all

si, ti ∈ Ti. Hence, vi(f
a(ti, t−i), ti) − pgg

i (ti, t−i) = vi(f
a(si, t

−i), ti) − pgg
i (si, t−i). So, the

generalized Groves payment rule implements the affine maximizer allocation rule. �

3.3.1 Public Good Provision

The public good provision problem is a classic problem. There are two alternatives: a1 is the

alternative to provide the public good and a0 is the alternative of not providing the public

88

good. The value from a0 is zero to all the agents. Agents derive value from a1 which is

private information. Denote the value of agent i for a1 as θi. There is a cost of C providing

the public good.

The “first-best” allocation rule in this case is to provide the public good when the sum of

values of agents is greater than or equal to C. This can be written as an affine maximizer

rule. Choose κ(a0) = 0, κ(a1) = −C and λi = 1 for all i ∈ N , where N is the set of agents.

The pivotal mechanism corresponding to this allocation rule is the first one that Clarke

called the pivotal mechanism. An agent i is pivotal if his inclusion in the decision process

changes the decision for the other N \ {i} agents. In particular, if agents in N \ {i} chose

not to be provided the public good using the first-best rule, and when agent i was added,

agents in N chose to get the public good using the first-best rule. Here, agent i is pivotal.

Note that if agents in N \{i} chose to get the public good using the first-best rule, and when

agent i is added, agents in N will always choose to get the public good using the first-best

rule. Hence, agent i cannot be pivotal here.

The pivotal mechanism in this problem states that an agent i pays zero if he is not pivotal

and pays an amount equal to his externality if he is pivotal. The externality can be computed

easily. Note that at a type profile θ ≡ (θ1, . . . , θn), if the public good is not provided, then

it will not be provided without any agent. Hence, no agent is pivotal and payment of all the

agents are zero. But if the public good is provided at θ and agent i is pivotal, then removing

agent i changes the decision to not provide the public good. This implies that
∑

j 6=i θj < C.

Hence, without agent i, the total utility to all the agents in N \ {i} is zero. Once, agent i

arrives, their total utility is
∑

j 6=i θj − C. Hence, his payment is C −
∑

j 6=i θj .

Now, it is easy to verify that this corresponds to the payment we described in the previous

section, where we take hi(θ−i) to be the maximum sum of values without agent i in the first-

best allocation rule.

3.3.2 Restricted and Unrestricted Type Spaces

Consider a simple model where ti ∈ R|A|, where A is finite and vi(a, ti) = ti(a) for all i ∈ N .

So, the type space of agent i is now Ti ⊆ R|A|. We say type space Ti of agent i is unrestricted

if Ti = R|A|. So, all possible vectors in R|A| is likely to be the type of agent i if its type space

is unrestricted. Notice that it is an extremely restrictive assumption. We give two examples

where unrestricted type space assumption is not natural.

• Choosing a public project. Suppose we are given a set of public projects to choose

from. Each of the possible public projects (alternatives) is a “good” and not a “bad”.

89

In that case, it is natural to assume that the value of an agent for any alternative is

non-negative. Further, it is reasonable to assume that the value is bounded. Hence,

Ti ⊆ R|A|
+ for every agent i ∈ N . So, unrestricted type space is not a natural assumption

here.

• Auction settings. Consider the sale of a single object. The alternatives in this case

are A = {a0, a1, . . . , an}, where a0 denote the alternative that the object is not sold to

any agent and ai with i > 0 denotes the alternative that the object is sold to agent i.

Notice here that agent i has zero value for all the alternatives except alternative ai.

Hence, the unrestricted type space assumption is not valid here.

Are there problems where the unrestricted type space assumption is natural? Suppose

the alternatives are such that it can be a “good” or “bad” for the agents, and any possible

value is plausible. If we accept the assumption of unrestricted type spaces, then the following

is an important theorem. We skip the long proof.

Theorem 15 (Roberts’ theorem) Suppose A is finite and |A| ≥ 3. Further, type space

of every agent is unrestricted. Then, if an onto allocation rule is implementable, then it is

an affine maximizer.

We have already shown that IIA affine maximizers are implementable by constructing

generalized Groves payments which make them DSIC. Roberts’ theorem shows that these are

almost the entire class. The assumptions in the theorem are crucial. If we relax unrestricted

type spaces or let |A| = 2 or allow randomization, then the set of DSIC allocation rules are

larger.

It is natural to ask why restricted type spaces allow for larger class of allocation rules to

be DSIC. The answer is very intuitive. Remember that the type space is something that the

mechanism designer knows (about the range of private types of agents). If the type space is

restricted then the mechanism designer has more precise information about the types of the

agents. So, there is less opportunity for an agent to lie. Given an allocation rule f if we have

two type spaces T and T̄ with T (T̄ , then it is possible that f is DSIC in T but not in T̄

since T̄ allows an agent a larger set of type vectors where it can deviate. In other words, the

set of constraints in the DSIC definition is larger for T̄ then for T . So, finding payments to

make f DSIC is difficult for larger type spaces but easier for smaller type spaces. Hence, the

set of DSIC allocation rules becomes larger as we shrink the type space of agents.

90

Chapter 4

Mechanism Design for Selling a Single

Object

4.1 The Single Object Auction Model

In the single object auction case, the type set of an agent is one dimensional, i.e., Ti ⊆ R1

for all i ∈ N . This reflects the value of an agent if he wins the object. An allocation gives

a probability of winning the object. Let A denote the set of all deterministic allocations

(i.e., allocations in which the object either goes to a single agent or is unallocated). Let ∆A

denote the set of all probability distributions over A. An allocation rule is now a mapping

f : T n → ∆A.

Given an allocation, a ∈ ∆A, we denote by ai the allocation probability of agent i. It is

standard to have vi(a, si) = ai × si for all a ∈ ∆A and si ∈ Ti for all i ∈ N . Such a form of

vi is called a product form.

For an allocation rule f , we denote fi(ti, t−i) as the probability of winning the object of

agent i when he reports ti and others report t−i.

4.1.1 The Vickrey Auction

Before analyzing a single object sale mechanism, we first take a look at the Vickrey auction.

Consider the Vickrey auction and an agent i. Denote the highest valuation among agents in

N \ {i} as v(2). Suppose the valuation of agent i is vi. Then, according to the rules of the

Vickrey auction, agent i does not win the object if vi < v(2) and wins the object if vi > v(2).

Further, his net utility from the Vickrey auction is zero if he does not win the object. If he

wins the object, then his net utility is vi − v(2), i.e., increases linearly with vi.

91

v(2)

Type of agent i

Net utility

Slope=0

Slope=1

Figure 4.1: Net utility as a function of type of agent i

If we draw the net utility as a function of vi, it will look something like in Figure 4.1.

Notice that this function is convex and its derivative is zero if vi < v(2) and 1 if vi > v(2).

This function is not differentiable at vi = v(2). Hence, the derivative of the net utility

function (wherever it exists) coincides with the probability of winning the object - see Figure

4.1. Since a convex function is differentiable almost everywhere, this fact is true almost

everywhere.

These observations hold in general, and it is true for any dominant strategy incentive

compatible mechanism. To show this, we first record some elementary facts from convex

analysis.

4.1.2 Facts from Convex Analysis

We will state some basic facts about convex functions. We will only be interested in functions

of the form g : I → R, where I ⊆ R is an interval.

Definition 21 A function g : I → R is convex if for every x, y ∈ I and for every λ ∈

(0, 1), we have

λg(x) + (1 − λ)g(y) ≥ g(λx+ (1 − λ)y).

Convex functions are continuous in the interior of its domain. So, if g : I → R is convex,

then g is continuous in the interior of I. Further, g is differentiable almost everywhere in

I. More formally, there is a subset of I ′ ⊆ I such that I ′ is dense in I, I \ I ′ has measure

92

zero 1, and g is differentiable at every point in I ′. If g is differentiable at x ∈ I, we denote

the derivative of g at x as g′(x). The following notion extends the idea of a derivative.

Definition 22 For any x ∈ I, x∗ is a subgradient of the function g : I → R if

g(z) ≥ g(x) + x∗(z − x) ∀ z ∈ I.

Lemma 10 Suppose g : I → R is a convex function. Suppose x is in the interior of I and g

is differentiable at x, then g′(x) is the unique subgradient of g at x.

Proof : Consider any x ∈ I in the interior of I such that the convex function g : I → R+

is differentiable at x. Now, pick any z ∈ I. Assume that z > x (a similar proof works if

z < x). For any (z − x) ≥ h > 0, we note that x + h = h
(z−x)

z + (1 − h
(z−x)

)x. As a result,

convexity of g ensures that

h

(z − x)
g(z) + (1 −

h

(z − x)
)g(x) ≥ g(x+ h).

Simplifying, we get
g(z) − g(x)

(z − x)
≥
g(x+ h) − g(x)

h
.

Since this is true for any h > 0, it is also true that

g(z) − g(x)

(z − x)
≥ lim

h→0

g(x+ h) − g(x)

h
= g′(x).

Hence, g′(x) is a subgradient of g at x. This also shows that there is at least one subgradient

of g at x.

To show uniqueness, suppose there is another subgradient x∗ 6= g′(x) at x. Suppose

x∗ > g′(x). Then, for all h > 0, we know that

g(x+ h) − g(x)

h
≥ x∗ > g′(x).

But since this is true for all h > 0, we have that

g′(x) = lim
h→0

g(x+ h) − g(x)

h
≥ x∗ > g′(x),

which is a contradiction.

Suppose x∗ < g′(x). Then, for all h > 0, we know that

g(x− h) ≥ g(x) − x∗h.

1This means that I \ I ′ is countable.

93

Equivalently,
g(x) − g(x− h)

h
≤ x∗.

Since this is true for all h > 0, we have that

g′(x) = lim
h→0

g(x) − g(x− h)

h
≤ x∗.

This is a contradiction. �

Lemma 10 extends in the following natural way.

Lemma 11 Suppose g : I → R is a convex function. Then for every x ∈ I, the subgradient

of g at x exists.

We skip the proof of Lemma 11. Lemma 10 showed that if g is differentiable at x and x

is in the interior, then g′(x) is the unique subgradient. For all other points in x (which

is a set of measure zero), the set of subgradients can be shown to be a convex set. In

particular, if x is an interior point of I where g is not differentiable, then we can define

g′+(x) = limz→x:z∈I′,z>x g
′(z) and g′−(x) = limz→x:z∈I′,z<x g

′(x−h), where I ′ is the set of points

where g is differentiable. These limits exist since the set of points where g is differentiable

is dense in I. One can easily show that g′+(x) ≥ g′−(x). We can then show that the set of

subgradients of g at x is [g′−(x), g′+(x)].

The set of subgradients of g at a point x ∈ I will be denoted by ∂g(x). By Lemma 10,

∂g(x) is equal to {g′(x)} if x ∈ I ′ and by Lemma 11, it is non-empty otherwise The following

lemma is crucial.

Lemma 12 Suppose g : I → R is a convex function. Let φ : I → R such that φ(z) ∈ ∂g(z)

for all z ∈ I. Then, for all x, y ∈ I such that x > y, we have φ(x) ≥ φ(y).

Proof : By definition, g(x) ≥ g(y) + φ(y)(x − y) and g(y) ≥ g(x) + φ(x)(y − x). Adding

these two inequalities, we get (x− y)(φ(x)− φ(y)) ≥ 0. Since x > y, we get φ(x) ≥ φ(y). �

As a corollary to Lemma 12, we get that if g is differentiable at x and y and x > y, then

we have g′(x) ≥ g′(y). This also shows that for any x ∈ I, g′+(x) ≥ g′−(x).

Figure 4.2 illustrates the idea. It shows a convex function g and two points in its domain.

The left one is a point where g is differentiable and its unique subgradient is shown in Figure

4.2. On the other hand, the right one is a point where g is not differentiable. Figure 4.2

shows the least subgradient and the maximum subgradient at that point. Any selection from

that cone will be a suitable subgradient at that point.

94

x

g(x) Non-differentiable point

Figure 4.2: A convex function and its subgradients

If g is differentiable everywhere, then g can be written as the definite integral of its deriva-

tive. In particular, if x, y ∈ I, then g(x) = g(y)+
∫ x

y
g′(z)dz. However, this can be extended

easily to convex functions since a convex function is differentiable almost everywhere. The

following lemma establishes that. We skip its proof.

Lemma 13 Let g : I → R be a convex function. Then, for any x, y ∈ I,

g(x) = g(y) +

∫ x

y

φ(z)dz,

where φ : I → R is a map satisfying φ(z) ∈ ∂g(z) for all z ∈ I.

4.1.3 Monotonicity and Revenue Equivalence

We now use the facts from convex analysis to establish a fundamental theorem in single

object auction analysis. A crucial property that we will use is the following monotonicity

property of allocation rules.

Definition 23 An allocation rule f is called non-decreasing if for every agent i ∈ N and

every t−i ∈ T−i we have fi(ti, t−i) ≥ fi(si, t−i) for all si, ti ∈ Ti with si < ti.

A non-decreasing allocation rule satisfies a simple property. For every agent and for every

report of other agents, the probability of winning the object does not decrease with increase

in type of this agent. Figure 4.3 shows a non-decreasing allocation rule.

This property characterizes the set of implementable allocation rules in this case.

95

Type of agent i

Allocation probability

Figure 4.3: Non-decreasing allocation rule

Theorem 16 Suppose Ti is an interval [0, bi] for all i ∈ N and v is in product form. An

allocation rule f : T n → ∆A and a payment rule (p1, . . . , pn) is DSIC if and only if f is

non-decreasing and for all i ∈ N , for all t−i ∈ T n−1, and for all ti ∈ Ti

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i) −

∫ ti

0

fi(xi, t−i)dxi.

Proof : Given a mechanism M ≡ (f, p1, . . . , pn), the indirect utility function of agent i from

the mechanism M when other agents report t−i is defined as

UM
i (ti, t−i) = tifi(ti, t−i) − pi(ti, t−i) ∀ ti ∈ Ti.

The indirect utility is the net utility of agent i by reporting his true type (given the reports of

other agents). Using UM , we can rewrite the incentive constraints as follows. Mechanism M

is dominant strategy incentive compatible if and only if for all i ∈ N and for all t−i ∈ T n−1,

we have

UM
i (ti, t−i) ≥ UM

i (si, t−i) + fi(si, t−i)(ti − si) ∀ si, ti ∈ Ti.

Now, fix an agent i ∈ N and t−i. Suppose mechanism M ≡ (f, p1, . . . , pn) is DSIC. We

do the proof in some steps.

Step 1 - Subgradient. Define g(ti) = UM
i (ti, t−i) for all ti ∈ Ti and φ(ti) = fi(ti, t−i).

Then, DSIC implies that for all si, ti ∈ Ti, we have

g(ti) ≥ g(si) + φ(ti)(ti − si).

96

Hence, φ(ti) is a subgradient of g at ti.

Step 2 - Convexity of UM
i . Next, we show that g is convex. To see this, pick xi, zi ∈ Ti

and consider yi = λxi + (1 − λ)zi for some λ ∈ (0, 1). Due to DSIC, we know that

g(xi) ≥ g(yi) + (xi − yi)φ(yi)

g(zi) ≥ g(yi) + (zi − yi)φ(yi)

Multiplying the first inequality by λ and the second by (1 − λ) and adding them together

gives

λg(xi) + (1 − λ)g(zi) ≥ g(yi).

Step 3 - Apply Lemmas 12 and 13. By Lemma 12, g is non-decreasing. By Lemma 13,

for any ti ∈ Ti,

g(ti) = g(0) +

∫ ti

0

φ(xi)dxi.

Substituting for g, we get

UM
i (ti, t−i) = UM

i (0, t−i) +

∫ ti

0

fi(xi, t−i)dxi.

Substituting for UM , we get

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i) −

∫ ti

0

fi(xi, t−i)dxi.

This proves one direction.

Now, for the converse. If f is non-decreasing and pi for all i is of the form described, then

we have to show that the mechanism is DSIC. To show this, fix, i ∈ N , t−i, and consider

si, ti. Now, substituting for pi, we get

[

tifi(ti, t−i) − pi(ti, t−i)
]

−
[

tifi(si, t−i) − pi(si, t−i)
]

= (si − ti)fi(si, t−i) −

∫ si

ti

fi(xi, t−i)dxi

≥ 0,

where the inequality followed from the fact that f is non-decreasing. �

An implication of this result is the following. Take two payment functions p and q that

make f DSIC. Then, for every i ∈ N and every t−i, we know that for every si, ti ∈ Ti,

pi(si, t−i) − pi(ti, t−i) =
[

sifi(si, t−i) −

∫ si

0

fi(xi, t−i)dxi

]

−
[

tifi(ti, t−i) −

∫ ti

0

fi(xi, t−i)dxi

]

97

and

qi(si, t−i) − qi(ti, t−i) =
[

sifi(si, t−i) −

∫ si

0

fi(xi, t−i)dxi

]

−
[

tifi(ti, t−i) −

∫ ti

0

fi(xi, t−i)dxi

]

Hence,

pi(si, t−i) − pi(ti, t−i) = qi(si, t−i) − qi(ti, t−i),

or pi(si, t−i) − qi(si, t−i) = pi(ti, t−i) − qi(ti, t−i).

This result is also known as the revenue equivalence result in single object auction.

One important difference between the characterization in Theorem 16 and the character-

ization of Roberts’ theorem or Gibbard-Satterthwaite theorem is worth pointing out. The

latter characterizations are very specific about the parameters to be used in the mechanism -

Gibbard-Satterthwaite theorem points to dictatorship, which identifies a one parameter (the

dictator) mechanism; similarly, Roberts’ theorem asks us to design mechanisms by identify-

ing weights for agents and alternatives and then doing a maximization of weighted values.

However, the characterization in Theorem 16 is implicit. It only identifies properties of a

mechanism that is necessary and sufficient for DSIC. It is still useful for verifying if a given

mechanism is DSIC or not.

An immediate corollary of Theorem 16 is the following.

Corollary 2 An allocation rule is implementable if and only if it is non-decreasing.

Proof : Suppose f is an implementable allocation rule. Then, there exists (p1, . . . , pn)

such that (f, p1, . . . , pn) is DSIC. One direction of Theorem 16 showed that f must be

non-decreasing. For the converse, Theorem 16 identified payment rules that make a non-

decreasing allocation rule implementable. �

The fact that any non-decreasing allocation rule can be implemented in the single object

auction rule is insightful. Many allocation rules can be verified if they are DSIC or not by

checking if they are non-decreasing. The constant allocation rule is clearly non-decreasing

(it is constant in fact). The dicatorial allocation rule is also non-decreasing. The efficient

allocation rule is non-decreasing because if you are winning the object by reporting some type,

efficiency guarantees that you will continue to win it by reporting a higher type (remember

that efficient allocation rule in the single object case awards the object to an agent with the

highest type).

Efficient allocation rule with a reserve price is the following allocation rule. If types of

all agents are below a threshold level r, then the object is not sold, else all agents whose

98

type is above r are considered and sold to one of these agents who has the highest type. It

is clear that this allocation rule is also DSIC since it is non-decreasing. We will encounter

this allocation rule again when we study optimal auction design.

Consider an agent i ∈ N and fix the types of other agents at t−i. Figure 4.3 shows

how agent i’s probability of winning the object can change in a DSIC allocation rule. If we

restrict attention to DSIC allocation rules which either do not give the object to an agent

or gives it to an agent with probability 1, then the shape of the curve depicting probability

of winning the object will be a step function. We call such allocation rules deterministic

allocation rules.

4.1.4 The Efficient Allocation Rule and the Vickrey Auction

We start off by deriving a deterministic mechanism using Theorem 16. The mechanism

we focus is the Vickrey auction that uses the efficient allocation rule. Though the efficient

allocation rule may break ties using randomization, we assume that ties are broken deter-

ministically, i.e., each agent gets the object either with probability 1 or 0.

Suppose f is the efficient allocation. We know that the class of Groves payments make

f DSIC. Suppose we impose the restriction that pi(0, t−i) = 0 for all i ∈ N and for all t−i.

Note that if ti is not the highest type in the profile, then fi(xi, t−i) = 0 for all xi ≤ ti. Hence,

by Theorem 16, pi(ti, t−i) = 0. If ti is the highest type and tj is the second highest type in

the profile, then fi(xi, t−i) = 0 for all xi ≤ tj and fi(xi, t−i) = 1 for all ti ≥ xi > tj . So, using

Theorem 16, pi(ti, t−i) = ti − [ti − tj] = tj . This is indeed the Vickrey auction. The revenue

equivalence result says that any other DSIC auction must have payments which differ from

the Vickrey auction by the amount a bidder pays at type 0, i.e., pi(0, t−i).

4.1.5 Deterministic Allocations Rules

Call an allocation rule f deterministic (in single object setting) if for all i ∈ N and every

type profile t, we have fi(t) ∈ {0, 1}. The aim of this section is to show the simple nature of

payment rules for a deterministic allocation rule to be DSIC. We assume that set of types

of agent i is Ti = [0, bi]. Suppose f is a deterministic allocation rule which is DSIC. Hence,

it is non-decreasing. For every i ∈ N and every t−i, the shape of fi(·, t−i) is a step function

(as in Figure 4.4). Now, define,

κf
i (t−i) =

{

inf{ti ∈ Ti : fi(ti, t−i) = 1} if fi(ti, t−i) = 1 for some ti ∈ Ti

0 otherwise

99

Type of agent i

Allocation probability

κf
i (t−i)

1

Figure 4.4: A deterministic implementable allocation rule

If f is DSIC, then it is non-decreasing, which implies that for all ti > κf
i (t−i), i gets the

object and for all ti < κf
i (t−i), i does not get the object.

Consider a type ti ∈ Ti. If fi(ti, t−i) = 0, then using revenue equivalence, we can

compute any payment which makes f DSIC as pi(ti, t−i) = pi(0, t−i). If fi(ti, t−i) = 1, then

pi(ti, t−i) = pi(0, t−i) + ti − [ti − κf
i (t−i)] = pi(0, t−i) + κf

i (t−i). Hence, if p makes f DSIC,

then for all i ∈ N and for all t

pi(t) = pi(0, t−i) + κf
i (t−i).

The payments when pi(0, t−i) = 0 has special interpretation. If fi(t) = 0, then agent i

pays nothing (losers pay zero). If fi(t) = 1, then agent i pays the minimum amount required

to win the object when types of other agents are t−i. If f is the efficient allocation rule, this

reduces to the second-price Vickrey auction.

We can also apply this to other allocation rules. Suppose N = {1, 2} and the allocations

are A = {a0, a1, a2}, where a0 is the allocation where the seller keeps the object, ai (i 6= 0)

is the allocation where agent i keeps the object. Given a type profile t = (t1, t2), the seller

computes, U(t) = max(2, t21, t
3
2), and allocation is a0 if U(t) = 2, it is a1 if U(t) = t21, and a2

if U(t) = t32. Here, 2 serves as a (pseudo) reserve price below which the object is unsold. It

is easy to verify that this allocation rule is non-decreasing, and hence DSIC. Now, consider

a type profile t = (t1, t2). For agent 1, the minimum he needs to bid to win against t2

is
√

max{2, t32}. Similarly, for agent 2, the minimum he needs to bid to win against t1 is

(max{2, t21})
1

3 . Hence, the following is a payment scheme which makes this allocation rule

DSIC. At any type profile t = (t1, t2), if none of the agents win the object, they do not pay

100

anything. If agent 1 wins the object, then he pays
√

max{2, t32}, and if agent 2 wins the

object, then he pays (max{2, t21})
1

3 .

4.1.6 Individual Rationality

We can find out conditions under which a mechanism is individually rational. Notice that

the form of individual rationality we use is ex post individual rationality.

Lemma 14 Suppose a mechanism (f, p) is strategy-proof. The mechanism (f, p) is individ-

ually rational if and only if for all i ∈ N and for all t−i,

pi(0, t−i) ≤ 0.

Further a mechanism (f, p) is individually rational and pi(ti, t−i) ≥ 0 for all i ∈ N and for

all t−i if and only if for all i ∈ N and for all t−i,

pi(0, t−i) = 0.

Proof : Suppose (f, p) is individually rational. Then 0− pi(0, t−i) ≥ 0 for all i ∈ N and for

all t−i. For the converse, suppose pi(0, t−i) ≤ 0 for all i ∈ N and for all t−i. In that case,

ti − pi(ti, t−i) = ti − pi(0, t−i) − tifi(ti, t−i) +
∫ ti
0
fi(xi, t−i)dxi ≥ 0.

Individual rationality says pi(0, t−i) ≤ 0 and the requirement pi(0, t−i) ≥ 0 ensures

pi(0, t−i) = 0. For the converse, pi(0, t−i) = 0 ensures individual rationality. �

Hence, individual rationality along with the requirement that payments are always non-

negative pins down pi(0, t−i) = 0 for all i ∈ N and for all t−i.

4.2 Optimal Auction Design

This section will describe the design of optimal auction for selling a single indivisible object

to a set of bidders (buyers) who have quasi-linear utility functions. The seminal paper in

this area is (Myerson, 1981). We present a detailed analysis of this work. Before I describe

the formal model, let me describe some popular auction forms used in practice.

4.2.1 Auctions for a Single Indivisible Object

A single indivisible object is for sale. Let us consider four bidders (agents or buyers) who

are interested in buying the object. Let the valuations of the bidders be 10, 8, 6, and 4

101

respectively. Let us discuss some commonly used auction formats using this example. As

before, let us assume agents/bidders have quasi-linear utility functions and private values.

• Posted price: The seller announces a price at which he will sell the object. The first

buyer to express demand at this price wins the object. It is a very common form of

selling. Since the seller does not elicit any information from the buyers, this makes

sense if the seller has good information about the values of buyers to set his price.

• First-price auction: In the first-price auction, every bidder is asked to report a bid,

which indicates his value. The highest bidder wins the auction and pays the price he

bid. Of course, the bid amount need not equal the value. But if the bidders bid their

value, then the first bidder will win the object and pay an amount of 10.

• Second-price auction: In the second-price auction, like the first-price auction, each

bidder is asked to report a bid. The highest bidder wins the auction and pays the price

of the second highest bid. This is the Vickrey auction we have already discussed. As

we saw, a dominant strategy in this auction is that bidders will bid their values. Hence,

the first bidder will win the object but pay a price equal to 8, the second highest value.

• Dutch auction: The Dutch auction, popular for selling flowers in the Netherlands,

falls into a class of auctions called the open-cry auctions. The Dutch auction starts at

a high price and the price of the object is lowered by a small amount (called the bid

decrement) in iterations. In every iteration, bidders can express their interest to buy

the object. The price of the object is lowered only if no bidder shows interest. The

auction stops as soon as any bidder shows interest. The first bidder to show interest

wins the object at the current price.

In the example above, suppose the Dutch auction is started at price 12 and let the bid

decrement be 1. At price 12, no bidder should express interest since valuation of all

bidders are less than 12. After price 10, the first bidder may choose to express interest

since he starts getting non-negative utility from the object for any price less than or

equal to 10. If he chooses to express interest, then the auction would stop and he will

win the object. Clearly, it is not an equilibrium for the bidder to express interest at

10 since he can potentially get more payoff by waiting for the price to fall. Indeed, in

equilibrium (under some conditions), the bidder will show interest at a price just below

his valuation.

• English auction: The English auction is also an open-cry auction. The seller starts

the auction at a low price and raises it by a small amount (called the bid increment)

102

in iterations. In every iteration, like in the Dutch auction, the bidders are asked if

they are interested in buying the object. The price is raised only if more than one

bidder shows interest. The auction stops as soon as one or less number of bidders show

interest. The last bidder to show interest wins the auction at the price he last showed

interest.

In the example above, suppose the English auction is started at price 0 and let the bid

increment be 1. Then, at price 4 the bidder with value 4 will stop showing interest

(since he starts getting non-positive payoff from that price onwards). Similarly, at

prices 6, bidder with value 6 will drop out. Finally, bidder with value 8 will drop out

at price 8. At this price, only bidder with value 10 will show interest. Hence, the

auction will stop at price 8, and the bidder with value 10 will win the object at price 8.

Notice that the outcome of the auction is the same as the second-price auction. This is

no coincidence. It can be argued easily that it is an equilibrium (under private values

model) for bidders to show interest (bid) till the price reaches their value in the English

auction. Hence, the outcome of the English auction is the same as the second-price

auction.

One can think of many more auction formats - though they may not be used in practice.

Having learnt and thought about these auction formats, some natural questions arise. Is there

an equilibrium strategy for the bidder in each of these auctions? What kind of auctions are

incentive compatible? What is the ranking of these auctions in terms of expected revenue?

Which auction gives the maximum expected revenue to the seller over all possible auctions?

Myerson (1981) answers many of these questions. First, using the revelation principle

(for Bayesian incentive compatibility), he concludes that for every auction (sealed-bid or

open-cry or others) there exists a direct mechanism with the same social choice function,

and thus giving the same expected revenue to the seller. So, he focuses on direct mechanisms

without loss of generality. Second, he characterizes direct mechanisms which are Bayesian

incentive compatible. Third, he shows that all Bayesian incentive compatible mechanisms

which have the same allocation rule, differ in revenue by a constant amount. Using these

results, he is able to give a precise description of an auction which gives the maximum

expected revenue. He calls such an auction an optimal auction. Under some conditions on

the valuation distribution of bidders, the optimal auction is a modified second-price auction.

Next, we describe these results formally.

103

4.2.2 The Model

There is a single indivisible object for sale, whose value for the seller is zero. The set of bidders

is denoted by N = {1, . . . , n}. Every bidder has a value (this is his type) for the object. The

value of bidder i ∈ N is drawn from [0, bi] using a distribution with density function gi and

cumulative density Gi. We assume that each bidder draws his value independently and this

value is completely determined by this draw (i.e., knowledge of other information such as

value of other bidders does not influence his value). This model of valuation is referred to as

the private independent value model. We let the joint density function of values of all

the bidders as g and the joint density function of values of all the bidders except bidder i as

g−i. Due to the independence assumption, for every profile of values t = (t1, . . . , tn)

g(t1, . . . , tn) = g1(t1) × . . .× gn(tn)

g−i(t1, . . . , ti−1, ti+1, . . . , tn) = g1(t1) × . . .× gi−1(ti−1) × gi+1(ti+1) × . . . gn(tn).

Let Ti = [0, bi] and T n = [0, b1] × . . .× [0, bn]. Similarly, let T−i = ×j∈N\{i}Tj . A typical

valuation of bidder i will be denoted as ti ∈ Ti, a valuation profile of bidders will be denoted

as t ∈ T n, and a valuation profile of bidders in N \ {i} will be denoted as t−i ∈ T−i. The

valuation profile t = (t1, . . . , ti, . . . , tn) will sometimes be denoted as (ti, t−i). We assume

that gi(ti) > 0 for all i ∈ N and for all ti ∈ Ti.

4.2.3 The Direct Mechanisms

Though a mechanism can be very complicated, a direct mechanism is simpler to describe.

By virtue of the revelation principle (Proposition 2), we can restrict attention to direct

mechanisms only. Henceforth, I will refer to a direct mechanism as simply a mechanism.

Let A be the set of all deterministic alternatives, i.e., A = {a0, a1, . . . , an}, where a0 is

the allocation where the seller keeps the object and ai for 1 ≤ i ≤ n denotes the allocation

where agent i gets the object. Let L(A) be the set of all probability distributions over A.

A direct mechanism M in this context is M = (f, p1, . . . , pn), where f : T n → ∆A is the

allocation rule and for every i ∈ N , pi : T n → R is the payment rule of agent i. Given

a mechanism M = (f, p1, . . . , pn), a bidder i ∈ N with (true) value ti ∈ Ti gets the following

utility when all the buyers report values s = (s1, . . . , si, . . . , sn)

uM
i (s; ti) = fi(s)ti − pi(s),

where fi(s) is the probability that agent i gets the object at type profile s and pi(s) is the

payment of agent i at type profile s.

104

Every mechanism (f, p1, . . . , pn) induces an expected allocation rule and an expected

payment rule (α, π), defined as follows. The expected allocation of agent i when he reports

si ∈ Ti in allocation rule f is

αi(si) =

∫

T−i

fi(si, s−i)g−i(s−i)ds−i.

Similarly, the expected payment of bidder i when he reports si ∈ Ti in payment rule pi is

πi(si) =

∫

T−i

pi(si, s−i)g−i(s−i)ds−i.

So, the expected utility from a mechanism M ≡ (f, p1, . . . , pn) to an agent i with true value

ti by reporting a value si is αi(si)ti − πi(si).

Definition 24 A mechanism (f, p1, . . . , pn) is Bayesian incentive compatible (BIC)

if for every agent i ∈ N and for every possible values si, ti ∈ Ti we have

αi(ti)ti − πi(ti) ≥ αi(si)ti − πi(si). (BIC)

Equation BIC says that a bidder maximizes his expected utility by reporting true value.

Given that other bidders report truthfully, when bidder i has value ti, he gets more expected

utility by reporting ti than by reporting any other value si ∈ Ti.

4.2.4 Bayesian Incentive Compatible Mechanisms

We say an allocation rule f is Bayes-Nash implementable if there exists payment rules

(p1, . . . , pn) such that (f, p1, . . . , pn) is a Bayesian incentive compatible mechanism.

We say that an allocation rule f is non-decreasing in expectation (NDE) if for

all i ∈ N and for all si, ti ∈ Ti with si < ti we have αi(si) ≤ αi(ti). Similar to the

characterization in the dominant strategy case, we have a characterization in the Bayesian

incentive compatible mechanisms.

Theorem 17 A mechanism (f, p1, . . . , pn) is Bayesian incentive compatible if and only if f

is NDE and for every i ∈ N , pi satisfies

πi(ti) = πi(0) + tiαi(ti) −

∫ ti

0

αi(si)dsi ∀ ti ∈ [0, bi].

105

Type of agent 1

Type of agent 2

1

1

1

1

1

1

1

1

Figure 4.5: A BIC allocation rule which is not DSIC

The proof is a replication of the arguments we did for dominant strategy case in Theorem

16. We skip the proof (but you are encouraged to reconstruct the arguments).

A BIC allocation rule need not be DSIC. We give an example to illustrate this. Consider

a setting with two agents N = {1, 2}. Suppose the values of both the agents are drawn

uniformly from [0, 1]. Figure 4.5 shows an allocation rule f .

The type profiles are divided into cells of equal size (25 of them in total). Some of the

cells are assigned some numbers - this is the probability with which agent 1 gets the object

in f . The cells in which no number is written, the probability of agent 1 getting the object

at those profiles is zero. For our purpose, the probability of agent 2 getting the object is

irrelevant - for simplicity, we can assume it to be zero (hence, in all other cells the seller

keeps the object).

An easy calculation reveals that the expected probability of agent 1 winning the object

is non-decreasing: it is zero if t1 ≤ 2
5
, it is 1

5
if t1 ∈ (2

5
, 3

5
], it is 2

5
if t1 ∈ (3

5
, 4

5
], and it is 3

5
if

t1 >
4
5
. Hence, the allocation rule a is BIC but not DSIC.

Theorem 17 says that the (expected) payment of a bidder in a mechanism is uniquely

determined by the allocation rule once we fix the expected payment of a bidder with the

lowest type. Hence, a mechanism is uniquely determined by its allocation rule and the

payment of a bidder with the lowest type.

It is instructive to examine the payment function when πi(0) = 0. Then payment of

agent i at type ti becomes

πi(ti) = αi(ti)ti −

∫ ti

0

αi(xi)dxi.

106

Because of non-decreasing αi(·) this is always greater than or equal to zero - it is the difference

between area of the rectangle with sides αi(xi) and xi and the area under the curve αi(·)

from 0 to xi.

We next impose a the analogue of individual rationality in the Bayesian set up.

Definition 25 A mechanism (f, p1, . . . , pn) is interim individually rational (IIR) if

for every bidder i ∈ N we have

αi(ti)ti − πi(ti) ≥ 0 ∀ ti ∈ Ti.

IIR is weaker than the (ex post) individual rationality we had discussed earlier since IIR

only requires interim expected utility from truthtelling to be non-negative. The set of BIC

and IIR mechanisms can now be characterized as follows.

Theorem 18 A mechanism (f, p1, . . . , pn) is BIC and IIR if and only if

(1) f is NDE.

(2) For all i ∈ N ,

πi(ti) = πi(0) + tiαi(ti) −

∫ ti

0

αi(si)dsi ∀ ti ∈ [0, bi].

(3) For all i ∈ N , πi(0) ≤ 0.

Proof : Suppose (f, p1, . . . , pn) is BIC. By Theorem 17, (1) and (2) follows. Applying IIR

at ti = 0, we get πi(0) ≤ 0, which is (3).

Now, suppose (1),(2), and (3) holds for a mechanism (f, p1, . . . , pn). By Theorem 17, the

mechanism is BIC. At any type ti,

tiαi(ti) − πi(ti) =

∫ ti

0

αi(si)dsi − πi(0)

≥

∫ ti

0

αi(si)dsi

≥ 0,

where the first inequality follows from (3). Hence, the mechanism satisfies IIR. �

107

4.2.5 Optimal Mechanisms

The optimal mechanism is a mechanism in the class of mechanisms identified in Theorem 18

that maximizes the expected revenue of the seller over all mechanisms identified in Theorem

18. To compute expected revenue from a mechanism (f, p ≡ (p1, . . . , pn)), we note that the

expected payment of agent i with type ti is πi(ti). Hence, (ex-ante) expected payment of

agent i to this mechanism is
∫ bi

0

πi(ti)gi(ti)dti.

Hence, the expected revenue from the mechanism (f, p ≡ (p1, . . . , pn)) is

Π(f, p) =
∑

i∈N

∫ bi

0

πi(ti)gi(ti)dti.

We say a mechanism (f, p) is an optimal mechanism if

• (f, p) is Bayesian incentive compatible and individually rational,

• and Π(f, p) ≥ Π(f ′, p′) for any other Bayesian incentive compatible and individually

rational mechanism (f ′, p′).

Theorem 18 will play a crucial role since it has identified the entire class of BIC and IIR

mechanisms, over which we are optimizing.

Fix a mechanism (f, p) which is Bayesian incentive compatible and individually rational.

For any bidder i ∈ N , the expected payment of bidder i ∈ N is given by

∫ bi

0

πi(ti)gi(ti)dxi = πi(0) +

∫ bi

0

αi(ti)tigi(ti)dti −

∫ bi

0

∫ ti

0

(

αi(si)dsi

)

gi(si)dsi,

where the last equality comes by using revenue equivalence (Theorem 17). By interchanging

the order of integration in the last term, we get

∫ bi

0

∫ ti

0

(

αi(si)dsi

)

gi(ti)dti =

∫ bi

0

(

∫ bi

ti

gi(si)dsi

)

αi(ti)dti

=

∫ bi

0

(1 −Gi(ti))αi(ti)dti.

Hence, we can write

Π(a, p) =
∑

i∈N

πi(0) +
∑

i∈N

∫ bi

0

(

ti −
1 −Gi(ti)

gi(ti)

)

αi(ti)gi(ti)dti.

108

We now define the virtual valuation of bidder i ∈ N with valuation ti ∈ Ti as

wi(ti) = ti −
1 −Gi(ti)

gi(ti)
.

Note that since gi(ti) > 0 for all i ∈ N and for all ti ∈ Ti, the virtual valuation wi(ti) is well

defined. Also, virtual valuations can be negative. Using this and the definition of αi(·), we

can write

Π(f, p) =
∑

i∈N

πi(0) +
∑

i∈N

∫ bi

0

wi(ti)αi(ti)gi(ti)dti

=
∑

i∈N

πi(0) +
∑

i∈N

∫ bi

0

(

∫

T−i

fi(ti, t−i)g−i(t−i)dt−i

)

wi(ti)gi(ti)dti

=
∑

i∈N

πi(0) +
∑

i∈N

∫

T n

wi(ti)fi(t)g(t)dt

=
∑

i∈N

πi(0) +

∫

T n

[

∑

i∈N

wi(ti)fi(t)

]

g(t)dt.

Since IIR requires πi(0) ≤ 0 for all i ∈ N , if we want to maximize Π(f, p), we must

set πi(0) = 0 for all i ∈ N . As a result, the optimization problem only involves finding

the allocation rule, and the payment rule can be computed using Theorem 17 and setting

πi(0) = 0 for all i ∈ N . So, we can succinctly write down the optimal mechanism optimization

problem.

max
f

∫

T n

[

∑

i∈N

wi(ti)fi(t)

]

g(t)dt

subject to f is NDE.

The term in the objective function is exactly the total expected virtual valuation

from an allocation rule. This is because, the term
∑

i∈N wi(ti)fi(t) is the total realized virtual

valuation of all bidders at type profile t from allocation rule f . This observation leads to the

following important result.

Theorem 19 The allocation rule in an optimal mechanism maximizes the total expected

virtual valuation among all Bayes-Nash implementable allocation rules.

Without the constraint that f has to be NDE, we can maximize our objective function by

doing a point-wise maximization. In particular, at every type profile t, we assign fi(t) = 0

for all i ∈ N if wi(ti) < 0 for all i ∈ N ; else we assign fi(t) = 1 for some i ∈ N such

109

that wi(ti) ≥ wj(tj) for all j 6= i. In other words, the highest virtual valuation agent wins

the object if he has non-negative virtual valuation, else the object is unsold. Clearly, this

maximizes the objective function without the NDE constraint. Now, it may so happen

that the optimal solution obtained may not satisfy the NDE constraint. Below, we impose

conditions on the distributions of agents that ensure that the unconstrained optimal solution

satisfies the constraints, and hence, a constrained optimal solution.

Definition 26 A virtual valuation wi of agent i is regular if for all si, ti ∈ Ti with si > ti,

we have wi(si) > wi(ti).

Regularity requires that the virtual valuation functions are strictly increasing. The following

condition on distributions ensures that regularity holds. The hazard rate of a distribution gi

is defined as λi(ti) = gi(ti)
1−Gi(ti)

for all i ∈ N .

Lemma 15 If the hazard rate λi is non-decreasing, then the virtual valuation wi is regular.

Proof : Consider si, ti ∈ Ti such that si > ti. Then,

wi(si) = si −
1

λi(si)
> ti −

1

λi(ti)
= wi(ti).

�

The uniform distribution satisfies the non-decreasing hazard rate condition. Because
1−Gi(ti)

gi(ti)
= bi−ti, which is non-increasing in ti. For the exponential distribution, gi(ti) = µe−µti

and Gi(ti) = 1 − e−µti . Hence, 1−Gi(ti)
gi(ti)

= 1
µ
, which is a constant. So, the exponential

distribution also satisfies the non-decreasing hazard rate condition.

This leads to our main observation.

Lemma 16 Suppose regularity holds for the virtual valuation of each agent. Then, the alloca-

tion rule in the optimal mechanism solves the following unconstrained optimization problem.

max
f

∫

T n

[

∑

i∈N

wi(ti)fi(t)

]

g(t)dt.

Proof : We have already seen that the optimal solution to the unconstrained optimization

problem is done as follows: for every type profile t, fi(t) = 0 for all i ∈ N if wi(ti) < 0 for

all i ∈ N and fi(t) = 1 for some i ∈ N if wi(ti) ≥ 0 and wi(ti) ≥ wj(tj) for all j ∈ N . If the

regularity condition holds, then f is NDE. To see this, consider a bidder i ∈ N and si, ti ∈ Ti

with si > ti. Regularity gives us wi(si) > wi(ti). By the definition of the allocation rule,

110

for all t−i ∈ T−i, we have fi(si, t−i) ≥ fi(ti, t−i). Hence, f is non-decreasing, and hence, it is

NDE. �

Our discussions to the main theorem of this section.

Theorem 20 Suppose the regularity holds for each agent. Consider the following allocation

rule f ∗. For every type profile t ∈ T n, f ∗
i (t) = 0 if wi(ti) < 0 for all i ∈ N and else,

f ∗
i (t) = 1 for some i ∈ N such that wi(ti) ≥ 0, wi(ti) ≥ wj(tj) ∀ j ∈ N . There exists

payments (p1, . . . , pn) such that (f ∗, p1, . . . , pn) is an optimal mechanism.

We now come back to the payments. To remind, we need to ensure that payments satisfy

the revenue equivalence and πi(0) = 0 for all i ∈ N . Since f ∗ can be implemented in

dominant strategies and it is a deterministic allocation rule, we can ensure this by satisfying

the revenue equivalence formulae for the dominant strategy case (which simplifies if the

allocation rule is deterministic) and setting pi(0, t−i) = 0 for all i and for all t−i. From our

earlier analysis, the payment then is uniquely determined as the following (from Theorem

16).

For every i ∈ N and for every t−i, let κf∗

i (t−i) = inf{ti : f ∗
i (ti, t−i) = 1}. If f ∗(ti, t−i) = 0

for all ti ∈ Ti, then set κf∗

i (t−i) = 0.

Theorem 21 Suppose the regularity holds for each agent. Consider the following allocation

rule f ∗. For every type profile t ∈ T n, For every type profile t ∈ T n, f ∗
i (t) = 0 if wi(ti) < 0 for

all i ∈ N and else, f ∗
i (t) = 1 for some i ∈ N such that wi(ti) ≥ 0, wi(ti) ≥ wj(tj) ∀ j ∈ N .

For every agent i ∈ N , consider the following payment rule. For every (ti, t−i) ∈ T n,

p∗i (ti, t−i) =

{

0 if f ∗
i (ti, t−i) = 0

κf∗

i (t−i) if f ∗
i (ti, t−i) = 1

The mechanism (f ∗, p∗1, . . . , p
∗
n) is an optimal mechanism.

Proof : By Theorem 20, there is an optimal mechanism involving f ∗. Under regularity, f ∗

is non-decreasing, and hence, dominant strategy implementable. For the mechanism to be

optimal, we only need to show that (p∗1, . . . , p
∗
n) satisfy the revenue equivalence formulae in

Theorem 17 with π∗
i (0) = 0 for all i ∈ N .

The payments (p∗1, . . . , p
∗
n) satisfy the revenue equivalence formula in Theorem 16. Hence,

by Theorem 16, (f ∗, p∗1, . . . , p
∗
n) is dominant strategy incentive compatible, and hence, BIC.

So, they satisfy the revenue equivalence formula in Theorem 17. Since p∗i (0, t−i) = 0 for all

i ∈ N and for all t−i, we have π∗
i (ti) = 0 for all i ∈ N and for all ti ∈ Ti. This shows that

(f ∗, p∗1, . . . , p
∗
n) is an optimal mechanism. �

111

DSIC, IR

deterministic mechanisms

optimal mechanism

BIC, IIR, randomized mechanisms

Figure 4.6: Optimal mechanism is DSIC, IR, and deterministic

Figure 4.6 highlights the fact that we started out searching for an optimal mechanism in

a large family of BIC, IIR, and randomized mechanisms. But the optimal mechanism turned

out to be DSIC, IR, and deterministic.

If the regularity condition does not hold, the optimal mechanism is more complicated,

and you can refer to Myerson’s paper for a complete treatment.

4.2.5.1 Symmetric Bidders

Finally, we look at the special case where the buyers are symmetric, i.e., they draw the

valuations using the same distribution - gi = g and T1 = T2 = . . . = Tn for all i ∈ N . So,

virtual valuations are the same: wi = w for all i ∈ N . In this case w(ti) > w(tj) if and only

if ti > tj by regularity. Hence, maximum virtual valuation corresponds to the maximum

valuation.

Thus, κi(t−i) = max{w−1(0),maxj 6=i tj}. This is exactly, the second-price auction with

the reserve price of w−1(0). Hence, when the buyers are symmetric, then the second-price

auction with a reserve price equal to w−1(0) is optimal.

112

4.2.5.2 An Example

Consider a setting with two buyers whose values are distributed uniformly in the intervals

T1 = [0, 12] (buyer 1) and T2 = [0, 18] (buyer 2). Virtual valuation functions of buyer 1 and

buyer 2 are given as:

w1(t1) = t1 −
1 −G1(t1)

g1(t1)
= t1 − (12 − t1) = 2t1 − 12

w2(t2) = t2 −
1 −G2(t2)

g2(t2)
= t2 − (18 − t2) = 2t2 − 18.

Hence, the reserve prices for both the bidders are respectively r1 = 6 and r2 = 9. The

optimal auction outcomes are shown for some instances in Table 4.1.

Valuations Allocation (who gets object) Payment of Buyer 1 Payment of Buyer 2

(t1 = 4, t2 = 8) Object not sold 0 0

(t1 = 2, t2 = 12) Buyer 2 0 9

(t1 = 6, t2 = 6) Buyer 1 6 0

(t1 = 9, t2 = 9) Buyer 1 6 0

(t1 = 8, t2 = 15) Buyer 2 0 11

Table 4.1: Description of Optimal Mechanism

4.2.5.3 Efficiency and Optimality

One of the conclusions that we can draw from the previous analysis is that the optimal

mechanism is not efficient. We illustrate this with an example. Suppose there are two agents

N = {1, 2}. Suppose T1 = [0, 10] and T2 = [0, 6]. To compute the optimal mechanism, we

need to compute the virtual valuation functions. For agent 1, for every t1 ∈ T1, we have

w1(t1) = 2t1 − 10.

For agent 2, for every t2 ∈ T2, we have

w2(t2) = 2t2 − 6.

The optimal mechanism is shown in Figure 4.7. Notice that the object is unsold if t1 < 5

and t2 < 3. This is inefficient. This inefficiency occurs because of the reserve prices in the

optimal mechanism. There is another source of inefficiency. Efficiency requires that agent

113

1 wins the object if t1 > t2. However, the optimal mechanism requires that 2t1 − 10 ≥ 0

and 2t1 − 10 ≥ 2t2 − 6. This means, agent 2 wins the object in some cases where agent 1

should have won - this is shown in Figure 4.7. For instance, at the type profile (5, 4), we

have 2t2 − 6 = 2 > 0 = 2t1 − 5. Hence, agent 2 wins the object, but efficiency requires agent

1 must win the object here. This inefficiency occurs because the virtual valuation function

of both the agents is not the same, which happens because the distribution of values is

asymmetric. When bidders are symmetric, this source of inefficiency disappears. So, with

symmetric bidders, whenever the object is allocated, it is allocated efficiently.

Unsold - inefficient

Agent 1 wins

Agent 2 wins
Inefficient

Type of agent 1

Type of agent 2

3

6

5 10

Figure 4.7: Inefficiency of optimal mechanism

4.2.5.4 Surplus Extraction

Note that in the optimal mechanism buyers whose values are positive will walk away with

some positive expected utility. This is because the optimal mechanism satisfies individual

rationality and the payment of bidder i at valuation profile x, κi(x−i), is usually smaller

than xi. The expected utility of a bidder is sometimes referred to as his informational

rent. This informational rent is accrued by bidder i because of the fact that he has complete

knowledge of his value (private value).

One way to think of the single object auction problem is that there is a maximum achiev-

able surplus equal to maximum value of the object. The seller and the bidders divide this

114

surplus amongst themselves by the auctioning procedure. Since the seller does not have

information about bidders’ values and bidders are perfectly informed about their individual

values, the seller is unable to extract full surplus extraction 2.

4.3 Impossibility of Efficiency and Budget-balance

We investigate the important question of achieving budget-balance in mechanisms. The

reason budget-balance is an important objective in mechanism is the following. The efficient

allocation rule maximizes the sum of values to agents. But the eventual net utility to the

agents is their values from the alternative minus the transfer amount. Hence, maximizing

sum of values need not maximize the sum of net utilities to the agents. Indeed, both the

maximizations are equivalent if and only if the sum of transfers is equal to zero. Hence,

achieving budget-balance allows us to achieve efficiency in the “real”way - this is often called

the “first-best” efficiency.

The main result from this section is that Bayesian incentive compatibility, efficiency, and

interim individual rationality are often incompatible. We illustrate this in two models: (a)

bilateral trading and (b) public good provision. These are two simple models to study. In the

bilateral trading model, there are two agents: a seller and a buyer. The seller has an object

that it can trade to the buyer. If trade takes place, then the seller incurs a cost (his type)

and the buyer realizes a value (his type). If no trade takes place, then both the agents get

zero utility. Here, budget-balance is an important aspect of the mechanism since whatever

the buyer pays must be received by the seller.

In the public good provision problem, agents are deciding whether to choose a public

project or not. If the project is not selected, then they incur zero cost and zero value. But if

the project is selected, then they incur individual value (type) from the project. The project

also has a cost. The objective is to choose the project efficiently, i.e., choose the project

if and only if when sum of values is larger than the cost. However, the payments of the

agents must also cover the cost of the project. We will show that there is no efficient BIC

mechanism that is interim individually rational can cover the cost of the project.

2In advanced auction theory lectures, you will learn that it is possible for seller to extract entire surplus

if there is some degree of correlation between values of bidders.

115

4.3.1 A General Model and Characterization of

Budget-Balance

In this section, we will consider a very general model that covers the bilateral trading model

as a special case. We will derive some necessary and sufficient conditions in this model for a

BIC, efficient, and IIR mechanism to exist.

In our model, the set of agents is N = {1, . . . , n} and the set of alternatives is A (a finite

set). Each agent i ∈ N , has a non-empty subset of alternatives Ai ⊆ A from which it gets a

value ti. The value of the agent is his type (private information). For any alternative a /∈ Ai,

agent i gets zero value. The subset Ai for each i, is publicly known. For instance, in the

bilateral trading model, A = {a0, a1}, where a0 is the no-trade alternative and a1 is the trade

alternative. For both the buyer and the seller, Ai = {a1} since trade induces a value for the

buyer and cost (-ve of value) for the seller. Similarly, in the public good provision problem,

Ai consists of the alternative where the project is chosen.

Let Ti = [ℓi, bi] be the type space of agent i. We do not assume ℓi = 0 since type of an

agent may be negative (for instance, cost of the seller). Let T n = T1× . . .×Tn. An allocation

rule f : T n → L(A) chooses a lottery over A at every type profile, where L(A) is the set of

all probability distributions over A. We write fa(t) as the probability of alternative a being

chosen. For any agent i ∈ N , the probability that agent i gets a non-zero value at type

profile t is denoted by fi(t), and is given by

fi(t) =
∑

a∈Ai

fa(t).

We will focus on Bayesian incentive compatible mechanisms. For any mechanism M ≡

(f, p), where p ≡ (p1, . . . , pn) denotes the payment rules of the agents, let αi(ti) and πi(ti)

denote the expected probability of agent i getting non-zero value and his expected payment

respectively when his type is ti. Further, let UM
i (ti) denote the expected net utility of agent

i when his type is ti, i.e.,

UM
i (ti) = tiαi(ti) − πi(ti).

Using the standard techniques we used in the earlier section, we can arrive at the following

result.

Theorem 22 A mechanism (f, p) is Bayesian incentive compatible if and only if

1. αi(·) is non-decreasing for every i ∈ N and

116

2. For all i ∈ N ,

UM
i (ti) = UM

i (ℓi) +

∫ ti

ℓi

αi(si)dsi ∀ ti ∈ Ti.

You are encouraged to go through the earlier proofs, and derive this again. An outcome

of Theorem 22 is that if there are two mechanisms M = (f, p) and M ′ = (f, p′) implementing

the same allocation rule f , then for all i ∈ N and for all ti ∈ Ti, we have

UM
i (ti) − UM ′

i (ti) = UM
i (ℓi) − UM ′

i (ℓi). (4.1)

4.3.2 The Modified Pivotal Mechanism

We now investigate a modified pivotal mechanism. A mechanism (f, p) is budget-balanced

if for all type profiles t,

∑

i∈N

pi(t) = 0.

The main question that we address in this section is if there exists a Bayesian incentive

compatible mechanism implementing the efficient allocation rule, which is budget-balanced

and interim individually rational. To remind, a mechanism M is interim individually rational

(IIR) if UM
i (ti) ≥ 0 for all i ∈ N and for all ti ∈ Ti.

To answer this question, we go back to a slight variant of the pivotal mechanism. We

denote this mechanism as M∗ ≡ (f ∗, p∗), where f ∗ is the efficient allocation rule and p∗ is

defined as follows. To remind, f ∗ is defined as an allocation rule that satisfies for every type

profile t,

f ∗(t) ∈ arg max
a∈A

∑

i∈N

ti1
a
i ,

where 1a
i = 1 if a ∈ Ai and zero otherwise for every i ∈ N and for every a ∈ A.

For every type profile t, denote by W (t) the total value of agents in the efficient allocation,

i.e.,

W (t) =
∑

i∈N

fi(t)ti.

Denote by W−i(t) the sum
∑

j 6=i fj(t)tj . Then the payment of agent i at type profile t in the

modified pivotal mechanism M∗ is given by

p∗i (t) = W (ℓi, t−i) −W−i(t).

117

This is a slight modification of the pivotal mechanism we had defined earlier - the hi(·)

function here is defined slightly differently. Since M∗ is a Groves mechanism, it is dominant

strategy incentive compatible.

Note that for every i ∈ N , we have UM∗

i (ℓi) = 0. This means that UM∗

i (ti) ≥ 0 for all

i ∈ N and for all ti ∈ Ti (try to show this formally). Hence, M∗ is individually rational.

Now, consider any other mechanism M ≡ (f ∗, p) which is Bayesian incentive compatible and

individually rational. By Equation 4.1, we know that for every i ∈ N and for every ti ∈ Ti,

UM
i (ti) − UM

i (ℓi) = UM∗

i (ti) − UM∗

i (ℓi) = UM∗

i (ti),

where we used UM∗

i (ℓi) = 0 for the last equality. SinceM is individually rational, UM
i (ℓi) ≥ 0.

Hence, UM
i (ti) ≥ UM∗

i (ti). Since M and M∗ have the same allocation rule f ∗, we get that

tiα
∗
i (ti) − π∗

i (ti) ≥ tiα
∗
i (ti) − πi(ti),

where α∗
i is the expected allocation probability in f ∗ for agent i. Hence, we have for every

i ∈ N , π∗
i (ti) ≥ πi(ti) for all ti ∈ Ti. This observation is summarized in the following

proposition.

Proposition 13 Among all Bayesian incentive compatible and IIR mechanisms which im-

plement the efficient allocation rule, the modified pivotal mechanism maximizes the expected

payment of every agent.

But the modified pivotal mechanism will usually not balance the budgets. Here is an

example in the bilateral trading model with one buyer and one seller. Suppose the buyer

has a value of 10 and the seller has a value of -5 (cost of 5). Suppose buyer’s values are

from [0, 10] and seller’s values are from [−10,−5]. Then, efficiency tells us that the object is

allocated to the buyer at this type profile. His payment is 0 + 5 = 5 and the payment of the

seller is 0 − 10 = −10. So, there is a net deficit of 5.

The modified pivotal mechanism, though not budget-balanced, will play an important

role in identifying necessary and sufficient conditions on when a BIC, efficient, and IIR

mechanism can be budget-balanced.

4.3.3 The AGV Mechanism

We start off by defining a new mechanism which is Bayesian incentive compatible, efficient,

and balances budget. It is called the Arrow-d’Aspremont-Gerard-Varet (AGV) mechanism

118

(also called the expected externality mechanism). As we will see, the AGV mechanism is

not dominant strategy incentive compatible and fails IIR.

The AGV mechanism MA ≡ (f ∗, pA) is defined as follows. The payment in MA is defined

as follows. For every agent i define the expected welfare or remainder utility of agents

other than agent i, when agent i has type ti as

ri(ti) = Et−i
[W−i(ti, t−i)] =

∫

T−i

[
∑

k 6=i

f ∗
k (ti, t−i)tk]g−i(t−i)dt−i,

where g−i is the distribution of types of agents other than agent i. Note that ri(ti) is the

expected welfare of agents other than i when agent i reports ti. Then, the payment of agent

i at type profile t is defined as,

pA
i (t) =

1

n− 1

∑

j 6=i

rj(tj) − ri(ti).

This mechanism is clearly budget-balanced since summing the payments of all the agents

cancel out terms. The interpretation of this mechanism is the following. We can interpret

ri(xi) as the expected utility left for others when agent i he reports ti. So, 1
n−1

∑

j 6=i rj(xj) is

the average remainder utility of other agents. The term ri(xi) is his own remainder utility.

This difference is the payment.

Of course, this payment does not correspond to a Groves payment, and hence, this is not

a dominant strategy incentive compatible mechanism. However, we show below that it is

BIC.

Theorem 23 The AGV mechanism is BIC, efficient, and budget-balanced.

Proof : The AGV mechanism is efficient by definition, and we have seen that it is budget-

balanced. To see that it is Bayesian incentive compatible, consider agent i and suppose all

other agents report truthfully and report t−i. Consider si, ti ∈ Ti. Now,

α∗
i (ti)ti − πA

i (ti) − α∗
i (si)ti + πA

i (si) = Et−i

[

ti(f
∗
i (ti, t−i) − f ∗

i (si, t−i) + ri(ti) − ri(si)
]

= Et−i

[

ti(f
∗
i (ti, t−i) − f ∗

i (si, t−i) +W−i(ti, t−i) −W−i(si, t−i)
]

= Et−i

[

∑

j∈N

tj(f
∗
i (ti, t−i) −

∑

j∈N

tjf
∗
j (si, t−i)

]

≥ 0,

where the last inequality followed from efficiency. Hence, the AGV is BIC. �

119

We explain the AGV mechanism in the bilateral trading model. There are two agents -

a buyer (denoted by b) and a seller (denoted by s). The buyer’s values are drawn uniformly

from [0, 10] and the seller’s values are drawn uniformly from [−10,−5]. Consider the type

profile where the buyer has a value of 8 and the seller has a value of −7. By efficiency the

object must be allocated to the buyer (since 8 − 7 > 0). We now compute the remainder

utility of every agent. For the buyer, the remainder utility at value 8 is

rb(8) =

∫ −5

−10

a∗s(8, xs)xsgs(xs)dxs =

∫ −5

−8

xs
1

5
dxs =

−39

10
.

For the seller, the remainder utility at value −7 is

rs(−7) =

∫ 10

0

a∗b(xb,−7)xbgb(xb)dxb =

∫ 10

7

xb
1

10
dxb =

51

20
.

Hence, the payments of the buyer and the seller is given as

pA
b (8,−7) = rs(−7) − rb(8) =

149

20

pA
s (8,−7) = rb(8) − rs(−7) =

−149

20
.

Although in this instance, the AGV is also individually rational, in general, it is not IIR

- we will prove a general theorem regarding this. On one hand, the pivotal mechanism is

efficient, Bayesian incentive compatible, and individually rational but not budget-balanced.

On the other hand, the AGV mechanism is efficient, Bayesian incentive compatible, and

budget-balanced but may not be IIR.

We say a mechanism M ≡ (f, p) runs an expected surplus if

Et

[

∑

i∈N

pi(t)
]

≥ 0.

Note that

Et

[

∑

i∈N

pi(t)
]

=

∫

T

(

∑

i∈N

pi(t)
)

g(t)dx

=
∑

i∈N

∫

Ti

(

∫

T−i

pi(ti, t−i)g−i(t−i)dt−i)gi(ti)dxi

=
∑

i∈N

∫

Ti

πi(ti)gi(ti)dxi

Hence, an equivalent way of saying that a mechanism M ≡ (f, p) runs an expected surplus

is
∑

i∈N

Eti

[

πi(ti)
]

≥ 0.

120

Theorem 24 There exists an efficient, Bayesian incentive compatible, and interim individ-

ually rational mechanism which balances budget if and only if the modified pivotal mechanism

runs an expected surplus.

Proof : Suppose there exists a Bayesian incentive compatible mechanismM = (f ∗, p1, . . . , pn)

that is budget-balanced, efficient, and IIR. Assume for contradiction that the modified piv-

otal mechanism M∗ does not run an expected surplus. Then
∑

i∈N Eti

[

πM∗

i (ti)
]

< 0. By

Proposition 13, πM∗

i (ti) ≥ πM
i (ti) for all i and for all ti. Hence,

∑

i∈N

Eti

[

πM
i (ti)

]

≤
∑

i∈N

Eti

[

πM∗

i (ti)
]

< 0.

This implies that
∑

i∈N Eti

[

πM
i (ti)

]

< 0. But

∑

i∈N

Eti

[

πM
i (ti)

]

= Et

[

∑

i∈N

pi(t)
]

= 0

since M is budget-balanced. This is a contradiction.

Now, suppose the pivotal mechanism runs an expected surplus. So,
∑

i∈N Eti

[

πM
i (ti)

]

≥

0. Then, we will construct a mechanism which is efficient, Bayesian incentive compatible,

individually rational, and budget-balanced. Define for every agent i ∈ N ,

UM∗

i (ℓi) − UMA

i (ℓi) = di,

where MA is the AGV mechanism. Note that by Equation 4.1 for all i ∈ N and for all

ti ∈ Ti, we have

UM∗

i (ti) − UMA

i (ti) = di.

This means, for all i ∈ N and for all ti ∈ Ti, we have

πA
i (ti) − πM∗

i (ti) = di,

where πA is the expected payment in the AGV mechanism. 3 This implies that

Eti

[

πA
i (ti) − πM∗

i (ti)
]

= Etidi = di

Then, we have

∑

i∈N

Eti

[

πA
i (ti)

]

−
∑

i∈N

Eti

[

πM∗

i (ti)
]

=
∑

i∈N

di.

3Note that Proposition 13 cannot be applied here. This is because the AGV mechanism is not IIR, and

Proposition 13 applies only to BIC, efficient, and IIR mechanisms. Hence, we cannot conclude that di ≤ 0

for all i ∈ N .

121

This means

Et

[

∑

i∈N

pA(t)
]

− Et

[

∑

i∈N

pM∗

i (t)
]

=
∑

i∈N

di.

Using the fact that the AGV mechanism is budget-balanced and the pivotal mechanism runs

an expected surplus, we get that
∑

i∈N di ≤ 0.

Now, we define another mechanism M̄ = (f ∗, p̄) as follows. For every i ∈ N with i 6= 1,

and for every type profile x,

p̄i(t) = pA
i (t) − di.

For agent 1, at every type profile t, his payment is

p̄1(t) = pA
1 (t) +

∑

j 6=1

dj.

Note that M̄ is produced from the AGV mechanism MA. We have only added constants to

the payments of agents of MA, and the allocation rule has not changed from MA. Hence,

by revenue equivalence, M̄ is also Bayesian incentive compatible. Also, since MA is budget-

balanced, by definition of M̄ , it is also budget-balanced.

We will show that M̄ is individually rational. To show this, consider i 6= 1 and a type

ti ∈ Ti. Then,

UM̄
i (ti) = UMA

i (ti) + di = UM∗

i (ti) ≥ 0,

where the inequality follows from the fact that the pivotal mechanism is individually rational.

For agent 1, consider any type t1 ∈ T1. Then,

UM̄
1 (t1) = UMA

1 (t1) −
∑

j 6=1

dj ≥ UMA

1 (t1) + d1 = UM∗

1 (t1) ≥ 0,

where the first inequality comes from the fact that
∑

j∈N dj ≤ 0 and the second inequality

follows from the fact that the pivotal mechanism is individually rational. �

4.3.4 Impossibility in Bilateral Trading

We will now show the impossibility of efficient Bayes-Nash implementation, IIR, and budget-

balancedness in a model of bilateral trading. In this model there are two agents: a buyer,

denoted by b, and a seller, denoted by s. Seller s has a privately known cost c ∈ [cl, cu] and

122

buyer b has a privately known value v ∈ [vl, vu]. Suppose that vl < cu and vu ≥ cl - this is

to allow for trade in some type profiles and no trade in some type profiles. 4 If the object is

sold and the price paid by the buyer is pb and the price received by the seller is ps, then the

net payoff to the seller is ps − c and that to the buyer is v − pb. Efficiency here boils down

making trade whenever v > c. If v > c, the seller must produce the object at cost c and sell

it to the buyer. Budget-balance requires that pb = ps.

The following theorem is attributed to Myerson and Satterthwaite, and is called the

Myerson-Satterthwaite impossibility in bilateral trading.

Theorem 25 In the bilateral trading problem, there is no mechanism that is efficient,

Bayesian incentive compatible, IIR, and budget-balanced.

Proof : By Theorem 24, it is enough to show that the modified pivotal mechanism runs

an expected deficit. For this, note that when the type profile is (v, c), the modified pivotal

mechanism works as follows.

• If v ≤ c, then there is no trade and no payments are made.

• If v > c, there is trade and the buyer pays max{c, vl} and the seller receives min{v, cu}.

Consider a type profile (v, c) such that there is trade. This implies that v > c. Let ps be

the payment received by the seller and pb be the payment given by the buyer. By definition,

ps = min{v, cu} and pb = max{c, vl}. Note that if min{v, cu} = v, then we know that v > c

(since trade is taking place) and v ≥ vl (by definition). So, we have

ps = v ≥ max{c, vl} = pb.

Similarly, if min{v, cu} = cu, then we know that cu ≥ c (by definition) and cu > vl (by our

assumption). Hence, again,

ps = cu ≥ max{c, vl} = pb.

Hence, the total payment at all the profiles where trade takes place is pb − ps ≤ 0. Since

there is a positive measure of profiles where ps > pb (this happens whenever min{v, cu} = v),

the expected payment from the modified pivotal mechanism is negative. By Theorem 24,

there is no mechanism that is efficient, Bayesian incentive compatible, individually rational,

and budget-balanced. �

4If this condition is violated, then efficiency will require either trade in all type profiles or no trade in all

type profiles.

123

4.3.5 Impossibility in Choosing a Public Project

We now apply our earlier result to the problem of choosing a public project. There are

two choices available A = {0, 1}, where 0 indicates not choosing the public project and 1

indicates choosing the public project. There is a cost incurred if the public project is chosen,

and it is denoted by c. There are n agents, denoted by the set N = {1, . . . , n}. The value of

each agent for the project is denoted by vi. The set of possible values of agent i is denoted

by Vi = [0, bi].

An allocation rule f gives a number f(v) ∈ [0, 1] at every valuation profile v. The

interpretation of f(v) is the probability with which the public project is chosen. Let α(vi)

be the expected probability with which the public project is chosen if agent i reports vi.

It is then easy to extend the previous analysis and show that M ≡ (f, p) is Bayesian

incentive compatible if and only if α(·) is non-decreasing and the expected net utility of

agent i at type vi satisfies

UM
i (vi) = UM

i (0) +

∫ vi

0

α(xi)dxi.

We say an allocation rule f ∗ is cost-efficient if at every type profile v, f ∗(v) = 1

if
∑

i∈N vi ≥ c and f ∗(v) = 0 if
∑

i∈N vi < c. We can now define the modified pivotal

mechanism for f ∗. Denote the total welfare of agents at a valuation profile v by

W (v) = [
∑

i∈N

vi − c]f ∗(v)

Now, the payment in the modified pivotal mechanism is computed as follows. At valuation

profile v, the payment of agent i is,

p∗i (v) = W (0, v−i) −W−i(v) = [
∑

j 6=i

vj − c]f ∗(0, v−i) − [
∑

j 6=i

vj − c]f ∗(v)

= [c−
∑

j 6=i

vj][f
∗(v) − f ∗(0, v−i)].

Now, fix a valuation profile v and an agent i. Note that f ∗(v) ≥ f ∗(0, v−i) for all v. If

f ∗(0, v−i) = 0 and f ∗(v) = 1, then p∗i (v) = c −
∑

j 6=i vj . But f ∗(0, v−i) = 0 implies that

c >
∑

j 6=i vj . Hence, p∗i (v) > 0. Hence, p∗i (v) > 0 if and only if f ∗(v) = 1 but f ∗(0, v−i) = 0 -

such an agent i is called a“pivotal agent”. In all other cases, we see that p∗i (v) = 0. Note that

when p∗i (v) > 0, we have p∗i (v) = c−
∑

j 6=i vj ≤ vi. Hence, the modified pivotal mechanism

is individually rational. To see, why it has dominant strategy incentive compatibility, fix an

agent i and a profile (vi, v−i). If the public project is not chosen then his net utility is zero.

124

Suppose he reports v′i, and the public project is chosen, then he pays c −
∑

j 6=i vj > vi, by

definition (since the public project is not chosen at v, we must have this). Hence, his net

utility in that case is vi − [c −
∑

j 6=i vj] < 0. So, this is not a profitable deviation. If the

public project is chosen, he gets a non-negative utility, but reporting v′i does not change his

payment if the project is still chosen. If by reporting v′i, the project is not chosen, then his

utility is zero. Hence, this is not a profitable deviation either.

Also, note that when agent i reports vi = 0, then cost-efficiency implies that his net

utility is zero in the modified pivotal mechanism - he pays zero irrespective of whether the

project is chosen or not.

Using this, we can write that at any valuation profile v where the public project is chosen

(i.e.,
∑

i∈N vi ≥ c), the total payments of agents as follows. Let P be the set of pivotal agents

at valuation profile v. Note that only pivotal agents make payments at any valuation profile.

∑

i∈N

p∗i (v) =
∑

i∈P

p∗i (v)

=
∑

i∈P

[c−
∑

j 6=i

vj]

= |P |c−
∑

i∈P

∑

j 6=i

vj

= |P |c− (|P | − 1)
∑

i∈P

vi − |P |
∑

i/∈P

vi

≤ |P |c− (|P | − 1)
∑

i∈N

vi

≤ c,

where the equalities come from algebraic manipulation and the last inequality comes from

the fact that c ≤
∑

i∈N vi. Note that the last inequality is strict whenever
∑

i∈N vi > c. Of

course, if P = ∅, then
∑

i∈N p
∗
i (v) = 0. Hence, the total payments in the modified pivotal

mechanism is always less than or equal to c. Moreover, if there is a positive probability

with which choosing the public project strictly better than not choosing (i.e.,
∑

i∈N vi > c),

then the total payment in the modified pivotal mechanism is strictly less than c.

This means the total expected payment is also less than c. To see this, note that at

any type profile v
∑

i∈N π
∗
i (vi) =

∑

i∈N

∫

V−i
p∗i (vi, x−i)g−i(x−i)dx−i < c, where the strict

inequality follows from the fact that for some type profiles (where public project is chosen),

we have shown that the total payment in the modified pivotal mechanism is strictly less than

c.

Now, consider any other cost-efficient, Bayesian incentive compatible, and individually

125

rational mechanism M . By revenue equivalence, the expected payment of agent i at value

vi of M and the modified pivotal mechanism M∗ is related as follows:

UM
i (vi) − UM

i (0) = UM∗

i (vi) − UM∗

i (0) = UM∗

i (vi).

Using the fact that UM
i (0) ≥ 0, we get that UM

i (vi) ≥ UM∗

i (vi). Hence, like Proposition 13,

the expected payments of each agent in M is no greater than the expected payment in the

modified pivotal mechanism. This means for every type profile v, we have
∑

i∈N π
M
i (v) ≤

∑

i∈N π
∗
i (v) < c. Then, there is some type profile v, at which the total payments of all the

agents in M is less than c. This leads to the following result.

Theorem 26 Suppose that with positive probability, it is strictly better to choose the pub-

lic project than not. Then, there is no cost-efficient, Bayesian incentive compatible, IIR

mechanism which covers the cost of the public project.

126

Chapter 5

Multidimensional Mechanism Design

The analysis of optimal mechanism design and efficient and budget-balanced mechanism

design was possible because of the one-dimensional type space assumed. The problem of

finding similar results when the type of each agent is multidimensional is a significantly

challenging problem. However, some of the results that we discussed can still be generalized

to the multidimensional environment. We discuss this next.

For simplicity of exposition, we assume that there is only one agent. In this case, the

solution concept will not matter - dominant strategy and Bayesian reduce to the same thing.

However, if you want to extend this result to a multiple agent framework, you need to add for

all t−i in the dominant strategy implementation and integrate out over T−i in the Bayesian

implementation.

The notation will be as before. Let A be some finite set of alternatives and L(A) be the

set of all lotteries over A. There is a single agent. The type of the agent is t ∈ R|A|. Here,

we will use t(a) to denote the value of the agent for alternative a. The type space of the

agent is some set T ⊆ R|A|. Some examples are useful to see the applicability of this setting.

• Multi-object auction with unit demand. A seller is selling a set of objects to a

buyer who can be assigned at most one object. The value for the buyer for each object

is his type. The set of alternatives is the set of objects (and the alternative ∅ indicating

not being assigned to any object).

• Combinatorial auction. This is the same model as the previous one but now the

buyer can buy multiple objects. Hence, the set of alternatives is the set of all subsets

of objects. The value for each subset is the type of the agent.

• Public project selection. A planner needs to choose a project from multiple projects.

The value of the agent for each project is his type.

127

Like in voting problems, it is expected that not all vectors in R|A| are allowed to be types.

Hence, the type space can be a strict subset of R|A| with some restrictions. For instance, in

the combinatorial auction problem, we may require that for any pair of object a and b, at

any type t, t({a, b}) = t(a)+ t(b). This puts restrictions on how the type space looks. In the

public project problem, type vector may be single peaked with respect to some exogenous

ordering of the projects.

We will assume that all these restrictions are embedded in T . As in the analysis of

the single object auction, we will first give a characterization of all incentive compatible

mechanisms.

5.0.6 Incentive Compatible Mechanisms

A mechanism consists of an allocation rule f : T → L(A) and a payment rule p : T → R. If

type t is reported to the mechanism, then f(t) is a probability distribution over alternatives

at that type, where we denote by fa(t) the probability associated with alternative a. Hence,

an agent with type s who reports type t to the mechanism (f, p) gets a net utility of

s · f(t) − p(t),

where s · f(t) =
∑

a∈A s(a)fa(t).

As before, we associate with a mechanism M ≡ (f, p), a net utility function UM : T → R,

defined as

UM(t) := t · f(t) − p(t) ∀ t ∈ T,

which is the truth-telling net utility from the mechanism.

Definition 27 A mechanism M ≡ (f, p) is incentive compatible if for every s, t ∈ T ,

we have

t · f(t) − p(t) ≥ t · f(s) − p(s),

or equivalently,

UM(t) ≥ UM(s) + (t− s) · f(s).

An allocation rule f is implementable if there exist a payment rule p such that (f, p) is

incentive compatible.

Our first step is to generalize the characterization of mechanisms in Theorem 16 to this

environment. For this, we first need to define an appropriate notion of monotonicity of

allocation rule in this type space. Since, the type is multidimensional, it is not clear how this

128

can be defined. But the following is a well-known form of monotonicity in multidimensional

environment.

Definition 28 An allocation rule f is monotone if for every s, t ∈ T , we have

(t− s) ·
(

f(t) − f(s)
)

≥ 0.

This condition is often referred to as the 2-cycle monotonicity condition. We will

discuss the reasons below.

Our extension of Theorem 16 uses monotonicity.

Theorem 27 Suppose T ⊆ R|A| is convex. A mechanism M ≡ (f, p) is incentive compatible

if and only if

(a) f is monotone,

(b) for every s, t ∈ T ,

UM(t) = UM (s) +

∫ 1

0

ψs,t(z)dz,

where ψs,t(z) = (t− s) · f(s+ z(t− s)) for all z ∈ [0, 1].

Proof : Suppose M ≡ (f, p) is such that (a) and (b) hold. We will show that M is incentive

compatible. Choose any s, t ∈ T .

Step 1. We first show that for every z, z′ ∈ [0, 1] with z > z′, we have ψs,t(z) ≥ ψs,t(z′).

Pick z, z′ ∈ [0, 1] with z > z′. Since f is monotone, we have

[

(s+ z(t− s)) − (s+ z′(t− s))
]

·
[

f(s+ z(t− s)) − f(s+ z′(t− s))
]

≥ 0.

Simplifying, we get

(z − z′)(t− s) ·
[

f(s+ z(t− s)) − f(s+ z′(t− s))
]

≥ 0.

But z > z′ implies (t − s) ·
[

f(s + z(t − s)) − f(s + z′(t − s))
]

≥ 0, which implies

ψs,t(z) − ψs,t(z′) ≥ 0.

Step 2. Now, we can write

UM (t) − UM(s) − (t− s) · f(s) =

∫ 1

0

ψs,t(z)dz − (t− s) · f(s)

≥ ψs,t(0) − (t− s) · f(s)

= 0,

129

where the first equality follows from (b), the second inequality from Step 1 (non-decreasingness

of ψs,t), and the last equality follows from the fact that ψs,t(0) = (t− s) · f(s). This shows

that M is incentive compatible.

Now, for the other direction, we assume that M ≡ (f, p) is incentive compatible. We show

(a) and (b) some steps. Consider any s, t ∈ T .

Step A. Since M is incentive compatible, we get

t · f(t) − p(t) ≥ t · f(s) − p(s)

s · f(s) − p(s) ≥ s · f(t) − p(t).

Adding these two inequalities, we get (t− s) · (f(t) − f(s)) ≥ 0. Hence, f is monotone.

Step B. We define for every z ∈ [0, 1],

φ(z) := UM (s+ z(t− s)).

We now show that φ is a convex function. To see this, pick z̄, ẑ ∈ [0, 1] and λ ∈ (0, 1). Let

z̃ = λz̄ + (1 − λ)ẑ. Since M is incentive compatible, we get

φ(z̄) = UM (s+ z̄(t− s)) ≥ UM(s+ z̃(t− s)) + (z̄ − z̃)(t− s) · f(s+ z̃(t− s))

= φ(z̃) + (z̄ − z̃)(t− s) · f(s+ z̃(t− s)).

Similarly, we have

φ(ẑ) ≥ φ(z̃) + (ẑ − z̃)(t− s) · f(s+ z̃(t− s)).

Multiplying the first inequality by λ and the second one by (1 − λ) and summing them, we

get

λφ(z̄) + (1 − λ)φ(ẑ) ≥ φ(z̃).

This show that φ is convex.

Next, incentive compatibility of M implies that for every z, z′ ∈ [0, 1], we have

UM(s+ z(t− s)) ≥ UM (s+ z′(t− s)) + (z − z′)(t− s) · f(s+ z′(t− s)).

This implies that for every z, z′ ∈ [0, 1], we have

φ(z) ≥ φ(z′) + (z − z′)ψs,t(z′).

130

Hence, ψ(z′) is the subgradient of the convex function φ at z′. By Lemma 13, we get that

for every z′ ∈ [0, 1],

φ(z′) = φ(0) +

∫ z′

0

ψs,t(z)dz.

Hence,

φ(1) = φ(0) +

∫ 1

0

ψs,t(z)dz.

Substituting, we get

UM(t) = UM (s) +

∫ 1

0

ψs,t(z)dz.

�

Revenue/payoff equivalence. Theorem 27 immediately implies a payoff equivalence re-

sult. Consider two incentive compatible mechanisms M = (f, p) and M ′ = (f, p′) using the

same allocation rule f . Fix some type t0 ∈ T . By Theorem 27, for every t ∈ T ,

UM(t) − UM(t0) = UM ′

(t) − UM ′

(t0).

Hence, mechanisms M and M ′ assign different net utilities to the agent if and only if UM(t0)

and UM ′

(t0) are different. In other words, if two incentive compatible mechanisms use the

same allocation rule and assign the same net utility to the agent at some type, then they

must assigning the same net utility to the agent at all types. This is known as the payoff

equivalence result.

One-dimensional problems. We remark that monotonicity reduces to“non-decreasingness”

discussed in Theorem 16 for one-dimensional problem. We say a type space T is one-

dimensional if there exists an alternative a∗ ∈ A such that t(a) = 0 for all a 6= a∗ and

for all t ∈ T . In the single object auction setting a∗ is the alternative where the agent wins

the object. Note that if T is one-dimensional, then for any s, t ∈ T , (t − s) is a vector

whose components corresponding to any alternative a 6= a∗ are zero. Hence, for any s, t ∈ T ,

(t− s)(f(t) − f(s)), can be written as

(

t(a∗) − s(a∗)
)(

fa(t) − fa(s)
)

.

Monotonicity requires that the above term is non-negative. This is equivalent to saying that

if t(a∗) > s(a∗), then fa(t) ≥ fa(s).

In one-dimensional problem statement (b) in Theorem 27 also simplifies - compare it with

the analogue statement in Theorem 16. Suppose the value for alternative a∗ is lies in [ℓ,H].

131

For any x ∈ [ℓ,H], we write the unique type t with t(a∗) = x as tx. Now, fix a mechanism

M ≡ (f, p). Then, statement (b) is equivalent to requiring that for any x, y ∈ [ℓ,H], we

must have

UM(tx) = UM(ty) +

∫ 1

0

(tx − ty) · f(ty + z(tx − ty))dz

= UM(ty) +

∫ 1

0

(x− y)fa∗(ty + z(tx − ty))dz

Define φ(x′) := fa∗(x′) for all x′ ∈ [ℓ,H]. So, the above equation reduced to

UM(tx) = UM (ty) +

∫ 1

0

(x− y)φ(y + z(x − y))dz = UM (ty) +

∫ x

y

φ(x′)dx′

Now, if we only require for every x ∈ [ℓ,H],

UM(tx) = UM(tℓ) +

∫ x

ℓ

φ(x′)dx′,

then this will imply that for any x, y ∈ [ℓ,H]

UM(tx) − UM(ty) =

∫ x

ℓ

φ(x′)dx′ −

∫ y

ℓ

φ(x′)dx′

=

∫ x

y

φ(x′)dx′,

as desired in (b). This explains the weaker analogue of (b) in the one-dimensional version in

Theorem 16. However, in the multidimensional case we need the stronger version as stated

in (b) of Theorem 27. In other words, when type space is multidimensional, requiring (b) in

Theorem 27 to hold for every t ∈ T with respect to some “base” type s0 does not imply (b)

to hold for every pair of types s, t ∈ T .

5.0.7 The Implementation Problem

We now turn to the implementation problem, i.e., identifying conditions on an allocation rule

that characterizes implementability. Corollary 2 achieves this in the one-dimensional type

space. It shows that non-decreasingness of an allocation rule characterizes implementability

in the one-dimensional type space. Since monotonicity is the natural generalization (as we

showed above) of non-decreasingness for multidimensional type space, a natural conjecture is

then that monotonicity is equivalent to implementability. This conjecture is false. The reason

for this is the same reason why (b) in Theorem 27 is stronger than the analogue statement

132

in Theorem 16. In one-dimensional type space if an allocation rule is non-decreasing, then

fixing the UM value for the “lowest” type uniquely fixes the value of UM for all other types

using (b), and this automatically ensures the statement (b). However, in multidimensional

type space, fixing UM for some “base” type and then using (b) to fix the value of UM for all

other types does not ensure (b) to hold for all pairs of types.

To extend Corollary 2, we need a stronger version of monotonicity. Consider an imple-

mentable allocation rule f and two types s, t ∈ T . Since f is implementable there exist a

payment rule p such that the mechanism M ≡ (f, p) is incentive compatible. Then,

t · f(t) − p(t) ≥ t · f(s) − p(s)

s · f(s) − p(s) ≥ s · f(t) − p(t).

Adding these two constraints, we get that (t − s) ·
(

f(t) − f(s)
)

≥ 0, i.e., f is monotone.

We can do this exercise for a longer sequence of types too. For instance, take three types

s, t, x ∈ T and consider the incentive constraints

t · f(t) − p(t) ≥ t · f(s) − p(s)

s · f(s) − p(s) ≥ s · f(x) − p(x)

x · f(x) − p(x) ≥ x · f(t) − p(t).

Again, adding these constraints will cancel the payment terms and we will be left with only

a condition on allocation rules.

To define this longer sequence condition, we define some notation. Let ℓf (s, t) = t ·
(

f(t) − f(s)
)

for every s, t ∈ T . Note that incentive constraint from true type t to type s

is: p(t)− p(s) ≤ ℓf(s, t). A good way to interpret this is that we create a directed graph Gf

with set of nodes T (possibly infinite nodes). For every pair of nodes s, t ∈ T , we put an edge

from s to t and another from t to s. So, Gf is a complete directed graph. We assign a weight

of ℓf(s, t) to the edge from s to t. Monotonicity requires that the for every s, t ∈ T , we must

have ℓf(s, t) + ℓf (t, s) ≥ 0, i.e., 2-cycles (cycles involving pairs of nodes) have non-negative

length. The longer sequence condition requires cycles of arbitrary number of nodes must

have non-negative length.

Definition 29 An allocation rule satisfies cycle monotonicity if for any finite sequence

of types (s1, . . . , sk) each belonging to T , we have

k
∑

j=1

ℓf (sj, sj+1) ≥ 0,

where sk+1 ≡ s1.

133

Using ideas explained above, it is routine to verify that every implementable allocation rule

satisfies cycle monotonicity. The following theorem shows that the converse also holds - the

theorem does not require any assumption on type spaces (Theorem 27 required the type

space to be convex).

Theorem 28 An allocation rule is implementable if and only if it is cyclically monotone.

Proof : Suppose f is an implementable allocation rule. Consider a finite and distinct se-

quence of types (t1, t2, . . . , tk) with k ≥ 2. Since f is implementable, there exists a payment

rule p such that

p(t2) − p(t1) ≤ ℓf(t1, t2)

p(t3) − p(t2) ≤ ℓf(t2, t3)

. . . ≤ . . .

. . . ≤ . . .

p(tk) − p(tk−1) ≤ ℓf(tk−1, tk)

p(t1) − p(tk) ≤ ℓf(tk, t1).

Adding these inequalities, we obtain that ℓf(t1, t2)+ℓf (t2, t3)+. . .+ℓf (tk−1, tk)+ℓf (tk, t1) ≥ 0.

Now, suppose f satisfies cycle monotonicity. For any two types s, t ∈ T , let P (s, t) denote

the set of all (finite) paths from s to t in Gf . The set P (s, t) is non-empty because the direct

edge from s to t in Gf always exists. Define the shortest path length from s to t (s 6= t)

as follows.

dist(s, t) = inf
P∈P (s,t)

ℓf (P),

where ℓf(P) is the length of path P . Let dist(s, s) = 0 for all s ∈ T . First, we show that

dist(s, t) is finite. Consider any path P ∈ P (s, t). By cycle monotonicity, ℓf(P) ≥ −ℓf (t, s).

Hence, dist(s, t) ≥ −ℓf (t, s). Since ℓf(t, s) is bounded, dist(s, t) is finite.

Now, fix a type r ∈ T . Consider two types s, t ∈ T . We first prove a useful lemma.

Lemma 17 Suppose f satisfies cycle monotonicity. For any r, s, t ∈ T with s 6= t, we have

dist(r, t) ≤ dist(r, s) + ℓf(s, t).

Proof : If r = t, dist(r, t) = dist(r, r) = 0. By cycle monotonicity, dist(t, s) ≥ −l(s, t)

or dist(r, s) + ℓf (s, t) = dist(t, s) + ℓf(s, t) ≥ 0 = dist(r, r) = dist(r, t). If r = s, then

dist(r, t) ≤ ℓf(r, t) = dist(r, s) + ℓf(s, t). If r 6= s 6= t, consider any path P from r to s. We

134

distinguish between two possible cases.

Case 1: Path P contains t. In that case, let Q1 be the path from r to t in P and

Q2 be the path from t to s. Hence, ℓf(P) = ℓf(Q1) + ℓf (Q2). Adding ℓf(s, t) on both

sides, we get ℓf(P) + ℓf (s, t) = ℓf(Q1) + ℓf (Q2) + ℓf (s, t). Using cycle monotonicity,

we get ℓf (Q2) + ℓf(s, t) ≥ 0, and hence, ℓf (P) + ℓf (s, t) ≥ ℓf(Q1) ≥ dist(r, t). Hence,

ℓf(P) + ℓf(s, t) ≥ dist(r, t).

Case 2: Path P does not contain t. In that case, by definition dist(r, t) ≤ ℓf(P) + ℓf(s, t),

i.e., ℓf(P) + ℓf(s, t) ≥ dist(r, t).

Hence, in both cases, we see ℓf(P)+ ℓf(s, t) ≥ dist(r, t). Since this holds for every path from

r to s, we have dist(r, s) + ℓf(s, t) ≥ dist(r, t). �

Now, define the following payment rule: let p(s) = dist(r, s) for all s ∈ T .

Take any s, t ∈ T . We have p(t) − p(s) = dist(r, t) − dist(r, s) ≤ ℓf (s, t), where the

inequality follows from Lemma 17. Hence, f is implementable. �

As noted cycle monotonicity is a significantly stronger condition than monotonicity. We

say f is deterministic if for all t ∈ T and for all a ∈ A, fa(t) ∈ {0, 1}. Monotonicity

has been shown to imply cycle monotonicity if type space is convex and allocation rule is

deterministic. We state this as a theorem below without giving a proof.

Theorem 29 Suppose T is convex and let f : T → L(A) be a deterministic allocation rule.

Then, f is implementable if and only if it is monotone.

5.0.8 Optimal Multi-Object Auction

Our discussions so far have shown how many of the results for one-dimensional mechanism

design can be extended when the type space is multidimensional. Though, it gives an expres-

sion for payment (via (b) of Theorem 27), this expression is not as easy to handle because the

expectation over the type space is now complicated. As a result, the Myersonian technique

that we employed for the one-dimensional type space does not yield any useful result. It is

still an open question on how to derive optimal multi-object auction even for the two object

case.

135

136

Bibliography

E. Clarke. Multipart pricing of public goods. Public Choice, 8:19–33, 1971.

T. Groves. Incentives in teams. Econometrica, 41:617–663, 1973.

J. C. Harsanyi. Games of incomplete information played by ‘bayesian’ players. Management

Science, 14:159–189, 320–334, 486–502, 1967-68.

Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6:58–73,

1981.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of

Finance, 16:8–37, 1961.

137

	Introduction to Mechanism Design
	Introduction
	Private Information and Utility Transfers
	Examples in Practice

	A General Model of Mechanism Design
	Dominant Strategy Incentive Compatibility
	Bayesian Incentive Compatibility

	Mechanism Design without Transfers
	The Strategic Voting Model
	Examples of Social Choice Functions
	Implications of Properties
	The Gibbard-Satterthwaite Theorem
	Proof of the Gibbard-Satterthwaite Theorem

	Single Peaked Domain of Preferences
	Possibility Examples in Single-Peaked Domains
	Median Voter Result
	Properties of Social Choice Functions
	Characterization Result

	Private Good Allocation
	Allocating a Divisible Commodity

	One Sided Matching - Object Allocation Mechanisms
	Top Trading Cycle Mechanism with Fixed Endowments
	Stable House Allocation with Existing Tenants
	Generalized TTC Mechanisms

	The Two-sided Matching Model
	Stable Matchings in Marriage Market
	Deferred Acceptance Algorithm
	Stability and Optimality of Deferred Acceptance Algorithm
	Strategic Issues in Deferred Acceptance Algorithm
	Extensions with Quotas and Individual Rationality

	Applications of Various Matching Models
	Randomized Social Choice Function
	Defining Strategy-proof RSCF
	Randomization over DSCFs
	The Counterpart of Gibbard-Satterthwaite Theorem

	Mechanism Design with Transfers and Quasilinearity
	A General Model
	Allocation Rules
	Payment Functions
	Incentive Compatibility
	An Example
	Two Properties of Payments
	Efficient Allocation Rule is Implementable

	The Vickrey-Clarke-Groves Mechanism
	Illustration of the VCG (Pivotal) Mechanism
	The VCG Mechanism in the Combinatorial Auctions
	The Sponsored Search Auctions

	Affine Maximizer Allocation Rules are Implementable
	Public Good Provision
	Restricted and Unrestricted Type Spaces

	Mechanism Design for Selling a Single Object
	The Single Object Auction Model
	The Vickrey Auction
	Facts from Convex Analysis
	Monotonicity and Revenue Equivalence
	The Efficient Allocation Rule and the Vickrey Auction
	Deterministic Allocations Rules
	Individual Rationality

	Optimal Auction Design
	Auctions for a Single Indivisible Object
	The Model
	The Direct Mechanisms
	Bayesian Incentive Compatible Mechanisms
	Optimal Mechanisms

	Impossibility of Efficiency and Budget-balance
	A General Model and Characterization of Budget-Balance
	The Modified Pivotal Mechanism
	The AGV Mechanism
	Impossibility in Bilateral Trading
	Impossibility in Choosing a Public Project

	Multidimensional Mechanism Design
	Incentive Compatible Mechanisms
	The Implementation Problem
	Optimal Multi-Object Auction

