
Theory of Mechanism Design

Debasis Mishra1

November 12, 2024

1Economics and Planning Unit, Indian Statistical Institute, 7 Shahid Jit Singh Marg, New Delhi

110016, India, E-mail: dmishra@isid.ac.in

http://www.isid.ac.in/~dmishra

2

Contents

1 Introduction to Mechanism Design 7

1.0.1 Private Information and Utility Transfers 8

1.0.2 Examples in Practice . 9

1.1 A General Model of Preferences . 11

1.2 Social Choice Functions and Mechanisms . 13

1.3 Dominant Strategy Incentive Compatibility 15

1.4 Bayesian Incentive Compatibility . 17

1.4.1 Failure of revelation principle . 20

2 Mechanism Design with Transfers and Quasilinearity 23

2.1 A General Model . 24

2.1.1 Allocation Rules . 24

2.1.2 Payment Functions . 26

2.1.3 Incentive Compatibility . 27

2.1.4 An Example . 27

2.1.5 Two Properties of Payments . 28

2.1.6 Efficient Allocation Rule is Implementable 29

2.2 The Vickrey-Clarke-Groves Mechanism . 32

2.2.1 Illustration of the VCG (Pivotal) Mechanism 33

2.2.2 The VCG Mechanism in the Combinatorial Auctions 35

2.2.3 The Sponsored Search Auctions . 37

2.3 Affine Maximizer Allocation Rules are Implementable 38

2.3.1 Public Good Provision . 41

2.3.2 Restricted and Unrestricted Type Spaces 42

3

3 Mechanism Design for Selling a Single Object 45

3.1 The Single Object Auction Model . 45

3.1.1 The Vickrey Auction . 45

3.1.2 Facts from Convex Analysis . 46

3.1.3 Monotonicity and Revenue Equivalence 49

3.1.4 The Efficient Allocation Rule and the Vickrey Auction 53

3.1.5 Deterministic Allocations Rules . 54

3.1.6 Individual Rationality . 55

3.1.7 Beyond Vickrey auction: examples 56

3.1.8 Bayesian incentive compatibility . 58

3.1.9 Independence and characterization of BIC 59

3.2 The One Agent Problem . 62

3.2.1 Monopolist problem . 65

3.3 Optimal Auction Design . 70

3.4 Correlation and full surplus extraction . 82

4 Redistribution mechanisms 87

4.1 A model of redistributing a single object . 88

4.2 Characterizations of IC and IR constraints 89

4.3 Dissolving a partnership . 91

4.3.1 Corollaries of Theorem 14 . 94

4.4 Dominant strategy redistribution . 97

4.5 The dAGV mechanism . 102

5 Multidimensional Mechanism Design 105

5.1 Incentive Compatible Mechanisms . 106

5.1.1 An illustration . 106

5.2 The Implementation Problem . 113

5.3 Revenue Equivalence . 119

5.4 Optimal Multi-Object Auction . 122

6 Extensions 129

6.1 Classical Preferences . 129

4

6.1.1 Type Spaces with Income Effects . 130

6.1.2 Mechanisms and Incentive Compatibility 133

6.1.3 Vickrey Auction with Income Effect 135

6.2 Interdependent valuations . 139

6.2.1 Mechanisms and Ex-post Incentive Compatibility 140

6.2.2 Efficiency: Impossibility and Possibility 141

7 The Strategic Voting Model 147

7.1 The Unrestricted Domain Problem . 147

7.1.1 Examples of Social Choice Functions 149

7.1.2 Implications of Properties . 150

7.1.3 The Gibbard-Satterthwaite Theorem 153

7.1.4 Proof of the Gibbard-Satterthwaite Theorem 154

7.2 Single Peaked Domain of Preferences . 160

7.2.1 Possibility Examples in Single-Peaked Domains 163

7.2.2 Median voter social choice function 164

7.2.3 Properties of Social Choice Functions 165

7.2.4 Characterization Result . 168

7.3 Randomized Social Choice Function . 173

7.3.1 Defining Strategy-proof RSCF . 174

7.3.2 Randomization over DSCFs . 176

7.3.3 The Counterpart of Gibbard-Satterthwaite Theorem 177

8 Matching Theory 181

8.1 Object Assignment Model . 182

8.1.1 The fixed priority mechanism . 182

8.1.2 Top Trading Cycle Mechanism with Fixed Endowments 189

8.1.3 Stable House Allocation with Existing Tenants 193

8.1.4 Generalized TTC Mechanisms . 198

8.2 The Two-sided Matching Model . 200

8.2.1 Stable Matchings in Marriage Market 201

8.2.2 Deferred Acceptance Algorithm . 202

5

8.2.3 Stability and Optimality of Deferred Acceptance Algorithm 204

8.2.4 Unequal number of men and women 209

8.2.5 Strategic Issues in Deferred Acceptance Algorithm 211

8.2.6 College Admission Problem . 214

8.3 Two-sided matching with priorities . 217

6

Chapter 1

Introduction to Mechanism Design

Consider a seller who owns an indivisible object, say a house, and wants to sell it to a set

of buyers. Each buyer has a value for the object, which is her willingness to pay for the

house. The seller wants to design a selling procedure, an auction for example, such that he

gets the maximum possible price (revenue) by selling the house. If the seller knew the values

of the buyers, then he would simply offer the house to the buyer with the highest value

and give him a “take-it-or-leave-it” offer at a price equal to that value. Clearly, the (highest

value) buyer has no incentive to reject such an offer. Now, consider a situation where the

seller does not know the values of the buyers. What selling procedure will give the seller the

maximum possible revenue? A clear answer is impossible if the seller knows nothing about

the values of the buyer. However, the seller may have some information about the values of

the buyers. For example, the possible range of values, the probability of having these values

etc. Given these information, is it possible to design a selling procedure that guarantees

maximum (expected) revenue to the seller?

In this example, the seller had a particular objective in mind - maximizing revenue. Given

his objective he wanted to design a selling procedure such that when buyers participate in

the selling procedure and try to maximize their own payoffs within the rules of the selling

procedure, the seller will maximize his expected revenue over all such selling procedures.

The study of mechanism design looks at such issues. A planner (mechanism designer)

needs to design a mechanism (a selling procedure in the above example) where strategic

agents can interact. The interactions of agents result in some outcome. While there are

several possible ways to design the rules of the mechanism, the planner has a particular

7

objective in mind. For example, the objective can be utilitarian (maximization of the total

utility of agents) or maximization of his own utility (as was the case in the last example) or

some fairness objective. Depending on the objective, the mechanism needs to be designed in

a manner such that when strategic agents interact, the resulting outcome gives the desired

objective. One can think of mechanism design as the reverse engineering of game theory. In

game theory terminology, a mechanism induces a game-form whose equilibrium outcome is

the objective that the mechanism designer has set.

1.0.1 Private Information and Utility Transfers

The primitives a mechanism design problem are the set of possible outcomes or alternatives

and preferences of agents over the set of alternatives. These preferences are not known to

the mechanism designer. Mechanism design problems can be classified based on the amount

of information asymmetry present between the agents and the mechanism designer.

1. Complete Information: Consider a setting where an accident takes place on the

road. Three parties (agents) are involved in the accident. Everyone knows perfectly

who is at fault, i.e., who is responsible to what extent for the accident. The traffic

police comes to the site but does not know the true information about the accident.

The mechanism design problem is to design a set of rules where the traffic police’s

objective (to punish the true offenders) can be realized. The example given here falls

in a broad class of problems where agents perfectly know all the information between

themselves, but the mechanism designer does not know this information.

This class of problems is usually termed as the implementation problem. It is usually

treated separately from mechanism design because of strong requirements in equilib-

rium properties in this literature. We will not touch on the implementation problem

in this course.

2. Private Information and Interdependence: Consider the sale of a single object.

The utility of an agent for the object is his private information. This utility information

may be known to him completely, but usually not known to other agents and the

mechanism designer. There are instances where the utility information of an agent

may not be perfectly known to him. Consider the case where a seat in a flight is

8

being sold by a private airlines. An agent who has never flown this airlines does not

completely know his utility for the flight seat. However, there are other agents who

have flown this airlines and have better utility information for the flight seat. So, the

utility of an agent is influenced by the information of other agents. The mechanism

designer does not know the information agents have.

Besides the type of information asymmetry, mechanism design problems can also be

classified based on whether monetary transfers are involved or not. Transfers are a means to

redistribute utility among agents.

1. Models without transfers. Consider a setting where a set of agents are deciding

to choose a candidate in an election. There is a set of candidates in the election. Agents

have preference over the candidates. Usually monetary transfers are not allowed in

such voting problems. Other problems where monetary transfers are not allowed are

matching problems - matching students to schools, kidneys to patients etc.

2. Models with transfers and quasi-linear utility. The single object auction

is a classic example where monetary transfers are allowed. If an agent buys the object

he is expected to pay an amount to the seller. The net utility of the agent in that

case is his utility for the object minus the payment he has to make. Such net utility

functions are linear in the payment component, and is referred to as the quasi-linear

utility functions.

In this course, we will focus on (a) voting models without transfers and (b) models with

transfers and quasi-linear utility. We will briefly touch on some models of non-quasilinearity.

In voting models, we will mainly deal with ordinal preferences, i.e., intensities of preferences

will not matter. We will mainly focus on the case where agents have private information

about their preferences over alternatives. Note that such private information is completely

known to the respective agents but not known to other agents and the mechanism designer.

We will briefly touch on some models of interdependence of preferences.

1.0.2 Examples in Practice

The theory of mechanism design is probably the most successful story of game theory. Its

practical applications are found in many places. Below, we will look at some of the applica-

9

tions.

1. Matching. Consider a setting where students need to be matched to schools. Stu-

dents have preferences over schools and schools have preference over students. What

mechanisms must be used to match students to schools? This is a model without any

transfers. Lessons from mechanism design theory has been used to design centralized

matching mechanisms for major US cities like Boston and New York. Such mechanisms

and its variants are also used to match kidney donors to patients, doctors to hospitals,

and many more.

2. Sponsored Search Auction. If you search for a particular keyword on Google, once the

search results are displayed, one sees a list of advertisements on the top and (sometimes)

on the right of the search results - see Figure 1.1. Such slots for advertisements are

dynamically sold to potential buyers (advertising companies) as the search takes place.

One can think of the slots on a page of search result as a set of indivisible objects. So,

the sale of slots on a page can be thought of as simultaneous sale of a set of indivisible

objects to a set of buyers. This is a model where buyers make payments to Google.

Google uses a variant of a well studied auction in the auction theory literature (Edelman

et al., 2007). Bulk of Google’s revenues come from such auctions.

3. Spectrum Auction. Airwave frequencies are important for communication. Tradition-

ally, Government uses these airwaves for defense communication. In late 1990s, various

Governments started selling (auctioning) airwaves for private communication (Ausubel

and Milgrom, 2006). Airwaves for different areas were sold simultaneously. For exam-

ple, India is divided into various “circles” like Delhi, Punjab, Haryana etc. A commu-

nication company can buy the airwaves for one or more circles. Adjacent circles have

synergy effects and distant circles have substitutes effects on utility. Lessons from auc-

tion theory were used to design auctions for such spectrum sale in US, UK, India, and

many other European countries. The success of some of these auctions have become

the biggest advertisement of game theory.

10

About 7,37,00,000 results (0.52 seconds)

Report images

Cute Walk
Sports Shoes
...₹ 484.25
FirstCry India

Lotto Legend
White & Navy
...₹ 1,319.00
TataCLiQ.com

Nivia Yorks
Running ...
₹ 929.00
Schoolkart

Lotto Hurry
Black & Blue ...
₹ 1,379.00
TataCLiQ.com

Provogue
Running
Shoes₹ 499.00
Flipkart

Earton Men's
White EVA ...
₹ 298.00
Amazon India

Images for Running Shoes

More images for Running Shoes

SponsoredShop for Running Shoes on Google

Running Shoes - 40% to 70% Off On Select Brands - amazon.in ​
Ad www.amazon.in/Running+Shoes ​
Easy Returns & Pay On Delivery!
100% Purchase Protection · Cash on Delivery · Huge Selection · Free Shipping*
Types: Casual Shoes, Formal Shoes, Sports Shoes, Sandals & Floaters, Flip-flops, Boots, Sneakers, …
Mens Shoes · Sales & Deals · Womens Shoes · Kids Shoes

Buy Running Shoes Online - Get Up to 60% Off On Shoes - abof.com​
Ad www.abof.com/Shoes/Running​
Use Coupon ABOFSS100 For Rs 100 Off On a Purchase of Rs 1295. Hurry!
Hassle Free Returns · Curated Merchandise · Spring-Summer Collections · Cash On Delivery

Running Shoes for Men - Buy Shoes Online in India | Jabong.com
www.jabong.com › Men › Shoes
Buy Men's Running Shoes Online in India. Select from the best range of Running Shoes at
Jabong.com. ✓ easy shipping ✓ 15 days Return ✓ Cash on Delivery ...

Running Shoes - Buy Running Shoes Online at Best Prices in India ...
www.flipkart.com › Footwear › Men's Footwear › Sports Shoes
Shop Running Shoes Online and Check Latest Running Shoes Collections with Price and exciting
offers in India's favourite Online Shopping Site.

Amazon.in: Running Shoes: Shoes & Handbags
www.amazon.in/Mens-Running-Shoes/b?ie=UTF8&node=1983550031
Results 1 - 60 of 7427 - Online shopping for Running Shoes from a great selection at Shoes &
Handbags Store.

Mens Running Shoes at SportsDirect.com
www.sportsdirect.com › Running › Running Shoes
Improve your personal best with our fantastic collection of men's running shoes and trainers from
specialist running brands such as Nike, adidas, Karrimor and ...

Men's Running Shoes at Road Runner Sports
www.roadrunnersports.com/rrs/mensshoes/mensshoesrunning/
Get the best running shoes for men at Road Runner Sports based on your arch type, body type &
running terrain. Shop now!

Running Shoes | Zappos.com FREE Shipping | Zappos.com
www.zappos.com/running-shoes
Running Shoes Neutral Running Shoes Crosstraining Shoes Stability Running Shoes Trail Running
Shoes Running Clothing & Activewear Running Tops, Tees, ...

Sneakers & Athletic Shoes, Running | Shipped Free at Zappos
www.zappos.com/sneakers-athletic-shoes/CK_XARC81wE6Ap4L.zso
2536 items - Free shipping BOTH ways on Sneakers & Athletic Shoes, Running, from our vast

All Images News Videos Search toolsMore

Figure 1.1: Sponsored search on Google

1.1 A General Model of Preferences

We will now formally define a model that will set up some basic ingredients to study mecha-

nism design. The model will be general enough to cover cases where transfers are permitted

and where it is excluded.

Let N := {1, . . . , n} be a set of n agents. Let Xi be the set of possible outcomes for

agent i. These outcomes can represent a variety of situations. In particular, we will often

encounter situations where Xi may be decomposable to two sets: a set of alternatives Ai

and transfers (which can take any value). Hence, the set of transfers is R. In other words,

Xi ≡ Ai × R, where the agent i enjoys an “alternative” from Ai and a transfer amount in R
as outcome.

11

There are situations where transfers are not allowed - either as an institutional constraint

(as in voting) or as an ethical constraint (as in kidney donation). In that case, each Xi

represents the set of alternatives (without any transfers).

In either case, the primitives of the model must allow preferences of the agents over the

set of outcomes. The preference of each agent i is his preference over Xi, which is completely

known to her and private information to her. This is called the private values model in

mechanism design. The private preference over Xi is called the type of agent i. We will

denote the preference (type) of each agent i as Ri, which will be assumed to be a complete

and transitive binary relation over the set of outcomes Xi. We will denote the symmetric or

indifference part of Ri as Ii and the strict part of Ri as Pi.

When there are no transfers, this is just a complete and transitive binary relation over

the set of alternatives Ai ≡ Xi. A well known example is voting.

An outcome vector x ≡ (x1, . . . , xn) ∈ X1 × . . . × Xn is a vector such that xi ∈ Xi.

In many problems, we will require that x1 = x2 = . . . = xn. An example is the voting

problem. In the voting model, Xi may represent the set of candidates in an election (and

hence, X1 = X2 = . . . = Xn) and N the set of voters. The type of agent i is a ranking of

the set of candidates, which can potentially allow the agent to be indifferent between some

candidates. For instance if X1 = X2 = . . . = Xn = {a, b, c} and Ri is a preference of agent

i over {a, b, c}, then it can be something like a Ri b Ri c. Here, if agent i strictly prefers

a over all candidates, then we have a Pi b and a Pi c. An outcome vector in this model

allocates the same candidate to all the voters: if a is selected then, x1 = x2 = . . . = xn = a.

These are called public good problems, where the outcome vectors satisfy that they have to

be the same outcome. Hence, in public good problems, we assume X1 = . . . = Xn and each

x ∈ X1 × . . .×Xn satisfies x1 = . . . = xn.

This need not be the case in private good problems. For instance, if X1 = X2 = . . . =

Xn is a set of objects that are being allocated to n agents, then in any outcome vector

x = (x1, . . . , xn), we will require that xi ̸= xj for each i, j pair (the same object cannot be

allocated to two different agents). In the single object allocation problem, we consider sale or

allocation of a single indivisible object to a set of buyers. Usually, this also involves payment

or transfer. Hence, an outcome consists of two components: (a) an allocation decision and

(b) a payment amount decision. Abstractly, an outcome xi ∈ Xi consists of (ai, pi) with

ai ∈ {0, 1} and pi ∈ R. Each outcome vector x ≡ (a, p) must satisfy
∑

i∈N ai ≤ 1.

12

Consider the problem of choosing a public good. The citizens of a city are deciding

whether to build a public project (park, bridge, museum etc.) or not. This is usually

accompanied by a decision on the amount of tax each citizen must pay to finance the project.

Formally, N is the set of citizens and set of outcomes consists of outcomes which are pairs

of the form (a, p) with a being the public project chosen and p being the tax amount. There

are additional restrictions: total tax collected must cover the cost of the public good (if it is

provided).

Summarizing, the set of possible and feasible outcomes vary from problem to problem.

Abstractly, we fix the set of possible outcome vectors as some subset X ⊆ X1×X2× . . .×Xn.

Transfers and Quasilinear preferences. When there are transfers, a preference Ri will

represent a preference over the outcome space Xi ≡ Ai×R. We will usually restrict attention

to the case where Ai is finite - but we will deal with some specific cases where Ai is not finite,

in particular, where Ai is a set of lotteries over some finite set of deterministic alternatives.

We will impose some standard (and natural) restrictions on preferences. A typical out-

come in Xi is a tuple (ai, ti), where ai ∈ Ai is an alternative and ti ∈ R is the transfer paid

by the agent. When transfers are allowed, we will mostly deal with the following kind of

preferences.

Definition 1 A classical preference Ri is quasilinear if there exists a map vi : Ai → R such

that for any (a, t), (b, t′) ∈ X, we have[
(a, t) Ri (b, t

′)
]
⇔

[
(vi(a)− t) ≥ (vi(b)− t′)

]
.

Obviously, if vi is a map representing Ri and v
′
i is such that vi(a)− vi(b) = v′i(a)− v′i(b)

for each a, b ∈ Ai, then it also represents the same quasilinear preference relation Ri. Often

(without loss of generality), we will normalize vi(a) = 0 for some a.

Quasilinear preferences rule out income effects. We do not impose this restriction on

preferences in this chapter but we will do so in subsequent sections dealing with mechanism

design problems with transfers.

1.2 Social Choice Functions and Mechanisms

A planner or designer has some objectives in mind. The social choice function is supposed to

capture it - think of it as what the designer would have done had she known the preferences

13

of the agent. This will mean that if he knew the profile of preferences of the agents over

the outcome space, how he would select an outcome. A social choice function is a complete

description of his plan of action for every possible profiles of preferences.

Hence, it is important to describe what a planner thinks is the “possible” profiles of

preferences. This is usually referred to as the domain or type space. Let Ri denote the set

of all possible preferences of agent i over outcomes Xi. The domain of agent i is a subset of

preferences Di ⊆ Ri. The domains of agents are common knowledge among agents and the

designer. Let

D ≡ D1 × . . .×Dn,

be the set of all possible type profiles.

A social choice function (SCF) is a map F : D → X . So, at every preference profile

R ≡ (R1, . . . , Rn) ∈ D, the scf F assigns an outcome vector in X for agents. We will denote

the outcome assigned to an agent i at preference profile R as Fi(R).

In settings where transfers are allowed, it is convenient to think of an SCF F as a

collection tuples (f, p), where f : D → A is the allocation rule with A ⊆ (A1 × . . . × An)

and p : D → Rn being the payment function of the n agents. At preference profile R, the

allocation decision of agent i will then be denoted by fi(R) ∈ Ai and the payment decision

by pi(R).

In settings where transfers are not permitted, X ≡ A and F ≡ f . Hence, in settings

where transfers are not allowed Fi(R) = fi(R) for all i and for all R ∈ D.

Mechanisms. A mechanism is a more complicated object than an SCF. The main objective

of a mechanism is to set up rules of interaction between agents. These rules are often designed

with the objective of realizing the outcomes of a social choice function. The basic ingredient

in a mechanism is a message. A message is a communication between the agent and the

mechanism designer. You can think of it as an action chosen in various contingencies in a

Bayesian game - these messages will form the actions for various contingencies of agents in

a Bayesian game that the designer will set up.

A mechanism must specify the message space for each agent. A message space has to

specify various contingencies that may arise in a mechanism and available actions at each of

the contingencies. This in turn induces a Bayesian game with messages playing the role of

14

actions. Given a message profile, the mechanism chooses an outcome.

Definition 2 A mechanism is a collection of message spaces and a decision rule: M ≡
(M1, . . . ,Mn, ϕ), where

• for every i ∈ N , Mi is the message space of agent i and

• ϕ :M1 × . . .×Mn → X is the decision rule.

A mechanism is a direct mechanism if Mi = Di for every i ∈ N .

So, in a direct mechanism, every agent communicates a type from his type space to the

mechanism designer. Hence, if F is an scf, then ((D1, . . . ,Dn), F) is a direct mechanism -

for simplicity, we will just refer to F as a (direct) mechanism.

We denote the outcome of agent i in a mechanism (M1, . . . ,Mn, ϕ) by ϕi(m1, . . . ,mn) for

each (m1, . . . ,mn) ∈M1 × . . .×Mn.

The message space of a mechanism can be quite complicated. Consider the sale of a single

object by a “price-based” procedure. The mechanism designer announces a price and asks

every buyer to communicate if he wants to buy the object at the announced price. The price

is raised if more than one buyer expresses interest in buying the object, and the procedure

is repeated till exactly one buyer shows interest. The message space in such a mechanism is

quite complicated. Here, a message must specify the communication of the buyer (given his

type) for every contingent price.

1.3 Dominant Strategy Incentive Compatibility

We now introduce the notion of incentive compatibility. The idea of a mechanism and

incentive compatibility is often attributed to the works of Hurwicz - see (Hurwicz, 1960).

The goal of mechanism design is to design the message space and outcome function in a way

such that when agents participate in the mechanism they have (best) actions (messages) that

they can choose as a function of their private types such that the desired outcome is achieved.

The most fundamental, though somewhat demanding, notion of incentive compatibility in

mechanism design is the notion of dominant strategies.

15

A strategy is a map si : Di → Mi, which specifies the message each agent i will choose

for every realization of his preference. A strategy si is a dominant strategy for agent i in

mechanism ((M1, g1), . . . , (Mn, gn)), if for every Ri ∈ Di we have

ϕi(si(Ri),m−i) Ri ϕi(m
′
i,m−i) ∀ m′

i ∈Mi, ∀ m−i.

Notice the strong requirement that si has to be a best strategy for every possible message

profile of other agents at every profile. Such a strong requirement limits the settings where

dominant strategies exist.

Definition 3 A social choice function F is implemented in dominant strategy equilibrium

by a mechanism (M1, . . . ,Mn, ϕ) if there exists strategies (s1, . . . , sn) such that

1. (s1, . . . , sn) is a dominant strategy equilibrium of (M1, . . . ,Mn, ϕ), and

2. ϕi(s1(R1), . . . , sn(Rn)) = Fi(R1, . . . , Rn) for all i ∈ N and for all (R1, . . . , Rn) ∈ D.

For direct mechanisms, we will look at equilibria where everyone tells the truth.

Definition 4 A direct mechanism (or associated social choice function) is strategy-proof

or dominant strategy incentive compatible (DSIC) if for every agent i ∈ N and every

Ri ∈ Di, the truth-telling strategy si(Ri) = Ri for all Ri ∈ Di is a dominant strategy.

In other words, F is strategy-proof if for every agent i ∈ N , every R−i ∈ D−i, and every

Ri, R
′
i ∈ Di, we have

Fi(Ri, R−i) Ri Fi(R
′
i, R−i),

So, to verify whether a social choice function is implementable or not, we need to search

over infinite number of mechanisms whether any of them implements this SCF. A fundamen-

tal result in mechanism design says that one can restrict attention to the direct mechanisms.

Proposition 1 (Revelation Principle, Myerson (1979)) If a mechanism implements a so-

cial choice function F in dominant strategy equilibrium, then the direct mechanism F is

strategy-proof.

16

Proof : Suppose mechanism (M1, . . . ,Mn, ϕ) implements F in dominant strategies. Let

si : Di →Mi be the dominant strategy of each agent i.

Fix an agent i ∈ N . Consider two types Ri, R
′
i ∈ Di. Consider R−i to be the report of

other agents in the direct mechanism. Let si(Ri) = mi and s−i(R−i) = m−i. Similarly, let

si(R
′
i) = m′

i. Then, using the fact that F is implemented by our mechanism in dominant

strategies, we get

ϕi(mi,m−i) Ri ϕi(m
′
i,m−i)

But Fi(Ri, R−i) = ϕi(mi,m−i) and Fi(R
′
i, R−i) = ϕi(m

′
i,m−i). This gives us the desired

relation: Fi(Ri, R−i) Ri Fi(R
′
i, R−i), which establishes that F is strategy-proof. ■

Thus, a social choice function F is implementable in dominant strategies if and only if the

direct mechanism F is strategy-proof. Revelation principle is a central result in mechanism

design. One of its implications is that if we wish to find out what social choice functions can

be implemented in dominant strategies, we can restrict attention to direct mechanisms. This

is because, if some non-direct mechanism implements a social choice function in dominant

strategies, revelation principle says that the corresponding direct mechanism is also strategy-

proof.

Of course, a drawback is that a direct mechanism may leave out some equilibria of the

main mechanism. The original mechanism may have some equilibria that may get ruled out

because of restricting to the direct mechanism since it has a different strategy space. In

general, this is a criticism of the mechanism design theory. Even in a direct mechanism,

incentive compatibility only insists that truth-telling is an equilibrium but there may be

other equilibria of the mechanism which may not implement the given social choice function.

These stronger requirement that every equilibria, truth-telling or non-truth-telling, must

correspond to the social choice function outcome is the cornerstone of the implementation

literature.

1.4 Bayesian Incentive Compatibility

Bayesian incentive compatibility can be attributed to Harsanyi (1968a,b,c), who introduced

the notion of a Bayesian game and a Bayesian equilibrium. It is a weaker requirement than

17

the dominant strategy incentive compatibility. While dominant strategy incentive compati-

bility required the equilibrium strategy to be the best strategy under all possible strategies

of opponents, Bayesian incentive compatibility requires this to hold in expectation. This

means that in Bayesian incentive compatibility, an equilibrium strategy must give the high-

est expected utility to the agent, where we take expectation over types of other agents. To

be able to take expectation, agents must have information about the probability distribu-

tions from which types of other agents are drawn. Hence, Bayesian incentive compatibility

is informationally demanding. In dominant strategy incentive compatibility the mechanism

designer needed information on the type space of agents, and every agent required no prior

information of other agents to compute his equilibrium. In Bayesian incentive compatibility,

every agent needs to know the distribution from which agents’ types are drawn.

Since we need to compute expectations, we will represent preference over Xi by a utility

function. In particular, the type of agent i is a utility function ui : Xi → R. When transfers

are not allowed, such utility representation is possible since Xi ≡ Ai will be assumed to

finite – even if it is not finite, we will assume that such a representation is always possible.

When transfers are allowed, we will assume preferences will always admit a continuous (and

monotonic in transfers) utility representation. So, our domain Di is a domain of utility

functions now.

To understand Bayesian incentive compatibility, fix a mechanism (M1, . . . ,Mn, ϕ). A

strategy of agent i ∈ N for such a mechanism is a mapping si : Di → Mi. To define a

Bayesian equilibrium, let Gi(u−i|ui) denote the conditional distribution of types of agents

other than agent i when agent i has type ui. A strategy profile (s1, . . . , sn) is a Bayesian

equilibrium if for all i ∈ N , for all ui ∈ Di we have∫
u−i

ui(ϕi(si(ui), s−i(u−i)))dGi(u−i|ui) ≥
∫
u−i

ui(ϕi(mi, s−i(u−i)))dGi(u−i|ui) ∀ mi ∈Mi.

If all uis are drawn independently, then we need not condition in the expectation.

A direct mechanism (social choice function) F is Bayesian incentive compatible if si(ui) =

ui for all i ∈ N and for all ui ∈ Di is a Bayesian equilibrium, i.e., for all i ∈ N and for all

ui, u
′
i ∈ Di we have∫

u−i

ui(Fi(ui, u−i))dGi(u−i|ui) ≥ ui(Fi(u
′
i, u−i))dGi(u−i|ui)

18

A dominant strategy incentive compatible mechanism is Bayesian incentive compatible. A

mechanism (M1, . . . ,Mn, ϕ) implements a social choice function F in Bayesian equilibrium

if there exists strategies si : Di →Mi for each i ∈ N such that

1. (s1, . . . , sn) is a Bayesian equilibrium of (M1, . . . ,Mn, ϕ) and

2. ϕi(s1(u1), . . . , sn(un)) = Fi(u1, . . . , un) for all i ∈ N and for all u ∈ D.

Analogous to the revelation principle for dominant strategy incentive compatibility, we

also have a revelation principle for Bayesian incentive compatibility.

Proposition 2 (Revelation Principle) If a mechanism implements a social choice function

F in Bayesian equilibrium, then the direct mechanism F is Bayesian incentive compatible.

Proof : Suppose (M1, . . . ,Mn, ϕ) implements F . Let (s1, . . . , sn) be the Bayesian equilibrium

strategies of this mechanism which implements F . Fix agent i and ui, u
′
i ∈ Di. Now,∫

u−i

ui(Fi(ui, u−i))dGi(u−i|ui) =
∫
u−i

ui(ϕi(si(ui), s−i(u−i)))dGi(u−i|ui)

≥
∫
u−i

ui(ϕi(si(u
′
i), s−i(u−i)))dGi(u−i|ui)

=

∫
u−i

ui(Fi(u
′
i, u−i))dGi(u−i|ui),

where the equalities come from the fact that the mechanism implements F and the inequality

comes from the fact that (s1, . . . , sn) is a Bayesian equilibrium of the mechanisms. ■

Like the revelation principle of dominant strategy incentive compatibility, the revelation

principle for Bayesian incentive compatibility is not immune to criticisms for multiplicity of

equilibria.

An example of first-price auction.

Consider an auction of a single object. There are two buyers with quasilinear preferences.

As was discussed, their preferences can be represented by (v1, v2) and payoff of each buyer i

when he pays pi can be represented by vi − pi.

19

We consider a first-price auction where buyers bid amounts (b1, b2) and the highest bid-

der wins the object and pays his bid amount - ties are broken by giving the object with

equal probability to each buyer. If values of the object is uniformly distributed in [0, 1], a

Bayesian equilibrium of this first-price auction is that each buyer i bids 1
2
vi. This is very

straightforward to see. If buyer i bids bi his payoff is (vi−bi) times the probability of winning

by bidding bi. But he wins by bidding bi if the other bidder has bid less than bi. Assuming

that the other bidder is following the equilibrium strategy, we see that (a) he should never

bid more than 1
2
, and (b) the probability of winning is equivalent to the probability

vj
2
≤ bi

(where j ̸= i). This probability is just 2bi. Hence, the expected payoff from bidding bi is

(vi − bi)2bi, which is a nice concave function and it is maximized at bi =
1
2
vi.

What does the revelation principle say here? Since there is an equilibrium

of this mechanism, the revelation principle says that there is a direct mechanism with a

truth-telling Bayesian equilibrium. Such a direct mechanism is easy to construct here.

1. Ask buyers to submit their values (v1, v2).

2. The buyer i with the highest value wins but pays 1
2
vi.

Notice that the first-price auction implements the outcome of this direct mechanism.

Since the first-price auction had this outcome in Bayesian equilibrium, this direct mechanism

is Bayesian incentive compatible.

1.4.1 Failure of revelation principle

There are various settings where the revelation principle need not hold. Though we do not

discuss this issue in detail, we point to some literature on this. One of the important settings

where revelation principle does not hold is a setting where the mechanism designer cannot

“commit”. An example of a setting like is the sale of a single object. Suppose today, the

seller posts a price and offers the object for sale. If there are no takers for the object, there

will be another posted price in the next period, but the seller cannot commit to the next

posted price. In such a setting, the outcome obtained by a mechanism cannot be replicated

by a direct mechanism. Bester and Strausz (2000, 2001) provide an analysis of such issues.

Another issue with the revelation principle is that it ignores mixed-strategy equilibria. The

issue is discussed in detail in Strausz (2003), where it is shown that in certain cases, this

20

is not a limitation. Revelation principle may not hold if agents are not rational, i.e., their

actions are not consistent with a preference ordering. This issue is analyzed in Saran (2011);

De Clippel (2014). In summary, revelation principle is a powerful simplification but it is not

something that can be taken for granted in all settings.

21

22

Chapter 2

Mechanism Design with Transfers and

Quasilinearity

This chapter will deal with some fundamental questions in mechanism design with transfers

under quasilinearity. We will continue to restrict attention to private values setting, where

the preference of an agent over outcomes depends on his own private information. Since

transfers are allowed, then we have two decisions to make - (a) what alternative to choose

(b) how much payment to make.

As discussed earlier, a preference Ri is quasilinear if there exists a valuation function

vi : A → R such that (a, p) Ri (b, p
′) if and only if vi(a)− p ≥ vi(b)− p′. There are specific

settings, where the entire vi vector can be encoded by simpler parameters. In such cases,

we assume that type of an agent i is some ti and vi(a, ti) is the value of agent i from an

alternative a when his type is ti. Because of quasilinearity, if he makes a payment of pi, then

his net utility is

Ui(ti, a, pi) := vi(a, ti)− pi.

In many cases, ti itself will represent the valuations, and hence, will be a vector in R|A|, and

vi(a, ti) = ti(a) for each a ∈ A.

A crucial element of the quasi-linearity assumption is that we can separate the value from

the alternative and the utility from the payment. The separability of value from alternative

and the utility from payment allows us to formulate incentive compatibility constraints in a

lucid manner.

23

2.1 A General Model

The set of agents is denoted by N = {1, . . . , n}. The set of alternatives is denoted by the

set A, which can be finite or infinite. For some expositions, we will assume A to be finite -

but results discussed here continue to hold even if A is not finite. The type of agent i ∈ N

is denoted by ti which lies in some set Ti, called the type space. Type ti will be assumed

to be a (potentially, a multi-dimensional) vector in RK , where K is some positive integer.

We denote a profile of types as t = (t1, . . . , tn) and the set of type profiles of all agents as

T n = ×i∈NTi.

The quasilinear utility of agent i over outcomes A × R is captured by the valuation

function vi : A × Ti → R. Thus, vi(a, ti) denotes the valuation of agent i ∈ N for decision

a ∈ A when his type is ti ∈ Ti. Note that the mechanism designer knows Ti and the form of

valuation function vi. Of course, he does not know the realizations of each agent’s type.

We will restrict attention to this setting, called the private values setting, where the

utility function of an agent is independent of the types of other agents, and is completely

known to him.

2.1.1 Allocation Rules

A decision rule or an allocation rule f is a mapping f : T n → A. Hence, an allocation rule

gives a decision as a function of the types of the agents. For exposition purposes, assume

A is finite. From every type profile, we construct a valuation matrix with n rows (one row

for every agent) and |A| columns. An entry in this matrix corresponding to type profile t,

agent i, and a ∈ A has value vi(a, ti). We show one valuation matrix for N = {1, 2} and

A = {a, b, c} below.

[
v1(a, t1) v1(b, t1) v1(c, t1)

v2(a, t2) v2(b, t2) v2(c, t2)

]

Choosing an allocation amounts to choosing a column vector of this matrix. Here, we

give some examples of allocation rules.

• Constant allocation: The constant allocation rule f c allocates some a ∈ A for every

24

t ∈ T n. In particular, there exists a ∈ A such that for every t ∈ T we have

f c(t) = a.

• Dictator allocation: The dictator allocation rule fd allocates the best decision of some

dictator agent i ∈ N . In particular, let i ∈ N be the dictator agent. Then, for every

ti ∈ Ti and every t−i ∈ T−i,

fd(ti, t−i) ∈ argmax
a∈A

vi(a, ti).

It picks a dictator i and always chooses the column in the valuation matrix for which

the i row has the maximum value in the valuation matrix.

• Efficient allocation: The efficient allocation rule f e is the one which maximizes the

sum of values of agents. In particular, for every t ∈ T n,

f e(t) ∈ argmax
a∈A

∑
i∈N

vi(a, ti).

This rule first sums the entries in each of the columns in the valuation matrix and picks

a column which has the maximum sum.

Hence, efficiency implies that the total value of agents is maximized in all states of the

world (i.e., for all possible type profiles of agents). We will discuss why this is Pareto

efficient later.

Consider an example where a seller needs to sell an object to a set of buyers. In any

allocation, one buyer gets the object and the others get nothing. The buyer who gets

the object realizes his value for the object, while others realize no utility. Clearly, to

maximize the total value of the buyers, we need to maximize this realized value, which

is done by allocating the object to the buyer with the highest value.

This particular allocation rule is also referred to as the utilitarian allocation rule.

• Weighted efficient/utilitarianism allocation: The weighted efficient allocation rule fw

is the one which maximizes the weighted sum of values of agents. In particular, there

exists λ ∈ Rn
+ \ {0} such that for every t ∈ T n,

fw(t) ∈ argmax
a∈A

∑
i∈N

λivi(a, ti).

25

This rule first does a weighted sum of the entries in each of the columns in the valuation

matrix and picks a column which has the maximum weighted sum.

• Affine maximizer allocation: The affine maximizer allocation rule fa is the one which

maximizes the weighted sum of values of agents and a term for every allocation. In

particular, there exists λ ∈ Rn
+ \ {0} and κ : A→ R such that for every t ∈ T n,

fa(t) ∈ argmax
a∈A

[∑
i∈N

λivi(a, ti)− κ(a)
]
.

This rule first does a weighted sum of the entries in each of the columns in the valuation

matrix and subtracts κ term corresponding to this column, and picks the column which

has this sum highest.

• Max-min (Rawls) allocation: The max-min (Rawls) allocation rule f r picks the allo-

cation which maximizes the minimum value of agents. In particular for every t ∈ T n,

f r(t) ∈ argmax
a∈A

min
i∈N

vi(a, ti).

This rule finds the minimum entry in each column of the valuation matrix and picks

the column which has the maximum such minimum entry.

We can just keep on defining many such allocation rules. Allocation rules convey the fact

that if transfers were not present and the social planner knew the valuations of the agents,

how it would pick the alternatives. For instance, the weighted utilitarianism puts weights on

agents and maximizes the weighted sum of values of agents.

2.1.2 Payment Functions

A payment function of agent i is a mapping pi : T
n → R, where pi(t) represents the payment

of agent i when type profile is t ∈ T n. Note that pi(·) can be negative or positive or zero.

A positive pi(·) indicates that the agent is paying money. We will refer to the collection of

payment function p ≡ (p1, . . . , pn) as payment rule.

In many situations, we want the total payment of agents to be either non-negative (i.e.,

decision maker does not incur a loss) or to be zero. In particular, we will be interested in

the following kinds of restrictions on payment functions.

26

1. A payment rule p ≡ (p1, . . . , pn) is feasible if
∑

i∈N pi(t) ≥ 0 for all t ∈ T n.

2. A payment rule p ≡ (p1, . . . , pn) satisfies no subsidy if pi(t) ≥ 0 for all i ∈ N and for

all t ∈ T n.

3. A payment rule p ≡ (p1, . . . , pn) is balanced if
∑

i∈N pi(t) = 0 for all t ∈ T n.

These restrictions on payment rules will depend on the context. In many cases, we

will impose no restrictions on payments and study what all mechanisms can be incentive

compatible. In some cases, we will put specific restrictions and ask similar questions.

2.1.3 Incentive Compatibility

A social choice function is a pair F = (f, p), where f is an allocation rule and p is the

payment functions of agents. Under a social choice function F = (f, p) the utility of agent

i ∈ N with type ti when all agents “report” t̂ as their types is given by

vi(f(t̂), ti)− pi(t̂).

The mechanism, as before, is a complicated object. But applying the revelation principle,

we will focus on direct mechanisms. A direct mechanism is a social choice function F = (f, p)

with type spaces as message space. A direct mechanism (or associated social choice function)

is strategy-proof or dominant strategy incentive compatible (DSIC) if for every agent i ∈ N ,

every t−i ∈ T−i, and every si, ti ∈ Ti, we have

vi(f(ti, t−i), ti)− pi(ti, t−i) ≥ vi(f(si, t−i), ti)− pi(si, t−i),

i.e., truth-telling is a dominant strategy. In this case, we will say that the payment func-

tions (p1, . . . , pn) implement the allocation rule f (in dominant strategies) or, simply, f is

implementable. Sometimes, we will also say that p makes f DSIC.

2.1.4 An Example

Consider an example with two agents N = {1, 2} and two possible types for each agent

T1 = T2 = {tH , tL}. Let f : T1 × T2 → A be an allocation rule, where A is the set of

alternatives. In order that f is implementable, we must find payment functions p1 and p2

27

such that the following conditions hold. For every type t2 ∈ T2 of agent 2, agent 1 must

satisfy

v1(f(t
H , t2), t

H)− p1(t
H , t2) ≥ v1(f(t

L, t2), tH)− p1(t
L, t2),

v1(f(t
L, t2), t

L)− p1(t
L, t2) ≥ v1(f(t

H , t2), tL)− p1(t
H , t2).

Similarly, for every type t1 ∈ T2 of agent 1, agent 2 must satisfy

v2(f(t1, t
H), tH)− p2(t1, t

H) ≥ v2(f(t
1, tL), tH)− p2(t1, t

L),

v2(f(t1, t
L), tL)− p2(t1, t

L) ≥ v2(f(t
1, tH), tL)− p2(t1, t

H).

Here, we can treat p1 and p2 as variables. The existence of a solution to these linear in-

equalities guarantee f to be implementable. So, in finite type spaces, incentive compatibility

and implementability are just a solutions to some linear system of inequalities.

2.1.5 Two Properties of Payments

Suppose (f, p) is strategy-proof. This means for every agent i ∈ N and every t−i, we must

have

vi(f(ti, t−i), ti)− pi(ti, t−i) ≥ vi(f(si, t−i), ti)− pi(si, t−i) ∀ si, ti ∈ Ti.

Using p, we define another payment rule. For every agent i ∈ N , we choose an arbitrary

function hi : T−i → R. So, hi(t−i) assigns a real number to every type profile t−i of other

agents. Now, define the new payment function qi of agent i as

qi(ti, t−i) = pi(ti, t−i) + hi(t−i). (2.1)

We will argue the following.

Lemma 1 If (f, p ≡ (p1, . . . , pn)) is strategy-proof, then (f, q) is strategy-proof, where q is

defined as in Equation 2.1.

Proof : Fix agent i and type profile of other agents at t−i. To show (f, q) is strategy-proof,

note that for any pair of types ti, si ∈ Ti, we have

vi(f(ti, t−i), ti)− qi(ti, t−i) = vi(f(ti, t−i), ti)− pi(ti, t−i)− hi(t−i)

≥ vi(f(si, t−i), ti)− pi(si, t−i)− hi(t−i)

= vi(f(si, t−i), ti)− qi(si, t−i),

28

where the inequality followed from the fact that (f, p) is strategy-proof. ■

This shows that if we find one payment rule which implements f , then we can find an

infinite set of payment rules which implements f . Moreover, these payments differ by a

constant for every i ∈ N and for every t−i. In particular, the payments p and q defined

above satisfy the property that for every i ∈ N and for every t−i,

pi(ti, t−i)− qi(ti, t−i) = pi(si, t−i)− qi(si, t−i) = hi(t−i) ∀ si, ti ∈ Ti.

The other property that we discuss of payment rules is the fact that they depend only

on allocations.

Lemma 2 (Taxation principle) Suppose (f, p) is strategy-proof. For every i ∈ N and every

t−i [
f(si, t−i) = f(ti, t−i)

]
⇒

[
pi(si, t−i) = pi(ti, t−i)

]
∀ si, ti

Proof : Let (f, p) be strategy-proof. Consider an agent i ∈ N and a type profile t−i. Let

si and ti be two types of agent i such that f(si, t−i) = f(ti, t−i) = a. Then, the incentive

constraints give us the following.

vi(a, ti)− pi(ti, t−i) ≥ vi(a, ti)− pi(si, t−i)

vi(a, si)− pi(si, t−i) ≥ vi(a, si)− pi(ti, t−i).

This shows that pi(si, t−i) = pi(ti, t−i). ■

So, payment is a function of types of other agents and the allocation chosen. This is

sometimes referred to as the taxation principle.

2.1.6 Efficient Allocation Rule is Implementable

We discussed the efficient allocation rule earlier. Here, we show that there is a large class

of payment functions that can implement the efficient allocation rule. First, we show that a

mechanism is Pareto efficient if and only if it uses the efficient allocation rule.

29

Definition 5 A mechanism (f, p) is Pareto optimal if at every type profile t there exist no

alternative b ̸= f(t) and no payment vector (π1, . . . , πn) such that

vi(b, ti)− πi ≥ vi(f(t), ti)− pi(t) ∀ i ∈ N,∑
i∈N

πi ≥
∑
i∈N

pi(t).

with strict inequality holding for at least one inequality.

Pareto optimality of a mechanism is a tricky issue if we have no restrictions on payments.

This is because for every mechanism, the designer can just add subsidies for all the agents

(i.e., reduce their payments), and make everyone better off at every type profile. This is the

necessity to add the second inequality in the above definition.

Theorem 1 A mechanism (f, p) is Pareto optimal if and only if f is an efficient allocation

rule.

Proof : Suppose (f, p1, . . . , pn) is Pareto optimal. Assume for contradiction that f is not

efficient. Consider a profile t and let the outcome according to the efficient allocation rule

be a. Suppose f(t) = b is such that∑
i∈N

vi(a, ti) >
∑
i∈N

vi(b, ti).

Let

δ =
1

n

[∑
i∈N

vi(a, ti)−
∑
i∈N

vi(b, ti)
]
.

Note that δ > 0. Define a new payment of agent i as

qi = vi(a, ti)− δ −
(
vi(b, ti)− pi(t)

)
.

Notice that
∑

i∈N qi =
∑

i∈N pi(t) and vi(a, ti) − qi = vi(b, ti) − pi(t) + δ > vi(b, ti) − pi(t).

Hence, (f, p) is not Pareto optimal, a contradiction.

We now show that if f is efficient, then any mechanism (f, p) with arbitrary payment rule

p is Pareto optimal. Assume for contradiction some mechanism (f, p) is not Pareto optimal.

So, for some profile t with f(t) = a ∈ argmaxx∈A
∑

i∈N vi(x, ti), there exists an alternative

b and some payment vector (q1, . . . , qn) with
∑

i∈N qi ≥
∑

i∈N pi(t) and vi(b, ti) − qi ≥

30

vi(a, ti)− pi(t) for all i ∈ N with strict inequality holding for at least one of the inequalities.

Then, adding it over all i ∈ N , gives
∑

i∈N vi(b, ti)−
∑

i∈N qi >
∑

i∈N vi(a, ti)−
∑

i∈N pi(t).

Using the fact that
∑

i∈N qi ≥
∑

i∈N pi(t), we get
∑

i∈N vi(b, ti) >
∑

i∈N vi(a, ti). This

contradicts the definition of a. ■

We will now show that the efficient allocation rule is implementable. We know that in

case of sale of a single object efficient allocation rule can be implemented by the second-price

payment function. A fundamental result in mechanism design is that the efficient allocation

rule is always implementable (under private values and quasi-linear utility functions). For

this, a family of payment rules are known which makes the efficient allocation rule imple-

mentable. This family of payment rules is known as the Groves payment rules, and the

corresponding direct mechanisms are known as the Groves mechanisms (Groves, 1973).

For agent i ∈ N , for every t−i ∈ T−i, the payment in the Groves mechanism is:

pgi (ti, t−i) = hi(t−i)−
∑
j ̸=i

vj(f
e(ti, t−i), tj),

where hi is any function hi : T−i → R and f e is the efficient allocation rule.

We give an example in the case of single object auction. Let hi(t−i) = 0 for all i and for

all t−i. Let there be four buyers with values (types): 10,8,6,4. Then, efficiency requires us to

give the object to the first buyer. Now, the total value of buyers other than buyer 1 in the

efficient allocation is zero. Hence, the payment of buyer 1 is zero. The total value of buyers

other than buyer 2 (or buyer 3 or buyer 4) is the value of the first buyer (10). Hence, all the

other buyers are rewarded 10. Thus, this particular choice of hi functions led to the auction:

the highest bidder wins but pays nothing and those who do not win are awarded an amount

equal to the highest bid.

Theorem 2 Groves mechanisms are strategy-proof.

Proof : Consider an agent i ∈ N , si, ti ∈ Ti, and t−i ∈ T−i. Let f e(ti, t−i) = a and

31

f e(si, t−i) = b. Then, we have

vi(a, ti)− pgi (ti, t−i) =
∑
j∈N

vj(a, tj)− hi(t−i)

≥
∑
j∈N

vj(b, tj)− hi(t−i)

= vi(b, ti)−
[
hi(t−i)−

∑
j ̸=i

vj(b, tj)
]

= vi(b, ti)− pg(si, t−i),

where the inequality comes from efficiency. Hence, Groves mechanisms are strategy-proof.

■

An implication of this is that efficient allocation rule is implementable using the Groves

payment rules. The natural question to ask is whether there are payment rules besides

the Groves payment rules which make the efficient allocation rule DSIC. We will study this

question formally later. A quick answer is that it depends on the type spaces of agents

and the value function. For many reasonable type spaces and value functions, the Groves

payment rules are the only payment rules which make the efficient allocation rule DSIC.

2.2 The Vickrey-Clarke-Groves Mechanism

A particular mechanism in the class of Groves mechanism is intuitive and has many nice

properties. It is commonly known as the pivotal mechanism or the Vickrey-Clarke-Groves

(VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973). The VCG mechanism is

characterized by a unique hi(·) function. In particular, for every agent i ∈ N and every

t−i ∈ T−i,

hi(t−i) = max
a∈A

∑
j ̸=i

vj(a, tj).

This gives the following payment function. For every i ∈ N and for every t ∈ T , the payment

in the VCG mechanism is

pvcgi (t) = max
a∈A

∑
j ̸=i

vj(a, tj)−
∑
j ̸=i

vj(f
e(t), tj). (2.2)

32

Note that pvcgi (t) ≥ 0 for all i ∈ N and for all t ∈ T n. Hence, the payment function in

the VCG mechanism is a feasible payment function.

A careful look at Equation 2.2 shows that the second term on the right hand side is the

sum of values of agents other than i in the efficient decision. The first term on the right hand

side is the maximum sum of values of agents other than i (note that this corresponds to an

efficient decision when agent i is excluded from the economy). Hence, the payment of agent

i in Equation 2.2 is the externality agent i inflicts on other agents because of his presence,

and this is the amount he pays. Thus, every agent pays his externality to other agents in

the VCG mechanism.

The payoff of an agent in the VCG mechanism has a nice interpretation too. Denote the

payoff of agent i in the VCG mechanism when his true type is ti and other agents report t−i

as πvcg
i (ti, t−i). By definition, we have

πvcg
i (ti, t−i) = vi(f

e(ti, t−i), ti)− pvcgi (ti, t−i)

= vi(f
e(ti, t−i), ti)−max

a∈A

∑
j ̸=i

vj(a, tj) +
∑
j ̸=i

vj(f
e(ti, t−i), tj)

= max
a∈A

∑
j∈N

vj(a, tj)−max
a∈A

∑
j ̸=i

vj(a, tj),

where the last equality comes from the definition of efficiency. The first term is the total

value of all agents in an efficient allocation rule. The second term is the total value of all

agents except agent i in an efficient allocation rule of the economy in which agent i is absent.

Hence, payoff of agent i in the VCG mechanism is his marginal contribution to the economy.

2.2.1 Illustration of the VCG (Pivotal) Mechanism

Consider the sale of a single object using the VCG mechanism. Fix an agent i ∈ N . Efficiency

says that the object must go to the bidder with the highest value. Consider the two possible

cases. In one case, bidder i has the highest value. So, when bidder i is present, the sum of

values of other bidders is zero (since no other bidder wins the object). But when bidder i

is absent, the maximum sum of value of other bidders is the second highest value (this is

achieved when the second highest value bidder is awarded the object). Hence, the externality

of bidder i is the second-higest value. In the case where bidder i ∈ N does not have the

highest value, his externality is zero. Hence, for the single object case, the VCG mechanism

33

∅ {1} {2} {1, 2}
v1(·) 0 8 6 12

v2(·) 0 9 4 14

Table 2.1: An Example of VCG Mechanism with Multiple Objects

is simple: award the object to the bidder with the highest (bid) value and the winner pays

the amount equal to the second highest (bid) value but other bidders pay nothing. This is the

well-known second-price auction or the Vickrey auction. By Theorem 2, it is strategy-proof.

Consider the case of choosing a public project. There are three possible projects - an

opera house, a park, and a museum. Denote the set of projects as A = {a, b, c}. The citizens
have to choose one of the projects. Suppose there are three citizens, and the values of citizens

are given as follows (row vectors are values of citizens and columns have three alternatives,

a first, b next, and c last column): 
5 7 3

10 4 6

3 8 8


It is clear that it is efficient to choose alternative b. To find the payment of agent 1

according to the VCG mechanism, we find its externality on other agents. Without agent 1,

agents 2 and 3 can get a maximum total value of 14 (on project c). When agent 1 is included,

their total value is 12. So, the externality of agent 1 is 2, and hence, its VCG payment is 2.

Similarly, the VCG payments of agents 2 and 3 are respectively 0 and 4.

We illustrate the VCGmechanism for the sale of multiple objects by an example. Consider

the sale of two objects, with values of two agents on bundles of goods given in Table 2.1.

The efficient allocation in this example is to give bidder 1 object 2 and bidder 2 object 1

(this generates a total value of 6 + 9 = 15, which is higher than any other allocation). Let

us calculate the externality of bidder 1. The total value of bidders other than bidder 1,

i.e. bidder 2, in the efficient allocation is 9. When bidder 1 is removed, bidder 2 can get

a maximum value of 14 (when he gets both the objects). Hence, externality of bidder 1 is

14− 9 = 5. Similarly, we can compute the externality of bidder 2 as 12− 6 = 6. Hence, the

payments of bidders 1 and 2 are 5 and 6 respectively.

Another simpler combinatorial auction setting is when agents or bidders are interested (or

can be allocated) in at most one object - this is the case in job markets or housing markets.

34

∅ {1} {2}
v1(·) 0 5 3

v2(·) 0 3 4

v3(·) 0 2 2

Table 2.2: An Example of VCG Mechanism with Multiple Objects

Then, every bidder has a value for every object but wants at most one object. Consider an

example with three agents and two objects. The valuations are given in Table 2.2. The total

value of agents in the efficient allocation is 5 + 4 = 9 (agent 1 gets object 1 and agent 2 gets

object 2, but agent 3 gets nothing). Agents 2 and 3 get a total value of 4 + 0 = 4 in this

efficient allocation. When we maximize over agents 2 and 3 only, the maximum total value

of agents 2 and 3 is 6 = 4 + 2 (agent 2 gets object 2 and agent 3 gets object 1). Hence,

externality of agent 1 on others is 6−4 = 2. Hence, VCG payment of agent 1 is 2. Similarly,

one can compute the VCG payment of agent 2 to be 2.

2.2.2 The VCG Mechanism in the Combinatorial Auctions

We have already shown that the VCG mechanism has several interesting properties: (a) it is

dominant strategy incentive compatible, (b) the allocation rule is efficient, and (c) payments

are non-negative, and hence, feasible. We discuss below a specific model and show that

stronger properties than these are also true in this model.

The particular model we discuss is the combinatorial auction problem. We now describe

the formal model. There is a set of objects M = {1, . . . ,m}. The set of bundles is denoted

by Ω = {S : S ⊆ M}. The type of an agent i ∈ N is a vector ti ∈ R|Ω|
+ . Hence, T1 = . . . =

Tn = R|Ω|
+ . Here, ti(S) denotes the value of agent (bidder) i on bundle S - in particular,

ti(S) ≥ 0∀S ∈ Ω, ∀i ∈ N (i.e. all bundles are goods). An allocation in this case is a

partitioning of the set of objects: X = (X0, X1, . . . , Xn), whereXi∩Xj = ∅ and ∪n
i=0Xi =M .

Here, X0 is the unallocated set of objects and Xi (i ̸= 0) is the bundle allocated to agent i,

where Xi can be empty set also. It is natural to normalize ti(∅) = 0 for all ti and for all i.

Let f e be the efficient allocation rule. Another crucial feature of the combinatorial auction

setting is it is externality free. Suppose f e(t) = X. Then vi(X, ti) = ti(Xi), i.e., utility of

agent i depends on the bundle allocated to agent i only, but not on the bundles allocated to

35

other agents.

The first property of the VCG mechanism we note in this setting is that the losers pay

zero amount. Suppose i is a loser (i.e., gets empty bundle in efficient allocation) when the

type profile is t = (t1, . . . , tn). Let f e(t) = X. By assumption, vi(Xi, ti) = ti(∅) = 0.

Let Y ∈ argmaxa
∑

j ̸=i vj(a, tj). We need to show that pvcgi (ti, t−i) = 0. Since the VCG

mechanism is feasible, we know that pvcgi (ti, t−i) ≥ 0. Now,

pvcgi (ti, t−i) = max
a∈A

∑
j ̸=i

vj(a, tj)−
∑
j ̸=i

vj(f
e(ti, t−i), tj)

=
∑
j ̸=i

tj(Yj)−
∑
j ̸=i

tj(Xj)

≤
∑
j∈N

tj(Yj)−
∑
j∈N

tj(Xj)

≤ 0,

where the first inequality followed from the facts that ti(Yi) ≥ 0 and ti(Xi) = 0, and the

second inequality followed from the efficiency of X. Hence, pvcgi (ti, t−i) = 0.

An important property of a mechanism is individual rationality or voluntary partici-

pation. Suppose by not participating in a mechanism an agent gets zero payoff. Then the

mechanism must give non-negative payoff to the agent in every state of the world (i.e., in

every type profile of agents). The VCG mechanism in the combinatorial auction setting

satisfies individual rationality. Consider a type profile t = (t1, . . . , tn) and an agent i ∈ N .

Let Y ∈ argmaxa
∑

j ̸=i vj(a, tj) and X ∈ argmaxa
∑

j∈N vj(a, tj). Now,

πvcg
i (t) = max

a

∑
j∈N

vj(a, tj)−max
a

∑
j ̸=i

vj(a, tj)

=
∑
j∈N

tj(Xj)−
∑
j ̸=i

tj(Yj)

≥
∑
j∈N

tj(Xj)−
∑
j∈N

tj(Yj)

≥ 0,

where the first inequality followed from the fact that tj(Yj) ≥ 0 and the second inequality

followed from efficiency of X. Hence, πvcg
i (t) ≥ 0, i.e., the VCG mechanism is individual

rational.

36

2.2.3 The Sponsored Search Auctions

Google sells advertisement slots to advertisers via auctions. The auctions are run for every

search phrase. Fix a particular search phrase, say, “hotels in New Delhi”. Once this phrase

is searched on Google, bidders (computer programmed agents of different companies) par-

ticipate in this auction. An advertisement that can appear along side a search page is called

a slot. For every search phrase, there is a fixed number of slots available and fixed number

of bidders interested. Suppose there are m slots and n bidders for the phrase “hotels in New

Delhi”. Assume n > m. The type of each bidder is a single number - θi for bidder i. Type

of an agent represents the value that agent derives when his advertisement is clicked. Every

slot has a probability of getting clicked. This is called the clickthrough rate (CTR). The

CTR of slot i is αi. The CTR vector α = (α1, . . . , αm) is known to everyone. The slots are

naturally ordered top to bottom, and assume that, let α1 > α2 > . . . > αm. CTR is assumed

to be common knowledge among bidders - apparently, Google estimates CTR from data and

gives it to bidders.

An alternative in this model represents an assignment of agents to slots (with some agents

not receiving any slot). Let A be the set of all alternatives. An alternative a ∈ A can be

described by a n dimensional vector integers in {0, 1, . . . ,m}, where ai indicates the slot to

which agent i is assigned, and ai = 0 means agent i is not assigned to any slot. The value

function of agent i is his expected value vi(a, θi) = θiαai , where α0 = 0.

Suppose n = 4 and m = 3. Let θ1 = 10, θ2 = 8, θ3 = 6, θ4 = 5. Let α1 = 0.8, α2 =

0.6, α3 = 0.5. In efficiency, the slots should go to agents with top 3 values of θ, who are

agents 1, 2, and 3.

The total value obtained in the efficient allocation is 10(0.8)+8(0.6)+6(0.5) = 15.8. So,

agents other than agent 1 get a total value of 8(0.6)+6(0.5) = 7.8. If agent 1 was not there,

then the total value obtained in the efficient allocation is 8(0.8) + 6(0.6) + 5(0.5) = 12.5.

Hence, his externality is 12.5− 7.8 = 4.7, and his VCG payment is thus 4.7. Similarly, VCG

payments of agents 2 and 3 are 3.1 and 2.5 respectively.

Generally, agents with top m values of θ get the top m slots with ith (i ≤ m) highest

θ value agent getting the ith slot. Without loss of generality, assume that θ1 ≥ θ2 ≥ . . . θn

- assume also that ties are broken in favor of lower indexed agent. In efficiency, agents 1

to m get a slot. In particular, agent j (j ≤ m) gets slot j with clickthrough rate αj. Any

37

agent j pays zero if he is not allocated a slot, i.e., j > m. For any agent j ≤ m, we need to

compute his externality. Note that the total value of agents other than agent j in an efficient

allocation is
j−1∑
i=1

θiαi +
m∑

i=j+1

θiαi.

If agent j is removed, then the total value of agents other than agent j in an efficient

allocation is
j−1∑
i=1

θiαi +
m+1∑
i=j+1

θiαi−1.

So, the externality of agent j is

θm+1αm +
m∑

i=j+1

θi(αi−1 − αi),

where we assume that the summation term for j = m is zero.

Google uses something called a Generalized Second Price (GSP) auction: (a) agents

with top m values of θ are given the slots with highest agent getting the top slot (i.e., slot

with highest CTR), second highest agent getting the next top slot, and so on, (b) if an agent

wins slot k with CTR αk, he pays θm+1αk (where θm+1 is the highest losing type).

In the previous example, agent 1 will pay 5(0.8) = 4 in the GSP. This is clearly different

from what he should pay in the VCG mechanism. In the example above, fix the bids of

agents other than agent 2 as follows: (agent 1: 10, agent 3: 6, agent 4: 5). Now, let agent 2

not bid truthfully, and bid 10 + ϵ (ϵ > 0) to become the highest bidder. So, he gets the top

slot with clickthrough rate 0.8. So, his value is now 8×0.8 = 6.4 (remember, his true type is

θ2 = 8). He pays 5× 0.8 = 4. So, his net utility is 2.4. If he is truthful, he pays 5× 0.6 = 3,

and gets a value of 8× 0.6 = 4.8. So, his net utility of being truthful is 1.8. So, deviation is

profitable, and truth-telling is not a dominant strategy.

2.3 Affine Maximizer Allocation Rules are

Implementable

The previous discussions showed that Groves mechanisms can implement efficient allocation

rules if there are no constraints on payments. However, in many instances, we may be

38

interested in exploring a non-efficient allocation rule. There are many reasons for this. One

important reason is that Groves mechanisms may not be feasible if there are restrictions on

payments - for instance, budget-balance. In such cases, if we know what other allocation rules

are implementable, we can explore if they can be implementable with restricted payments.

Another reason is that efficiency treats all equal (in terms of preferences) individuals in a

society equally. This need not be the case in many settings, where we may be asked to do

“affirmative action”, and give more weightage to certain individuals than others. Another

reason may be that the planner himself may not be a utilitarian planner, and depending on

his objective, he may choose a non-efficient allocation rule.

Below, we discuss another general class of allocation rules which are implementable.

These are the affine maximizer class discussed earlier. As discussed earlier, an affine maxi-

mizer allocation rule is characterized by a vector of non-negative weights λ ≡ (λ1, . . . , λn),

not all equal to zero, for agents and a mapping κ : A→ R. Then, at any type profile t,

fa(t) argmax
a∈A

[∑
i∈N

λivi(a, ti)− κ(a)
]

If λi = λj for all i, j ∈ N and κ(a) = 0 for all a ∈ A, we recover the efficient allocation

rule. When λi = 1 for some i ∈ N and λj = 0 for all j ̸= i, and κ(a) = 0 for all a ∈ A, we

get the dictatorial allocation rule. Thus, the affine maximizer is a general class of allocation

rules. We show that there exists payment rules which implements the affine maximizer

allocation rule. For this we only consider a particular class of affine maximizers.

Definition 6 An affine maximizer allocation rule fa with weights λ1, . . . , λn and κ : A→ R
satisfies independence of irrelevant agents (IIA) if for all i ∈ N with λi = 0, we have that

for all t−i and for all si, ti, f(si, t−i) = f(ti, t−i).

The IIA property is a consistent tie-breaking requirement. For instance, consider the

dictatorship allocation rule with two agents {1, 2}. Suppose agent 1 is the dictator: λ1 =

1, λ2 = 0 and suppose there are three alternatives {a, b, c}. Since the allocation rule is a

dictatorship, κ(a) = κ(b) = κ(c) = 0. The type of each agent is a vector in R3 describing

the value for each alternative. For instance t1 = (5, 5, 3) means, agent 1 has value 5 for

alternatives a and b and value 3 for alternative c. Since values on alternatives can be the

39

same, we can break the ties in this dictatorship by considering values of agent 2. In particular,

if there are more than one alternatives that maximize the value for agent 1, then we choose

an alternative that is the worst for agent 2. For instance, if t1 = (5, 5, 3) and t2 = (4, 3, 2),

then f(t1, t2) = b (since t2(b) = 3 < t2(a) = 4). But then, consider t′2 = (3, 4, 2) and note

that f(t1, t
′
2) = a. This is a violation of IIA - in fact, agent 2 can manipulate dictatorship

by reporting t′2 when his true type is t2.

Allocation rules violating IIA may not be implementable (i.e., there may not exist pay-

ment rules that make the resulting mechanism strategy-proof). However, we show that

every IIA affine maximizer is implementable. Fix an IIA affine maximizer allocation rule fa,

characterized by λ and κ. We generalize Groves payments for this allocation rule.

For agent i ∈ N , for every t−i ∈ T−i, the payment in the generalized Groves mechanism

is:

pggi (ti, t−i) =

{
hi(t−i)− 1

λi

[∑
j ̸=i λjvj(f

a(ti, t−i), tj)− κ(fa(ti, t−i))
]

if λi > 0

0 otherwise

where hi is any function hi : T−i → R and fa is the IIA affine maximizer allocation rule.

Theorem 3 An IIA affine maximizer allocation rule is implementable using the generalized

Groves mechanism.

Proof : Consider an agent i ∈ N , si, ti ∈ Ti, and t−i ∈ T−i. Suppose λi > 0. Then, we have

vi(f
a(ti, t−i), ti)− pggi (ti, t−i) =

1

λ i

[∑
j∈N

λjvj(f
a(ti, t−i), tj)− κ(fa(ti, t−i))

]
− hi(t−i)

≥ 1

λ i

[∑
j∈N

λjvj(f
a(si, t−i), tj)− κ(fa(si, t−i))

]
− hi(t−i)

= vi(f
a(si, t−i), ti)− hi(t−i) +

1

λi

[∑
j ̸=i

λjvj(f
a(si, t−i), tj) + κ(fa(si, t−i))

]
= vi(f

a(si, t−i), ti)− pgg(si, t−i),

where the inequality comes from the definition of affine maximization. If λi = 0, then

fa(ti, t−i) = fa(si, t−i) for all si, ti ∈ Ti (by IIA). Also pggi (ti, t−i) = pggi (si, t−i) = 0 for all

si, ti ∈ Ti. Hence, vi(f
a(ti, t−i), ti) − pggi (ti, t−i) = vi(f

a(si, t
−i), ti) − pggi (si, t−i). So, the

generalized Groves payment rule implements the affine maximizer allocation rule. ■

40

2.3.1 Public Good Provision

The public good provision problem is a classic problem. There are two alternatives: a1 is the

alternative to provide the public good and a0 is the alternative of not providing the public

good. The value from a0 is zero to all the agents. Agents derive value from a1 which is

private information. Denote the value of agent i for a1 as θi (θi ≥ 0∀i ∈ N). There is a cost

of C providing the public good.

The “first-best” allocation rule in this case is to provide the public good when the sum of

values of agents is greater than or equal to C. This can be written as an affine maximizer

rule. Choose κ(a0) = 0, κ(a1) = −C and λi = 1 for all i ∈ N , where N is the set of agents.

The pivotal mechanism corresponding to this allocation rule is the first one that Clarke

called the pivotal mechanism. An agent i is pivotal if his inclusion in the decision process

changes the decision for the other N \ {i} agents. In particular, if agents in N \ {i} chose

not to be provided the public good using the first-best rule, and when agent i was added,

agents in N chose to get the public good using the first-best rule. Here, agent i is pivotal.

Note that if agents in N \{i} chose to get the public good using the first-best rule, and when

agent i is added, agents in N will always choose to get the public good using the first-best

rule. Hence, agent i cannot be pivotal here.

The pivotal mechanism in this problem states that an agent i pays zero if he is not pivotal

and pays an amount equal to his externality if he is pivotal. The externality can be computed

easily. Note that at a type profile θ ≡ (θ1, . . . , θn), if the public good is not provided, then

it will not be provided without any agent. Hence, no agent is pivotal and payment of all the

agents are zero. But if the public good is provided at θ and agent i is pivotal, then removing

agent i changes the decision to not provide the public good. This implies that
∑

j ̸=i θj < C.

Hence, without agent i, the total utility to all the agents in N \ {i} is zero. Once, agent i

arrives, their total utility is
∑

j ̸=i θj − C. Hence, his payment is C −
∑

j ̸=i θj.

Now, it is easy to verify that this corresponds to the payment we described in the previous

section, where we take hi(θ−i) to be the maximum sum of values without agent i in the first-

best allocation rule.

41

2.3.2 Restricted and Unrestricted Type Spaces

Consider a simple model where ti ∈ R|A|, where A is finite and vi(a, ti) = ti(a) for all i ∈ N .

So, the type space of agent i is now Ti ⊆ R|A|. We say type space Ti of agent i is unrestricted

if Ti = R|A|. So, all possible vectors in R|A| is likely to be the type of agent i if its type space

is unrestricted. Notice that it is an extremely restrictive assumption. We give two examples

where unrestricted type space assumption is not natural.

• Choosing a public project. Suppose we are given a set of public projects to choose

from. Each of the possible public projects (alternatives) is a “good” and not a “bad”.

In that case, it is natural to assume that the value of an agent for any alternative is

non-negative. Further, it is reasonable to assume that the value is bounded. Hence,

Ti ⊆ R|A|
+ for every agent i ∈ N . So, unrestricted type space is not a natural assumption

here.

• Auction settings. Consider the sale of a single object. The alternatives in this case

are A = {a0, a1, . . . , an}, where a0 denote the alternative that the object is not sold to

any agent and ai with i > 0 denotes the alternative that the object is sold to agent i.

Notice here that agent i has zero value for all the alternatives except alternative ai.

Hence, the unrestricted type space assumption is not valid here.

Are there problems where the unrestricted type space assumption is natural? Suppose

the alternatives are such that it can be a “good” or “bad” for the agents, and any possible

value is plausible. If we accept the assumption of unrestricted type spaces, then the following

is an important theorem. We skip the long proof.

Theorem 4 (Roberts’ theorem) Suppose A is finite and |A| ≥ 3. Further, type space of

every agent is unrestricted. Then, every onto and implementable allocation rule is an affine

maximizer.

We have already shown that IIA affine maximizers are implementable by constructing

generalized Groves payments which make them DSIC. Roberts’ theorem shows that these are

almost the entire class. The assumptions in the theorem are crucial. If we relax unrestricted

type spaces or let |A| = 2 or allow randomization, then the set of DSIC allocation rules are

larger.

42

It is natural to ask why restricted type spaces allow for larger class of allocation rules to

be DSIC. The answer is very intuitive. Remember that the type space is something that the

mechanism designer knows (about the range of private types of agents). If the type space is

restricted then the mechanism designer has more precise information about the types of the

agents. So, there is less opportunity for an agent to lie. Given an allocation rule f if we have

two type spaces T and T̄ with T ⊊ T̄ , then it is possible that f is DSIC in T but not in T̄

since T̄ allows an agent a larger set of type vectors where it can deviate. In other words, the

set of constraints in the DSIC definition is larger for T̄ then for T . So, finding payments to

make f DSIC is difficult for larger type spaces but easier for smaller type spaces. Hence, the

set of DSIC allocation rules becomes larger as we shrink the type space of agents.

43

44

Chapter 3

Mechanism Design for Selling a Single

Object

3.1 The Single Object Auction Model

In the single object auction case, the type set of an agent is one dimensional, i.e., Ti ⊆ R1

for all i ∈ N . This reflects the value of an agent if he wins the object. An allocation gives

a probability of winning the object. Let A denote the set of all deterministic allocations

(i.e., allocations in which the object either goes to a single agent or is unallocated). Let ∆A

denote the set of all probability distributions over A. An allocation rule is now a mapping

f : T n → ∆A.

Given an allocation, a ∈ ∆A, we denote by ai the allocation probability of agent i. It is

standard to have vi(a, si) = ai × si for all a ∈ ∆A and si ∈ Ti for all i ∈ N . Such a form of

vi is called a product form.

For an allocation rule f , we denote fi(ti, t−i) as the probability of winning the object of

agent i when he reports ti and others report t−i.

3.1.1 The Vickrey Auction

Before analyzing a single object sale mechanism, we first take a look at the Vickrey auction.

Consider the Vickrey auction and an agent i. Denote the highest valuation among agents in

N \ {i} as v(2). Suppose the valuation of agent i is vi. Then, according to the rules of the

45

v(2)

Type of agent i

Net utility

Slope=0

Slope=1

Figure 3.1: Net utility as a function of type of agent i

Vickrey auction, agent i does not win the object if vi < v(2) and wins the object if vi > v(2).

Further, his net utility from the Vickrey auction is zero if he does not win the object. If he

wins the object, then his net utility is vi − v(2), i.e., increases linearly with vi.

If we draw the net utility as a function of vi, it will look something like in Figure 3.1.

Notice that this function is convex and its derivative is zero if vi < v(2) and 1 if vi > v(2).

This function is not differentiable at vi = v(2). Hence, the derivative of the net utility

function (wherever it exists) coincides with the probability of winning the object - see Figure

3.1. Since a convex function is differentiable almost everywhere, this fact is true almost

everywhere.

These observations hold in general, and it is true for any dominant strategy incentive

compatible mechanism. To show this, we first record some elementary facts from convex

analysis.

3.1.2 Facts from Convex Analysis

We will state some basic facts about convex functions. We will only be interested in functions

of the form g : I → R, where I ⊆ R is an interval.

Definition 7 A function g : I → R is convex if for every x, y ∈ I and for every λ ∈ (0, 1),

we have

λg(x) + (1− λ)g(y) ≥ g(λx+ (1− λ)y).

46

Convex functions are continuous in the interior of its domain. So, if g : I → R is convex,

then g is continuous in the interior of I. Further, g is differentiable almost everywhere in

I. More formally, there is a subset of I ′ ⊆ I such that I ′ is dense in I, I \ I ′ has measure

zero 1, and g is differentiable at every point in I ′. If g is differentiable at x ∈ I, we denote

the derivative of g at x as g′(x). The following notion extends the idea of a derivative.

Definition 8 For any x ∈ I, x∗ is a subgradient of the function g : I → R at x if

g(z) ≥ g(x) + x∗(z − x) ∀ z ∈ I.

Lemma 3 Suppose g : I → R is a convex function. Suppose x is in the interior of I and g

is differentiable at x, then g′(x) is the unique subgradient of g at x.

Proof : Consider any x ∈ I in the interior of I such that the convex function g : I → R+

is differentiable at x. Now, pick any z ∈ I. Assume that z > x (a similar proof works if

z < x). For any (z − x) ≥ h > 0, we note that x + h = h
(z−x)

z + (1 − h
(z−x)

)x. As a result,

convexity of g ensures that

h

(z − x)
g(z) + (1− h

(z − x)
)g(x) ≥ g(x+ h).

Simplifying, we get
g(z)− g(x)

(z − x)
≥ g(x+ h)− g(x)

h
.

Since this is true for any h > 0, it is also true that

g(z)− g(x)

(z − x)
≥ lim

h→0

g(x+ h)− g(x)

h
= g′(x).

Hence, g′(x) is a subgradient of g at x. This also shows that there is at least one subgradient

of g at x.

To show uniqueness, suppose there is another subgradient x∗ ̸= g′(x) at x. Suppose

x∗ > g′(x). Then, for all h > 0, we know that

g(x+ h)− g(x)

h
≥ x∗ > g′(x).

But since this is true for all h > 0, we have that

g′(x) = lim
h→0

g(x+ h)− g(x)

h
≥ x∗ > g′(x),

1This does not necessarily mean that I \ I ′ is countable - an example is the Cantor set.

47

which is a contradiction.

Suppose x∗ < g′(x). Then, for all h > 0, we know that

g(x− h) ≥ g(x)− x∗h.

Equivalently,
g(x)− g(x− h)

h
≤ x∗.

Since this is true for all h > 0, we have that

g′(x) = lim
h→0

g(x)− g(x− h)

h
≤ x∗.

This is a contradiction. ■

Lemma 3 extends in the following natural way.

Lemma 4 Suppose g : I → R is a convex function. Then for every x ∈ I, the subgradient of

g at x exists.

We skip the proof of Lemma 4. Lemma 3 showed that if g is differentiable at x and x is

in the interior, then g′(x) is the unique subgradient. For all other points in I \ I ′ (which
is a set of measure zero), the set of subgradients can be shown to be a convex set. In

particular, if x is an interior point of I where g is not differentiable, then we can define

g′+(x) = limz→x:z∈I′,z>x g
′(z) and g′−(x) = limz→x:z∈I′,z<x g

′(z), where I ′ is the set of points

where g is differentiable. These limits exist since the set of points where g is differentiable

is dense in I. One can easily show that g′+(x) ≥ g′−(x). We can then show that the set of

subgradients of g at x is [g′−(x), g
′
+(x)].

The set of subgradients of g at a point x ∈ I will be denoted by ∂g(x). By Lemma 3,

∂g(x) is equal to {g′(x)} if x ∈ I ′ and by Lemma 4, it is non-empty otherwise. The following

lemma is crucial.

Lemma 5 Suppose g : I → R is a convex function. Let ϕ : I → R such that ϕ(z) ∈ ∂g(z)

for all z ∈ I. Then, for all x, y ∈ I such that x > y, we have ϕ(x) ≥ ϕ(y).

Proof : By definition, g(x) ≥ g(y) + ϕ(y)(x − y) and g(y) ≥ g(x) + ϕ(x)(y − x). Adding

these two inequalities, we get (x− y)(ϕ(x)−ϕ(y)) ≥ 0. Since x > y, we get ϕ(x) ≥ ϕ(y). ■

48

x

g(x) Non-differentiable point

Figure 3.2: A convex function and its subgradients

As a corollary to Lemma 5, we get that if g is differentiable at x and y and x > y, then

we have g′(x) ≥ g′(y). This also shows that for any x ∈ I, g′+(x) ≥ g′−(x).

Figure 3.2 illustrates the idea. It shows a convex function g and two points in its domain.

The left one is a point where g is differentiable and its unique subgradient is shown in Figure

3.2. On the other hand, the right one is a point where g is not differentiable. Figure 3.2

shows the least subgradient and the maximum subgradient at that point. Any selection from

that cone will be a suitable subgradient at that point.

If g is differentiable everywhere, then g can be written as the definite integral of its deriva-

tive. In particular, if x, y ∈ I, then g(x) = g(y) +
∫ x

y
g′(z)dz. However, this can be extended

easily to convex functions since a convex function is differentiable almost everywhere. The

following lemma establishes that. We skip its proof.

Lemma 6 Let g : I → R be a convex function. Then, for any x, y ∈ I,

g(x) = g(y) +

∫ x

y

ϕ(z)dz,

where ϕ : I → R is a map satisfying ϕ(z) ∈ ∂g(z) for all z ∈ I.

3.1.3 Monotonicity and Revenue Equivalence

We now use the facts from convex analysis to establish a fundamental theorem in single

object auction analysis. A crucial property that we will use is the following monotonicity

49

property of allocation rules.

Definition 9 An allocation rule f is called non-decreasing if for every agent i ∈ N and

every t−i ∈ T−i we have fi(ti, t−i) ≥ fi(si, t−i) for all si, ti ∈ Ti with si < ti.

A non-decreasing allocation rule satisfies a simple property. For every agent and for every

report of other agents, the probability of winning the object does not decrease with increase

in type of this agent. Figure 3.3 shows a non-decreasing allocation rule.

Type of agent i

Allocation probability

Figure 3.3: Non-decreasing allocation rule

This property characterizes the set of implementable allocation rules in this case.

Theorem 5 Suppose Ti is an interval [0, bi] for all i ∈ N and v is in product form. An

allocation rule f : T n → ∆A and a payment rule (p1, . . . , pn) is DSIC if and only if f is

non-decreasing and for all i ∈ N , for all t−i ∈ T n−1, and for all ti ∈ Ti

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0

fi(xi, t−i)dxi.

Proof : Given a mechanism M ≡ (f, p1, . . . , pn), the indirect utility function of agent i from

the mechanism M when other agents report t−i is defined as

UM
i (ti, t−i) = tifi(ti, t−i)− pi(ti, t−i) ∀ ti ∈ Ti.

The indirect utility is the net utility of agent i by reporting his true type (given the reports of

other agents). Using UM , we can rewrite the incentive constraints as follows. Mechanism M

50

is dominant strategy incentive compatible if and only if for all i ∈ N and for all t−i ∈ T n−1,

we have

UM
i (ti, t−i) ≥ UM

i (si, t−i) + fi(si, t−i)(ti − si) ∀ si, ti ∈ Ti.

Now, fix an agent i ∈ N and t−i. Suppose mechanism M ≡ (f, p1, . . . , pn) is DSIC. We

do the proof in some steps.

Step 1 - Subgradient. Define g(ti) := UM
i (ti, t−i) and ϕ(ti) := fi(ti, t−i) for all ti ∈ Ti.

Then, DSIC implies that for all si, ti ∈ Ti, we have

g(ti) ≥ g(si) + ϕ(ti)(ti − si).

Hence, ϕ(ti) is a subgradient of g at ti.

Step 2 - Convexity of UM
i . Next, we show that g is convex. To see this, pick xi, zi ∈ Ti

and consider yi = λxi + (1− λ)zi for some λ ∈ (0, 1). Due to DSIC, we know that

g(xi) ≥ g(yi) + (xi − yi)ϕ(yi)

g(zi) ≥ g(yi) + (zi − yi)ϕ(yi)

Multiplying the first inequality by λ and the second by (1 − λ) and adding them together

gives

λg(xi) + (1− λ)g(zi) ≥ g(yi).

In fact, this shows that any g which satisfies the subgradient inequalities must be convex.

Step 3 - Apply Lemmas 5 and 6. By Lemma 5, ϕ is non-decreasing. By Lemma 6, for

any ti ∈ Ti,

g(ti) = g(0) +

∫ ti

0

ϕ(xi)dxi.

Substituting for g, we get

UM
i (ti, t−i) = UM

i (0, t−i) +

∫ ti

0

fi(xi, t−i)dxi.

Substituting for UM , we get

pi(ti, t−i) = pi(0, t−i) + tifi(ti, t−i)−
∫ ti

0

fi(xi, t−i)dxi.

51

This proves one direction.

Now, for the converse. If f is non-decreasing and pi for all i is of the form described, then

we have to show that the mechanism is DSIC. To show this, fix, i ∈ N , t−i, and consider

si, ti. Now, substituting for pi, we get[
tifi(ti, t−i)− pi(ti, t−i)

]
−

[
tifi(si, t−i)− pi(si, t−i)

]
= (si − ti)fi(si, t−i)−

∫ si

ti

fi(xi, t−i)dxi

≥ 0,

where the inequality followed from the fact that f is non-decreasing. ■

An implication of this result is the following. Take two payment functions p and q that

make f DSIC. Then, for every i ∈ N and every t−i, we know that for every si, ti ∈ Ti,

pi(si, t−i)− pi(ti, t−i) =
[
sifi(si, t−i)−

∫ si

0

fi(xi, t−i)dxi
]
−
[
tifi(ti, t−i)−

∫ ti

0

fi(xi, t−i)dxi
]

and

qi(si, t−i)− qi(ti, t−i) =
[
sifi(si, t−i)−

∫ si

0

fi(xi, t−i)dxi
]
−
[
tifi(ti, t−i)−

∫ ti

0

fi(xi, t−i)dxi
]

Hence,

pi(si, t−i)− pi(ti, t−i) = qi(si, t−i)− qi(ti, t−i),

or pi(si, t−i)− qi(si, t−i) = pi(ti, t−i)− qi(ti, t−i).

This result is also known as the revenue equivalence result in single object auction.

One important difference between the characterization in Theorem 5 and the charac-

terization of Roberts’ theorem is worth pointing out. The latter characterizations are very

specific about the parameters to be used in the mechanism - Roberts’ theorem asks us to

design mechanisms by identifying weights for agents and alternatives and then doing a max-

imization of weighted values. However, the characterization in Theorem 5 is implicit. It only

identifies properties of a mechanism that is necessary and sufficient for DSIC. It is still useful

for verifying if a given mechanism is DSIC or not.

An immediate corollary of Theorem 5 is the following.

Corollary 1 An allocation rule is implementable in dominant strategies if and only if it

is non-decreasing.

52

Proof : Suppose f is an implementable allocation rule. Then, there exists (p1, . . . , pn)

such that (f, p1, . . . , pn) is DSIC. One direction of Theorem 5 showed that f must be non-

decreasing. For the converse, Theorem 5 identified payment rules that make a non-decreasing

allocation rule implementable. ■

The fact that any non-decreasing allocation rule can be implemented in the single object

auction rule is insightful. Many allocation rules can be verified if they are implementable

or not by checking if they are non-decreasing. The constant allocation rule is clearly non-

decreasing (it is constant in fact). The dicatorial allocation rule is also non-decreasing. The

efficient allocation rule is non-decreasing because if you are winning the object by reporting

some type, efficiency guarantees that you will continue to win it by reporting a higher type

(remember that efficient allocation rule in the single object case awards the object to an

agent with the highest type).

Efficient allocation rule with a reserve price is the following allocation rule. If types of

all agents are below a threshold level r, then the object is not sold, else all agents whose

type is above r are considered and sold to one of these agents who has the highest type. It

is clear that this allocation rule is also DSIC since it is non-decreasing. We will encounter

this allocation rule again when we study optimal auction design.

Consider an agent i ∈ N and fix the types of other agents at t−i. Figure 3.3 shows

how agent i’s probability of winning the object can change in a DSIC allocation rule. If we

restrict attention to DSIC allocation rules which either do not give the object to an agent

or gives it to an agent with probability 1, then the shape of the curve depicting probability

of winning the object will be a step function. We call such allocation rules deterministic

allocation rules.

3.1.4 The Efficient Allocation Rule and the Vickrey Auction

We start off by deriving a deterministic mechanism using Theorem 5. The mechanism we

focus is the Vickrey auction that uses the efficient allocation rule. Though the efficient

allocation rule may break ties using randomization, we assume that ties are broken deter-

ministically, i.e., each agent gets the object either with probability 1 or 0.

Suppose f is the efficient allocation. We know that the class of Groves payments make

f DSIC. Suppose we impose the restriction that pi(0, t−i) = 0 for all i ∈ N and for all t−i.

53

Note that if ti is not the highest type in the profile, then fi(xi, t−i) = 0 for all xi ≤ ti. Hence,

by Theorem 5, pi(ti, t−i) = 0. If ti is the highest type and tj is the second highest type in

the profile, then fi(xi, t−i) = 0 for all xi ≤ tj and fi(xi, t−i) = 1 for all ti ≥ xi > tj. So, using

Theorem 5, pi(ti, t−i) = ti − [ti − tj] = tj. This is indeed the Vickrey auction. The revenue

equivalence result says that any other DSIC auction must have payments which differ from

the Vickrey auction by the amount a bidder pays at type 0, i.e., pi(0, t−i).

3.1.5 Deterministic Allocations Rules

Type of agent i

Allocation probability

κfi (t−i)

1

Figure 3.4: A deterministic implementable allocation rule

Call an allocation rule f deterministic (in single object setting) if for all i ∈ N and every

type profile t, we have fi(t) ∈ {0, 1}. The aim of this section is to show the simple nature of

payment rules for a deterministic allocation rule to be DSIC. We assume that set of types

of agent i is Ti = [0, bi]. Suppose f is a deterministic allocation rule which is DSIC. Hence,

it is non-decreasing. For every i ∈ N and every t−i, the shape of fi(·, t−i) is a step function

(as in Figure 3.4). Now, define,

κfi (t−i) =

{
inf{ti ∈ Ti : fi(ti, t−i) = 1} if fi(ti, t−i) = 1 for some ti ∈ Ti

0 otherwise

If f is DSIC, then it is non-decreasing, which implies that for all ti > κfi (t−i), i gets the

object and for all ti < κfi (t−i), i does not get the object.

54

Consider a type ti ∈ Ti. If fi(ti, t−i) = 0, then using revenue equivalence, we can

compute any payment which makes f DSIC as pi(ti, t−i) = pi(0, t−i). If fi(ti, t−i) = 1, then

pi(ti, t−i) = pi(0, t−i) + ti − [ti − κfi (t−i)] = pi(0, t−i) + κfi (t−i). Hence, if p makes f DSIC,

then for all i ∈ N and for all t

pi(t) = pi(0, t−i) + κfi (t−i).

The payments when pi(0, t−i) = 0 has special interpretation. If fi(t) = 0, then agent i

pays nothing (losers pay zero). If fi(t) = 1, then agent i pays the minimum amount required

to win the object when types of other agents are t−i. If f is the efficient allocation rule, this

reduces to the second-price Vickrey auction.

We can also apply this to other allocation rules. Suppose N = {1, 2} and the allocations

are A = {a0, a1, a2}, where a0 is the allocation where the seller keeps the object, ai (i ̸= 0)

is the allocation where agent i keeps the object. Given a type profile t = (t1, t2), the seller

computes, U(t) = max(2, t21, t
3
2), and allocation is a0 if U(t) = 2, it is a1 if U(t) = t21, and a2

if U(t) = t32. Here, 2 serves as a (pseudo) reserve price below which the object is unsold. It

is easy to verify that this allocation rule is non-decreasing, and hence DSIC. Now, consider

a type profile t = (t1, t2). For agent 1, the minimum he needs to bid to win against t2

is
√

max{2, t32}. Similarly, for agent 2, the minimum he needs to bid to win against t1 is

(max{2, t21})
1
3 . Hence, the following is a payment scheme which makes this allocation rule

DSIC. At any type profile t = (t1, t2), if none of the agents win the object, they do not pay

anything. If agent 1 wins the object, then he pays
√

max{2, t32}, and if agent 2 wins the

object, then he pays (max{2, t21})
1
3 .

3.1.6 Individual Rationality

We can find out conditions under which a mechanism is individually rational. We use ex

post individual rationality here.

Definition 10 A mechanism (f, p) is ex-post individually rational if for all i ∈ N and for

all t−i,

tifi(ti, t−i)− pi(ti, t−i) ≥ 0 ∀ ti.

55

Lemma 7 Suppose a mechanism (f, p) is strategy-proof. The mechanism (f, p) is ex-post

individually rational if and only if for all i ∈ N and for all t−i,

pi(0, t−i) ≤ 0.

Further, a mechanism (f, p) is ex-post individually rational and pi(ti, t−i) ≥ 0 for all i ∈ N

and for all t−i if and only if for all i ∈ N and for all t−i,

pi(0, t−i) = 0.

Proof : Suppose (f, p) is ex-post individually rational. Then 0− pi(0, t−i) ≥ 0 for all i ∈ N

and for all t−i. For the converse, suppose pi(0, t−i) ≤ 0 for all i ∈ N and for all t−i. In that

case, ti − pi(ti, t−i) = ti − pi(0, t−i)− tifi(ti, t−i) +
∫ ti
0
fi(xi, t−i)dxi ≥ 0.

Ex-post individual rationality says pi(0, t−i) ≤ 0 and the requirement pi(0, t−i) ≥ 0

ensures pi(0, t−i) = 0. For the converse, pi(0, t−i) = 0 ensures ex-post individual rationality.

■

Hence, ex-post individual rationality along with the requirement that payments are al-

ways non-negative pins down pi(0, t−i) = 0 for all i ∈ N and for all t−i.

3.1.7 Beyond Vickrey auction: examples

We have seen that Vickrey auction is DSIC. We give some more examples of DSIC mecha-

nisms below. We will be informal in the description of these mechanisms to avoid cumbersome

notations.

The first one is a Groves mechanism but not the Vickrey auction. Consider the mechanism

where the highest valued agent wins the object (ties broken in some way) but payments

are slightly different. In particular, winner pays an amount equal to the second highest

value but everyone is compensated some amounts: highest and second highest valued agents

are compensated an amount equal to 1
n
of the third highest value and other agents are

compensated an amount equal to 1
n
of the second highest value.

To show that this mechanism is DSIC, we observe that the allocation rule (efficient rule)

is non-decreasing. Then, we need to show that the payment respects revenue equivalence.

To see this consider, for all i ∈ N , for all t−i,

pi(0, t−i) = − 1

n
second highest in {tj}j ̸=i.

56

Notice that the Vickrey auction has pi(0, t−i) = 0 for all i and for all t−i. Here, agents are

compensated some amount. To see the effect of choice of such a payment rule, consider a

profile t1 > t2 > . . . > tn (here, we are not considering ties for convenience). Agent 1 wins

the object and pays

p1(0, t−1) + t1 −
∫ t1

0

f1(x1, t−1) = − 1

n
t3 + t2.

Agent 2 does not get the object but pays

p2(0, t−2) = − 1

n
t3.

Agent j > 2 does not get the object but pays

pj(0, t−j) = − 1

n
t2.

By Theorem 5, such a mechanism is DSIC. Further, pi(0, t−i) ≤ 0 for all i and for all t−i.

Hence, by Lemma 7, such a mechanism also satisfies individual rationality. Notice that the

total sum of payments in this mechanism is 2
n
(t2 − t3), which approaches zero as number of

agents increase. Hence, this mechanism gives back all surplus (t1 in this case) to agents as

n increases.

Another example of a Groves mechanism is the choice of pi(0, t−i) = maxj ̸=i tj. This

choice leads to the mechanism that we have discussed earlier - winner does not pay anything

and everyone else is compensated an amount equal to the highest value.

We will now discuss a non-Groves mechanism. Again, we will keep the discussions infor-

mal here - which means, we will ignore profiles where there are ties. This is a mechanism

proposed by Green and Laffont, and famously referred to as the Green-Laffont mechanism.

The Green-Laffont mechanism gives the object with probability (1− 1
n
) to the highest valued

agent. It gives the object to the second highest valued agent with probability 1
n
. Clearly,

the allocation rule is non-decreasing. We will specify the pi(0, t−i) term to complete the

description of the mechanism. In fact, it is the same term we used for the first mechansim.

For all i ∈ N , for all t−i,

pi(0, t−i) = − 1

n
second highest in {tj}j ̸=i.

Since the object is not given to the highest valued agent with probability 1, this is not a

Groves mechanism. However, it has some other desirable properties. By Lemma 7, it is a

57

desirable mechanism. Consider a profile t1 > t2 > . . . > tn. Note that the payment of agent

1 is

p1(0, t−1) + (1− 1

n
)t1 −

1

n
(t2 − t3)− (1− 1

n
)(t1 − t2) =

(
1− 2

n

)
t2.

Payment of agent 2 is

p2(0, t−2) +
1

n
t2 −

1

n
(t2 − t3) = 0.

For every other agent j /∈ {1, 2}, payment of agent j is

pj(0, t−j) = − 1

n
t2.

As a result, we see that this mechanism is budget-balanced:∑
i∈N

pi(t) =
(
1− 2

n

)
t2 + 0− (n− 2)

1

n
t2 = 0.

Again, notice that the for large n, the Green-Laffont mechanism gives the object with very

high probability to agent 1. Since the mechanism is budget-balanced, it distributes the

almost the entire surplus as n becomes large.

More familiar DSIC mechanisms which are variants of Vickrey auction are Vickrey auc-

tions with reserve prices. Here, the seller announces a reserve price r and the object is sold

to the highest valuation agent if and only if its valuation is above the reserve price r. Using

Theorem 5, we see that if we set pi(0, t−i) = 0 for all i and for all t−i, we get the following

payment function. Take a type profile t - for simplicity, assume t1 > t2 ≥ . . . ≥ tn. If

t1 ≥ r ≥ t2, then we get

p1(t) = 0 + t1 − (t1 − r) = r.

If r ≤ t2, then we get p1(t) = t2. Other agents pay zero. Hence, the winner of the object

pays max(maxj ̸=i tj, r) and everyone else pays zero.

3.1.8 Bayesian incentive compatibility

We now investigate the analogue of our incentive compatibility characterization when we

consider Bayesian incentive compatibility. For this, we need to specify the common prior

belief of the agents. We assume that the value of agent i ∈ N is drawn from [0, bi]. We

assume that there is a common prior which is a joint probability distribution of all the types

- we denote the cumulative distribution by G. For every agent i, we denote by G−i(·|si) the

58

conditional distribution of types of agents other than agent i when agent i has type si. We

assume that G−i(·|si) admits a density function g−i(·|si) which is positive everywhere.

Let Ti := [0, bi] and T
n := [0, b1]× . . .× [0, bn]. Similarly, let T−i = ×j∈N\{i}Tj. A typical

valuation of bidder i will be denoted as ti ∈ Ti, a valuation profile of bidders will be denoted

as t ∈ T n, and a valuation profile of bidders in N \ {i} will be denoted as t−i ∈ T−i. The

valuation profile t = (t1, . . . , ti, . . . , tn) will sometimes be denoted as (ti, t−i).

Every mechanism (f, p1, . . . , pn) induces an expected allocation rule and an expected

payment rule (α, π), defined as follows. The expected allocation of agent i with type ti when

he reports si ∈ Ti in allocation rule f is

αi(si|ti) =
∫
T−i

fi(si, s−i)g−i(s−i|ti)ds−i.

Similarly, the expected payment of agent i with type ti when he reports si ∈ Ti in payment

rule pi is

πi(si|ti) =
∫
T−i

pi(si, s−i)g−i(s−i|ti)ds−i.

So, the expected utility from a mechanism M ≡ (f, p1, . . . , pn) to an agent i with true value

ti by reporting a value si is αi(si|ti)ti − πi(si|ti).

Definition 11 A mechanism (f, p1, . . . , pn) is Bayesian incentive compatible (BIC) if for

every agent i ∈ N and for every possible values si, ti ∈ Ti we have

αi(ti|ti)ti − πi(ti|ti) ≥ αi(si|ti)ti − πi(si|ti). (BIC)

Equation BIC says that a bidder maximizes his expected utility by reporting true value.

Given that other bidders report truthfully, when bidder i has value ti, he gets more expected

utility by reporting ti than by reporting any other value si ∈ Ti.

We say an allocation rule f is Bayes-Nash implementable if there exists payment rules

(p1, . . . , pn) such that (f, p1, . . . , pn) is a Bayesian incentive compatible mechanism.

3.1.9 Independence and characterization of BIC

We now give a characterization of BIC mechanisms, analogous to Theorem 5, when the

priors are independent. The independent prior assumption means that each agent i’s value

59

for the object is drawn using a distribution Gi (with density gi) and this in turn means that

G−i(t−i|ti) = ×j ̸=iGj(tj).

Because of independence, the conditional term can be dropped from all the notations:

so, αi(si|ti) and πi(si|ti) will just be written αi(si) and πi(si) respectively.

We say that an allocation rule f is non-decreasing in expectation (NDE) if for all i ∈ N

and for all si, ti ∈ Ti with si < ti we have αi(si) ≤ αi(ti). Similar to the characterization in

the dominant strategy case, we have a characterization in the Bayesian incentive compatible

mechanisms.

Theorem 6 A mechanism (f, p1, . . . , pn) is Bayesian incentive compatible if and only if f

is NDE and for every i ∈ N , pi satisfies

πi(ti) = πi(0) + tiαi(ti)−
∫ ti

0

αi(si)dsi ∀ ti ∈ [0, bi].

The proof is a replication of the arguments we did for dominant strategy case in Theorem

5. We skip the proof (but you are encouraged to reconstruct the arguments).

A BIC allocation rule need not be DSIC. We give an example to illustrate this. Consider

a setting with two agents N = {1, 2}. Suppose the values of both the agents are drawn

uniformly and independently from [0, 1]. Figure 3.5 shows an allocation rule f .

Type of agent 1

Type of agent 2

1

1

1

1

1

1

1

1

Figure 3.5: A BIC allocation rule which is not DSIC

The type profiles are divided into cells of equal size (25 of them in total). Some of the

cells are assigned some numbers - this is the probability with which agent 1 gets the object

60

in f . The cells in which no number is written, the probability of agent 1 getting the object

at those profiles is zero. For our purpose, the probability of agent 2 getting the object is

irrelevant - for simplicity, we can assume it to be zero (hence, in all other cells the seller

keeps the object).

An easy calculation reveals that the expected probability of agent 1 winning the object

is non-decreasing: it is zero if t1 ≤ 2
5
, it is 1

5
if t1 ∈ (2

5
, 3
5
], it is 2

5
if t1 ∈ (3

5
, 4
5
], and it is 3

5
if

t1 >
4
5
. Hence, the allocation rule a is BIC but not DSIC.

Theorem 6 says that the (expected) payment of a bidder in a mechanism is uniquely

determined by the allocation rule once we fix the expected payment of a bidder with the

lowest type. Hence, a mechanism is uniquely determined by its allocation rule and the

payment of a bidder with the lowest type.

It is instructive to examine the payment function when πi(0) = 0. Then payment of

agent i at type ti becomes

πi(ti) = αi(ti)ti −
∫ ti

0

αi(xi)dxi.

Because of non-decreasing αi(·) this is always greater than or equal to zero - it is the difference

between area of the rectangle with sides αi(xi) and xi and the area under the curve αi(·)
from 0 to xi.

We next impose a the analogue of individual rationality in the Bayesian set up.

Definition 12 A mechanism (f, p1, . . . , pn) is interim individually rational (IIR) if for

every bidder i ∈ N we have

αi(ti)ti − πi(ti) ≥ 0 ∀ ti ∈ Ti.

IIR is weaker than the (ex post) individual rationality we had discussed earlier since IIR

only requires interim expected utility from truthtelling to be non-negative. The set of BIC

and IIR mechanisms can now be characterized as follows.

Lemma 8 A mechanism (f, p1, . . . , pn) is BIC and IIR if and only if

(1) f is NDE.

(2) For all i ∈ N ,

πi(ti) = πi(0) + tiαi(ti)−
∫ ti

0

αi(si)dsi ∀ ti ∈ [0, bi].

61

(3) For all i ∈ N , πi(0) ≤ 0.

Proof : Suppose (f, p1, . . . , pn) is BIC. By Theorem 6, (1) and (2) follows. Applying IIR at

ti = 0, we get πi(0) ≤ 0, which is (3).

Now, suppose (1),(2), and (3) holds for a mechanism (f, p1, . . . , pn). By Theorem 6, the

mechanism is BIC. At any type ti,

tiαi(ti)− πi(ti) =

∫ ti

0

αi(si)dsi − πi(0)

≥
∫ ti

0

αi(si)dsi

≥ 0,

where the first inequality follows from (3). Hence, the mechanism satisfies IIR. ■

Revenue equivalence of standard auctions. Theorem 6 has some immediate applications.

When agents are symmetric, i.e., Gi = Gj, [0, bi] = [0, bj] for all i, j ∈ N , then the first price

auction has a monotone and symmetric equilibrium, where the highest valued agent submits

the highest bid. As a result, the first-price auction implements the efficient allocation rule

in Bayes-Nash equilibrium. The Vickrey auction also implements the efficient allocation rule

in Bayes-Nash (dominant strategy, in fact) equilibrium. Further, the payment of an agent

with zero value is zero in both the auctions. Hence, Theorem 6 implies that the interim

payment of a bidder is the same in the first-price and the Vickrey auction. As a result, both

the first-price and the Vickrey auction generates the same expected revenue.

Such revenue equivalence results have been established for many auction formats in auc-

tion theory. Many of these results are corollary of Theorem 6 once we establish that (a) they

implement the same allocation rule in Bayes-Nash equilibrium and (b) the interim payment

of the lowest type is the same.

3.2 The One Agent Problem

It is instructive to look at the one agent/buyer problem and study it further. Since there is

only one agent, the notion of Bayesian and dominant strategy incentive compatibility are the

same. Suppose there is a single agent whose type is distributed in some interval T ≡ [0, β]

62

with a distribution G whose density is g. A mechanism consists of an allocation rule and a

payment rule

f : [0, β] → [0, 1], p : [0, β] → R.

A mechanism (f, p) is incentive compatible if for every s, t ∈ T , we have

tf(t)− p(t) ≥ tf(s)− p(s).

A mechanism (f, p) is individually rational if for every t ∈ T ,

tf(t)− p(t) ≥ 0.

Let M be the set of all incentive compatible and individually rational mechanism. For

any mechanism M ≡ (f, p), the expected revenue from M is given by

ΠM :=

∫ β

0

p(t)g(t)dt.

A mechanism M is an optimal mechanism if M ∈ M and for all M ′ ∈ M, we have

ΠM ≥ ΠM ′
.

How does an optimal mechanism look like?

Consider an incentive compatible and individually rational mechanism (f, p) ≡M ∈ M.

By revenue equivalence, we can write for every t ∈ T ,

p(t) = p(0) + tf(t)−
∫ t

0

f(x)dx.

Individual rationality implies that p(0) ≤ 0. If we want to maximize revenue, then clearly

p(0) = 0. So, we have proved the following lemma.

Lemma 9 Suppose (f, p) is an optimal mechanism. Then, for every t ∈ T ,

p(t) = tf(t)−
∫ t

0

f(x)dx.

Hence, we focus attention to the set of incentive compatible and individually rational

mechanisms (f, p) ∈ M such that p(0) = 0, and denote it as M0. Note that the payment

in these mechanisms is uniquely determined by the allocation rule: for every t ∈ T , p(t) =

tf(t) −
∫ t

0
f(x)dx. We call such a payment rule the benchmark payment rule of f , and the

63

corresponding mechanism, the benchmarkmechanism of f . Hence, the optimization problem

reduces to searching over the set of all non-decreasing allocation rules. We denote the set

of all non-decreasing allocation rules F . For every f ∈ F , the expected revenue from the

benchmark mechanism of f is given by

Πf :=

∫ β

0

[
tf(t)−

∫ t

0

f(x)dx
]
g(t)dt.

So, we have shown the following lemma.

Lemma 10 Suppose (f, p) is an optimal mechanism. Then, the following are true:

• for every f ′ ∈ F , Πf ≥ Πf ′
.

• for every t ∈ T , p(t) = tf(t)−
∫ t

0
f(x)dx.

We now prove a crucial lemma.

Lemma 11 For any implementable allocation rule f , we have

Πf =

∫ β

0

w(t)f(t)g(t)dt,

where w(t) =
(
t− 1−G(t)

g(t)

)
for all t.

Proof : Note that if f is implementable, then

Πf =

∫ β

0

(
tf(t)−

∫ t

0

f(x)dx
)
g(t)dt

=

∫ β

0

tf(t)g(t)dt−
∫ β

0

(∫ t

0

f(x)dx
)
g(t)dt

=

∫ β

0

tf(t)g(t)dt−
∫ β

0

(∫ β

t

g(x)dx
)
f(t)dt

=

∫ β

0

tf(t)g(t)dt−
∫ β

0

(
1−G(t)

)
f(t)dt

=

∫ β

0

(
t− 1−G(t)

g(t)

)
f(t)g(t)dt.

■

By Lemma 10 and Lemma 11, our optimization problem is the following:

max
f∈F

Πf = max
f∈F

∫ β

0

w(t)f(t)g(t)dt.

64

We first optimize a relaxed problem where we consider an arbitrary f - not necessarily

belonging to F . For this, we impose a condition on the distribution. The distribution

G satisfies the monotone hazard rate (MHR) condition if g(x)
1−G(x)

is non-decreasing in x.

Standard distributions such as uniform and exponential satisfy MHR. Consider the uniform

distribution on [0, b]. This means G(x) = x
b
. So, g(x)

1−G(x)
= 1

b−x
, which is non-decreasing in

x. If G satisfies MHR, then there is a unique solution to x = 1−G(x)
g(x)

. Denote this unique

solution as κ∗ - so, κ∗ uniquely solves

w(κ∗) = 0.

One notices that since w is strictly increasing, w(t) < 0 for all t < κ∗ and w(t) > 0 for all

t > κ∗. Then, by the expression in Lemma 11, the maximum value of Πf is achieved for the

f which sets f(t) = 0 for all t < κ∗ (since w(t) < 0 for all t < κ∗) and f(t) = 1 for all t > κ∗

(since w(t) > 0 for all t > κ∗). The value of f(t) at t = κ∗ does not matter. Since such an f

is monotone, it is implementable.

Theorem 7 An optimal mechanism (f, p) satisfies the following under the MHR condition:

• there is a unique κ∗ that solves x = 1−G(x)
g(x)

and for all t < κ∗, we have f(t) = 0 and

for all t > κ∗ we have f(t) = 1,

• for all t ∈ T , p(t) = f(t)κ∗.

3.2.1 Monopolist problem

In this section, we consider a related problem where a monopolist is trying to sell a good

to a buyer with unknown value θ for “quality”. The monopolist can produce the good with

quality q ∈ [0, 1] at cost C(q) and the buyer with value θ values this quality at θq. We

assume that C is strictly convex, increasing, and continuously differentiable. So, the type of

the buyer is θ, which we assume to lie in some interval [0, β]. This model was studied in the

seminal work of Mussa and Rosen (1978).

As before, a mechanism is a pair of maps q : Θ → R++ and p : Θ → R. So, the

mechanism here commits a quality level and payment for every possible type. The timing of

the game is as follows.

65

• The seller announces a mechanism (and he commits to it).

• The buyer realizes her type.

• The buyer announces a type.

• The buyer gets an outcome (quality, payment) pair according to the announced type

and mechanism.

• The buyer and the seller realize their payoffs.

We assume that agent’s utility is linear: for consuming quality q at price p, he gets utility

equal to qθ − p. This can be generalized by a function u(q, θ) − p, where u is increasing in

each argument and satisfies increasing differences property (or, single crossing).

Fix a mechanism (q, p). Denote the net utility of agent of type θ by reporting θ′ to the

mechanism (q, p) as:

U q,p(θ′|θ) := q(θ′)θ − p(θ′).

Definition 13 A mechanism (q, p) is incentive compatible if for every θ,

U q,p(θ|θ) ≥ U q,p(θ′|θ).

Notice that

U q,p(θ′|θ) = U(θ′|θ′) + q(θ′)(θ − θ′).

Incentive constraints say that for all θ, θ′ ∈ Θ,

U q,p(θ|θ) ≥ U q,p(θ′|θ) = U q,p(θ′|θ′) + q(θ′)(θ − θ′).

For simplicity of notation, we denote U q,p(θ|θ) as U q,p(θ). Hence, we can write the IC

constraints as

U q,p(θ) ≥ U q,p(θ′) + q(θ′)(θ − θ′). (3.1)

66

As before, it is routine to verify that in every incentive compatible mechanism (q, p), we

must have that for every θ ∈ [0, 1],

U q,p(θ) = U q,p(0) +

∫ θ

0

q(θ′)dθ′. (3.2)

This is the payoff equivalence formula. The payoff equivalence formula in Equation (3.2)

also gives us a revenue equivalence formula by expanding the U terms: for all θ ∈ [0, 1],

p(θ) = p(0) + q(θ)θ −
∫ θ

0

q(θ′)dθ′. (3.3)

This gets us to a characterization of IC and IR constraints as before.

Proposition 3 A mechanism (q, p) is incentive compatible and individually rational if and

only if

1. q is non-decreasing.

2. revenue equivalence formula in (3.3) holds.

3. p(0) ≤ 0.

Now, we return to the objective function of the monopolist. Suppose F is the cdf of types.

We assume that F is strictly increasing, differentiable with density f . The seller seeks to

maximize the following expression over all IC and IR mechanisms:∫ β

0

[
p(θ)− C(q(θ))

]
f(θ)dθ.

Using, revenue equivalence formula (3.3), we simplify this to∫ β

0

[
p(0) + q(θ)θ −

∫ θ

0

q(θ′)dθ′ − C(q(θ))
]
f(θ)dθ.

Since IR implies p(0) ≤ 0, in any optimal mechanism, we must therefore have p(0) = 0.

Hence, the objective function becomes∫ β

0

[
q(θ)θ −

∫ θ

0

q(θ′)dθ′ − C(q(θ))
]
f(θ)dθ.

67

Since this is only a function of q, we only need the constraint that q is non-decreasing. We

make a some simplification to this term.∫ β

0

[
q(θ)θ −

∫ θ

0

q(θ′)dθ′ − C(q(θ))
]
f(θ)dθ

=

∫ β

0

[
q(θ)θ − C(q(θ))

]
f(θ)dθ −

∫ 1

0

(∫ θ

0

q(θ′)dθ′
)
f(θ)dθ

=

∫ β

0

[
q(θ)θ − C(q(θ))

]
f(θ)dθ −

∫ 1

0

(∫ 1

θ

f(θ′)dθ′
)
q(θ)dθ

=

∫ β

0

[
q(θ)θ − C(q(θ))

]
f(θ)dθ −

∫ 1

0

(
1− F (θ)

)
q(θ)dθ

=

∫ β

0

(
θq(θ)− C(q(θ))− 1− F (θ)

f(θ)
q(θ)

)
f(θ)dθ.

Forgetting the fact that q needs to be non-decreasing, we solve this unconstrained objective

function. We find the point-wise maximum and that should maximize the overall expression.

Point-wise maximum gives a first order condition for each θ as:

θ − C ′(q)− 1− F (θ)

f(θ)
= 0.

Denoting the virtual value at θ as v(θ) := θ− 1−F (θ)
f(θ)

, we se that the optimal quality at type

θ must satisfy

C ′(q(θ)) = v(θ).

Since C is strictly convex, the objective function at each point θ is strictly concave in q.

Hence, this is also a global optimal. However, the optimal solution may not satisfy q(θ) ≥ 0.

To ensure this, strict concavity implies that if the optimum lies to the left of 0, then under

non-negativity constraint, we must have q(θ) = 0 as optimal. So, optimal solution can be

described as follows. Let q̂(θ) be the solution to C ′(q̂(θ)) = v(θ). Then, the optimal quality

contract is: for all θ,

q∗(θ) = max(0, q̂(θ))

with price

p∗(θ) = θq∗(θ)−
∫ θ

0

q∗(θ′)dθ′.

Now, this point-wise optimal solution need not satisfy the fact q is non-decreasing. How-

ever, if virtual value is increasing, then it ensures that q is non-decreasing. To see this,

68

θ

q(θ)

Perfect information

Optimal IC contract

Figure 3.6: Adverse selection

assume for contradiction for some θ > θ′, we have q(θ) < q(θ′). Then, q(θ′) > 0. Further,

q̂(θ) ≤ q(θ) implies q̂(θ) < q̂(θ′). Then, convexity of C implies C ′(q̂(θ)) ≤ C ′(q̂(θ′)). But

then, v(θ) ≤ v(θ′), which contradicts the fact that v is increasing. Notice that virtual value

is increasing can be satisfied if inverse hazard rate f(θ)
1−F (θ)

is non-decreasing - an assumption

satisfied by many distribution including the uniform distribution.

As an exercise, suppose C(q) = 1
2
q2 with q ∈ [0, 1] and F is the uniform distribution in

[0, 1]. Then, we see that for each θ, v(θ) = 2θ − 1. Hence, C ′(q(θ)) = q must be equal to

2θ − 1. Hence, we get q∗(θ) = max(0, 2θ − 1). Notice that in the perfect information case,

the seller should ensure C ′(q(θ)) = θ, which gives q(θ) = θ. So, there is under-provision to

lower types due to incentive constraint. This is shown in Figure 3.6.

Constant marginal cost

If marginal cost is constant, then the optimal contract exhibits extreme pooling. To see

this, suppose that q can take any value in [0, 1] and C(q) = cq for some c > 0. Then the

69

optimization program is

max
q non-decreasing

∫ 1

0

(
θq(θ)− cq(θ)− 1− F (θ)

f(θ)
q(θ)

)
f(θ)dθ

= max
q non-decreasing

∫ 1

0

(
θ − c− 1− F (θ)

f(θ)

)
q(θ)f(θ)dθ

= max
q non-decreasing

∫ 1

0

(
v(θ)− c

)
q(θ)f(θ)dθ

This has a simple optimal solution: whenever v(θ) < c, set q(θ) = 0 and whenever

v(θ) > c, set q(θ) = 1. Monotonicity of v ensures monotonicity of q. Notice that if q(θ) = 0,

we have p(θ) = 0. By the revenue equivalence formula, if q(θ) = 1 (which implies that

θ ≥ v−1(c))

p(θ) = θ −
∫ θ

v−1(c)

q(θ′)dθ′ = θ − (θ − v−1(c)) = v−1(c).

Hence, every buyer who gets the maximum possible quality pays the “posted-price” v−1(c).

Thus, the optimal contract is equivalent to saying that the seller announces a posted-price

equal to v−1(c) and the buyer with type greater than the posted price gets maximum quality

and those below the posted price get zero quality.

3.3 Optimal Auction Design

We now go back to our model with a single seller who is selling a single object and we ignore

cost of production now. The only difference from previous sections is that there are n ≥ 1

buyers. We will describe the design of optimal auction for selling a single indivisible object

to such a set of bidders (buyers) who have quasi-linear utility functions. The seminal paper

in this area is (Myerson, 1981). We present a detailed analysis of this work.

The optimal mechanism is a mechanism that maximizes the expected revenue of the

seller over all mechanisms identified in Theorem 8. To compute expected revenue from a

mechanism (f, p ≡ (p1, . . . , pn)), we note that the expected payment of agent i with type ti

is πi(ti). Hence, (ex-ante) expected payment of agent i to this mechanism is∫ bi

0

πi(ti)gi(ti)dti.

70

Hence, the expected revenue from the mechanism (f, p ≡ (p1, . . . , pn)) is

Π(f, p) =
∑
i∈N

∫ bi

0

πi(ti)gi(ti)dti.

We say a mechanism (f, p) is an optimal mechanism if

• (f, p) is Bayesian incentive compatible and individually rational,

• and Π(f, p) ≥ Π(f ′, p′) for any other Bayesian incentive compatible and individually

rational mechanism (f ′, p′).

Theorem 8 will play a crucial role since it has identified the entire class of BIC and IIR

mechanisms, over which we are optimizing.

Fix a mechanism (f, p) which is Bayesian incentive compatible and individually rational.

For any bidder i ∈ N , the expected payment of bidder i ∈ N is given by∫ bi

0

πi(ti)gi(ti)dxi = πi(0) +

∫ bi

0

αi(ti)tigi(ti)dti −
∫ bi

0

∫ ti

0

(
αi(si)dsi

)
gi(ti)dti,

where the last equality comes by using revenue equivalence (Theorem 6). By interchanging

the order of integration in the last term, we get∫ bi

0

∫ ti

0

(
αi(si)dsi

)
gi(ti)dti =

∫ bi

0

(∫ bi

ti

gi(si)dsi
)
αi(ti)dti

=

∫ bi

0

(1−Gi(ti))αi(ti)dti.

Hence, we can write

Π(a, p) =
∑
i∈N

πi(0) +
∑
i∈N

∫ bi

0

(
ti −

1−Gi(ti)

gi(ti)

)
αi(ti)gi(ti)dti.

We now define the virtual valuation of bidder i ∈ N with valuation ti ∈ Ti as

wi(ti) = ti −
1−Gi(ti)

gi(ti)
.

Note that since gi(ti) > 0 for all i ∈ N and for all ti ∈ Ti, the virtual valuation wi(ti) is well

defined. Also, virtual valuations can be negative. Using this and the definition of αi(·), we

71

can write

Π(f, p) =
∑
i∈N

πi(0) +
∑
i∈N

∫ bi

0

wi(ti)αi(ti)gi(ti)dti

=
∑
i∈N

πi(0) +
∑
i∈N

∫ bi

0

(∫
T−i

fi(ti, t−i)g−i(t−i)dt−i

)
wi(ti)gi(ti)dti

=
∑
i∈N

πi(0) +
∑
i∈N

∫
Tn

wi(ti)fi(t)g(t)dt

=
∑
i∈N

πi(0) +

∫
Tn

[∑
i∈N

wi(ti)fi(t)

]
g(t)dt.

Since IIR requires πi(0) ≤ 0 for all i ∈ N , if we want to maximize Π(f, p), we must

set πi(0) = 0 for all i ∈ N . As a result, the optimization problem only involves finding the

allocation rule, and the payment rule can be computed using Theorem 6 and setting πi(0) = 0

for all i ∈ N . So, we can succinctly write down the optimal mechanism optimization problem.

max
f

∫
Tn

[∑
i∈N

wi(ti)fi(t)

]
g(t)dt

subject to f is NDE.

The term in the objective function is exactly the total expected virtual valuation from

an allocation rule. This is because, the term
∑

i∈N wi(ti)fi(t) is the total realized virtual

valuation of all bidders at type profile t from allocation rule f . This observation leads to the

following important result.

Theorem 8 The allocation rule in an optimal mechanism maximizes the total expected vir-

tual valuation among all Bayes-Nash implementable (NDE) allocation rules.

We will first investigate what happens to the optimal mechanism without the NDE con-

straint on the allocation rule. We will call this the unconstrained optimal mechanism. There

are two immediate corollaries to Theorem 8.

Corollary 2 Suppose the NDE constraint is ignored. Then, an unconstrained optimal

mechanism is deterministic: at every type profile, it allocates the object with probability to

one to the highest virtual valuation buyer if the highest virtual valuation is non-negative; else

it does not allocate the object.

72

Proof : Without the constraint that f has to be NDE, we can maximize our objective

function by doing a point-wise maximization. In particular, at every type profile t, we assign

fi(t) = 0 for all i ∈ N if wi(ti) < 0 for all i ∈ N ; else we assign fi(t) = 1 for some i ∈ N

such that wi(ti) ≥ wj(tj) for all j ̸= i. In other words, the highest virtual valuation agent

wins the object if he has non-negative virtual valuation, else the object is unsold. Clearly,

this maximizes the objective function without the NDE constraint. ■

There is also another interesting corollary to Theorem 8. Call an allocation rule f sat-

isfies no wastage if
∑

i∈N fi(t) = 1 for every type profile t. We will consider the revenue

maximization over the class of all no wastage allocation rules.

Corollary 3 Suppose the NDE constraint is ignored. Then, an unconstrained optimal

mechanism is over the class of no wastage allocation rules is deterministic: it allocates the

object with probability to one to the highest virtual valuation buyer at every type profile.

The proof of Corollary 3 is identical to the proof of Corollary 2 except that we have to

allocate at every type profile. Corollary 3 leads to the following corollary.

Definition 14 A virtual valuation wi of agent i is regular if for all si, ti ∈ Ti with si > ti,

we have wi(si) > wi(ti).

Regularity requires that the virtual valuation functions are strictly increasing. The following

condition on distributions ensures that regularity holds. The hazard rate of a distribution gi

is defined as λi(ti) =
gi(ti)

1−Gi(ti)
for all i ∈ N .

Lemma 12 If the hazard rate λi is non-decreasing, then the virtual valuation wi is regular.

Proof : Consider si, ti ∈ Ti such that si > ti. Then,

wi(si) = si −
1

λi(si)
> ti −

1

λi(ti)
= wi(ti).

■

The uniform distribution satisfies the non-decreasing hazard rate condition. Because
1−Gi(ti)
gi(ti)

= bi−ti, which is non-increasing in ti. For the exponential distribution, gi(ti) = µe−µti

and Gi(ti) = 1 − e−µti . Hence, 1−Gi(ti)
gi(ti)

= 1
µ
, which is a constant. So, the exponential

distribution also satisfies the non-decreasing hazard rate condition.

73

We say buyers are symmetric if they draw their values from identical distributions: bi = bj

and Gi = Gj for each i, j ∈ N . We call the common distribution G.

Corollary 4 Suppose buyers are symmetric and distribution is regular. Then, the Vickrey

auction is the optimal mechanism over the class of no wastage allocation rules.

Proof : We already know from Corollary 3 that the unconstrained optimal mechanism over

no wastage allocation rules allocates the object to the highest virtual valuation buyer at

every type profile. If buyers are symmetric, then each buyer has the same virtual valuation

function: denote it as w. Since the distribution is regular, we see that the highest virtual

valuation buyer is also the highest valuation buyer. So, the allocation rule is efficient. We

know that the lowest type payment is zero. By revenue equivalence, the payment corresponds

to the Vickrey auction. ■

In general, we are not interested in imposing no wastage. Then, we start from Corollary

2. It may so happen that the optimal solution obtained may not satisfy the NDE constraint.

Below, we impose conditions on the distributions of agents that ensure that the unconstrained

optimal solution satisfies the constraints, and hence, a constrained optimal solution.

This leads to our main observation.

Lemma 13 Suppose regularity holds for the virtual valuation of each agent. Then, the alloca-

tion rule in the optimal mechanism solves the following unconstrained optimization problem.

max
f

∫
Tn

[∑
i∈N

wi(ti)fi(t)

]
g(t)dt.

Proof : We have already seen that the optimal solution to the unconstrained optimization

problem is done as follows: for every type profile t, fi(t) = 0 for all i ∈ N if wi(ti) < 0 for

all i ∈ N and fi(t) = 1 for some i ∈ N if wi(ti) ≥ 0 and wi(ti) ≥ wj(tj) for all j ∈ N . If the

regularity condition holds, then f is NDE. To see this, consider a bidder i ∈ N and si, ti ∈ Ti

with si > ti. Regularity gives us wi(si) > wi(ti). By the definition of the allocation rule,

for all t−i ∈ T−i, we have fi(si, t−i) ≥ fi(ti, t−i). Hence, f is non-decreasing, and hence, it is

NDE. ■

Our discussions to the main theorem of this section.

74

Theorem 9 Suppose the regularity holds for each agent. Consider the following allocation

rule f ∗. For every type profile t ∈ T n, f ∗
i (t) = 0 if wi(ti) < 0 for all i ∈ N and else,

f ∗
i (t) = 1 for some i ∈ N such that wi(ti) ≥ 0, wi(ti) ≥ wj(tj) ∀ j ∈ N . There exists

payments (p1, . . . , pn) such that (f ∗, p1, . . . , pn) is an optimal mechanism.

We now come back to the payments. To remind, we need to ensure that payments satisfy

the revenue equivalence and πi(0) = 0 for all i ∈ N . Since f ∗ can be implemented in

dominant strategies and it is a deterministic allocation rule, we can ensure this by satisfying

the revenue equivalence formulae for the dominant strategy case (which simplifies if the

allocation rule is deterministic) and setting pi(0, t−i) = 0 for all i and for all t−i. From our

earlier analysis, the payment then is uniquely determined as the following (from Theorem

5).

For every i ∈ N and for every t−i, let κ
f∗

i (t−i) = inf{ti : f ∗
i (ti, t−i) = 1}. If f ∗(ti, t−i) = 0

for all ti ∈ Ti, then set κf
∗

i (t−i) = 0.

Theorem 10 Suppose the regularity holds for each agent. Consider the following allocation

rule f ∗. For every type profile t ∈ T n, For every type profile t ∈ T n, f ∗
i (t) = 0 if wi(ti) < 0 for

all i ∈ N and else, f ∗
i (t) = 1 for some i ∈ N such that wi(ti) ≥ 0, wi(ti) ≥ wj(tj) ∀ j ∈ N .

For every agent i ∈ N , consider the following payment rule. For every (ti, t−i) ∈ T n,

p∗i (ti, t−i) =

{
0 if f ∗

i (ti, t−i) = 0

κf
∗

i (t−i) if f ∗
i (ti, t−i) = 1

The mechanism (f ∗, p∗1, . . . , p
∗
n) is an optimal mechanism.

Proof : By Theorem 9, there is an optimal mechanism involving f ∗. Under regularity, f ∗

is non-decreasing, and hence, dominant strategy implementable. For the mechanism to be

optimal, we only need to show that (p∗1, . . . , p
∗
n) satisfy the revenue equivalence formulae in

Theorem 6 with π∗
i (0) = 0 for all i ∈ N .

The payments (p∗1, . . . , p
∗
n) satisfy the revenue equivalence formula in Theorem 5. Hence,

by Theorem 5, (f ∗, p∗1, . . . , p
∗
n) is dominant strategy incentive compatible, and hence, BIC.

So, they satisfy the revenue equivalence formula in Theorem 6. Since p∗i (0, t−i) = 0 for all

i ∈ N and for all t−i, we have π∗
i (ti) = 0 for all i ∈ N and for all ti ∈ Ti. This shows that

(f ∗, p∗1, . . . , p
∗
n) is an optimal mechanism. ■

75

DSIC, IR

deterministic mechanisms

optimal mechanism

BIC, IIR, randomized mechanisms

Figure 3.7: Optimal mechanism is DSIC, IR, and deterministic

Figure 3.7 highlights the fact that we started out searching for an optimal mechanism in

a large family of BIC, IIR, and randomized mechanisms. But the optimal mechanism turned

out to be DSIC, IR, and deterministic.

If the regularity condition does not hold, the optimal mechanism is more complicated,

and you can refer to Myerson’s paper for a complete treatment.

Symmetric Bidders

Finally, we look at the special case where the buyers are symmetric, i.e., they draw the

valuations using the same distribution - gi = g and T1 = T2 = . . . = Tn for all i ∈ N . So,

virtual valuations are the same: wi = w for all i ∈ N . In this case w(ti) > w(tj) if and only

if ti > tj by regularity. Hence, maximum virtual valuation corresponds to the maximum

valuation.

Thus, κi(t−i) = max{w−1(0),maxj ̸=i tj}. This is exactly, the second-price auction with

the reserve price of w−1(0). Hence, when the buyers are symmetric, then the second-price

76

auction with a reserve price equal to w−1(0) is optimal.

An Example

Consider a setting with two buyers whose values are distributed uniformly in the intervals

T1 = [0, 12] (buyer 1) and T2 = [0, 18] (buyer 2). Virtual valuation functions of buyer 1 and

buyer 2 are given as:

w1(t1) = t1 −
1−G1(t1)

g1(t1)
= t1 − (12− t1) = 2t1 − 12

w2(t2) = t2 −
1−G2(t2)

g2(t2)
= t2 − (18− t2) = 2t2 − 18.

Hence, the reserve prices for both the bidders are respectively r1 = 6 and r2 = 9. The

optimal auction outcomes are shown for some instances in Table 3.1.

Valuations Allocation (who gets object) Payment of Buyer 1 Payment of Buyer 2

(t1 = 4, t2 = 8) Object not sold 0 0

(t1 = 2, t2 = 12) Buyer 2 0 9

(t1 = 6, t2 = 6) Buyer 1 6 0

(t1 = 9, t2 = 9) Buyer 1 6 0

(t1 = 8, t2 = 15) Buyer 2 0 11

Table 3.1: Description of Optimal Mechanism

Efficiency and Optimality

One of the conclusions that we can draw from the previous analysis is that the optimal

mechanism is not efficient. We illustrate this with an example. Suppose there are two agents

N = {1, 2}. Suppose T1 = [0, 10] and T2 = [0, 6]. To compute the optimal mechanism, we

need to compute the virtual valuation functions. For agent 1, for every t1 ∈ T1, we have

w1(t1) = 2t1 − 10.

For agent 2, for every t2 ∈ T2, we have

w2(t2) = 2t2 − 6.

77

The optimal mechanism is shown in Figure 3.8. Notice that the object is unsold if t1 < 5

and t2 < 3. This is inefficient. This inefficiency occurs because of the reserve prices in the

optimal mechanism. There is another source of inefficiency. Efficiency requires that agent

1 wins the object if t1 > t2. However, the optimal mechanism requires that 2t1 − 10 ≥ 0

and 2t1 − 10 ≥ 2t2 − 6. This means, agent 2 wins the object in some cases where agent 1

should have won - this is shown in Figure 3.8. For instance, at the type profile (5, 4), we

have 2t2 − 6 = 2 > 0 = 2t1 − 5. Hence, agent 2 wins the object, but efficiency requires agent

1 must win the object here. This inefficiency occurs because the virtual valuation function

of both the agents is not the same, which happens because the distribution of values is

asymmetric. When bidders are symmetric, this source of inefficiency disappears. So, with

symmetric bidders, whenever the object is allocated, it is allocated efficiently.

Unsold - inefficient

Agent 1 wins

Agent 2 wins
Inefficient

Type of agent 1

Type of agent 2

3

6

5 10

Figure 3.8: Inefficiency of optimal mechanism

Auction versus negotiation

Our analysis also leads to an interesting observation. This observation was noted in greater

generality in Bulow and Klemperer (1996). Consider the symmetric buyer case. The optimal

auction is a Vickrey auction with a reserve price. The reserve price depends on the prior

78

information. If the seller did not know the prior well, then it is very difficult to set the

correct reserve price.

Now, consider a model with n symmetric bidders with a regular distribution. Suppose

we could hire another symmetric bidder for “free”. Then, we make the following claim.

Theorem 11 Suppose buyers are symmetric and distribution is regular. The Vickrey auction

(without any reserve price) for (n + 1) bidders generates more expected revenue than the

optimal mechanism with n bidders.

Proof : Consider the following mechanism for (n+1) bidders. Pick some bidder, say (n+1),

and conduct the optimal n-bidder mechanism for bidders 1, . . . , n. If the object is not sold in

this n-bidder optimal mechanism, give it to bidder (n+1) for free. Note that this mechanism

is BIC and satisfies IR. Further, its revenue is at least as much as the revenue from the n-

bidder optimal mechanism. Finally, this mechanism satisfies no wastage. By Corollary 4,

the (n + 1) bidder Vickrey auction generates more expected revenue than this mechanism.

This concludes the proof. ■

The result in Bulow and Klemperer (1996) is more general than this. But the result

hints that if the cost of hiring an extra bidder is less than the optimal and prior dependent

mechanism can be replaced by a prior-free mechanism.

Approximation for asymmetric case

We saw that the Vickrey auction with a reserve price equal to inverse of virtual value at

zero is an optimal mechanism in the symmetric setting. However, the optimal mechanism is

complex in the asymmetric case. The seller needs to know the exact virtual value function to

figure out the optimal mechanism. In contrast, in the symmetric case, the seller only needs

to know the value at which the buyer’s virtual value crosses zero.

Hartline and Roughgarden ask the extent of loss in expected revenue if one restricts

attention to Vickrey auction with monopoly reserves. They assume that the distributions

of each bidder satisfies monotone hazard rate property, which implies that the virtual value

function is increasing.

They consider Vickrey auction with non-anonymous reserve prices: denote this as (q, p).

79

In particular, the reserve price of bidder i is

ri = w−1
i (0)

where w−1
i is the inverse of the virtual value function of bidder i. Note that the Vickrey

auction with reserve prices (r1, . . . , rn) is the following mechanism. At every type profile t,

let E(t) be the set of bidders whose value is greater than the reserve price:

E(t) = {i ∈ N : ti ≥ ri}

At any valuation profile t, if E(t) = ∅, then the object is not allocated. Else, if E(t) ̸= ∅,
then the bidder with the highest value in E(t) is allocated the object: i.e., qi(t) = 1 implies

ti ≥ ri and ti ≥ tj for all j ∈ E(t).

Two remarks about the mechanism (q, p). First, q is a deterministic and increasing

allocation rule: qi(ti, t−i) ≥ qi(t
′
i, t−i) for all i, for all t−i, and for all ti > t′i. Second, the

payment can be uniquely determined as follows. If i is not allocated, she pays zero. If

qi(ti, t−i) = 1, then the least type where i wins the object is her payment. To determine this,

note that for any j ̸= i, if j ∈ E(ti, t−i), then j ∈ E(t′i, t−i) for all t
′
i. Hence, as bidder i varies

(lowers) its value, the set of other bidders in E do not change. So, to be the winner, value

of bidder i has to be greater than ri and higher than values of other bidders in E(ti, t−i).

Hence, payment of bidder i is max(ri,maxj∈E(ti,t−i),j ̸=i tj).

The second observation is that the set of type profiles where the objects is not allocated

is the same in both the optimal mechanism and in (q, p): these are the valuation profiles

where every bidder has negative virtual value, i.e., the valuation profiles t ≡ (t1, . . . , tn) such

that ti < ri for all i ∈ N . Further, whenever the object is allocated to a bidder in both the

mechanisms, mechanism (q, p) allocates efficiently.

Theorem 12 The expected revenue from Vickrey auction with reserve prices (r1, . . . , rn) is

at least 1
2
of the expected revenue from an optimal mechanism.

Proof : Let (q, p) be the Vickrey auction with reserve prices (r1, . . . , rn) and (q∗, p∗) be

the optimal mechanism. Let T+ be the set of type profiles where the object is allocated in

mechanism (q, p). By construction, T+ is also the set of type profiles where the object is

allocated in (q∗, p∗).

80

By Theorem 8, we know that the expected payment from q (denoted as Rev(q, p)) is

Rev(q, p) =

∫
t∈T+

[n∑
i=1

wi(ti)qi(t)
]
g(t)dt

But in this auction, each bidder i pays at least ri when she wins. So,

Rev(q, p) ≥
∫
t∈T+

[n∑
i=1

riqi(t)
]
g(t)dt

Combining these two, we get

2Rev(q, p) ≥
∫
t∈T+

[n∑
i=1

(wi(ti) + ri)qi(t)
]
g(t)dt (3.4)

Now, if qi(t) > 0, then ti ≥ ri. Hence, ri + wi(ti) = ri + ti − 1−Gi(ti)
gi(ti)

≥ ri + ti − 1−Gi(ri)
gi(ri)

,

where the inequality follows from monotone hazard rate and ti ≥ ri. But, by definition

ri − 1−Gi(ri)
gi(ri)

= 0. Hence, we get ri + wi(ti) ≥ ti for all ti such that qi(t) > 0. Hence,

2Rev(q, p) ≥
∫
t∈T+

[n∑
i=1

tiqi(t)
]
g(t)dt (3.5)

But at any type profile t ∈ T+ we know that the Vickrey auction is efficient (but the optimal

mechanism may not be efficient). Hence, we know for any type profile t ∈ T+

n∑
i=1

tiqi(t) ≥
n∑

i=1

tiq
∗
i (t) ≥

n∑
i=1

p∗i (t),

The second inequality follows because there is an optimal mechanism which is ex-post indi-

vidually rational, and hence, tiq
∗
i (t) ≥ p∗i (t) for every i and every v. Further, for all t /∈ T+,

p∗i (t) = 0 for all i ∈ N . Hence, the RHS of the above expression is just Rev(q∗, p∗).

Using (3.5), we conclude that

2Rev(q, p) ≥
∫
t∈T+

[n∑
i=1

p∗i (t))
]
g(t)dt = Rev(q∗, p∗)

This completes the proof. ■

81

3.4 Correlation and full surplus extraction

We study the single object auction problem again but with correlated types. The model is

the same. There are n buyers and one seller with an object. The seller has zero value for

the object. Value of each buyer i is a random variable vi ∈ Vi, where Vi is a finite set. Let

V := V1 × . . . × Vn and for each i ∈ N let V−i := ×j ̸=iVj. The joint distribution of value

of buyers is given by a probability distribution function π, where we denote the probability

that valuation profile (v1, . . . , vn) being realized as π(v1, . . . , vn). Each buyer i observes his

valuation vi but not the valuations of others. Hence, conditional probability distributions

are relevant in this context. We will denote by π(v−i|vi) := π(vi,v−i)∑
v′−i

∈V−i
π(vi,v′−i)

the conditional

probability of valuation profile v−i appearing when buyer i has value vi. An information

structure is (V, π). Throughout, we will assume that the information structure satisfies

πi(v−i|vi) > 0 for all v−i and for all vi, for all i ∈ N .

We are interested in dominant strategy incentive compatible mechanism. Due to revelation

principle, a mechanism is specified by two rules: (a) allocation rule, Qi : V → [0, 1] for each

i, where Qi(v) is the probability of getting object for buyer i at valuation profile v - feasibility

is assumed, i.e.,
∑

i∈N Qi(v) ≤ 1 for all v ∈ V ; (b) payment rule, Pi : V → R for each i.

Definition 15 An auction ({Qi, Pi}i∈N) is dominant strategy incentive compatible (DSIC)

if for every i ∈ N , every v−i ∈ V−i, and every vi, v
′
i ∈ Vi, we have

viQi(vi, v−i)− Pi(vi, v−i) ≥ viQi(v
′
i, v−i)− Pi(v

′
i, v−i).

The notion of participation we use is interim individual rationality.

Definition 16 An auction ({Qi, Pi}i∈N) is interim individually rational (IIR) if for every

i ∈ N and every vi ∈ Vi, we have

∑
v−i∈V−i

[
viQi(vi, v−i)− Pi(vi, v−i)

]
π(v−i|vi) ≥ 0.

The payoff to the seller in an auction is her expected revenue. We are interested in

designing a DSIC mechanism that can extract entire surplus from the buyers.

82

Definition 17 An information structure (V, π) guarantees full surplus extraction in DSIC

if there exists a DSIC auction ({Qi, Pi}i∈N) satisfying IIR such that∑
v∈V

π(v)
∑
i∈N

Pi(v) =
∑
v∈V

π(v)max
i∈N

vi.

The interest in full surplus extraction is natural. If the seller knew the valuations of all

the agents, then it can go the highest valued agent and offer her the good at the value,

and hence, extracting full surplus in that case is always possible. On the other hand, if full

surplus can be extracted from the agents, when they have their value information private is

truely remarkable. This means that agents need not be assigned any information rent.

Why do we expect that full surplus extraction is possible in this setting? First, observe

that for full surplus extraction, we need to assign the object to the highest valued agent.

Hence, the allocation rule in any such mechanism must be efficient. Then, we can use some

Groves mechanism. To get some intuition why we can construct a Groves mechanism, let

us consider a two bidder model: N = {1, 2}. Suppose both bidders draw values from a set

{v1, . . . , vK}.
Let us focus on bidder 1 and let Π1 denote her conditional probability matrix. So, the

(i, j)-th entry in Π1 gives the conditional probability that bidder 2 has value vj conditional

on bidder 1 has value vi. So, the row sum of Π1 is one.

Cremer and McLean (1988) propose the following mechanism. First, before the bidders

participate in the mechanism, they accept a“lottery”over other bidder’s values. You can view

it as a participation fee for each bidder which is conditioned on the value of the other bidder.

Second, the bidders participate in a Vickrey auction. Notice that the first phase participation

fee does not distort incentives as those fees depend on the values of the other bidders. Now,

conditional on value vk being realized, suppose the expected payoff of bidder 1 from the

Vickrey auction is U∗(vk). Then, given a participation fee map c1 : {v1, . . . , vK} → R, we
need to ensure that

K∑
k′=1

c1(v
k′)Π1

k′,k = U∗(vk) ∀ k ∈ {1, . . . , K}.

If we treat c1 as some kind of variable in this equation, we can ensure a solution to this

system. Suppose the Π1 matrix is invertible, then such participation fees can be constructed.

The invertibility will require a full rank condition on Π1. This puts some restriction on the

83

extent of correlation. For instance, each row in Π1 is not in the span of other rows in the

matrix. Notice that this is not possible with independence as every row is identical in Π1 if

values are independent.

The following theorem characterizes information structures that allow full surplus extrac-

tion.

The proof uses Farkas lemma, which is a useful tool to remember - see any standard

textbook on linear programming for a proof.

Lemma 14 (Farkas Lemma) Let aij and bi be real numbers for each i ∈ {1, . . . ,m} and for

each j ∈ {1, . . . , n}. Consider the following two sets.

F = {x ∈ Rn
+ :

n∑
j=1

aijxj = bi ∀ i ∈ {1, . . . ,m}}

G = {y ∈ Rm :
m∑
i=1

aijyi ≥ 0 ∀ j ∈ {1, . . . , n},
m∑
i=1

biyi < 0}.

Then, F ̸= ∅ if and only if G = ∅. The claim continues to hold if x is not restricted to be

non-negative in F if we make the inequalities in G equalities.

The set G is often called the Farkas alternative of F . The Cremer-McLean full surplus

extraction is the following.

Theorem 13 An information structure (V, π) guarantees full surplus extraction in DSIC if

for all i ∈ N , there exists no ρi : Vi → R with ρi(vi) ̸= 0 for some vi ∈ Vi such that∑
vi∈Vi

ρi(vi)π(v−i|vi) = 0 ∀ v−i ∈ V−i.

Proof : Consider the Vickrey auction - a DSIC auction. Let ({Q∗
i , P

∗
i }i∈N) be the allocation

and payment rules in the Vickrey auction, where Q∗ is the efficient allocation rule. For every

i ∈ N and for every vi ∈ Vi, denote the net utility of agent i with value vi in the Vickrey

auction as

U∗
i (vi) :=

∑
v−i

[
Q∗

i (vi, v−i)vi − P ∗
i (vi, v−i)

]
π(v−i|vi).

Denoting π(vi) =
∑

v′−i
π(vi, v

′
−i), we rewrite the above as∑

vi∈Vi

U∗
i (vi)π(vi) =

∑
v∈V

[
Q∗

i (v)vi − P ∗
i (v)

]
π(v). (3.6)

84

By definition of the Vickrey auction for every i ∈ N , we have U∗
i (vi) ≥ 0 for all vi ∈ Vi with

strict inequaltiy holding for some vi. Further, since Q∗
i (vi, v−i) = 0 if vi < maxj∈N vj and

Q∗
i (vi, v−i) = 1 for some i ∈ argmaxj∈N vj, we can write∑

v∈V

π(v)max
i∈N

vi =
∑
v∈V

π(v)
∑
i∈N

Q∗
i (vi, v−i)vi

=
∑
i∈N

[∑
vi∈Vi

U∗
i (vi)π(vi) +

∑
v∈V

P ∗
i (v)π(v)

]
.

Hence, full surplus extraction is possible if and only if there exists a DSIC auction

({Qi, Pi}i∈N) such that∑
v∈V

π(v)
∑
i∈N

Pi(v) =
∑
i∈N

[∑
vi∈Vi

U∗
i (vi)π(vi) +

∑
v∈V

P ∗
i (v)π(v)

]
.

Now, we construct a function ci : V−i → R for every agent i such that∑
v−i

ci(v−i)π(v−i|vi) = U∗
i (vi) ∀ vi ∈ Vi. (3.7)

Notice that if such a function can be constructed for every i, then Equation 3.7 guarantees∑
v∈V

ci(v−i)π(v) =
∑
vi∈Vi

U∗
i (vi)π(vi).

Thus, existence of ci for each i ∈ N satisfying Equation 3.7 guarantees another mechanism

({Q∗
i , Pi}i∈), where for every i ∈ N and every v, we have Pi(v) := ci(v−i) + P ∗

i (v) such that∑
v∈V

π(v)
∑
i∈N

Pi(v) =
∑
v∈V

π(v)
∑
i∈N

[
ci(v−i) + P ∗

i (v)]

=
∑
i∈N

[∑
vi∈Vi

U∗
i (vi)π(vi) +

∑
v∈V

P ∗
i (v)π(v)

]
,

Note that the interim payoff of every agent at every type is zero in the new mechanism.

Hence, the new mechanism satisfies IIR. This along with the fact that ({Q∗
i , Pi}i∈N) is DSIC

(this is because we just added payment terms to a DSIC mechanism Vickrey that does not

depend on every agent’s valuation) ensures full surplus extraction is possible. We show that

Equation 3.7 has a solution if the condition in the theorem holds. To see this, construct the

Farkas alternative for each i ∈ N :∑
vi∈Vi

ρi(vi)U
∗
i (vi) < 0 (3.8)

∑
vi∈Vi

ρi(vi)π(v−i|vi) = 0 ∀ v−i ∈ V−i. (3.9)

85

By the condition in the theorem, the only solution to Equation 3.9 is ρi(vi) = 0 for all

vi ∈ Vi. But this ensures that Inequality (3.8) is not satisfied. Hence, Farkas alternative has

no solution and Equation 3.7 has a solution. ■

Theorem 13 uses finite type space. This is not really necessary. Cremer and McLean

(1988) contains discussions about how this can be extended to infinite type spaces for dom-

inant strategy mechanisms. Cremer and McLean (1988) also provide weaker conditions on

information structures (with finite type space) under which a Bayesian incentive compatible

mechanism can extract full surplus. This is extended to infinite type spaces in McAfee and

Reny (1992).

Though remarkable, the Cremer-McLean full surplus extraction result has its own critics.

First, the participation fees before the Vickrey auction in their mechanism may be quite high.

This means, the mechanism will fail ex-post IR. Further, it is not clear how “generic” the set

of beliefs is, the extent of correlation it allows, and so on. Thus, the Cremer-McLean result,

though an important benchmark, remains a paradox in the mechanism design literature.

86

Chapter 4

Redistribution mechanisms

Redistribution is a fundamental objective in many models of mechanism design. A Gov-

ernment wants to redistribute the surplus it generates from selling public assets; buyers

and sellers trade to redistribute surplus gains; firms are merged to redistribute gains from

synergies etc. Redistribution is different from the objectives we have seen earlier, where

the mechanism designer (seller) wanted to maximize her expected revenue. An objective

of redistribution is to efficiently allocate the resource without wasting any transfer, i.e., the

payments have to balance. The balancing of payment makes the redistribution problem quite

different from others. Of course, the incentive and participation constraints continue to be

there. We consider the problem of redistributing the surplus from a single object. Most of the

machinery developed in the optimal mechanism design will be useful because the incentive

and participation constraints remain the same.

The problem is of great practical interest. Land acquisition and redistribution has been one

of the major problems in many countries. In such problems, many stakeholders“own”various

portions of a land. For efficiency, we would like to allocate the entire land to one stakeholder

(of course, in some settings, this may not be legally possible). Because of property rights, the

other owners need to be properly compensated. Often Government allocated resources like

Spectrum or Mines need to be reallocated. How should heirs divide an estate? Sometimes,

there is a will and sometimes there is no will. Apparently, a commonly used method by

estate agents is an auction whose revenue is “shared” by heirs.

87

4.1 A model of redistributing a single object

There is one unit of a divisible good which is jointly owned by a set of agents N := {1, . . . , n}.
The share of agent i of the good is denoted by ri ∈ [0, 1] and these shares add up to one -∑

j∈N rj = 1. Two particular configuration of shares are worth pointing out.

• One seller many buyers model. Here, ri = 1 for some i ∈ N and rj = 0 for all j ̸= i.

• Equal partnership model. Here, ri =
1
n
for all i ∈ N .

• One buyer many sellers model. Here ri = 0 for some i ∈ N and rj =
1

n−1
for all j ̸= i.

The per unit value of each agent for the good is denoted by vi, which is independently

distributed in V ≡ [0, β] with an absolutely continuous distribution F with density f . So,

we only consider a very symmetric setting where agents are identical ex-ante. The extension

to asymmetric case is not very clean. Let G(x) = [F (x)]n−1 for all x ∈ [0, β]. Notice that G

is the cdf of the random variable which is the maximum of (n− 1) independent draws using

F .

A mechanism is a collection of pair of maps {Qi, Ti}i∈N , where for each i ∈ N , Qi : V
n →

[0, 1] is the share allocation rule of agent i and Ti : V
n → R is the transfer rule (amount paid

to) of agent i. A mechanism is feasible if for all v ∈ V n

(a) the allocation rules are feasible, i.e.,
∑

i∈N Qi(v) ≤ 1 and

(b) transfer rules are budget balanced, i.e.,
∑

i∈N Ti(v) = 0.

We will be interested in interim allocation probabilities and interim payments of agents

for a given feasible mechanism. Fix a feasible mechanism {Qi, Ti}i∈N . Define for every i ∈ N

and every vi ∈ V ,

qi(vi) =

∫
v−i∈V n−1

Qi(vi, v−i)d(FN−i(v−i))

ti(vi) =

∫
v−i∈V n−1

Ti(vi, v−i)d(FN−i(v−i)),

where FvN−i
=

∏
j∈N\{i} F (vj). So, every feasible mechanism {Qi, Ti}i∈N generates interim

rules {qi, ti}i∈N . With this, we can define the notion of Bayesian incentive compatibility.

88

Definition 18 A mechanism {Qi, Ti}i∈N is Bayesian incentive compatible (BIC) if for

every i ∈ N

viqi(vi) + ti(vi) ≥ viqi(v
′
i) + ti(v

′
i) ∀ vi, v′i ∈ V.

The standard notion of individual rationality needs to be modified to ensure the fact that

each agent has some property right.

Definition 19 A mechanism {Qi, Ti}i∈N is individually rational (IR) if for every i ∈ N

viqi(vi) + ti(vi) ≥ rivi ∀ vi ∈ V.

The individual rationality is the main point of departure from the earlier optimal mechanism

model, where we just had to ensure non-negative payoffs to agents in the mechanism. Here,

because of property rights, we need to ensure larger payoff share to some agents.

We are interested in knowing when we can redistribute the entire surplus.

Definition 20 A parternship {ri}i∈N can be dissolved efficiently if there exists a feasible,

efficient, Bayesian incentive compatible and individually rational mechanism {Qi, Ti}i∈N for

this partnership.

4.2 Characterizations of IC and IR constraints

The first step involves characterizing BIC and IR constraints. This mirrors Myerson (1981)

but with some minor differences to account for the difference in IR constraint and also keeping

in mind the objective. For some of the proofs, we will use the following notation. Given a

mechanism {Qi, Ti}i∈N , we will denote the interim utility of agent i with type vi from this

mechanism as

Ui(vi) = viqi(vi) + ti(vi),

where we have supresed the notation indicating Ui depends on the mechanism {Qi, Ti}i∈N .
Notice that IC is equivalently stated as for all i ∈ N

Ui(vi)− Ui(v
∗
i) ≥ (vi − v∗i)qi(v

∗
i) ∀ vi, v∗i ∈ V. (4.1)

89

Lemma 15 (IC Characterization) A mechanism {Qi, Ti}i∈N is Bayesian incentive compati-

ble if and only if for every i ∈ N

• qi is non-decreasing

• ti(v
∗
i)− ti(vi) = viqi(vi)− v∗i qi(v

∗
i)−

∫ vi
v∗i
qi(x)dx for all vi, v

∗
i ∈ V .

Proof : The proof is same as earlier. Sufficiency. For every i ∈ N and every vi, v
∗
i ∈ V , we

have

Ui(vi)− Ui(v
∗
i) = viqi(vi)− v∗i qi(v

∗
i) + ti(vi)− ti(v

∗
i)

=

∫ vi

v∗i

qi(x)dx

≥ (vi − v∗i)qi(v
∗
i),

where the last inequality follows from the fact that qi is non-decreasing. This is the relevant

BIC constraint (4.1).

Necessity. BIC constraints (4.1) imply that for every i ∈ N , the function Ui is convex.

Further, the BIC constraints (4.1) imply that qi is subgradient of Ui at every point in V .

Hence, qi is non-decreasing and for every vi, v
∗
i , we have

Ui(vi)− Ui(v
∗
i) =

∫ vi

v∗i

qi(x)dx

⇔ ti(v
∗
i)− ti(vi) = viqi(vi)− v∗i qi(v

∗
i)−

∫ vi

v∗i

qi(x)dx.

■

We now turn our attention to efficient mechanisms. An allocation rule {Qi}i∈S is efficient

if for every type profile v ∈ V n, Qi(v) > 0 implies i ∈ argmaxj∈N vj and
∑

j∈N Qj(v) = 1.

We will denote an allocation rule by {Qe
i}i∈N .

If {Qe
i , Ti}i∈N is an efficient mechanism, then for every i ∈ N and every vi ∈ Vi, we have

qei (vi) = G(vi) = [F (vi)]
n−1.

Notice the following properties: (a) qei is strictly increasing; (b) qei (0) = 0 and qei (β) = 1; (c)

qei is differentiable. We will use these properties repeatedly in the proofs.

90

The next lemma establishes an important property about efficient mechanisms.

Lemma 16 Suppose {Qe
i , Ti}i∈N is an efficient and BIC mechanism. Let v∗i be such that

G(v∗i) = ri. Then, the following holds:

Ui(vi)− rivi ≥ Ui(v
∗
i)− riv

∗
i ∀ vi ∈ V.

Proof : Fix an agent i ∈ N . Since qei (0) = 0 and qei (β) = 1, and qei is a strictly increasing

continuous function, there is a unique v∗i such that qei (v
∗
i) = ri or G(v

∗
i) = ri. By mono-

tonicity, if vi > v∗i , we have qei (vi) > ri and if vi < v∗i , we have qei (vi) < ri. Using this, we

immediately get the following:

Ui(vi)− rivi − Ui(v
∗
i) + riv

∗
i =

∫ vi

v∗i

qei (x)dx− ri(vi − v∗i) ≥ 0,

where the last inequality follows since qei (x) > ri if x > v∗i and qei (x) < ri if x < v∗i . ■

The next lemma characterizes IR mechanisms.

Lemma 17 Suppose {Qe
i , Ti}i∈N is an efficient and BIC mechanism. Then, {Qe

i , Ti}i∈N is

IR if and only if ti(v
∗
i) ≥ 0 for all i ∈ N , where v∗i is as defined in Lemma 16.

Proof : By Lemma 16, an efficient mechanism {Qe
i , Ti}i∈N is IR if and only if for every

i ∈ N and every vi ∈ V , we have Ui(v
∗
i) − riv

∗
i ≥ 0. This is equivalent to requiring

qei (v
∗
i)v

∗
i + ti(v

∗
i) − riv

∗
i ≥ 0. Using Lemma 16, we know that qei (v

∗
i) = G(v

∗
i) = ri. Hence,

the above is equivalent to requiring ti(v
∗
i) ≥ 0. ■

The analysis in this section is not much different from the optimal mechanism analysis

of incentive and IR constraints. The only difference is that with property rights, the type

that gets the minimum payoff in a mechanism is not necessarily the lowest type. The lowest

payoff type depends on the property right structure.

4.3 Dissolving a partnership

The main theorem is a characterization of partnerships that can be dissoved. This theorem

is due to Cramton et al. (1987).

91

Theorem 14 A partnership {ri}i∈N can be dissolved efficiently if and only if

n

∫ β

0

(1− F (x))xg(x)dx ≥
n∑

i=1

∫ v∗i

0

xg(x)dx, (4.2)

where G(v∗i) = ri.

Proof : Necessity. Suppose there is an efficient, BIC, and IR feasible mechanism {Qe
i , Ti}i∈N .

Then, we know that∑
i∈N

∫ β

0

ti(vi)f(vi)dvi =
∑
i∈N

∫
v

Ti(v)f1(v1) . . . fn(vn)dv =

∫
v

(∑
i∈N

Ti(v)
)
f1(v1) . . . fn(vn)dv = 0,

where the last equality follows from budget-balance. By Lemma 15 for every i ∈ N and

every vi ∈ V , we have

ti(vi) = ti(v
∗
i)− viG(vi) + v∗iG(v

∗
i) +

∫ vi

v∗i

G(x)dx

= ti(v
∗
i)−

∫ vi

v∗i

xg(x)dx

≥
∫ v∗i

vi

xg(x)dx,

where the inequality follows from Lemma 17. Hence,
∫ v∗i
vi
xg(x)dx is the difference in interim

payment of agent i with type vi and v
∗
i . Since ti(v

∗
i) ≥ 0. This difference in interim payment

is also a lower bound on the interim payment at vi. The necessity part uses this insight along

with the budget-balance condition. Essentially, it computes the ex-ante value of this lower

bound. That is, the sum of expected interim payments of all agents (which is zero due to

budget-balance) must be greater than or equal to the sum of expected value of these lower

bounds. Hence, we get

0 =
∑
i∈N

∫ β

0

ti(vi)f(vi)dvi

≥
∑
i∈N

[∫ β

0

(∫ v∗i

vi

xg(x)dx
)
f(vi)dvi

]
=

∑
i∈N

[∫ β

0

(∫ v∗i

0

xg(x)dx
)
f(vi)dvi −

∫ β

0

(∫ vi

0

xg(x)dx
)
f(vi)dvi

]
=

∑
i∈N

[∫ v∗i

0

xg(x)dx−
∫ β

0

(1− F (x)xg(x)dx
]

This gives us the required necessary condition.

92

Sufficiency. Suppose Inequality (4.2) holds. We will show that partnership {ri}i∈N can be

dissolved efficiently. Define for every i ∈ N and every vi ∈ V ,

W (vi) :=

∫ β

0

(1− (F (x))xg(x)dx−
∫ vi

0

xg(x)dx. (4.3)

Notice that Inequality (4.2) is
∑

i∈N W (v∗i) ≥ 0. Define the following constants for each

agent i ∈ N :

ci =
1

n

∑
j∈N

W (v∗j)−W (v∗i).

Note that
∑

i∈N ci = 0. Now, we define the transfer functions for our efficient mechanism.

For every i ∈ N and for every type profile v ∈ V n, let

Ti(v) :=
[
ci +W (vi)−

1

n− 1

∑
j∈N\{i}

W (vj)
]

Since
∑

i∈N ci = 0, we get
∑

i∈N Ti(v) = 0 for all v ∈ V n. Also, notice that

β∫
0

W (vj)f(vj)dvj =

∫ β

0

(1− (F (x))xg(x)dx−
β∫

0

(∫ vj

0

xg(x)dx
)
f(vj)dvj = 0

Hence, we can compute the interim payments of agents for this transfer rule. Fix agent

i ∈ N . Then, for every vi ∈ V , we see that

ti(vi) = ci +W (vi)−
1

n− 1

∑
j∈N\{i}

∫ β

0

W (vj)f(vj)dvj = ci +W (vi)

Further, we notice that

ti(vi)− ti(v
∗
i) = W (vi)−W (v∗i)

=

∫ vi

v∗i

xg(x)dx

= viG(vi)− v∗iG(v
∗
i)−

∫ vi

v∗i

G(x)dx,

where the last equality follows by doing integration by parts. By Lemma 15, this mechanism

is BIC (since interim allocation probability in efficient allocation share of type x is given by

G(x)). Finally, by Lemma 17, we only need to check if ti(v
∗
i) ≥ 0. To do so, note that

ti(v
∗
i) = ci +W (v∗i) =

1

n

∑
j∈N

W (v∗j) ≥ 0,

93

where the last inequality follows from Inequality (4.2). ■

A crucial observation from the proof is budget-balanced can be relaxed. Call a mechanism

(Qe
i , Ti)i∈N feasible if

∑
i∈N Ti(v) ≤ 0. Notice that the necessity part of Theorem 14 works

even if we replace budget-balance by the weaker condition feasibility. Hence, a corollary

of this observation with Theorem 14 is that if a partnership can be dissolved using a BIC,

efficient, feasible, and interim IR mechanism, then it can be efficiently dissolved (i.e., using

a BIC, efficient, budget-balanced, and interim IR mechanism).

We will refer to the mechanism mentioned in the sufficiency part of the proof of Theorem

14 as CGK mechanism - due to Cramton et al. (1987). In their paper, Cramton et al. (1987)

propose simple mechanisms. These simple mechanisms are easy to use - for instance, one of

their mechanisms is that every agent submits a bid; highest bidder wins; and the winner’s

bid is equally distributed between all the agents. They show that such mechanisms dissolve

a large subset of dissolvable partnerships.

4.3.1 Corollaries of Theorem 14

We can derive some easy corollaries from Theorem 14. The first is on one seller-many buyer

partnerships. These are partnerships, where is some agent s ∈ N such that rs = 1 and

ri = 0 for all i ̸= s. You can interpret s as a seller (who owns the object) and other agents

as buyers. A special case of this is when n = 2, i.e., besides the seller, there is exactly one

buyer. This setting is often referred to as the bilateral trading model. Though the following

result is true for any n ≥ 2 in the one seller-many buyer model, it was first shown in the

bilateral trading model by Myerson and Satterthwaite (1983).

Theorem 15 One seller-many buyer partnerships cannot be dissolved efficiently.

Proof : Let rs = 1 for some s ∈ N and ri = 0 for all i ̸= s. Then v∗s = β and v∗i = 0 for all

i ̸= s. Now, that∑
i∈N

W (v∗i) = W (β) + (n− 1)W (0)

= (n− 1)

∫ β

0

(1− F (x))xg(x)dx−
∫ β

0

F (x)xg(x)dx

= (n− 1)

∫ β

0

xg(x)dx− n

∫ β

0

F (x)xg(x)dx.

94

Using the fact that g(x) = (n− 1)[F (x)]n−2f(x), we simplify as:

1

n− 1

∑
i∈N

W (v∗i) = (n− 1)

∫ β

0

x[F (x)]n−2f(x)dx− n

∫ β

0

x[F (x)]n−1f(x)dx

=
[
x[F (x)]n−1

]β
0
−

∫ β

0

[F (x)]n−1dx−
[
x[F (x)]n

]β
0
+

∫ β

0

[F (x)]ndx

=

∫ β

0

[F (x)]n−1
(
F (x)− 1

)
dx]

< 0.

By Theorem 14, we are done. ■

Theorem 15 is a remarkable impossibility result. It says that many trading interactions

have no hope of efficiency. It points to a clear explanation of this impossibility - extreme

form of property rights structure. On the other hand, symmetric property rights structure

allows partnerships to be dissolved efficiently.

Theorem 16 The set of partnerships that can be dissolved efficiently is a non-empty convex

set centered around the equal partnership, and equal partnership can always be dissolved

efficiently.

Proof : Take any two partnerships {ri}i∈N and {r′i}i∈N which can be dissolved efficiently.

Let M and M ′ be the respective mechanisms. Let {r′′i }i∈N be another partnership such that

r′′i = λri + (1 − λ)r′i for each i ∈ N , where λ ∈ (0, 1). Then, define the mechansim M ′′ as

follows. The allocation rule is M ′′ is the efficient one and the transfer rule is {T ′′
i }i∈N . For

every valuation profile v and for every i ∈ N , let T ′′
i (v) = λTi(v)+(1−λ)T ′

i (v), where T and

T ′ are the transfer rules in M and M ′ respectively. Since T and T ′ are budget-balanced, T ′′

is also budget-balanced. Also, since M and M ′ are BIC, M ′′ is also BIC. By construction,

for every i ∈ N , the interim payment of these mechanisms are related as:

t′′i (vi) = λti(vi) + (1− λ)t′i(vi) ∀ vi.

Hence, we have for every i ∈ N and for every vi,

viq
e
i (vi)− t′′i (vi) = λ

(
viq

e
i (vi) + ti(vi)

)
+ (1− λ)

(
viq

e
i (vi) + t′i(vi)

)
≥ λrivi + (1− λ)r′ivi

= r′′i vi,

95

which is the desired IIR constraint. Hence, {r′′i }i∈N can be dissolved efficiently. So, the set

of partnerships that can be dissolved efficiently forms a convex set.

Now, consider the equal partnership ri =
1
n
for all i ∈ N . Let G(v∗) = [F (v∗)]n−1 = 1

n
.

Then, we need to show that W (v∗) ≥ 0, and by Theorem 14, we will be done. To see why it

is the case, note the following.

W (v∗) =

∫ β

v∗
xg(x)dx−

∫ β

0

xF (x)g(x)dx

= (n− 1)

∫ β

v∗
x[F (x)]n−2f(x)dx− (n− 1)

∫ β

0

x[F (x)]n−1f(x)dx

Hence, we get

1

n− 1
W (v∗) =

∫ β

v∗
x[F (x)]n−2f(x)dx−

∫ β

0

x[F (x)]n−1f(x)dx

=
1

n− 1

[
β − (v∗)[F (v∗)]n−1 −

∫ β

v∗
[F (x)]n−1dx

]
− 1

n

[
β −

∫ β

0

[F (x)]ndx
]

=
1

n

∫ β

0

[F (x)]ndx+
1

n(n− 1)

[
β − v∗

]
− 1

(n− 1)

∫ β

v∗
[F (x)]n−1dx

=
1

n

∫ v∗

0

[F (x)]ndx+
1

n(n− 1)

[
β − v∗

]
− 1

n(n− 1)

∫ β

v∗

[
n[F (x)]n−1 − (n− 1)[F (x)]n

]
dx

Now, consider the function ϕ(x) := nF (x)n−1− (n−1)F (x)n for all x ∈ [v∗, β]. Note that

ϕ(v∗) = 1 − n−1
n
F (v∗) < 1 and ϕ(β) = 1. Further, ϕ′(x) = n(n − 1)[F (x)]n−2f(x) − n(n −

1)[F (x)]n−1f(x) = n(n − 1)f(x)[F (x)]n−2(1 − F (x)) > 0. Hence, ϕ is a strictly increasing

function. So, ϕ(x) ≤ 1 for all x ∈ [v∗, β]. This means,

1

n− 1
W (v∗) ≥ 1

n

∫ v∗

0

[F (x)]ndx ≥ 0,

as desired. ■

We now consider the case where values of agents are distributed uniformly in [0, 1]. Then,

96

G(x) = xn−1 and g(x) = (n− 1)xn−2. In that case, for each z, we have

W (z) =

∫ 1

z

xg(x)dx−
∫ 1

0

xF (x)g(x)dx

=

∫ 1

z

(n− 1)xn−1dx− (n− 1)

∫ 1

0

xndx

=
n− 1

n

[
1− zn

]
− (n− 1)

n+ 1

=
n− 1

n(n+ 1)
− n− 1

n
zn

Hence, for any partnership structure {ri}i∈N , Theorem 14 implies that it can be dissolved

if and only if ∑
i∈N

W (v∗i) =
(n− 1)

n+ 1
− (n− 1)

n

∑
i∈N

(v∗i)
n ≥ 0

This is equivalently stated as ∑
i∈N

(v∗i)
n ≤ n

n+ 1
. (4.4)

One corollary is that that the one buyer-many sellers model can be dissolved efficiently

for the uniform distribution.

Lemma 18 Suppose r1 = 0, r2 = . . . = rn = 1
n−1

. If values are distributed uniformly and

n ≥ 3, then this partnership can be dissolved efficiently.

Proof : Let z be such that G(z) = zn−1 = 1
n−1

. Then using Inequality (4.4), we need to

show that (n− 1)zn = z ≤ n
n+1

. Since G is strictly increasing, this is equivalent to showing

G(z) ≤ G(n
n+1

) or 1
n−1

≤
[
1− 1

n+1

]n−1
. But note that (1− 1

n+1
)n−1 ≥ 1− n−1

n+1
= 2

n+1
≥ 1

n−1

if n ≥ 3. ■

For three agents and uniform distribution, Figure 4.1 draws the simplex of partnerships

and identifies those (in red color) that can be dissolved efficiently.

4.4 Dominant strategy redistribution

Even though the set of partnerships that can be dissolved is quite large, the mechansim

required to dissolve them requires precise knowledge of the priors. That prompts the natural

97

Figure 4.1: Dissolvable partnerships under uniform distribution

98

question whether there is a dominant strategy incentive compatible (DSIC) mechanism that

can do the job. 1 We investigate this issue further here.

Suppose there are just two agents: N = {b, s} (bilateral trading model with a buyer and

a seller). Suppose values are distributed in [0, β]. The exact nature of distribution of values

does not matter. Consider any DSIC, efficient, and budget-balanced mechanism - notice no

mention of individual rationality constraint. Suppose Ub : [0, β]
2 → R and Us : [0, β]

2 → R
are the net utility functions of the two agents from this mechanism. Efficiency means the

allocation rule Qe satisfies Qe
b(vb, vs) +Qe

s(vb, vs) = 1 and

Qe
b(vb, vs) =

1 if vb > vs

0 if vb < vs.

Further budget-balance gives us

Ub(vb, vs) + Us(vb, vs) =

vb if vb > vs

vs otherwise.

Then, payoff equivalence formula implies that for any type profile (vb, vs) with vb > vs > 0,

we have

Ub(vb, vs) = Ub(0, vs) +

∫ vb

0

Qe
b(x, vs)dx

= Ub(0, vs) + (vb − vs)

= vs − Us(0, vs) + (vb − vs) (Budget-balance and efficiency gives Us(0, vs) + Ub(0, vs) = vs)

= vb − Us(0, 0)− vs (Using payoff equivalence again)

= (vb − vs)− Us(0, 0).

Identical argument gives:

Us(vb, vs) = Us(vb, 0) +

∫ vs

0

Qe
s(vb, x)dx

= Us(vb, 0) = vb − Ub(vb, 0) = vb − Ub(0, 0)− vb

= −Ub(0, 0)

1Another drawback of the CGK mechanisms is that IR constraint is satisfied at the interim but not

ex-post.

99

Hence, we have

Ub(vb, vs) + Us(vb, vs) = (vb − vs)−
(
Ub(0, 0) + Us(0, 0)

)
By budget-balance and efficiency, LHS is equal to vb and RHS is equal to vb − vs, a contra-

diction.

This argument generalizes to n agents (albeit complex). Notice that we did not use

anything about the property rights of the two agents - rb and rs can be anything. The

generalized version of this result is called the Green-Laffont impossibility result.

Theorem 17 There is no DSIC, budget-balanced, and efficient mechanism.

This result was proved in very general models in Green and Laffont (1979) and Laffont

and Maskin (1980). Hence, in this model, going from DSIC to BIC allows to overcome the

impossibilites partially. However, there are models of interest where it is possible to have

DSIC, budget-balanced, and efficient mechanisms.

Like every impossibility result, the Green-Laffont impossibility has inspired many re-

searchers. Typical line of attack is to relax the assumptions in the model. I outline some

ideas below.

• Relax efficiency. The first approach is to relax efficiency and find the “optimal” (ap-

propriately defined to account for sum of utilities of agents). So, we look for some

form of optimality under DSIC and budget-balancedness constraint. This turns out to

be extremely difficult if we do an ex-ante expected welfare maximization. A famous

mechanism by Green and Laffont proposes an asymptotically optimal mechanism. In

that mechanism an agent called the residual claimant is picked and a Vickrey auction

is done among remaining agents. The residual agent is given the payment in the Vick-

rey auction. This mechanism is DSIC and budget-balanced. If we pick the residual

agent uniformly at random, then this guarantees that the highest valued agent wins

the object with probability (1− 1
n
) at each profile. So, for large n, we get close to an

efficient allocation.

Surprisingly, we can do better than this. Long et al. (2017) show that there are DSIC

and budget-balanced mechanisms where we can allocate the object to the highest valued

agent with probability 1−H(n), where H vanishes to zero at an exponential rate with

100

n. In these mechanisms, about half the agents are given the agent and out of them

all except the highest valued agent gets the object with equal but (vanishingly) small

probability.

• Relax budget-balance by burning money. The other approach is to relax budget-

balance. That is we look to maximize welfare (utilities) of agents under DSIC and

efficiency. This automatically means we search within the class of Groves mechanisms

- they are the unique class of DSIC and efficient mechanisms. Vickrey auction can be

easily improved. Consider the following mechanism due to Cavallo (2006). A Vickrey

auction is conducted and its revenue is redistributed smartly to maintain DSIC. In

particular, at a valuation profile v with v1 ≥ v2 ≥ . . . ≥ vn, we payment v2 of winner is

taken, and agents 1 and 2 are given back v3
n
and others are given v2

n
. As a result, total

money collected is:

v2 −
n− 2

n
v2 −

2

n
v3 =

2

n
(v2 − v3),

which approaches zero for large n. In other words, the amount of money burning

approaches zero for large n. Since this mechanism is efficient, we conclude that asymp-

totically, this mechanism redistributes all the surplus (v1 here).

Hence, there are classes of mechanisms in Groves class of mechanisms which can redis-

tribute surplus better than the Vickrey auction. This idea has been extended to the

limit in Moulin (2009); Guo and Conitzer (2009), where they identify Groves mecha-

nisms that burn zero money at an exponential rate.

• Relax efficiency by burning probabilities. When we relaxed efficiency, we maintained

the fact that we always allocate the object, although not necessarily to the highest

valued agent. However, we can maintain the fact that the object only goes to the highest

valued agent and search over the space of DSIC and budget-balanced mechanisms.

Surprisingly, we can still achieve asymptotic results. This was shown in Mishra and

Sharma (2018). They propose the following mechanism. In their mechanism, the

highest valued agent is given the object with the following probability at valuation

profile v with v1 ≥ v2 ≥ . . . ≥ vn:

1− 2

n
+

2

n

v3
v2

101

In fact, a Vickrey auction of this probability is done. Note that the revenue produced

is v2 times the above probability, which is

v2 −
2

n
v2 +

2

n
v3 = (n− 2)

v2
n

+ 2
v3
n
.

Then, agents 1 and 2 are given back v3
n

each and agents 3 to n are given back v2
n

each. This maintains DSIC and budget-balance. It is not efficient because the highest

valued agent is not given the entire object - some of the object is wasted or burnt. But

as n tends to infinity, the probability that the highest valued agent gets the object

approaches one.

• Relax solution concept. The final approach to circumvent the impossibility is to relax

the solution concept to Bayesian equilibrium. We have already seen that the mecha-

nism constructed in the proof of Theorem 14 satisfies Bayesian incentive compatibility,

efficiency, and budget-balance for arbitrary partnership structure - it may fail interim

individual rationality. Hence, at least for the single object model, the Green-Laffont

impossibility fails if we weaken the solution concept to Bayesian equilibrium. The CGK

mechanism is Bayesian incentive compatible, efficient, and budget-balanced. We show

next that this result holds more generally.

4.5 The dAGV mechanism

We now show that the existence of a Bayesian incentive compatible, efficient, and budget-

balanced mechanism can be guaranteed in very general settings - this covers single object

case, multiple objects case, public goods case etc.

Let A be a finite set of alternatives and vi ∈ R|A| be the valuation vector of agent i. Let

Vi be the type space of agent i - the set of possible valuation vectors. Let V ≡ V1× . . .×Vn.

We will assume that types are drawn independently. An efficient mechanism is (Qe, Ti)i∈N

such that

Qe(v) = argmax
a∈A

∑
i∈N

vi(a) ∀ v ∈ V .

A key construction is the map ri : Vi → R for every i ∈ N . We define it as follows: for

every i ∈ N ,

102

ri(vi) = Ev−i

[∑
j∈N\{i}

vj(Q
e(vi, v−i))

]
∀ vi ∈ Vi,

where Ev−i
is the expectation over valuations of other agents besides agent i. Without

independence, this expression is a conditional expectation. As we will see, this will create

problems since this is a term that needs to be calculated by the designer. For instance, if

the true type is vi and the agent reports v′i, then this will be conditioned on v′i and not vi.

This is where independence helps because the expectation in ri(vi) can be computed without

conditioning on the true type vi.

So, for agent i ∈ N , the expression ri(vi) captures the expected welfare of others when

her type is vi - we will call this the residual utility of agent i at vi. The idea is to use

this expected welfare in a clever way to achieve BIC and budget-balance. Arrow (1979) and

d’Aspremont and Gérard-Varet (1979) proposed the following remarkable mechanism which

achieves this. Define the transfer rules {T dagv
i }i∈N as follows: for every i ∈ N ,

T dagv
i (v) = ri(vi)−

1

n− 1

∑
j∈N\{i}

rj(vj) ∀ v ∈ V . (4.5)

So, the payment of agent i is the difference between the average residual utility of other agents

and her own residual utility. This is an interim analogue of the VCG idea - agents pay their

expected externality. We will call the mechanism (Qe
i , T

dagv
i)i∈N the dAGV mechanism.

Theorem 18 The dAGV mechanism is efficient, budget-balanced, and Bayesian incentive

compatible.

Proof : Efficiency and budget-balancedness follows from the definition. To see BIC, fix

103

agent i and two types vi, v
′
i. Note the following.

Ev−i

[
vi(Q

e(vi, v−i)) + T dagv
i (vi, v−i)

]
= Ev−i

[
vi(Q

e(vi, v−i)) + ri(vi)−
1

n− 1

∑
j∈N\{i}

rj(vj)
]

= Ev−i

[
vi(Q

e(vi, v−i))−
1

n− 1

∑
j∈N\{i}

rj(vj) + ri(v
′
i)− ri(v

′
i) + ri(vi)

]
= Ev−i

[
vi(Q

e(vi, v−i)) + ri(v
′
i)−

1

n− 1

∑
j∈N\{i}

rj(vj)
]

+ Ev−i

[∑
j∈N\{i}

vj(Q
e(vi, v−i))

]
− Ev−i

[∑
j∈N\{i}

vj(Q
e(v′i, v−i))

]
= Ev−i

[∑
j∈N

vj(Q
e(vi, v−i)) + ri(v

′
i)−

1

n− 1

∑
j∈N\{i}

rj(vj)
]
− Ev−i

[∑
j∈N\{i}

vj(Q
e(v′i, v−i))

]
≥ Ev−i

[∑
j∈N

vj(Q
e(v′i, v−i)) + ri(v

′
i)−

1

n− 1

∑
j∈N\{i}

rj(vj)
]
− Ev−i

[∑
j∈N\{i}

vj(Q
e(v′i, v−i))

]
= Ev−i

[
vi(Q

e(v′i, v−i)) + ri(v
′
i)−

1

n− 1

∑
j∈N\{i}

rj(vj)
]

= Ev−i

[
vi(Q

e(v′i, v−i)) + T dagv
i (v′i, v−i)

]
,

where the inequality followed from efficiency. Thus, we satisfy the desired Bayesian incentive

compatibility constraint. ■

As we discussed earlier, the independence plays a role in the BIC part of the proof of

Theorem 18. Without independence, we will have to carry out conditional expectations and

ri will also be a conditional expectation. Without independence, it is sometimes possible

to construct a BIC, efficient, and budget-balanced mechanism but not always (d’Aspremont

et al., 2004).

The dAGV mechanism does not take into account any property rights structure. So,

obviously, it will fail any form of individual rationality constraint. The objective of dAGV

mechanism was to show that the Green-Laffont impossibility can be overturned by relaxing

the solution concept from dominant strategies to Bayesian equilibrium.

104

Chapter 5

Multidimensional Mechanism Design

The analysis of optimal mechanism design and efficient budget-balanced mechanism design

in previous chapters was possible because of the one-dimensional type space assumed. The

problem of finding similar results when the type of each agent is multidimensional is a

significantly challenging problem. However, some of the results that we discussed can still

be generalized to the multidimensional environment. We discuss them next.

For simplicity of exposition, we assume that there is only one agent. In this case, the

solution concept will not matter - dominant strategy and Bayesian reduce to the same thing.

However, if you want to extend this result to a multiple agent framework, you need to add for

all t−i in the dominant strategy implementation and integrate out over T−i in the Bayesian

implementation.

The notation will be as before. Let A be some finite set of alternatives and L(A) be the

set of all lotteries over A. There is a single agent. The type of the agent is t ∈ R|A|. Here,

we will use t(a) to denote the value of the agent for alternative a. The type space of the

agent is some set T ⊆ R|A|. Some examples are useful to see the applicability of this setting

is for both private good and public good allocation problems.

• Multi-object auction with unit demand. A seller is selling a set of objects to a buyer

who can be assigned at most one object. The value for the buyer for each object is his

type. The set of alternatives is the set of objects (and the alternative ∅ indicating not

being assigned to any object).

• Combinatorial auction. This is the same model as the previous one but now the buyer

105

can buy multiple objects. Hence, the set of alternatives is the set of all subsets of

objects. The value for each subset is the type of the agent.

• Public project selection. A planner needs to choose a project from multiple projects.

The value of the agent for each project is his type.

Like in voting problems, it is expected that not all vectors in R|A| are allowed to be types.

Hence, the type space can be a strict subset of R|A| with some restrictions. For instance, in

the combinatorial auction problem, we may require that for any pair of objects a and b, at

any type t, t({a, b}) = t(a)+ t(b). This puts restrictions on how the type space looks. In the

public project problem, type vector may be single peaked with respect to some exogenous

ordering of the projects.

We will assume that all these restrictions are embedded in T . As in the analysis of

the single object auction, we will first give a characterization of all incentive compatible

mechanisms.

5.1 Incentive Compatible Mechanisms

A mechanism consists of an allocation rule f : T → L(A) and a payment rule p : T → R. If
type t is reported to the mechanism, then f(t) is a probability distribution over alternatives

at that type, where we denote by fa(t) the probability associated with alternative a. Hence,

an agent with type s who reports type t to the mechanism (f, p) gets a net utility of

s · f(t)− p(t),

where s · f(t) =
∑

a∈A s(a)fa(t).

5.1.1 An illustration

Suppose there are two goods {a, b} with a seller and one buyer. The seller decides to use a

deterministic mechanism. So, it will either not sell any of the goods, or sell only good a or

sell only good b or bundle both of them sell the bundles {a, b}. Normalize the value of the

buyer to not getting the good to zero and assume that value of the bundle is va + vb if va

is the value of good a alone and vb is the value of good b alone. By incentive compatibility,

106

in any mechanism, the seller should announce the following prices: p∅ - this is the price

of not getting any good; pa - this is the price of getting good a; pb - this is the price of

getting good b; and pab - this is the price of getting the bundle {a, b}. For simplicity, let us

assume that p∅ = 0 - this can also be derived by imposing individual rationality and revenue

maximization.

What more does incentive compatibility say? Take the mechanism (f, p), where p is defined

as discussed above and f is the allocation rule. Suppose the type space is V ≡ [0, 1]2; i.e.,

values of both the goods lie in [0, 1]. Partition the type space as follows

V∅ = {v ∈ V : f(v) = ∅}

Va = {v ∈ V : f(v) = {a}}

Vb = {v ∈ V : f(v) = {b}}

Vab = {v ∈ V : f(v) = {a, b}}

We wish to get a better understanding of this partitioning. To do so, pick v ∈ Vab. There

are three incentive constraints from v:

va + vb − pab ≥ 0 ⇔ va + vb ≥ pab

va + vb − pab ≥ va − pa ⇔ vb ≥ pab − pa

va + vb − pab ≥ vb − pb ⇔ va ≥ pab − pb

Similarly, pick v ∈ Va. We have three incentive constraints.

va ≥ pa

va − vb ≥ pa − pb

vb ≤ pab − pa.

Identical argument gives for any v ∈ Vb:

vb ≥ pb

va − vb ≤ pa − pb

va ≤ pab − pb.

107

pa

pb

pab

pab

V;
Va

Vb
Vab

Figure 5.1: Partitioning the type space

Figure 5.1 shows the partition of this type space. As can be seen, it is not obvious what

kind of monotonicity of the allocation rule we have.

Characterization of Incentive Compatibility

As before, we associate with a mechanism M ≡ (f, p), a net utility function UM : T → R,
defined as

UM(t) := t · f(t)− p(t) ∀ t ∈ T,

which is the truth-telling net utility from the mechanism.

Definition 21 A mechanism M ≡ (f, p) is incentive compatible if for every s, t ∈ T , we

have

t · f(t)− p(t) ≥ t · f(s)− p(s),

or equivalently,

UM(t) ≥ UM(s) + (t− s) · f(s).

An allocation rule f is implementable if there exist a payment rule p such that (f, p) is

incentive compatible.

108

Our first step is to generalize the characterization of mechanisms in Theorem 5 to this

environment. For this, we first need to define an appropriate notion of monotonicity of

allocation rule in this type space. Since the type is multidimensional, it is not clear how this

can be defined. But the following is a well-known form of monotonicity in multidimensional

environment.

Definition 22 An allocation rule f is monotone if for every s, t ∈ T , we have

(t− s) ·
(
f(t)− f(s)

)
≥ 0.

This condition is often referred to as the 2-cycle monotonicity condition. We will discuss

the reasons below. This is the correct extension of monotonicity in Theorem 5 to multi-

dimensional environments. The following lemma proves that monotonicity is a necessary

condition. The proof points out the similarity with the Myerson monotonicity.

Lemma 19 If (f, p) is incentive compatible, f is monotone.

Proof : Suppose M = (f, p) is incentive compatible. Consider types s, t ∈ T and the pair

of incentive constraints for these two types:

UM(t) ≥ UM(s) + (t− s) · f(s).

UM(s) ≥ UM(t) + (s− t) · f(t).

Adding these incentive constraints, we get (t− s) ·
[
f(t)− f(s)

]
≥ 0, which is the required

monotonicity condition. ■

It is also instructive to see how monotonicity looks like when f is deterministic, i.e.,

f : T → A. Then at every type t, f(t) will be 0 − 1 vector of dimension |A|. So the

expression of monotonicity simplifies as follows:

(t− s) ·
[
f(t)− f(s)

]
=

[
t(f(t))− t(f(s))

]
−

[
s(f(t))− s(f(s))

]
≥ 0

This is a condition on differences of values of chosen alternatives.

We now prove an analogue of Theorem 5 in the multidimensional environment using

monotonicity and a version of payoff equivalence.

109

Theorem 19 Suppose T ⊆ R|A| is convex. A mechanism M ≡ (f, p) is incentive compatible

if and only if

(a) f is monotone,

(b) for every s, t ∈ T ,

UM(t) = UM(s) +

∫ 1

0

ψs,t(z)dz,

where ψs,t(z) = (t− s) · f(s+ z(t− s)) for all z ∈ [0, 1].

Proof : Suppose M ≡ (f, p) is such that (a) and (b) hold. We will show that M is incentive

compatible. Choose any s, t ∈ T .

Step 1. We first show that for every z, z′ ∈ [0, 1] with z > z′, we have ψs,t(z) ≥ ψs,t(z′).

Pick z, z′ ∈ [0, 1] with z > z′. Since f is monotone, we have

[
(s+ z(t− s))− (s+ z′(t− s))

]
·
[
f(s+ z(t− s))− f(s+ z′(t− s))

]
≥ 0.

Simplifying, we get

(z − z′)(t− s) ·
[
f(s+ z(t− s))− f(s+ z′(t− s))

]
≥ 0.

But z > z′ implies (t − s) ·
[
f(s + z(t − s)) − f(s + z′(t − s))

]
≥ 0, which implies

ψs,t(z)− ψs,t(z′) ≥ 0.

Step 2. Now, we can write

UM(t)− UM(s)− (t− s) · f(s) =
∫ 1

0

ψs,t(z)dz − (t− s) · f(s)

≥ ψs,t(0)− (t− s) · f(s)

= 0,

where the first equality follows from (b), the second inequality from Step 1 (non-decreasingness

of ψs,t), and the last equality follows from the fact that ψs,t(0) = (t− s) · f(s). This shows

that M is incentive compatible.

110

Now, for the other direction, we assume that M ≡ (f, p) is incentive compatible. Mono-

tonicity of (a) follows from Lemma 19. We show (b).

Consider any s, t ∈ T . We define for every z ∈ [0, 1],

ϕ(z) := UM(s+ z(t− s)).

Incentive compatibility of M implies that for every z, z′ ∈ [0, 1], we have

UM(s+ z(t− s)) ≥ UM(s+ z′(t− s)) + (z − z′)(t− s) · f(s+ z′(t− s)).

This implies that for every z, z′ ∈ [0, 1], we have

ϕ(z) ≥ ϕ(z′) + (z − z′)ψs,t(z′). (5.1)

This also implies that ϕ is a convex function. To see this, pick z̄, ẑ ∈ [0, 1] and λ ∈ (0, 1).

Let z̃ = λz̄ + (1− λ)ẑ. Then, using Inequality 5.1, we get

ϕ(z̄) ≥ ϕ(z̃) + (z̄ − z̃)ψs,t(z̃).

Similarly, we have

ϕ(ẑ) ≥ ϕ(z̃) + (ẑ − z̃)(t− s) · f(s+ z̃(t− s)).

Multiplying the first inequality by λ and the second one by (1− λ) and summing them, we

get

λϕ(z̄) + (1− λ)ϕ(ẑ) ≥ ϕ(z̃).

This show that ϕ is convex.

Hence, ψ(z′) is the subgradient of the convex function ϕ at z′. By Lemma 11, we get

that for every z′ ∈ [0, 1],

ϕ(z′) = ϕ(0) +

∫ z′

0

ψs,t(z)dz.

Hence,

ϕ(1) = ϕ(0) +

∫ 1

0

ψs,t(z)dz.

Substituting, we get

UM(t) = UM(s) +

∫ 1

0

ψs,t(z)dz.

111

■

Revenue/payoff equivalence. Theorem 19 immediately implies a payoff equivalence result.

Consider two incentive compatible mechanisms M = (f, p) and M ′ = (f, p′) using the same

allocation rule f . Fix some type t0 ∈ T . By Theorem 19, for every t ∈ T ,

UM(t)− UM(t0) = UM ′
(t)− UM ′

(t0).

Hence, mechanismsM andM ′ assign different net utilities to the agent if and only if UM(t0)

and UM ′
(t0) are different. In other words, if two incentive compatible mechanisms use the

same allocation rule and assign the same net utility to the agent at some type, then they

must assign the same net utility to the agent at all types. This is known as the payoff

equivalence result.

One-dimensional problems. We remark that monotonicity reduces to “non-decreasingness”

discussed in Theorem 5 for one-dimensional problem. We say a type space T is one-

dimensional if there exists an alternative a∗ ∈ A such that t(a) = 0 for all a ̸= a∗ and

for all t ∈ T . In the single object auction setting a∗ is the alternative where the agent wins

the object. Note that if T is one-dimensional, then for any s, t ∈ T , (t − s) is a vector

whose components corresponding to any alternative a ̸= a∗ are zero. Hence, for any s, t ∈ T ,

(t− s)(f(t)− f(s)), can be written as(
t(a∗)− s(a∗)

)(
fa∗(t)− fa∗(s)

)
.

Monotonicity requires that the above term is non-negative. This is equivalent to saying that

if t(a∗) > s(a∗), then fa∗(t) ≥ fa∗(s).

In one-dimensional problem statement (b) in Theorem 19 also simplifies - compare it with

the analogue statement in Theorem 5. Suppose the value for alternative a∗ is lies in [ℓ,H].

For any x ∈ [ℓ,H], we write the unique type t with t(a∗) = x as tx. Now, fix a mechanism

M ≡ (f, p). Then, statement (b) is equivalent to requiring that for any x, y ∈ [ℓ,H], we

must have

UM(tx) = UM(ty) +

∫ 1

0

(tx − ty) · f(ty + z(tx − ty))dz

= UM(ty) +

∫ 1

0

(x− y)fa∗(t
y + z(tx − ty))dz

112

Define ϕ(x′) := fa∗(t
x′
) for all x′ ∈ [ℓ,H]. So, the above equation reduced to

UM(tx) = UM(ty) +

∫ 1

0

(x− y)ϕ(y + z(x− y))dz

= UM(ty) +

∫ x

y

ϕ(x′)dx′

Now, if we only require for every x ∈ [ℓ,H],

UM(tx) = UM(tℓ) +

∫ x

ℓ

ϕ(x′)dx′,

then this will imply that for any x, y ∈ [ℓ,H]

UM(tx)− UM(ty) =

∫ x

ℓ

ϕ(x′)dx′ −
∫ y

ℓ

ϕ(x′)dx′

=

∫ x

y

ϕ(x′)dx′,

as desired in (b). This explains the weaker analogue of (b) in the one-dimensional version

in Theorem 5. However, in the multidimensional case we need the stronger version as stated

in (b) of Theorem 19. In other words, when type space is multidimensional, requiring (b) in

Theorem 19 to hold for every t ∈ T with respect to some “base” type s0 does not imply (b)

to hold for every pair of types s, t ∈ T .

5.2 The Implementation Problem

We now turn to the implementation problem, i.e., identifying conditions on an allocation rule

that characterizes implementability. Corollary 1 achieves this in the one-dimensional type

space. It shows that non-decreasingness of an allocation rule characterizes implementability

in the one-dimensional type space. Since monotonicity is the natural generalization (as we

showed above) of non-decreasingness for multidimensional type space, a natural conjecture is

then that monotonicity is equivalent to implementability. This conjecture is false. The reason

for this is the same reason why (b) in Theorem 19 is stronger than the analogue statement

in Theorem 5. In one-dimensional type space if an allocation rule is non-decreasing, then

fixing the UM value for the “lowest” type uniquely fixes the value of UM for all other types

using (b), and this automatically ensures the statement (b). However, in multidimensional

113

type space, fixing UM for some “base” type and then using (b) to fix the value of UM for all

other types does not ensure (b) to hold for all pairs of types.

To extend Corollary 1, we need a stronger version of monotonicity. Consider an imple-

mentable allocation rule f and two types s, t ∈ T . Since f is implementable there exist a

payment rule p such that the mechanism M ≡ (f, p) is incentive compatible. Then,

t · f(t)− p(t) ≥ t · f(s)− p(s)

s · f(s)− p(s) ≥ s · f(t)− p(t).

Adding these two constraints, we get that (t − s) ·
(
f(t) − f(s)

)
≥ 0, i.e., f is monotone.

We can do this exercise for a longer sequence of types too. For instance, take three types

s, t, x ∈ T and consider the incentive constraints

t · f(t)− p(t) ≥ t · f(s)− p(s)

s · f(s)− p(s) ≥ s · f(x)− p(x)

x · f(x)− p(x) ≥ x · f(t)− p(t).

Again, adding these constraints will cancel the payment terms and we will be left with only

a condition on allocation rules.

To define this longer sequence condition, we define some notation. Let ℓf (s, t) = t ·(
f(t) − f(s)

)
for every s, t ∈ T . Note that incentive constraint from true type t to type s

is: p(t) − p(s) ≤ ℓf (s, t). A good way to interpret this is that we create a directed graph

Gf with set of nodes T (possibly infinite nodes). For every pair of nodes s, t ∈ T , we put

an edge from s to t and another from t to s. So, Gf is a complete directed graph. We call

this the type graph of allocation rule. We assign a weight of ℓf (s, t) to the edge from s to

t. Monotonicity requires that the for every s, t ∈ T , we must have ℓf (s, t) + ℓf (t, s) ≥ 0,

i.e., 2-cycles (cycles involving pairs of nodes) have non-negative length. The longer sequence

condition requires cycles of arbitrary number of nodes must have non-negative length.

Definition 23 An allocation rule satisfies K-cycle monotonicity if for any finite sequence

of types (s1, . . . , sk), with k ≤ K, each belonging to T , we have

k∑
j=1

ℓf (sj, sj+1) ≥ 0,

114

where sk+1 ≡ s1.

An allocation rule satisfies cycle monotonicity if it is K-cycle monotone for all K.

Using ideas explained above, it is routine to verify that every implementable allocation rule

satisfies cycle monotonicity. The following theorem shows that the converse also holds - the

theorem does not require any assumption on type spaces (Theorem 19 required the type

space to be convex) or restriction on the number of alternatives.

Theorem 20 An allocation rule is implementable if and only if it is cyclically monotone.

Proof : Suppose f is an implementable allocation rule. Consider a finite sequence of types

(t1, t2, . . . , tk) with k ≥ 2. Since f is implementable, there exists a payment rule p such that

p(t2)− p(t1) ≤ ℓf (t1, t2)

p(t3)− p(t2) ≤ ℓf (t2, t3)

. . . ≤ . . .

. . . ≤ . . .

p(tk)− p(tk−1) ≤ ℓf (tk−1, tk)

p(t1)− p(tk) ≤ ℓf (tk, t1).

Adding these inequalities, we obtain that ℓf (t1, t2)+ℓf (t2, t3)+. . .+ℓf (tk−1, tk)+ℓf (tk, t1) ≥ 0.

Now, suppose f satisfies cycle monotonicity. For any two types s, t ∈ T , let P (s, t) denote

the set of all (finite) paths from s to t in Gf . The set P (s, t) is non-empty because the direct

edge from s to t in Gf always exists. Also, note that a path P ∈ P (s, t) may not contain

distinct edges, i.e., it may contain a cycle. Define the shortest path length from s to t (s ̸= t)

as follows.

distf (s, t) = inf
P∈P (s,t)

ℓf (P),

where ℓf (P) is the length of path P . Let distf (s, s) = 0 for all s ∈ T . First, we show

that distf (s, t) is finite. Consider any path P ∈ P (s, t). If there are cycles in this path,

then they have non-negative length. By removing those cycles from P , we get another path

Q ∈ P (s, t) with distinct vertices such that ℓf (P) ≥ ℓf (Q). But Q with the direct edge (t, s)

is a cycle. Hence, ℓf (Q) + ℓf (t, s) ≥ 0. Hence, ℓf (P) ≥ ℓf (Q) ≥ −ℓf (t, s). This implies that

distf (s, t) = infP∈P (s,t) ℓ
f (P) ≥ −ℓf (t, s). Since ℓf (t, s) is a real number, distf (s, t) is finite.

115

Next, fix a type r ∈ T and choose s, t ∈ T . Choose a path P 1 ∈ P (r, s) and then the

direct edge (s, t). Denote the path P 1 added to (s, t) as P 2 and note that P 2 ∈ P (r, t).

Hence, ℓf (P 1) + ℓf (s, t) = ℓf (P 2) ≥ distf (r, t). Hence, ℓf (P 1) ≥ distrf (r, t)− ℓf (s, t). Since

P 1 was chosen arbitrarily, we conclude that

distf (r, s) ≥ distf (r, t)− ℓf (s, t). (5.2)

Now, define the following payment rule: let p(s) = distf (r, s) for all s ∈ T .

Take any s, t ∈ T . We have p(t) − p(s) = distf (r, t) − distf (r, s) ≤ ℓf (s, t), where the

inequality follows from Inequality 5.2. Hence, f is implementable. ■

Theorem 20 shows that if an allocation rule is cyclically monotone, then we can construct

payments for implementing such an allocation rule by considering shortest paths in the un-

derlying graph. For every allocation rule f , cycle monotonicity is best understood by its type

graph Gf , whose set of vertices is the type space T and it is a complete directed graph, i.e.,

there is an edge from every vertex to every other vertex. The weight of an edge from type

s to type t is ℓf (s, t) = t · (f(t) − f(s)). The cycle monotonicity condition is a no negative

cycle condition of this graph. Moreover, the payments corresponding to a type graph having

no negative cycles can be found by fixing any arbitrary type and fixing its payment at zero

but fixing the type payment of other types as the shortest path in T f from this type.

We give a simple example to illustrate the construction of payments. Consider an allo-

cation rule, whose underlying type graph looks as in Figure 5.2. First, verify that all cycles

in this type graph have non-negative length. If we fix type s and let p(s) = 0, then the

payments of other two types can be found by taking shortest paths from s to these types.

In Figure 5.2, this can be verified to be p(t) = 1, p(x) = −1. Theorem 20 shows that this

payment rule implements the allocation rule corresponding to Figure 5.2.

There are other payment rules that also implement an allocation rule. Of course, adding

a constant to this payment at all types will also generate another payment rule which will

implement this allocation rule. But, you can verify that the following payment rule also

implements a cyclically monotone allocation rule f . Fix a type s and set p′(s) = 0 and for

every type t, let p′(t) = −distf (t, s), i.e., take the negative of the shortest path from t to s.

For the allocation rule in Figure 5.2, this generates p′(s) = 0, p′(t) = 1, p′(x) = −1.

There is an alternate way to think about incentive constraints. We say f is deterministic

116

1−1 −2

2

2

−1
s t

x

Figure 5.2: Cycle monotonicity

if for all t ∈ T and for all a ∈ A, fa(t) ∈ {0, 1}. For simplicity, let us consider deterministic

rules. However, everything we discuss below can be extended to randomized allocation rules

as follows: replace A by L(A) in the discussions below.

Given a type space T , we first partition T into various regions where each alternative is

chosen. In particular, define for every a ∈ A,

T f
a = {t ∈ T : f(t) = a}.

So {T f
a }a∈A defines a partitioning of the type space. An example is shown in Figure 5.3.

The boundaries of these partitions may belong to any of the alternatives which share the

boundary. Futher, the partitioning will always polyhedral figures - this is because the incentive

constraints are linear.

Now, incentive compatibility means that for every a ∈ A, the following holds: p(t) = p(s)

for all s, t ∈ Ta. Then, the implementability question can be slightly differently stated. We

can say f is implementable if there exists a map π : A → R such that for every a ∈ A and

for every t ∈ T f
a , the following holds:

t(a)− π(a) ≥ t(b)− π(b) ∀ b ∈ A.

In other words, instead of finding the payment rule p, we can indirectly find it by constructing

the π map.

Rewriting the above inequality, we get for all a ∈ A and for all t ∈ T f
a , the following must

117

Ta

TbTc

Tx

Ty

Figure 5.3: Partitioning the type space

hold:

π(a)− π(b) ≤ t(a)− t(b) ∀ b ∈ A.

The above inequality can be succinctly written as follows.

π(a)− π(b) ≤ inf
t∈T f

a

[
t(a)− t(b)

]
∀ a, b ∈ A. (5.3)

Now, we can attach a new graph to an allocation rule f . We call this the allocation

graph and denote this as Af . The set of nodes in this graph is A - for every alternative, we

put a node. It is a complete directed graph. So, for every a, b ∈ A, there is an edge from a

to b and an edge from b to a. The edge length of edge (a, b) is

df (a, b) := inf
t∈T f

a

[
t(a)− t(b)

]
.

Just as we showed in Theorem 20, we can show that Inequality (5.3) has a solution if and

only if the directed graph Af has no cycles of negative length. Hence, we have shown the

following.

Theorem 21 The following statements are equivalent.

1. f is an implementable allocation rule.

118

2. The type graph of Gf of f has no cycles of negative length.

3. The allocation graph Af of f has no cycles of negative length.

As noted cycle monotonicity is a significantly stronger condition than monotonicity.

Monotonicity has been shown to imply cycle monotonicity if type space is convex and allo-

cation rule is deterministic. We state this as a theorem below without giving a proof.

Theorem 22 Suppose T is convex and f : T → L(A) is a deterministic allocation rule.

Then, f is implementable if and only if it is monotone.

The above result is not true if we consider randomized allocation rules. The following is

an example taken from Bikh06.

Example 1

There are two units of a good and marginal values of the good to the buyer (v1, v2) ∈ [0, 1]2.

Let q = (q1, q2) be a random allocation rule which gives the probability of allocating the

units. In particular, qk(v) with k ∈ {1, 2} is the probability with which at least k units

are allocated at (v1, v2). It is easy to verify that 2-cycle monotonicity (or monotonicity) is

equivalent to requiring for all v, v′ ∈ [0, 1]2, we have
(
q(v)− q(v′)

)
(v − v′) ≥ 0.

Now, suppose q(v) = 1
3
Av, where A is a 2 × 2 matrix with rows (1, 2) and (0, 1). It is

easy to verify that q satisfies 2-cycle monotonicity. To refute implementability, we argue

that q cannot be the subgradient of a convex function. Because if it is a subgradient of a

convex function, the matrix of second-partials of such a convex function will be A, which is

not possible since A is not symmetric.

5.3 Revenue Equivalence

Consider an allocation rule f which is DSIC. Let p be a payment rule which makes f DSIC.

Let α ∈ R. Define q(t) = p(t) + α for all t ∈ T . Since q(t) − q(s) = p(t) − p(s) ≤ ℓf (s, t),

we see that q is also a payment that makes f DSIC. Is it possible that all payments that

make f DSIC can be obtained by adding a suitable constant α ∈ R to p? This property

of an allocation rule is called revenue equivalence. Not all allocation rules satisfy revenue

119

equivalence. Myerson (1981) showed that in the standard auction of single object (one-

dimensional type space) every allocation rule satisfies revenue equivalence. The objective of

this section is to identify allocation rules that satisfy revenue equivalence in more general

settings.

Definition 24 An allocation rule f satisfies revenue equivalence if for any two payment

rules p and p̂ that make f DSIC, there exists a constant α ∈ R 1 such that

p(t) = p̂(t) + α ∀ t ∈ T. (5.4)

The first characterization of revenue equivalence involves no assumptions on T or A or

f .

Theorem 23 Suppose f is implementable. Then the following are equivalent.

1. The allocation rule f satisfies revenue equivalence.

2. For all s, t ∈ T , we have distf (s, t) + distf (t, s) = 0.

Proof : We establish the equivalence of 1 and 2 first. Suppose f satisfies revenue equivalence.

Consider any s, t ∈ T . Since f is DSIC, by Theorem 20, the following two payment rules

makes f DSIC:

ps(r) = distf (s, r) ∀r ∈ T

pt(r) = distf (t, r) ∀r ∈ T.

Since revenue equivalence holds, ps(s) − pt(s) = ps(t) − pt(t). But ps(s) = pt(t) = 0.

Hence, ps(t) + pt(s) = 0, which implies that distf (s, t) + distf (t, s) = 0.

Now, suppose distf (s, t) + distf (t, s) = 0 for all s, t ∈ T . Consider any payment rule

p that makes f DSIC. Take any path P = (s, t1, . . . , tk, t) from s to t. Now, ℓf (P) =

ℓf (s, t1) + ℓf (t1, t2) + . . . + ℓf (tk−1, tk) + ℓf (tk, t) ≥ [p(t1) − p(s)] + [p(t2) − p(t1)] + . . . +

[p(tk) − p(tk−1)] + [p(t) − p(tk)] = p(t) − p(s). Hence, p(t) − p(s) ≤ ℓf (P) for any path P

from s to t. Hence, p(t) − p(s) ≤ distf (s, t). Similarly, p(s) − p(t) ≤ distf (t, s). Hence,

1In a model with more than one agent α can be a (agent-specific) mapping from type profile of other

players to real numbers.

120

0 = distf (s, t)+distf (t, s) ≥ [p(s)− p(t)]+ [p(t)− p(s)] = 0. Hence, p(s)− p(t) = distf (t, s),

which is independent of p(·). Hence, revenue equivalence holds. ■

One can use this theorem to derive our familiar revenue equivalence theorem that we

proved earlier - the second part of Theorem 19. However, the current theorem makes use of

Theorem 23 to give a cleaner proof without resorting to particular form of payment.

Theorem 24 Suppose T is convex. If f is implementable, then f satisfies revenue equiva-

lence.

Proof : Pick any s, t ∈ T and ϵ > 0. Our first claim is that there exists points r1, . . . , rk in

the convex hull of s and t such that

ℓf (s, r1) + ℓf (r1, r2) + . . .+ ℓf (rk, t) + ℓf (t, rk) + ℓf (rk, rk−1) + . . .+ ℓf (r1, s) < ϵ.

To see this, let ∆ = t− s. Pick a positive integer k and define for every j ∈ {1, . . . , k},

rj := s+
j

k + 1
∆.

By convexity of T , rj ∈ T . Denote r0 = s and rk+1 = t. Now, note that

ℓf (rj, rj+1) + ℓf (rj+1, rj) = (rj+1 − rj)
(
f(rj+1)− f(rj)

)
=

1

k + 1
∆ ·

(
f(rj+1)− f(rj)

)
.

Hence, we see that

k∑
j=0

ℓf (rj, rj+1) + ℓf (rj+1, rj) =
1

k + 1

k∑
j=0

∆ ·
(
f(rj+1)− f(rj)

)
=

1

k + 1
∆ ·

(
f(t)− f(s)

)
Since ∆ · (f(t)− f(s)) is a constant, the above expression can be made arbitrarily small by

picking k large enough. This proves the claim.

Now, we show that distf (s, t) + distf (t, s) = 0. Since f is implementable, cycle mono-

tonicity (Theorem 20) implies that distf (s, t) + distf (t, s) ≥ 0. 2 Assume for contradiction

distf (s, t) + distf (t, s) = ϵ > 0. Then, by our claim in the first part, there is a path from

2If distf (s, t)+distf (t, s) < 0, there is some path from s to t and some path from t to s such that the sum

of these path lengths is negative. This implies that there is some cycle whose length is negative, contradicting

cycle monotonicity.

121

s to t and another from t to s such that their sum is strictly less that ϵ. This implies

distf (s, t) + distf (t, s) < ϵ, which is a contradiction. ■

With deterministic allocation rules, revenue equivalence can be shown to hold in any

connected type space.

5.4 Optimal Multi-Object Auction

Our discussions so far have shown how many of the results for one-dimensional mechanism

design can be extended when the type space is multidimensional. Though, it gives an expres-

sion for payment (via (b) of Theorem 19), this expression is not as easy to handle because the

expectation over the type space is now complicated using a multidimensional joint distribu-

tion. As a result, the Myersonian technique that we employed for the one-dimensional type

space does not yield any useful result. Finding an optimal multi-object auction for selling

two objects to one buyer (the simplest possible setting) is very complicated. The nature of

optimal multi-object auction is hard to describe.

We give below some complications involved in computing an optimal auction through

some examples. All the examples are borrowed from Hart and Reny (2015).

Example 2

There are two objects being sold by a seller to a single buyer. The buyer’s type is her value

for object 1, v1, and her value for object 2, v2. Her value for objects 1 and 2 together is

v1 + v2 (this is called the additive values multi-object problem).

A mechanism in this setting can be described by a menu of outcomes - incentive compat-

ibility implies that the buyer chooses the payoff-maximizing outcome from this menu. We

describe one such menu below. We denote by (S, p) a generic element of the menu, where

S ⊆ {1, 2} is the bundle of goods and p is the price charged to S.

M ≡
{(

∅, 0
)
,
(
{1}, 1

)
,
(
{2}, 2

)
,
(
{1, 2}, 4

)}
.

Such a menu M can be associated with an incentive compatible mechanism by associating

with each type its payoff maximizing outcome from the menu. Denote such a mechanism

122

(q, p). Notice that since our menu consists of (∅, 0), the buyer cannot do worse than getting

zero payoff. Hence, this mechanism is also individually rational.

Now, consider a type v ≡ (1, 7
3
). Then, the optimal outcome in the menu M for this type

is object ({2}, 2). So, the revenue of the seller at this type is 2. Now, suppose we consider

type v′ ≡ (2, 8
3
). Then, the optimal outcome in the menu M for this type is ({1}, 1). Hence,

the revenue of the seller falls to 1. Note that v′1 > v1 and v′2 > v2 but revenue at v′ falls

below v.

The main intuition for why this non-monotonicity is happening is the following. First,

the price of the bundle is high enough - higher than sum of prices of individual objects.

Second, the price of object 1 is low but when the value of object 2 is high enough, the buyer

chooses object 2. However, if we increase the value of object 1 higher than that of object 2,

then the buyer switches to object 1 (cannot switch to the bundle because it has high price).

But the seller gets a lower price.

The above example illustrates the point that there can be incentive compatible mecha-

nisms where revenue is non-monotonic in values. Can this happen in an optimal mechanism?

Indeed, the menu in an optimal mechanism can be quite different from the one shown in Ex-

ample 2. To describe an optimal mechanism, we first describe the type space and show that

in such a type space, the mechanism described above is optimal for a class of distributions.

Example 3

We continue with the same example: one buyer, one seller, two objects, and additive values.

We describe a family of distributions Fα (parametrized by α ∈ [0, 1
12
]) with finite support.

Fα =



(1, 1) with probability 1
4

(1, 2) with probability 1
4
− α

(2, 2) with probability α

(2, 3) with probability 1
2

Notice that as α increases, the probability shifts from (2, 2) to (1, 2). Hence, Fα ≻FOSD

Fα′ for all α > α′. We prove the following claim.

Claim 1 For all 0 ≤ α ≤ 1
12
, the optimal mechanism generates a revenue of 11

4
− α for

distribution Fα.

123

Proof : Consider the mechanism in Example 2 given by the menu:

M ≡
{(

∅, 0
)
,
(
{1}, 1

)
,
(
{2}, 2

)
,
(
{1, 2}, 4

)}
.

In this mechanism type (1, 1) chooses ({1}, 1); type (1, 2) chooses ({2}, 2); type (2, 2) chooses
({1}, 1); and type (2, 3) chooses ({1, 2}, 4). The expected revenue from this mechanism is

1× 1

4
+ 2×

(1
4
− α

)
+ 1× α + 4× 1

2
=

11

4
− α.

We now show that any other incentive compatible (IC) and individually rational (IR) mech-

anism cannot generate more expected revenue. Pick an IC and IR mechanism (q, p), where

qi(v) denotes the probability of getting object i ∈ {1, 2} at type v and p(v) denotes the

payment at type v. Since (q, p) is an IC and IR mechanism, the following constraints must

hold.

q1(1, 1) + q2(1, 1)− p(1, 1) ≥ 0 Multiply 1

q1(1, 2) + 2q2(1, 2)− p(1, 2) ≥ q1(1, 1) + 2q2(1, 1)− p(1, 1) Multiply
1

2

2q1(2, 2) + 2q2(2, 2)− p(2, 2) ≥ 2q1(1, 1) + 2q2(1, 1)− p(1, 1) Multiply 3α

2q1(2, 3) + 3q2(2, 3)− p(2, 3) ≥ 2q1(1, 1) + 3q2(1, 1)− p(1, 1) Multiply
1

4
− 3α

2q1(2, 3) + 3q2(2, 3)− p(2, 3) ≥ 2q1(1, 2) + 3q2(1, 2)− p(1, 2) Multiply
1

4
+ α

2q1(2, 3) + 3q2(2, 3)− p(2, 3) ≥ 2q1(2, 2) + 3q2(2, 2)− p(2, 2) Multiply 2α

We considered the IR constraint of the lowest type (1, 1), we considered the IC constraints

of each type to the lowest type (1, 1), and finally, we considered the IC constraints from

the highest type (2, 3) to every other type. In other words, we considered all downward IC

constraints except the (2, 2) → (1, 2) IC constraint and the lowest type IR constraint. As it

turns out, these are enough to show optimality of our mechanism.

Add the constraints by multiplying with the quantities mentioned on the right. This

gives us:

−
(3
4
− 3α

)
q2(1, 1)− 2αq1(1, 2) +

(1
4
− 3α

)
q2(1, 2) + 2αq1(2, 2) + q1(2, 3) +

3

2
q2(2, 3)

≥ 1

4
p(1, 1) +

(1
4
− α

)
p(1, 2) + αp(2, 2) +

1

2
p(2, 3).

124

The RHS is exactly the expected revenue of the mechanism (q, p). The first two terms on

LHS is negative since 3
4
≥ 3α (since α ≤ 1

12
). The rest of the terms are positive since α ≤ 1

12
.

Hence, we can upper bound the LHS by 11
4
− α, which is the expected revenue from our

candidate mechansim with menu M. Hence, this mechanism is optimal - further, if α < 1
12
,

then it is the unique optimal mechanism. ■

A straightforward corollary of Claim 1 is that with α, α′ ∈ [0, 1
12
] and α > α′, we have

optimal revenue from Fα strictly lowere than the optimal revenue from Fα′ .

Our next example shows another property of optimal mechanisms which was not present

in the single object case - the optimal mechanism may involve randomization. We continue

with the same setting: one buyer, one seller, and two objects with additive valuations.

Consider the following type space with associated probability distribution.

Example 4

F =


(1, 0) with probability 1

3

(0, 2) with probability 1
3

(3, 3) with probability 1
3

The following randomized mechanism is shown to be the unique optimal mechanism in

this example.

Claim 2 The following is the unique optimal mechanism. Its menue consists of(
∅, 0

)
,
(1
2
{1}, 1

2

)
,
(
{2}, 2

)
,
(
{1, 2}, 5

)
,

where 1
2
{1} means object 1 is allocated with probability 1

2
.

Proof : Let the outcomes at the three types be denoted by (α1, β1;σ1) for type (1, 0);

(α2, β2;σ2) for type (0, 2); and (α3, β3;σ3) for type (3, 3). Here, αs correspond to the prob-

ability of getting object 1, βs correspond to the probability of getting object 2, and σs are

the payments. Since each type has equal probability, expected revenue is maximized by

maximizing σ1 + σ2 + σ3.

125

Now, consider the relaxed problem, where we consider the IR constraints of types (1, 0)

and (0, 2), and consider the IC constraints from type (3, 3).

α1 − σ1 ≥ 0

2β2 − σ2 ≥ 0

3α3 + 3β3 − σ3 ≥ 3α1 + 3β1 − σ1

3α3 + 3β3 − σ3 ≥ 3α2 + 3β2 − σ2.

Rewriting these inequalities:

σ3 + 3α1 + 3β1 − 3α3 − 3β3 ≤ σ1 ≤ α1

σ3 + 3α2 + 3β2 − 3α3 − 3β3 ≤ σ2 ≤ 2β2.

So, to maximize σ1 + σ2 + σ3, we set σ1 = α1 and σ2 = 2β2 - so, IR constraints of low types

bind. This simplifies the above inequalities to

σ3 ≤ 3α3 + 3β3 − 2α1 − 3β1

σ3 ≤ 3α3 + 3β3 − 3α2 − β2.

So, to maximize σ3, we must take α3 = β3 = 1 and β1 = α2 = 0. Then, we should choose

σ3 = min(6−2α1, 6−β2). So, the objective function becomes α1+2β2+min(6−2α1, 6−β2) =
6 + min(2β2 − α1, β2 + α1). This means the objective function is increasing in β2. So, we

should set β2 = 1. Then, the objective function becomes 6 + min(2 − α1, 1 + α1). This is

maximized when 2− α1 = 1 + α1 or α1 =
1
2
. This is exactly the mechanism we started out

with. Hence, the given mechanism is optimal. ■

This example and Claim 2 establishes that the optimal mechanism may contain ran-

domization. In particular, the set of IC and IR mechanisms form a convex set - convex

combination of two IC and IR mechanisms produce an IC and IR mechanism. However, the

extreme points of such IC and IR mechanisms may contain randomized mechanisms. This

is not the case for single object problem - a formal proof of the fact that extreme points of

single object problem is deterministic is left as an exercise. 3

3Claim 2 seems to suggest that correlation is necessary to have randomization in the optimal mechanism

menu. This is not the case. Hart and Reny (2015) have an example where values of each object is drawn

independently from the same distribution and the optimal mechanism still involves randomization.

126

These examples highlight some important facts. First, the menu of the optimal mech-

anism may vary depending on the type space and distribution. Sometimes, the menu may

contain randomization. The set of relevant IC and IR constraints also vary. This makes

the optimal multi-object auction problem a notorious problem. A good starting point to

understand these in detail is Manelli and Vincent (2007).

127

128

Chapter 6

Extensions

In this chapter, we present two extensions of the model we have been discussing so far.

The first extension relaxes the quasilinearity assumption and investigates the single object

allocation model. In particular, it shows a natural extension of Vickrey auction without

quasilinearity. The second extension explores the implications of relaxing the private values

assumption. We investigate a model of interdependent values and how to extend the Vickrey

auction to such a model.

6.1 Classical Preferences

An important feature of mechanism design with transfers has been the quasilinearity as-

sumption. Quasilinear preferences over transfers allows us to separate out transfer rule and

allocation rule, say, by the revenue equivalence results. However, in many settings quasilinear

preferences are not realistic. We start off by presenting a model of nonquasilinear preferences

and some examples.

There is a single indivisible object. There are n agents interested in the object. The

set of agents are denoted by N := {1, . . . , n}. Monetary transfers are allowed. A typical

consumption bundle of an agent i is (a, p), where a ∈ {0, 1} indicates whether the agent

is assigned (a = 1) the object or not (a = 0) and p ∈ R indicates his payment. Let

Z = {0, 1}×R be the set of all consumption bundles of any agent. Note that we do not deal

with randomization in this model.

129

The type of an agent i is a map ui : Z → R, where we normalize ui(0, 0) = 0. 1

Definition 25 A type ui is classical if it satisfies the following conditions:

• Money Monotonicity (M). for every p, p′ ∈ R, p > p′ implies ui(a, p
′) > ui(a, p) for

all a ∈ {0, 1},

• Desirability (D). for every p ∈ R, ui(1, p) > ui(0, p),

• Continuity (C). for every a ∈ {0, 1}, ui(a, p) is a continuous function of p.

• Finiteness (F). for every p ∈ R, there exists d1, d2 ∈ R++ such that ui(0, p) ≥ u(1, p+

d1) and ui(0, p− d2) ≥ u(1, p).

The set of all classical types is denoted by U c.

The conditions M, D, and C are reasonable and standard conditions. To understand

finiteness, note that D implies that at every transfer, getting the object is strictly preferred

to not getting it. Condition F ensures that there is no transfer amount, where getting the

object is infinitely preferred to not getting it.

Note that the a type ui is quasilinear if there exists a positive real number (valuation) vi

such that for all a ∈ {0, 1} and for all p ∈ R, we have ui(a, p) = vi · a− p. It is easy to verify

that a quasilinear type is a classical type.

6.1.1 Type Spaces with Income Effects

An unpleasant feature of quasilinear type is the absence of any income effect. However, there

are plenty of instances where income effects are plausible. We present two examples where

income effects are apparent and quasilinearity is unrealistic.

• Nonlinear cost of payments. Suppose agent i has a budget bi. If the payment exceeds

bi, then he takes a loan at an interest rate of r. Effectively, if agent i has to make a

payment of p, his cost of payment is

ci(p, bi) =

{
p if p ≤ bi

bi + (p− bi)(1 + r) otherwise

1We consider a cardinal model with utility only for convenience and the model can rewritten with ordinal

preferences.

130

So, if agent i has a value vi, his net utility (for winning the object) from a payment of

p is

vi − ci(p, bi),

where ci(p, bi) is not linear in p and depends on another dimension of his private

information - his budget bi.

• Surplus depending values. In the previous example, the value of the object was fixed.

In many scenarios, the value of a good itself depends on the amount of money you are

left with. Consider the sale of a spectrum license. A company will be able to use the

license more effectively if it is left with more money after it buys the license. So, the

value of agent i is a map vi : R → R. In particular, if bi is the initial endowment of

money (budget) of agent i and he pays p, then bi − p is his surplus money. We assume

that agent i has access to credit and allow this surplus to become negative. Hence, the

net utility of agent i (for winning the object) with value function vi, budget bi, and

payment p is

vi(bi − p) + bi − p.

To formally define the notion of income effect, we will require some additional terminology.

At every p ∈ R, let WP (ui, p) denote the willingness to pay of agent i at type ui, and it is

defined as the solution to ui(1, p+ x) = ui(0, p).

Fact 1 If ui is a classical type, then for every p ∈ R, WP (ui, p) is a unique positive real

number.

Proof : Consider a classical type ui and p ∈ R. By D, ui(1, p) > ui(0, p). By F, there exists

d1 ∈ R++ such that ui(0, p) ≥ ui(1, p+d1). Hence, we have, ui(1, p) > ui(0, p) ≥ ui(1, p+d1).

By continuity of ui, there must exist p′ ∈ (p, p + d1] such that ui(1, p
′) = ui(0, p). By M,

such a p′ is also unique. Hence, there is a unique x ∈ R++ such that ui(1, p+ x) = ui(0, p).

■

If a type ui is quasilinear, then WP (ui, p) = WP (ui, p
′) for all p, p′ ∈ R, and this

willingness to pay is precisely the valuation for the object.

An easy interpretation of classical preferences is through indifference vectors. Consider

Figure 6.1. It shows two parallel lines which represent the consumption bundles of the agent

131

0
0

1

Indifference vectors of R

Payments

Figure 6.1: Classical preferences

0 0

1

Payments

WP (0; ui)

p

WP (p; ui)

Figure 6.2: Classical preferences

- one line corresponds to not getting the object (0) and the other line corresponds to getting

the object (1). As we go to the right on these lines, payment increases. Hence, on the same

line, the agent is worse off as she goes to the right. On the other hand, we can also compare

points across the two lines. The assumptions in classical preference implies that for every

point on one line, there exists a point on the other line to which the agent is indifferent.

This is what we refer to as an indifference vector. Figure 6.1 shows such collection of

indifference vector for one preference. Indeed, a preference consists of infinite collection of

such indifference vectors. An alternate way to think of a classical preference is through these

indifference vectors. Because of desirability condition, the indifference vectors are slanted to

right. For quasilinear preference, these indifference vectors are parallel.

The idea of WP can also be seen in such indifference figures. See Figure 6.2 for a

representation of WP (0, ui) and WP (p, ui) for some utility function ui, whose indifference

vectors are shown.

Now, we define the notions of income effects. We define them using the notion of willing-

132

ness to pay. As transfer decreases (i.e, income increases), positive (negative) income effect

requires that willingness to pay must increase (decrease).

Definition 26 A classical type u exhibits non-negative income effect if for all p, p′ ∈ R
with p > p′, we have WP (u, p′) ≥ WP (u, p). A classical type u exhibits positive income

effect if the above inequality is strict.

A classical type u exhibits non-postive income effect if for all p, p′ ∈ R with p > p′, we

have WP (u, p′) ≤ WP (u, p). A classical type u exhibits negative income effect if the above

inequality is strict.

The set of all classical types with non-negative income effect, positive income effect, non-

positive income effect, and negative income effect are denoted as U+, U++, U−, and U−−

respectively.

Note that a quasilinear type exhibits both non-negative and non-positive income effect.

Moreover, the set of all quasilinear types are precisely U+ ∩ U−. We will denote the set of

all quasilinear types as U q.

6.1.2 Mechanisms and Incentive Compatibility

A mechanism in this model consists of an allocation rule and a payment rule for every agent.

Fix some type space U ⊆ U c. An allocation rule is a map

f : Un → {0, 1}n.

At any type profile u ≡ (u1, . . . , un), we denote by fi(u) ∈ {0, 1} the allocation of agent i

- whether he has received the object or not. Of course, we assume that such an allocation

rule is feasible, i.e., at every u, we have
∑

i∈N fi(u) ≤ 1.

A payment rule of agent i ∈ N is a map pi : Un → R. A mechanism is defined by

(f, p1, . . . , pn). An alternative way to define a mechanism is to jointly write (f, p1, . . . , pn) as

a map F : Un → Zn, where Z = {0, 1}×R is the set of all consumption bundles of an agent.

Definition 27 A mechanism (f, p1, . . . , pn) is dominant strategy incentive compatible

(DSIC) if for every i ∈ N , for every u−i ∈ Un−1, and for every ui, u
′
i ∈ U , we have

ui(fi(u), pi(u)) ≥ ui(fi(u
′
i, u−i), pi(u

′
i, u−i)).

133

Because of non-separability of payment terms from the utility function, it is difficult to

see how the usual tricks of quasilinearity can be applied here. Still, we will construct DSIC

mechanisms satisfying additional properties in this model. The first such axiom is efficiency.

Note that an outcome of an agent is a vector in Z consisting of an allocation decision and

a payment decision. A typical outcome z ∈ Z will be denoted as z ≡ (a, t), where a ∈ {0, 1}
and t ∈ R.

Definition 28 An outcome vector z ≡ (z1 ≡ (a1, t1), . . . , zn ≡ (an, tn)) is Pareto efficient

at u if there exists no outcome z′ such that

(A)
∑

i∈N t
′
i ≥

∑
i∈N ti

(B) ui(z
′
i) ≥ ui(zi) for all i ∈ N ,

with strict inequality holding for one of the inequalities.

A mechanism (f, p1, . . . , pn) is Pareto efficient if at every type profile u, the outcome

vector {fi(u), pi(u)}i∈N is Pareto efficient at u.

Condition (A) in the definition is necessary. Without it, we can always subsidize every

agent more than the given outcome vector, and Pareto improve it. The definition says that

such improvements are only possible if the auctioneer does not have to spend extra money.

The second condition that we use is individual rationality.

Definition 29 A mechanism (f, p1, . . . , pn) is individually rational (IR) if at every type

profile u, we have ui(fi(u, pi(u)) ≥ ui(0, 0) = 0 for all i ∈ N .

If an agent does not participate in the mechanism, he does not get the object and does not

pay anything. The individual rationality assumption ensures that participation constraints

are met.

The final axiom that we consider is no-subsidy.

Definition 30 A mechanism (f, p1, . . . , pn) satisfies no-subsidy if at every type profile u,

we have pi(u) ≥ 0 for all i ∈ N .

Though the no-subsidy axiom sounds natural in many auction environment, it may not be

an attractive axiom in non-quasilinear models. For instance, we may want to subsidize low

134

utility agents to attract them to participate, and that may lead to increase in revenue. We

present a mechanism which satisfies no-subsidy, and give examples of mechanisms that may

violate no-subsidy.

6.1.3 Vickrey Auction with Income Effect

We will now extend the Vickrey auction to this setting and show that it is DSIC.

Definition 31 The Vickrey mechanism is a mechanism (f ∗, p∗1, . . . , p
∗
n) such that every

type profile u we have

f ∗
i (u) = 1 ⇒ WP (ui, 0) ≥ WP (uj, 0) ∀ j ∈ N,

and for every i ∈ N ,

p∗i (u) =

 max
j ̸=i

WP (uj, 0) if fi(u) = 1

0 otherwise

Note that the Vickrey mechanism is a simple mechanism - the only information it needs

from each agent is their willingness to pay at price zero. So, agents do not have to report

their entire utility function to the designer.

Theorem 25 The Vickrey mechanism is DSIC, Pareto efficient, IR, and satisfies no-subsidy.

Proof : It is clear that the Vickrey mechanism satisfies no-subsidy. To see that the Vickrey

mechanism satisfies IR, note that an agent who does not win the object pays zero, and hence,

his utility is zero. Suppose agent i wins the object at type profile u. Then, his utility is

ui(1,maxj ̸=iWP (uj, 0)). But WP (ui, 0) ≥ maxj ̸=iWP (uj, 0) means

ui(1,max
j ̸=i

WP (uj, 0)) ≥ ui(1,WP (ui, 0)) = ui(0, 0).

Hence, IR is satisfied.

To show DSIC, if agent i wins the object, his payment remains the same as long as he

wins the object. So, if he manipulates he needs to manipulate to a type where he does not get

the object. But that gives him a payoff of zero. By IR, this is not a profitable manipulation.

The other case is agent i does not win the object by being truthful, in which case he gets

135

zero payoff. By manipulating if he wins the object, he pays maxj ̸=iWP (uj, 0) ≥ WP (ui, 0).

Hence, ui(1,maxj ̸=iWP (uj, 0)) ≤ ui(1,WP (ui, 0)) = ui(0, 0) = 0. Hence, this is not a

profitable manipulation too.

Finally, we show that the Vickrey mechanism is Pareto efficient. Pick a type profile u

and let zi ≡ (fi(u), pi(u)) for all i ∈ N . Let fj(u) = 1 and WP (uk, 0) = maxi ̸=j WP (ui, 0).

Suppose there is another outcome z′ that Pareto dominates z in the sense we defined. Denote

z′i ≡ (a′i, t
′
i) for all i. Since sum of payments in z is WP (uk, 0). Hence,∑

i∈N

t′i ≥ WP (uk, 0) =
∑
i∈N

ti. (6.1)

Suppose a′ is such that agent a′j′ = 1. The case where j = j′ is easy, and left to the

reader. Suppose j ̸= j′. Pick any i /∈ {j, j′}. Since a′i = 0 = fi(u) and ui(z
′
i) ≥ ui(zi) = 0,

we get that

t′i ≤ 0. (6.2)

Agent j also satisfies uj(0, t
′
j) ≥ uj(1,WP (uk, 0)) ≥ uj(1,WP (uj, 0)) = uj(0, 0). Hence, we

have

t′j ≤ 0. (6.3)

Finally, agent j′ has uj′(1, t
′
j′) ≥ uj′(0, 0) = uj′(1,WP (uj′ , 0)) ≥ uj′(1,WP (uk, 0)). Hence,

we have

t′j′ ≤ WP (uk, 0). (6.4)

Adding all the Inequalities (6.2), (6.3), and (6.4), we get
∑

i t
′
i ≤ WP (uk, 0) =

∑
i ti. Using

Inequality (6.1), we get
∑

i t
′
i =

∑
i ti. Hence, each of the Inequalities (6.2), (6.3), (6.4), and

(6.1) are all equalities, contradicting the fact that z′ Pareto dominates z. ■

The following theorem establishes some uniqueness of the Vickrey mechanism.

Theorem 26 Suppose U ⊆ U c satisfies the fact that U q ⊆ U . The Vickrey mechanism is the

unique mechanism which is DSIC, Pareto efficient, IR, and satisfies no-subsidy in the type

space U .

136

Proof : We break the proof into steps.

Step 1. Consider a profile of types u and an agent i. We show that if fi(u) = 0, then

pi(u) = 0. By no-subsidy pi(u) ≥ 0. Suppose pi(u) > 0. Then, ui(0, pi(u)) < ui(0, 0) = 0, a

contradiction to IR. Hence, pi(u) = 0. Further, if fi(u) = 1, then pi(u) ≤ WP (ui, 0). Sup-

pose this is not true. Then, ui(1, pi(u)) < ui(1,WP (ui, 0)) = ui(0, 0) = 0, a contradiction to

IR.

Step 2. If agent i wins the object at a profile u and he changes his type to u′i such that

WP (u′i, 0) > WP (ui, 0), then fi(u
′
i, u−i) = 1. Assume for contradiction, fi(u

′
i, u−i) = 0.

Then his utility is zero at u′i (by Step 1). If he manipulates and reports ui, then he gets

the object and pays pi(ui, u−i). By Step 1, pi(ui, u−i) ≤ WP (ui, 0) < WP (u′i, 0). Hence,

u′i(1, pi(ui, u−i)) > u′i(1,WP (u′i, 0)) = u′i(0, 0) = 0. Hence, agent i can manipulate with type

u′i can manipulate and report ui. This is a contradiction.

Step 3. Suppose (ui, u−i) and (u′i, u−i) are two type profiles such that fi(ui, u−i) = fi(u
′
i, u−i) =

1. Then pi(ui, u−i) = pi(u
′
i, u−i). This follows from DSIC - if pi(ui, u−i) < pi(u

′
i, u−i), then

we have u′i(1, pi(u
′
i, u−i)) < u′i(1, pi(ui, u−i)), leading to a manipulation of agent i from u′i to

ui, and a similar argument works if pi(ui, u−i) > pi(u
′
i, u−i).

Step 4. We show that if agent i is assigned the object at a profile u, then WP (ui, 0) ≥
WP (uj, 0) for all j ∈ N . Assume for contradictionWP (ui, 0) < WP (uj, 0) = maxk∈N WP (uk, 0)

for some j ∈ N . Pick ϵ > 0 but sufficiently close to zero. Since the type space contains

U q, we can find a type u′i ∈ U q for agent i such that WP (u′i, x) = WP (ui, 0) + ϵ for all

x. By Step 2, fi(u
′
i, u−i) = 1. Denote v′i = WP (u′i, x) for all x. By Step 1, payment of

agent i is less than or equal to v′i and payment all other agents is zero. Now consider an

outcome, where agent j wins the object and pays v′i and agent i is paid an amount equal to

v′i − pi(u
′
i, u−i). The allocation of all other agents remain unchanged. Note all the agents

except agent j are indifferent between the two outcomes. Agent j was getting 0 net utility

earlier and now gets uj(1, v
′
i) > uj(1,WP (uj, 0)) = uj(0, 0) = 0. Hence, agent j strictly

improves. Finally, the sum of transfers in the new outcome is pi(u
′
i, u−i), which is the same

as the old outcome. Hence, the outcome of the mechanism is not Pareto efficient at (u′i, u−i).

137

This is a contradiction.

Also, at every type profile the object is assigned to some agent. This follows from Pareto

efficiency. To see this, note that not assigning the object to anyone gives everyone zero

utility. By assigning some agent i the object without any transfer gives him positive utility.

These two arguments imply that every type profile one of the agents in argmaxi∈N WP (ui, 0)

is given the object.

Step 5. Finally, we show that if at any type profile u, we have fi(u) = 1, then pi(u) =

maxj ̸=iWP (uj, 0). Let x = maxj ̸=iWP (uj, 0). We consider two cases.

Case 1. Suppose pi(u) > x. Then, consider a type u′i of agent i such that pi(u) >

WP (u′i, 0) > x. Since WP (u′i, 0) > x, by Step 4, fi(u
′
i, u−i) = 1. By Step 3, pi(ui, u−i) =

pi(u
′
i, u−i). But then WP (u′i, 0) < pi(u) = pi(u

′
i, u−i) is a contradiction due to Step 2.

Case 2. Suppose pi(u) < x. Then choose u′i ∈ U such that WP (u′i, 0) ∈ (pi(u), x). By

Step 4, fi(u
′
i, u−i) = 0. By Step 2, pi(u

′
i, u−i) = 0. But DSIC implies that u′i(0, 0) =

u′i(1,WP (u′i, 0)) ≥ u′i(1, pi(u)). Hence, WP (u′i, 0) ≤ pi(u), which contradicts our assump-

tion that WP (u′i, 0) > pi(u).

This completes the proof. ■

The conditions used in Theorem 26 are necessary. For instance, giving the object to some

fixed agent for free is DSIC, IR, and satisfies no-subsidy but violates Pareto efficiency. On

the other hand, modifying the Vickrey mechanism by charging a fixed amount to all the

agents violates IR but satisfies DSIC, Pareto efficiency, and no-subsidy. Finally, modifying

the Vickrey mechanism by subsidizing a fixed amount for not getting the object violates

no-subsidy but satisfies DSIC, Pareto efficiency, and IR.

The type space assumptions in Theorem 26 can be relaxed - for instance, the proof goes

through if U = U++. Also, it is possible to get characterizations by relaxing some of the

axioms in Theorem 26.

A small literature has developed on extending Theorem 26 into some specific mechanism

design problems beyond single object auction. However, in general mechanism design prob-

138

lems, there is a lot that needs to be done when agents have non-quasilinear preferences.

For instance, we have not discussed the implications of allowing for randomization. Allow-

ing for all kinds of preferences over lotteries leads to incompatibility of Pareto efficiency,

strategy-proofness, and individual rationality (more on this later).

6.2 Interdependent valuations

The models we studied so far assumed that each agent knows his preferences exactly. This

may not be the case in many settings. Consider a simple setting of allocating a single object.

The private values model assumed that each agent i has a value vi and if he pays an amount

pi, his payoff is vi − pi. The value for the object for agent i may depend on the private

information of all the agents. We give two examples to illustrate.

1. Perfect resale. Consider a model where once the object is allocated to agent i can

be resold to the agent who values it the most. Further, this resale is perfect in the

sense that agent i can charge the highest valued agent an amount equal to his value.

In other words, the ex-post value of agent i is not his own value but the value of the

highest valued agent. If we denote the value of each agent j as sj, then the value of

the object for any agent i is

vi(s1, . . . , sn) = max
j∈N

sj,

where N is the set of n agents. Notice that in this model, every agent i has the same

ex-post value for the object - this is an example of a common value model.

2. Signals as estimates. Consider a model where every agent only gets an estimate of

the value of the object. For instance, if an oil field is auctioned, every firm conducts its

own research to find out the estimated worth of the oil in the field. The ex-post value

of the oil field is a function of the signals (estimates) of all the firms. This can still

be a subjective assessment of valuation of each agent. For instance, suppose there are

two firms. Firm 1 may decide to take the average of two firms’ signals as his ex-post

value, whereas firm 2 may decide to put more weight on his own signal. The literature

assumes (mostly) that these subjective assessments of firm’s ex-post values are known

to the designer.

139

A model of interdependent valuations assumes that each agent i ∈ N has a private signal

si ∈ R+. Let Si denote the set of all possible signals of agent i. The signal is the type of the

agent. The valuation of agent i is given by a function

vi : S1 × . . .× Sn → R+.

Two standard assumptions that we will make: (1) vi is strictly increasing in si and (2) vi is

(weakly) increasing in sj for all j ̸= i.

If the valuation functions of all the agents are the same, then we have a common values

model.

Definition 32 The valuation functions (v1, . . . , vn) are common values if for all i, j ∈ N

and for all signal profiles s ≡ (s1, . . . , sn), we have vi(s) = vj(s).

Even in common values, we can think of many valuation functions v(s1, . . . , sn) = maxj sj

is the resale model. Also, v(s1, . . . , sn) =
1
n
(s1+ . . .+ sn) is an average valuation model with

common values. Consider the following valuation function:

vi(s1, . . . , sn) := si +
1

n− 1

∑
j ̸=i

sj.

This is not a common values model since agent i puts more emphasis on his own signal and

takes the average of others signals to compute valuations.

6.2.1 Mechanisms and Ex-post Incentive Compatibility

We now define mechanisms and a new notion of incentive compatibility. In general, a

mechanism can be defined using message spaces, but the revelation principle continues

to hold for the kind of equilibria we consider. Hence, we focus our attention on direct

revelation mechanisms. For us, a mechanism is (f, p1, . . . , pn), where the allocation rule

f : S1 × . . .× Sn → [0, 1]n and pi : S1 × . . .× Sn → R for each i ∈ N . We denote by fi(s) as

the allocation probability of agent i at signal profile s.

One can start defining a notion of dominant strategy incentive compatibility in this

setting. This will be something like the following. For every agent i and for every s′−i,

fi(si, s
′
−i)vi(si, s−i)− pi(si, s

′
−i) ≥ fi(s

′
i, s−i)vi(si, s−i)− pi(s

′
i, s

′
−i) ∀ si, s′i ∈ Si, ∀ s−i ∈ S−i.

140

This allows agents other than i to report any signal s′−i but the valuation of agent i will be

determined by the true signals of others. There are two difficulties with this notion. First, it

is very strong - it must hold for every si, s
′
i, s−i, s

′
−i. Second, there is a conceptual problem

with this notion. Agent i may not be able to evaluate his payoff even after everyone has

reported their signals since N−i may not report their true signals.

This leads us to the other popular solution concept: Bayesian incentive compatibility.

For this, assume a common prior G of distributions of signal profiles. The conditional

distribution of agent i having signal si about others’ signals is G−i(·|si), which we assume to

admit a density function g−i(·|si). So, we will say that (f, p1, . . . , pn) is Bayesian incentive

compatible if for all i ∈ N ∫
S−i

[
fi(si, s−i)vi(si, s−i)− pi(si, s−i)

]
g−i(s−i|si)ds−i

≥
∫
S−i

[
fi(s

′
i, s−i)vi(si, s−i)− pi(s

′
i, s−i)

]
g−i(s−i|si)ds−i ∀ si, s′i ∈ Si.

While this is a perfectly reasonable solution concept, it suffers from the usual prior-heavy

criticisms. So, we adopt a stronger prior-free solution concept.

Definition 33 A mechanism (f, p1, . . . , pn) is ex-post incentive compatible (EPIC) if for

all i ∈ N

fi(si, s−i)vi(si, s−i)− pi(si, s−i) ≥ fi(s
′
i, s−i)vi(si, s−i)− pi(s

′
i, s−i) ∀ si, s′i ∈ Si, ∀ s−i ∈ S−i.

Ex-post incentive compatibility says that if everyone else reports their true signals, then

agent i is better off (ex-post) reporting his true signal. It can be seen that if a mechanism is

EPIC, then it is Bayesian incentive compatible for all possible priors. So, EPIC is stronger

than Bayesian incentive compatibility. Also, EPIC is much weaker than dominant strategy

incentive compatibility since EPIC checks for unilateral deviations.

6.2.2 Efficiency: Impossibility and Possibility

Our main concern here is with respect to efficiency (in an ex-post sense). We say a mechanism

(f, p1, . . . , pn) is efficient if at every profile s ≡ (s1, . . . , sn), we have
∑

i∈N fi(s) = 1 and[
fi(s) > 0

]
⇒

[
vi(s) ≥ vj(s)

]
.

141

Notice that this does not necessarily mean that an efficient mechanism allocates the ob-

ject to an agent who has the highest signal. We give a simple example to illustrate that

efficiency and EPIC may be incompatible.

Example. Suppose N = {1, 2}, S1 = S2 = [0, 2]. Finally, the valuation functions look as

follows:

v1(s1, s2) = s1, v2(s1, s2) = s2 + [s1]
2.

Suppose there is an efficient mechanism (f, p1, p2) which is EPIC. Fix the signal of agent 2

at s2 = 0.1. Choose s1 = 0.5, s′1 > 1. By efficiency, note that object is always allocated and

f1(s1, s2) = 1, f1(s
′
1, s2) = 0.

Now, EPIC constraints of agent 1 give:

s1 − p1(s1, s2) ≥ 0− p1(s
′
1, s2)

0− p1(s
′
1, s2) ≥ s′1 − p1(s1, s2).

Adding them gives us s1 ≥ s′1, which is a contradiction.

The problem with this example is that agent 1’s signal influences valuation of agent 2

“more”on his own. This leads to a contradiction with the standard monotonicity - increasing

signals makes agent 1 lose his object. We present a sufficient condition on valuations which

ensures that efficiency and EPIC are compatible.

Definition 34 Collection of valuation functions (v1, . . . , vn) satisfy single crossing if for

every i, j ∈ N , every s−i ∈ S−i, and every si > s′i, we have

vi(si, s−i)− vi(s
′
i, s−i) > vj(si, s−i)− vj(s

′
i, s−i).

Single crossing is a strict supermodularity property. It imposes some structure on the

problem. This will become apparent when we show that a generalization of the Vickrey

auction is EPIC with single crossing. For our purposes, we will assume that in an efficient

allocation rule, ties in valuations of agents are broken deterministically - so, whenever there

is a tie for the highest valuation, one of the highest valuation agent is given the object with

probability one.

142

Definition 35 A mechanism (f ∗, p∗1, . . . , p
∗
n) is the generalized Vickrey auction (GVA) if

f ∗ is an efficient allocation rule and at every profile of signals s ≡ (s1, . . . , sn), for all i ∈ N ,

p∗i (s) =

{
0 if f ∗

i (s) = 0

vi(κi(s−i), s−i) if f ∗
i (s) = 1

where

κi(s−i) := inf{s′i ∈ Si : f
∗
i (s

′
i, s−i) = 1}.

Theorem 27 Suppose for every agent i, the space of signals Si is an interval in R. Fur-

ther, suppose that the collection of valuations (v1, . . . , vn) satisfy the single crossing property.

Then, the GVA mechanism is efficient, EPIC, and ex-post individually rational.

Proof : Note that by compactness of Si, for every i ∈ N and for every s−i, the signal κi(s−i)

as defined above lies in Si.

The GVA is efficient by definition. For ex-post IR, consider a profile s ≡ (s1, . . . , sn) and

agent i. If f ∗
i (s) = 0, then his payoff is zero. If f ∗

i (s) = 1, then his payoff is

vi(s)− vi(κi(s−i), s−i) ≥ 0,

where the inequality follows from the fact that si ≥ κi(s−i).

Now, for EPIC, consider agent i and signal profile s−i of other agents. Choose si, s
′
i ∈ Si.

If f ∗
i (si, s−i) = f ∗

i (s
′
i, s−i), then by construction p∗i (si, s−i) = p∗i (s

′
i, s−i), and there is nothing

to show. Hence, we consider the case where f ∗
i (si, s−i) ̸= f ∗

i (s
′
i, s−i). If f ∗

i (si, s−i) = 1,

then by ex-post IR, his payoff from reporting true signal is non-negative. So, f ∗
i (s

′
i, s−i) = 0

implies that agent i cannot be better off by reporting s′i.

Suppose f ∗
i (si, s−i) = 0. Then, his payoff from reporting the true signal is zero. If he

reports s′i such that f ∗(s′i, s−i) = 1, then his payoff from reporting s′i is

vi(si, s−i)− vi(κi(s−i), s−i).

We will show that si ≤ κi(s−i), and this will imply the above expression is non-positive,

implying that the deviation is not profitable.

Assume for contradiction si − κi(s−i) = ϵ > 0. By definition of κi(s−i), there exists

ϵ′ ≥ 0 but arbitrarily close to zero (in particular, it can be chosen such that ϵ′ < ϵ) such

143

that f ∗
i (κi(s−i)+ ϵ

′, s−i) = 1. Notice that by construction, si > κi(s−i)+ ϵ
′. Hence, by single

crossing

vi(si, s−i)− vj(si, s−i) > vi(κi(s−i) + ϵ′, s−i)− vj(κi(s−i) + ϵ′, s−i) ∀ j ̸= i. (6.5)

Since f ∗
i (κi(s−i) + ϵ′, s−i) = 1, we get

vi(κi(s−i) + ϵ′, s−i)− vj(κi(s−i) + ϵ′, s−i) ≥ 0 ∀ j ̸= i. (6.6)

Combining Inequalities (6.5) and (6.6), we get

vi(si, s−i) > vj(si, s−i) ∀ j ̸= i.

But this implies that f ∗
i (si, s−i) = 1, which is a contradiction. ■

It is also worthwhile to think that some sort of uniqueness of GVA can also be established.

For simplicity, we assume that Si is a compact interval for each i ∈ N and vi is continuous.

Suppose we have an efficient, EPIC, ex-post individually rational mechanism (f, p1, . . . , pn)

that satisfies the property that losing agents pay zero - note that the GVA mechanism sat-

isfies this property. This pins down allocation by efficiency and payment of losing agents.

We only need to show that the payment of losing agent coincides with the payment in the

GVA mechanism. To see this, fix agent i and (si, s−i) such that fi(si, s−i) = 1. Consider two

possible cases.

Case 1. Suppose pi(si, s−i) > vi(κi(s−i), s−i). By definition of κi(s−i), there is a type s′i

which is arbitrarily close to κi(s−i) such that fi(s
′
i, s−i) = 1. By EPIC, pi(si, s−i) = pi(s

′
i, s−i).

By continuity, s′i can be picked such that

pi(si, s−i) = pi(s
′
i, s−i) > vi(s

′
i, s−i).

But this contradicts ex-post individual rationality since vi(s
′
i, s−i)− pi(s

′
i, s−i) < 0.

Case 2. Suppose pi(si, s−i) < vi(κi(s−i), s−i). Then, pick s′i < κi(s−i) but arbitrarily close

to κi(s−i). By definition fi(s
′
i, s−i) = 0 and by continuity, vi(s

′
i, s−i) > pi(si, s−i). But incen-

tive compatibility requires that vi(s
′
i, s−i)−pi(si, s−i) ≤ 0, where this inequality follows from

144

the fact that losing agent pays zero and i is a losing agent at (s′i, s−i). This is a contradiction.

One way to summarize these discussions is that the GVA mechanism occupies the same

role that the Vickrey auction occupies in the private values model. One criticism of the GVA

mechanism is that it relies on the fact that the designer has complete knowledge of the vi

functions.

145

146

Chapter 7

The Strategic Voting Model

7.1 The Unrestricted Domain Problem

We now discuss a general model of voting and examine the consequence of incentive compat-

ibility in this model. The model is very general and introduces us to the rich literature on

strategic voting models where monetary transfers are excluded. The literature has origins in

two seminal papers of Gibbard (1973) and Satterthwaite (1975).

Let A be a finite set of alternatives with |A| = m. Let N be a finite set of individuals or

agents or voters with |N | = n. Every agent has a preference over the set of alternatives. Let

Pi denote the preference of agent i, which is assumed to be a (strict) ordering of elements of

A.

Given a preference ordering Pi of agent i, we say aPib if and only if a is strictly preferred

to b under Pi. Further, the top ranked element of this ordering is denoted by Pi(1), the

second ranked element by Pi(2), and so on. Let P be the set of all strict preference orderings

over A. A profile of preference orderings (or simply a preference profile) is denoted as

P ≡ (P1, . . . , Pn). So, Pn is the set of all preference profiles. A social choice function (SCF)

is a mapping f : Pn → A. Note that this definition of a social choice function implicitly

assumes that all possible profiles of linear orderings are permissible. This is known as the

unrestricted domain assumption in the strategic voting (social choice) literature. Later,

we will study some interesting settings where the domain of the social choice function is

restricted.

Every agent knows his own preference ordering (his type) but does not know the pref-

147

erence ordering of other agents, and the mechanism designer (planner) does not know the

preference orderings of agents. This is a very common situation in many voting scenarios:

electing a candidate among a set of candidates, selecting a project among a finite set of

projects for a company, selecting a public facility location among a finite set of possible loca-

tions, etc. Monetary transfers are precluded in these settings. The objective of this section

is to find out which social choice functions are implementable in dominant strategies in such

strategic voting scenarios.

We first describe several desirable properties of an SCF. The first property is an efficiency

property. We say an alternative a ∈ A is Pareto dominated at a preference profile P if there

exists an alternative b ∈ A such that bPia for all i ∈ N . Efficiency requires that no Pareto

dominated alternative must be chosen.

Definition 36 A social choice function f is efficient 1 if for every profile of preferences P

and every a ∈ A, if a is Pareto dominated at P then f(P) ̸= a.

As we will see many SCFs will be efficient in this model (contrast this to our definition

of Pareto efficiency with transfers and quasilinearity). The next property requires to respect

unanimity.

Definition 37 A social choice function f is unanimous if for every preference profile P ≡
(P1, . . . , Pn) with P1(1) = P2(1) = . . . = Pn(1) = a we have f(P) = a.

Note that this version of unanimity is a stronger version than requiring that if the preference

ordering of all agents is the same, then the top ranked alternative must be chosen. This def-

inition requires only the top to be the same, but other alternatives can be ranked differently

by different agents.

Next, we define the strategic property of a social choice function.

Definition 38 A social choice function f is manipulable by agent i at profile P ≡ (Pi, P−i)

by preference ordering P ′
i if f(P

′
i , P−i)Pif(P). A social choice function f is strategy-proof

if it is not manipulable by any agent i at any profile P by any preference ordering P ′
i .

This notion of strategy-proofness is the dominant strategy requirement since no manipulation

is possible for every agent for every possible profile of other agents.

Finally, we define a technical property on the social choice function.

1Such a social choice function is also called Pareto optimal or Pareto efficient or ex-post efficient.

148

Definition 39 A social choice function f is onto if for every a ∈ A there exists a profile of

preferences P ∈ Pn such that f(P) = a.

7.1.1 Examples of Social Choice Functions

We give some examples of social choice functions.

• Constant SCF. A social choice function f c is a constant SCF if there is some alter-

native a ∈ A such that for every preference profile P , we have f c(P) = a. This SCF is

strategy-proof but not unanimous.

• Dictatorship SCF. A social choice function fd is a dictatorship if there exists an

agent i, called the dictator, such that for every preference profile P , we have fd(P) =

Pi(1). Dictatorship is strategy-proof and onto. Moreover, as we will see later, they are

also efficient and unanimous.

• Plurality SCF (with fixed tie-breaking). Plurality is a popular way of electing

an alternative. Here, we present a version that takes care of tie-breaking carefully. For

every preference profile P and every alternative a ∈ A, define the score of a in P as

s(a, P) = |{i ∈ N : Pi(1) = a}|. Define τ(P) = {a ∈ A : s(a, P) ≥ s(b, P) ∀ b ∈ A}
for every preference profile P , and note that τ(P) is non-empty. Let ≻T be a linear

ordering over alternatives A that we will use to break ties. . A social choice function

fp is called a plurality SCF with tie-breaking according to ≻T if for every preference

profile P , fp(P) = a, where a ∈ τ(P) and a ≻T b for all b ∈ τ(P) \ {a}.

Though the plurality SCF is onto, it is not strategy-proof. To see this, consider an

example with three agents {1, 2, 3} and three alternatives {a, b, c}. Let ≻T be defined

as: a ≻T b ≻T c. Consider two preference profiles shown in Table 7.1. We note first

that f(P) = a and f(P ′) = b. Since bP3a, agent 3 can manipulate at P by P ′
3.

• Borda SCF (with fixed tie-breaking). The Borda SCF is a generalization of the

Plurality voting SCF. The tie-breaking in this SCF is defined similar to Plurality SCF.

Let ≻T be a linear ordering over alternatives A that we will use to break ties. Fix a

preference profile P . For every alternative a ∈ A, the rank of a in Pi for agent i is given

by r(a, Pi) = k, where Pi(k) = a. From this, the score of alternative a in preference

149

P1 P2 P3 P ′
1 = P1 P ′

2 = P2 P ′
3

a b c a b b

b c b b c a

c a a c a c

Table 7.1: Plurality SCF is manipulable.

profile P is computed as s(a, P) =
∑

i∈N [|A| − r(a, Pi)]. Define for every preference

profile P , τ(P) = {a ∈ A : s(a, P) ≥ s(b, P) ∀b ∈ A}. A social choice function f b is

called a Borda SCF with tie-breaking according to ≻T if for every preference profile P ,

f b(P) = a where a ∈ τ(P) and a ≻T b for all b ∈ τ(P) \ {a}.

Like the Plurality SCF, the Borda SCF is onto but manipulable. To see this, consider

an example with three agents {1, 2, 3} and three alternatives {a, b, c}. Let ≻T be

defined as: c ≻T b ≻T a. Consider two preference profiles shown in Table 7.2. We note

first that f(P) = b and f(P ′) = c. Since cP1b, agent 1 can manipulate at P by P ′
1.

P1 P2 P3 P ′
1 P ′

2 = P2 P ′
3 = P3

a b b c b b

c c c a c c

b a a b a a

Table 7.2: Borda SCF is manipulable.

7.1.2 Implications of Properties

We now examine the implications of these properties. We start out with a simple character-

ization of strategy-proof social choice functions using the following monotonicity property.

Such monotonicity properties are heart of every incentive problem - though the nature of

monotonicity may differ from problem to problem.

For any alternative a ∈ A, let B(a, Pi) be the set of alternatives below a in preference

ordering Pi. Formally, B(a, Pi) := {b ∈ A : aPib}.

Definition 40 A social choice function f is monotone if for any two profiles P and P ′ with

B(f(P), Pi) ⊆ B(f(P), P ′
i) for all i ∈ N , we have f(P) = f(P ′).

150

Note that in the definition of monotonicity when we go from a preference profile P to P ′

with f(P) = a, whatever was below a in P for every agent continues to be below it in P ′

also, but other relations may change. For example, the following is a valid P and P ′ in the

definition of monotonicity with f(P) = a (see Table 7.3).

P1 P2 P3 P ′
1 P ′

2 P ′
3

a b c a a a

b a a b c c

c c b c b b

Table 7.3: Two valid profiles for monotonicity

Theorem 28 A social choice function f : Pn → A is strategy-proof if and only if it is

monotone.

Proof : Consider social choice function f : Pn → A which is strategy-proof. Consider two

preference profiles P and P ′ such that f(P) = a and B(a, Pi) ⊆ B(a, P ′
i) for all i ∈ N . We

define (n− 1) new preference profiles. Define preference profile P 1 as follows: P 1
1 = P ′

1 and

P 1
i = Pi for all i > 1. Define preference profile P k for k ∈ {1, . . . , n− 1} as P k

i = P ′
i if i ≤ k

and P k
i = Pi if i > k. Set P 0 = P and P n = P ′. Note that if we pick two preference profiles

P k and P k+1 for any k ∈ {0, . . . , n−1}, then preference of all agents other than agent (k+1)

are same in P k and P k+1, and preference of agent (k + 1) is changing from Pk+1 in P k to

P ′
k+1 in P k+1.

We will show that f(P k) = a for all k ∈ {0, . . . , n}. We know that f(P 0) = f(P) = a,

and consider k = 1. Assume for contradiction f(P 1) = b ̸= a. If b P1 a, then agent 1 can

manipulate at P 0 by P ′
1 = P 1

1 . If aP1b, then aP ′
1b, and agent 1 can manipulate at P 1 by

P1 ≡ P 0
1 . This is a contradiction since f is strategy-proof.

We can repeat this argument by assuming that f(P q) = a for all q ≤ k < n, and showing

that f(P k+1) = a. Assume for contradiction f(P k+1) = b ̸= a. If bPk+1a, then agent (k + 1)

can manipulate at P k by P k+1
k ≡ P ′

k+1. If aPk+1b then aP
′
k+1b. This means agent (k+1) can

manipulate at P k+1 by Pk ≡ P k
k+1. This is a contradiction since f is strategy-proof.

Hence, by induction, f(P n) = f(P ′) = a, and f is monotone.

Suppose f : Pn → A is a monotone social choice function. Assume for contradiction

that f is not strategy-proof. In particular, agent i can manipulate at preference profile P

151

by a preference ordering P ′
i . Let P ′ ≡ (P ′

i , P−i). Suppose f(P) = a and f(P ′) = b, and by

assumption bPia. Consider a preference profile P ′′ ≡ (P ′′
i , P−i), where P

′′
i is any preference

ordering satisfying P ′′
i (1) = b and P ′′

i (2) = a. By monotonicity, f(P ′′) = f(P ′) = b and

f(P ′′) = f(P) = a, which is a contradiction. ■

Theorem 28 is a strong result. The necessity of monotonicity is true in any domain -

even if a subset of all possible preference profiles are permissible. Even for sufficiency, we

just need a domain where we are able to rank any pair of alternatives first and second.

We now explore the implications of other properties.

Lemma 20 If an SCF f is monotone and onto then it is efficient.

Proof : Consider a, b ∈ A and a preference profile P such that aPib for all i ∈ N . Assume

for contradiction f(P) = b. Since f is onto, there exists a preference profile P ′ such that

f(P ′) = a. We construct another preference profile P ′′ ≡ (P ′′
1 , . . . , P

′′
n) as follows. For all

i ∈ N , let P ′′
i (1) = a, P ′′

i (2) = b, and P ′′
i (j) for j > 2 can be set to anything. Since f is

monotone, f(P ′′) = f(P) = b, and also, f(P ′′) = f(P ′) = a. This is a contradiction. ■

Lemma 21 If an SCF f is efficient then it is unanimous.

Proof : Consider a preference profile P ≡ (P1, . . . , Pn) with P1(1) = P2(1) = . . . = Pn(1) =

a. Consider any b ̸= a. By definition, aPib for all i ∈ N . By efficiency, f(P) ̸= b. Hence,

f(P) = a. ■

Lemma 22 If a social choice function is unanimous then it is onto.

Proof : Take any alternative a ∈ A and a social choice function f . Consider a profile P

such that Pi(1) = a for all i ∈ N . Then f(P) = a by unanimity. So, f is onto. ■

We can summarize these results in the following proposition.

Proposition 4 Suppose f : Pn → A is a strategy-proof social choice function. Then, f is

onto if and only if it is efficient if and only if it is unanimous.

Proof : Suppose f is strategy-proof. By Theorem 28, it is monotone. Then, Lemmas 20,

21, and 22 establish the result. ■

152

7.1.3 The Gibbard-Satterthwaite Theorem

Theorem 29 (Gibbard-Satterthwaite Theorem, Gibbard (1973); Satterthwaite (1975)) Suppose

|A| ≥ 3. A social choice function f : Pn → A is onto and strategy-proof if and only if it is

a dictatorship.

Before we discuss the proof, we make the following observations about the Gibbard-

Satterthwaite (GS) theorem.

1. |A| = 2. The GS theorem fails when there are only two alternatives. An example of a

non-dictatorial social choice function which is onto and strategy-proof is the plurality

social choice function with a fixed tie-breaking. (The proof of this fact is an exercise.)

2. Unrestricted domain. The assumption that the type space of each agent consists of

all possible strict orderings over A is critical in the GS theorem. The intuition about

why the set of strategy-proof social choice functions become larger as we restrict the

type space is very simple. In a smaller type space, agents have less opportunity to

manipulate a social choice functions and, hence, it is easier for incentive constraints

to hold. It is because of this reason, the GS theorem may fail in various restricted

domains. We give a specific example in the next section.

3. Indifference. Suppose every agent has a preference ordering which is not necessarily

anti-symmetric, i.e., there are ties between alternatives. Let R be the set of all prefer-

ence orderings. Note that P ⊊ R. Now, consider a domain D ⊆ R such that P ⊆ D.

Call such a domain admissible. A social choice function f : Dn → A is admissible

if D is admissible. In other words, if the domain of preference orderings include all

possible linear orderings, then such a domain is admissible. The GS theorem is valid in

admissible domains, i.e., if |A| ≥ 3 and f : Dn → A is admissible, onto, and strategy-

proof, then it is a dictatorship. The proof follows from the observation that the proof

of GS-Theorem only requires existence of certain strict preference orderings. So, as

long as such preference orderings exist, the GS-Theorem proof goes through.

However, dictatorship may not be strategy-proof when indifference is permitted. For

instance, consider the dictatorship SCF f as follows. It always selects an alternative

in agent 1’s top - so, agent 1 is the dictator. However, if there are more than one

153

alternative in agent 1’s top, then the following tie-breaking rule is followed. Let ≻
be a linear ordering over A. Consider a profile P such that P1(1) has more than one

element 2. Then, consider P2(1). If P2(1)∩P1(1) is non-empty, choose an element from

P2(1) ∩ P1(1) using ≻, i.e., breaking ties according to ≻. Else, choose an alternative

from P1(1) using ≻. As an example, suppose agent 1’s top consists of {a, b, c}. Agent
2’s top consists of b and c. The tie-breaking is done using ≻, and it has b ≻ c. So, the

outcome at this profile must be b. If agent 2’s top did not have an element in {a, b, c}
and a ≻ b ≻ c, then the outcome will be a.

Such dictatorship SCFs are manipulable. To see this, consider a setting with three

alternatives {a, b, c} and two agents. Suppose we use the dictatorship of the previous

example with a ≻ b ≻ c. Consider a profile where agent 1’s top consists of b and c.

But agent 2’s top has a followed by c, and then followed by b at the bottom. Then,

according to the SCF, b will be the outcome. Note that b is the worst alternative for

agent 2. He can improve it by reporting c as his unique top since the outcome will now

change to c.

7.1.4 Proof of the Gibbard-Satterthwaite Theorem

There are number of proofs available in the literature, including the proofs of Gibbard (1973)

and Satterthwaite (1975). We follow the proof of Sen (2001), which is based on an induction

argument on the number of agents. We first analyze the case when n = 2.

Lemma 23 Suppose |A| ≥ 3 and N = {1, 2}. Suppose f is an onto and strategy-proof social

choice function. Then for every preference profile P , f(P) ∈ {P1(1), P2(1)}.

Proof : Fix a preference profile P = (P1, P2). If P1(1) = P2(1), the claim is due to unanimity

P1 P2 P1 P ′
2 P ′

1 P ′
2 P ′

1 P2

a b a b a b a b

· · · a b a b ·
· · · · · · · ·

Table 7.4: Preference profiles required in proof of Lemma 23.

2Since we allow for indifference, Pi(1) for any agent i is a subset of alternatives.

154

(Proposition 4). Else, let P1(1) = a and P2(1) = b, where a ̸= b. Assume for contradiction

f(P) = c /∈ {a, b}. We will use the preference profiles shown in Table 7.4.

Consider a preference ordering P ′
2 for agent 2 where P ′

2(1) = b, P ′
2(2) = a, and the

remaining ordering can be anything. By efficiency, f(P1, P
′
2) ∈ {a, b}. Further f(P1, P

′
2) ̸= b

since agent 2 can then manipulate at P by P1. So, f(P1, P
′
2) = a.

Now, consider a preference ordering P ′
1 for agent 1 where P ′

1(1) = a, P ′
1(2) = b, and

the remaining ordering can be anything. Using an analogous argument, we can show that

f(P ′
1, P2) = b. Now, consider the preference profile (P ′

1, P
′
2). By monotonicity (implied by

strategy-proofness - Theorem 28) , f(P ′
1, P

′
2) = f(P1, P

′
2) = a and f(P ′

1, P
′
2) = f(P ′

1, P2) = b.

This is a contradiction. ■

Lemma 24 Suppose |A| ≥ 3 and N = {1, 2}. Suppose f is onto and strategy-proof social

choice function. Consider a profile P such that P1(1) = a ̸= b = P2(1). Consider a preference

profile P ′ = (P ′
1, P

′
2) with P ′

1(1) = c and P ′
2(1) = d. If f(P) = a, then f(P ′) = c and if

f(P) = b then f(P ′) = d.

Proof : We can assume that c ̸= d, since the claim is true due to unanimity when c = d.

Suppose f(P) = a. We need to show that f(P ′) = c - an analogous proof works if f(P) = b

(in which case, we need to show f(P ′) = d). We do the proof for different possible cases.

Case 1: c = a, d = b. This case establishes a tops-only property. From Lemma 23,

f(P ′) ∈ {a, b}. Assume for contradiction f(P ′) = b (i.e., agent 2’s top is chosen). Consider

a preference profile P̂ ≡ (P̂1, P̂2) such that P̂1(1) = a, P̂1(2) = b and P̂2(1) = b, P̂2(2) = a

(See Table 7.5). By monotonicity, f(P̂) = f(P ′) = f(P), which is a contradiction.

P1 P2 P ′
1 P ′

2 P̂1 P̂2

a b a b a b

· · · · b a

· · · · · ·

Table 7.5: Preference profiles required in Case 1.

Case 2: c ̸= a, d = b. Consider any profile P̂ = (P̂1, P̂2), where P̂1(1) = c ̸= a, P̂1(2) = a,

155

and P̂2(1) = b (See Table 7.6). By Lemma 23, f(P̂) ∈ {b, c}. Suppose f(P̂) = b. Then,

P1 P2 P ′
1 P ′

2 P̂1 P̂2

a b c ̸= a d = b c b

· · · · a ·
· · · · · ·

Table 7.6: Preference profiles required in Case 2.

agent 1 can manipulate by reporting any preference ordering where his top is a, and this will

lead to a as the outcome (Case 1). Hence, f(P̂) = c = P̂1(1). Using Case 1, f(P ′) = c.

Case 3: c /∈ {a, b}, d ̸= b 3. Consider a preference profile P̂ such that P̂1(1) = c, P̂2(1) = b

(See Table 7.7). Assume for contradiction f(P ′) = d. Then, by applying Case 2 from P ′ to P̂ ,

we get f(P̂) = b. But applying Case 2 from P to P̂ , we get f(P̂) = c. This is a contradiction.

P1 P2 P ′
1 P ′

2 P̂1 P̂2

a b c /∈ {a, b} d ̸= b c b

· · · · · ·
· · · · · ·

Table 7.7: Preference profiles required in Case 3.

Case 4: c = a, d ̸= b. By Lemma 23, f(P ′) ∈ {a, d}. Assume for contradiction f(P ′) = d.

Consider a preference ordering P̂2 such that P̂2(1) = b (See Table 7.8). By Case 2, from P ′

to P̂ , we get f(P̂) = b. But applying Case 1 from P to P̂ , we get f(P̂) = a, a contradiction.

Case 5: c = b, d ̸= a. By Lemma 23, f(P ′) ∈ {b, d}. Assume for contradiction f(P ′) = d.

Consider a preference ordering P̂1 such that P̂1(1) = a and P̂2 such that P̂2(1) = d (See

Table 7.9). Applying Case 4 from P to P̂ , we get f(P̂) = a. But applying Case 4 from P ′

to P̂ , we get f(P̂) = d. This is a contradiction.

Case 6: c = b, d = a. Since there are at least three alternatives, consider x /∈ {a, b}.
Consider a preference ordering P̂1 such that P̂1(1) = b and P̂1(2) = x (See Table 7.10).

3This case actually covers two cases: one where d = a and the other where d /∈ {a, b}.

156

P1 P2 P ′
1 P ′

2 P ′
1 P̂2

a b c = a d ̸= b a b

· · · · · ·
· · · · · ·

Table 7.8: Preference profiles required in Case 4.

P1 P2 P ′
1 P ′

2 P̂1 P̂2

a b c = b d ̸= a a d

· · · · · ·
· · · · · ·

Table 7.9: Preference profiles required in Case 5.

P1 P2 P ′
1 P ′

2 P̂1 P ′
2 P̂ ′

1 P ′
2

a b c = b d = a b a x a

· · · · x · · ·
· · · · · · · ·

Table 7.10: Preference profiles required in Case 6.

By Lemma 23, f(P̂1, P
′
2) ∈ {b, a}. Assume for contradiction f(P̂1, P

′
2) = a. Consider a

preference ordering P̂ ′
1 such that P̂ ′

1(1) = x (See Table 7.10). By Case 3, f(P̂ ′
1, P

′
2) = x.

But xP̂1a. Hence, agent 1 can manipulate (P̂1, P
′
2) by P̂

′
1. This is a contradiction. Hence,

f(P̂1, P
′
2) = b. By Case 1, f(P ′) = b. ■

Proposition 5 Suppose |A| ≥ 3 and n = 2. A social choice function is onto and strategy-

proof if and only if it is dictatorship.

Proof : This follows directly from Lemmas 23 and 24 and unanimity (implied by onto and

strategy-proofness - Proposition 4). ■

Once we have the theorem for n = 2 case, we can apply induction on the number of

agents. In particular, we prove the following proposition.

Proposition 6 Let n ≥ 3. Consider the following statements.

157

(a) For all positive integer k < n, we have if f : Pk → A is onto and strategy-proof, then

f is dictatorial.

(b) If f : Pn → A is onto and strategy-proof, then f is dictatorial.

Statement (a) implies statement (b).

Proof : Suppose statement (a) holds. Let f : Pn → A be an onto and strategy-proof social

choice function. We construct another social choice function g : Pn−1 → A from f by merging

agents 1 and 2 as one agent. In particular, g(P1, P3, P4, . . . , Pn) = f(P1, P1, P3, P4, . . . , Pn)

for all preference profiles (P1, P3, P4, . . . , Pn). So agents 1 and 2 are “coalesced” in social

choice function g, and will be referred to as agent 1 in SCF g.

We do the proof in two steps. In the first step, we show that g is onto and strategy-proof.

We complete the proof in the second step, i.e., show that f is dictatorship.

Step 1: It is clear that agents 3 through n cannot manipulate in g (if they can manipulate in

g, they can also manipulate in f , which is a contradiction). Consider an arbitrary preference

profile of n− 1 agents (P1, P3, P4, . . . , Pn). Suppose

f(P1, P1, P3, P4, . . . , Pn) = g(P1, P3, P4, . . . , Pn) = a.

Consider any arbitrary preference ordering P̄1 of agent 1. Let

f(P1, P̄1, P3, P4, . . . , Pn) = b.

Let

f(P̄1, P̄1, P3, P4, . . . , Pn) = g(P̄1, P3, P4, . . . , Pn) = c.

If a = c, then agent 1 cannot manipulate g at (P1, P3, P4, . . . , Pn) by P̄1. So, assume a ̸= c.

Suppose a = b ̸= c. Then, agent 1 cannot manipulate f at (P1, P̄1, P3, P4, . . . , Pn) by P̄1. So,

a = bP1c. Hence, agent 1 cannot manipulate g at (P1, P3, P4, . . . , Pn) by P̄1. A similar logic

works for the case when b = c.

Now, assume that a, b, and c are distinct. Since f is strategy-proof, agent 2 cannot

manipulate f at (P1, P1, P3, P4, . . . , Pn) by P̄1. So, aP1b. Similarly, agent 1 cannot manipulate

158

f at (P1, P̄1P3, P4, . . . , Pn) by P̄1. So, bP1c. By transitivity, aP1c. Hence, agent 1 cannot

manipulate g at (P1, P3, P4, . . . , Pn) by P̄1. This shows that g is strategy-proof.

It is straightforward to show that if f is onto, then g is onto (follows from unanimity of f).

Step 2: By our induction hypothesis, g is dictatorship. Suppose j is the dictator. There

are two cases to consider.

Case A: Suppose j ∈ {3, 4, . . . , n} is the dictator in g. We claim that j is also the dictator

in f . Assume for contradiction that there is a preference profile P ≡ (P1, P2, . . . , Pn) such

that

f(P) = b and Pj(1) = a ̸= b.

Since g is dictatorship, we get

f(P1, P1, P3, P4, . . . , Pn) = g(P1, P3, P4, . . . , Pn) = a,

f(P2, P2, P3, P4, . . . , Pn) = g(P2, P3, P4, . . . , Pn) = a.

We get bP1a, since f is strategy-proof, and agent 1 cannot manipulate f at (P1, P2, P3, P4, . . . , Pn)

by P2. Similarly, agent 2 cannot manipulate at (P1, P1, P3, P4, . . . , Pn) by P2. So, aP1b. This

is a contradiction.

Case B: Suppose j = 1 is the dictator in g. In this case, we construct a family of 2-agent

social choice function h as follows. Fix a profile P−12 of agents in N \ {1, 2}, and define for

every preference profile (P1, P2), we define

hP−12(P1, P2) = f(P1, P2, . . . , Pn).

Note that the social function Since agent 1 is the dictator in g, hP−12 is onto. Moreover, hP−12

is strategy-proof: if any of the agents can manipulate in hP−12 , they can also manipulate in

f . By our induction hypothesis, hP−12 is dictatorship. But hP−12 was defined for every n− 2

agent profile P−12 ≡ (P3, P4, . . . , Pn). We show that the dictator does not change across two

n− 2 agent profiles.

Assume for contradiction that agent 1 is the dictator for profile (P3, P4, . . . , Pn) but agent

2 is the dictator for profile (P̄3, P̄4, . . . , P̄n). Now, progressively change the preference profile

159

(P3, P4, . . . , Pn) to (P̄3, P̄4, . . . , P̄n), where in each step, we change the preference of one agent

j from Pj to P̄j. Then, there must exist a profile (P̄3, P̄4, P̄j−1, Pj, Pj+1, . . . , Pn) where agent

1 dictates and another profile (P̄3, P̄4, P̄j−1, P̄j, Pj+1, . . . , Pn) where agent 2 dictates with

3 ≤ j ≤ n. Consider a, b ∈ A such that aPjb. Pick P1 and P2 such that P1(1) = b and

P2(1) = a with a ̸= b. By definition,

f(P1, P2, P̄3, P̄4, P̄j−1, Pj, Pj+1, . . . , Pn) = P1(1) = b,

f(P1, P2, P̄3, P̄4, P̄j−1, P̄j, Pj+1, . . . , Pn) = P2(1) = a.

This means agent j can manipulate in SCF f at (P1, P2, P̄3, P̄4, P̄j−1, Pj, Pj+1, . . . , Pn) by P̄j.

This is a contradiction since f is strategy-proof. This shows that f is also a dictatorship.

This completes the proof of the proposition. ■

The proof of the Gibbard-Satterthwaite theorem follows from Propositions 5 and 6, and

from the fact that the proof is trivial for n = 1.

Note that the induction step must start at n = 2, and not n = 1, since the induction

argument going from k to k + 1 works for k ≥ 2 only.

7.2 Single Peaked Domain of Preferences

While the Gibbard-Satterthwaite theorem is a negative result, there are important assump-

tions that drive the result: (a) at least three alternatives (b) domain contains all strict

orderings of alterantives. While we have seen that having two alterantives allows us many

strategy-proof mechanisms, we will now see the consequences of restricting the domain.

Why does domain restriction help? Incentive compatibility is a collection of constraints

with variables being the mechanism. When we restrict the domain, the set of constraints

become smaller. As a result, the feasible set (of mechanisms) enlarge – in the limiting case,

when the domain contains just one preference ordering, then the designer knows everything

and every mechanism is trivially strategy-proof.

Does restricting the set of admissible preferences (domain) make sense? In many prob-

lems, the designer can rule out the possibility of certain preferences. As an example, consider

an election with several candidates. Candidates are ordered on a line so that candidate on

160

left is the most leftist, and candidates become more and more right wing as we move to right.

Now, it is natural to assume that every voter has an ideal political position. As one moves

away from his ideal political position, either to left or to right, his preference decreases. In

this example, a designer may rule out many preference orderings.

To be more precise, let {a, b, c} be three candidates, with a to extreme left, b in the

center, and c to extreme right. Now, suppose a voter’s ideal position is b. Then, he likes b

over a and b over c, but can have any preference over a and c. On the other hand, suppose

a voter likes a the most. Then, the only possible ordering is a better than b better than

c. Hence, when a is on top, c cannot be better than b. This means that certain preference

orderings cannot be in the domain. This is the single-peaked domain of preferences.

We now formally define the single-peaked preferences. First discussions of single-peaked

preferences in economics go back to Black (1948), and its strategic investigation is due to

Moulin (1980). Let N = {1, . . . , n} be the set of agents. Let A be a set of alternatives. We

will assume A to be finite but with some modifications, most of the results generalize when

A = [0, 1]. Consider a strict ordering ≻ on A. In the example above, ≻ corresponds to the

ordering of the ideology of candidates in the election.

Definition 41 A preference ordering Pi of agent i is single peaked with respect to ≻ if

• for all b, c ∈ A with b ≻ c ≻ Pi(1) we have cPib, and

• for all b, c ∈ A with Pi(1) ≻ b ≻ c we have bPic.

So, preferences away from the top ranked alternative or peak decreases, but no restriction

is put on comparing alternatives when one of them is on the left to the peak, but the other

one is on the right of the peak. We show some preference relations in Figure 7.1, and color

the single-peaked ones in blue.

Since we fix the order ≻ throughout this section, we will just say single-peaked preferences

instead of single-peaked with respect to ≻ and drop the reference to ≻. We illustrate the

idea with four alternatives A = {a, b, c, d}. Let us assume that a ≻ b ≻ c ≻ d. With respect

to ≻, we give the permissible single peaked preferences in Table 7.11. There are sixteen

more preference orderings that are not permissible here. For example, bPidPiaPic is not

permissible since c, d are on the same side of peak, and in that case c is nearer to b than d

is to b. So, cPid, which is not the case here.

161

a b c d x y

Not single peaked

Single peaked

≻ ≻ ≻ ≻ ≻

Figure 7.1: Examples of single-peaked preferences

a b b b c c c d

b a c c d b b c

c c d a b a d b

d d a d a d a a

Table 7.11: Single-peaked preferences

We now give some more examples of single-peaked preferences.

• An amount of public good (number of buses in the city) needs to be decided. Every

agent has an optimal level of public good that needs to be consumed. The preferences

decrease as the difference of the decided amount and optimal level increases.

• If we are locating a facility along a line, then agents can have single-peaked preferences.

For every agent, there is an optimal location along a line where he wants the facility,

and the preference decreases as the distance from the optimal location increases in one

direction.

• Something as trivial as setting a time for a public seminar exhibit single-peaked pref-

erences. Everyone has an ideal time slot, and as the difference from the ideal time slot

increases, it is less preferred.

If A = [0, 1], then ≻ corresponds to the natural ordering of [0, 1]. A preference Pi

can be equivalently represented by a utility function ui. Remember that a utility function

ui : [0, 1] → R is quasiconcave if one of the three conditions hold:

1. ui is increasing in [0, 1]

2. ui is decreasing in [0, 1]

162

3. ui is increasing till some point x∗ ∈ (0, 1) and then decreases after x∗.

Hence, ≻ satisfying single-peakedness is equivalent to its utility representation being

quasiconcave.

Let S be the set of all single-peaked preferences (with respect to ≻). A social choice

function f is a mapping f : Sn → A. An SCF f is manipulable by i at (Pi, P−i) if there exists

another single-peaked preference P̂i such that f(P̂i, P−i)Pif(Pi, P−i). An SCF is strategy-

proof if it is not manipulable by any agent at any preference profile.

7.2.1 Possibility Examples in Single-Peaked Domains

We start with an example to illustrate that many non-dictatorial social choice functions are

strategy-proof in this setting. For any single-peaked preference ordering Pi, we let Pi(1) to

denote its peak. Now, consider the following SCF f : for every preference profile P , f(P) is

the minimal element with respect to ≻ among {P1(1), P2(1), . . . , Pn(1)}.

Observe that f is not a dictatorship – at every profile, a different agent can have its peak

to the left. Second, it is strategy-proof. To see this, note that the agent whose peak coincides

with the chosen alternative has no incentive to deviate. If some other agent deviates, then

the only way to change the outcome is to place his peak to the left of the chosen outcome.

But that will lead to an outcome which is even more to the left of his peak, which he prefers

less than the current outcome. Hence, no manipulation is possible.

One can generalize this further. Pick an integer k ∈ {1, . . . , n}. In every prefer-

ence profile, the SCF picks the k-th lowest peak. Formally, f(P1, . . . , Pn) chooses among

{P1(1), . . . , Pn(1)} the k-th lowest alternative according to ≻. To understand why this SCF

is not manipulable, note that those agents whose peak coincides with the k-th lowest peak

have no incentive to manipulate. Consider an agent i, whose peak lies to the left of the

k-th lowest peak. The only way he can change the outcome is to move to the right of the

k-th lowest peak. In that case, an outcome which is even farther away from his peak will be

chosen. According to single-peaked preferences, he prefers this less. A symmetric argument

applies to the agents who are on to the right of k-th lowest peak.

163

7.2.2 Median voter social choice function

We now define the notion of a median voter. Consider an integer k ≥ 1 and any sequence of

points B ≡ (x1, . . . , x2k−1) such that for all j ∈ {1, . . . , 2k− 1}, we have xj ∈ A. Now b ∈ B

is the median if

|{x ∈ B : x ≻ b or x = b}| ≥ k + 1 and |{x ∈ B : b ≻ x or x = b}| ≥ k + 1.

The median of a sequence of points B will be denoted as med(B). Also, for any profile

(P1, . . . , Pn), we denote the sequence of peaks as peak(P) ≡ (P1(1), . . . , Pn(1)).

Definition 42 A social choice function f : Sn → A is a median voter social choice

function if there exists a collection of alternatives B = (y1, . . . , yn−1) such that f(P) =

med(B, peak(P)) for all preference profiles P . The alternatives in B are called the phantom

peaks.

Note that by adding (n−1) phantom peaks, we have (2n−1) peaks, and a median is well

defined. We give an example to illustrate the ideas. Figure 7.2 shows the peaks of 4 agents.

Then, we add 3 phantom peaks as shown at a, b, and d. The median voter SCF chooses the

median of this set, which is shown to be c Figure 7.2.

a b c d x y≻ ≻ ≻ ≻ ≻

P1(1)
P2(1) = P3(1) P4(1)

Phantom peaks

f(P1; P2; P3; P4) = median(a; b; d; P1(1); P2(1); P3(1); P4(1)) = c

Figure 7.2: Phantom voters and the median voter

Of course, the median voter SCF is a class of SCFs. A median voter SCF must specify

the peaks of the phantom voters (it cannot change across profiles). We can simulate the k-th

lowest peak social choice function that we described earlier by placing the phantom peaks

suitably. In particular, place (n − k) phantom peaks at the lowest alternative according to

≻ and the remaining (k− 1) phantom peaks at the highest alternative according to ≻. It is

clear that the median of this set lies at the kth lowest peak of agents.

164

Proposition 7 (Moulin (1980)) Every median voter social choice function is strategy-proof.

Proof : Consider any profile of single-peaked preferences P = (P1, . . . , Pn). Let f be a

median voter SCF, and f(P) = a. Consider agent i. Agent i has no incentive to manipulate

if Pi(1) = a. Suppose agent i’s peak is to the left of a. The only way he can change the

outcome is by changing the median, which he can only do by changing his peak to the right

of a. But that will shift the median to the right of a which he does not prefer to a. So, he

cannot manipulate. A symmetric argument applies if i’s peak is to the right of a. ■

One may wonder if one introduces an arbitrary number of phantom voters whether the

corresponding social choice function is still strategy-proof? We assume that whenever there

are even number of agents (including the phantom voters), we pick the minimum of two

medians. Along the lines of proof of Proposition 7, one can show that even this social choice

function is strategy-proof.

Then, what is unique about the median voter social choice function where we take n− 1

phantom voters. We discuss this next.

Median voter scfs are non-dictatorial. We saw in Lemma 23 in the proof of the Gibbard-

Sattherthwaite theorem that any strategy-proof and unanimous scf must select an alternative

from the peaks of one of the agents. This top-selection property is not true for median voter

scf. To see this, suppose there are two agents and one phantom peak. Then, there may be

profiles where the peaks of the two agents are on the opposite side of the phantom peak. In

that case, the scf chooses the phantom peak as the median.

7.2.3 Properties of Social Choice Functions

We first define some desirable properties of a social choice function. Most of these properties

have already been discussed earlier for the Gibbard-Satterthwaite result.

Definition 43 A social choice function f : Sn → A is onto if for every a ∈ A, there exists

a profile P ∈ Sn such that f(P) = a.

Onto rules out constant social choice functions.

Definition 44 A social choice function f : Sn → A is unanimous if for every profile P

with P1(1) = P2(1) = . . . = Pn(1) = a we have f(P) = a.

165

Definition 45 A social choice function f : Sn → A is efficient if for every profile of

preferences P and every b ∈ A, if there exists a ̸= b such that aPib for all i ∈ N , then

f(P) ̸= b.

Denote by [a, b], the set of all alternatives which lie between a and b (including a and b)

according to ≻.

Lemma 25 For every preference profile P , let pmin and pmax denote the smallest and largest

peak (according to ≻) respectively in P . A social choice function f : Sn → A is efficient if

and only if for every profile P , pmax ⪰ f(P) ⪰ pmin, where x ⪰ y means x ≻ y or x = y.

Proof : Suppose f is efficient. Fix a preference profile P . If pmin ≻ f(P), then choosing

pmin is better for all agents. Similarly, if f(P) ≻ pmax, then choosing pmax is better for all

agents. Hence, by efficiency, f(P) ∈ [pmin, pmax]. For the converse, if f(P) ∈ [pmin, pmax],

then any alternative other than f(P) will move it away from either pmin or pmax, making the

corresponding agents worse off. Hence, f is efficient. ■

Median voting with arbitrary number of phantom voters may be inefficient (and may

violate unanimity). Consider the median voting with (3n− 1) phantom voters. Suppose we

put all the phantoms at the minimal alterantive according ≻, and consider the preference

profile where the peaks of the agents are at the maximum alterantive according to ≻. The

outcome in this case is the minimal alternative according to ≻ since that is the median. But

choosing agents’ common peak make every agent better off.

Definition 46 A social choice function f : Sn → A is monotone if for any two profiles P

and P ′ with f(P) = a and for all b ̸= a, aP ′
i b if aPib we have f(P ′) = a.

Like in the unrestricted domain, strategy-proofness implies monotonicity.

Lemma 26 If a social choice function f : Sn → A is strategy-proof, then it is monotone.

Proof : The proof is exactly similar to the necessary part of Theorem 28. We take two

preference profiles P, P ′ ∈ Sn such that f(P) = a and aP ′
i b if aPib for all b ̸= a. As in the

proof of Theorem 28, we can consider P and P ′ to be different in agent j’s preference ordering

only (else, we construct a series of preference profiles each different from the previous one by

just one agent’s preference). Assume for contradiction f(P ′) = b ̸= a.

166

If bPja, then agent j can manipulate at P by P ′. Hence, aPjb. But that means aP ′
jb. In

such a case, agent j will manipulate at P ′ by P . This is a contradiction. ■

Like in the unrestricted domain, some of these properties are equivalent in the presence

of strategy-proofness.

Proposition 8 Suppose f : Sn → A is a strategy-proof social choice function. Then, f is

onto if and only if it is unanimous if and only if it is efficient.

Proof : Consider a strategy-proof social choice function f : Sn → A. We do the proof in

three steps.

Unanimity implies onto. Fix an alternative a ∈ A. Consider a single peaked preference

profile P where every agent has his peak at a. By unanimity, f(P) = a.

Onto implies efficiency. Consider a preference profile P such that f(P) = b but there

exists a a ̸= b such that aPib for all i ∈ N . By single-peakedness, there is an alternative c

which is a neighbor of b in ≻ and cPib for all i ∈ N . 4 Since f is onto, there exists a profile

P ′ such that f(P ′) = c. Consider another preference profile P ′′ such that the peaks of every

agent is c, but the second ranked alternative is b - such a preference is possible in a single-

peaked domain. By Lemma 26, f is monotone. By monotonicity, we get f(P ′′) = f(P ′) = c

and f(P ′′) = f(P) = b. This is a contradiction.

Efficiency implies unanimity. In any profile, where peaks are the same, efficiency will

imply that the peak is chosen. ■

We now define a new property which will be crucial for our main result in this section. For

this, we need some definitions. A permutation of agents is denoted by a bijective mapping

σ : N → N . We apply a permutation σ to a profile P to construct another profile as follows:

the preference ordering of agent i goes to agent σ(i) in the new preference profile. We denote

this new preference profile as P σ.

4Two alternatives x and y are neighbors in ≻ if x ≻ y and there is no alternative z such that x ≻ z ≻ y

or y ≻ x and there is no alternative z such that y ≻ z ≻ x.

167

Table 7.12 shows a pair of profiles, one of which is obtained by permuting the other. We

consider N = {1, 2, 3} and σ as σ(1) = 2, σ(2) = 3, σ(3) = 1.

P1 P2 P3 P σ
1 P σ

2 P σ
3

a b b b a b

b a c c b a

c c a a c c

Table 7.12: Example of permuted preferences

Definition 47 A social choice function f : Sn → A is anonymous if for every profile P

and every permutation σ such that P σ ∈ Sn, we have f(P σ) = f(P).

Anonymous social choice functions require that the identity of agents are not important,

and does not discriminate agents on that basis. An anonymous SCF counts the number

of prefereces of each type at a profile and decides on the outcome. Dictatorial social choice

functions are not anonymous (it favors the dictator). Any social choice function which ignores

the preferences of some agent is not anonymous. Anonymity is a minimal form of fairness.

7.2.4 Characterization Result

We show now that the only strategy-proof social choice function which is onto and anonymous

is the median voter.

Theorem 30 (Moulin (1980)) A social choice function f : Sn → A is strategy-proof, unan-

imous, and anonymous if and only if it is the median voter social choice function.

Moulin (1980) had an added condition called the peaks-only or tops-only property, which

is not necessary - every strategy-proof and onto social choice function is tops-only (peaks-

only) in the single peaked domain. Formally, peaks-only requires that only the peaks of

agents matter for the social choice function.

Definition 48 A social choice function f : Sn → A is peaks-only if at every pair of

preference profiles P, P ′ ∈ Sn with Pi(1) = P ′
i (1) for all i ∈ N , we have f(P) = f(P ′).

168

Strategy-proofness and efficiency imply peaks-only property in the single-peaked domain, in

the unrestricted domain, and in many other domains (Chatterji and Sen, 2011).

We give a proof which uses peaks-onlyness and we show that strategy-proofness and

efficiency imply peaks-onlyness for the two-agents case.

Due to Proposition 8, we can replace unanimity with ontoness or efficiency in the state-

ment of Theorem 30. We discuss the necessity of all the properties. First, a dictatorial social

choice function is onto and strategy-proof. So, anonymity is crucial in the characterization.

Second, choosing a fixed alternative at every preference profile is anonymous and strategy-

proof, but it is not onto. Hence, all the conditions are necessary in the result. We now give

the proof.

Proof : It is clear that the median voter social choice function is strategy-proof (Proposition

7), onto (all the peaks in one alternative will mean that is the median), and anonymous (it

does not distinguish between agents). We now show the converse.

Suppose f : Sn → A is a strategy-proof, onto, peaks-only, and anonymous social choice

function. The following two preference orderings are of importance for the proof:

• P 0: this is the unique preference ordering where the peak of agent i is at the lowest

alternative according to ≻.

• P 1: this is the unique preference ordering where the peak of agent i is at the highest

alternative according to ≻.

We now do the proof in various steps.

Step 1. Finding the phantoms. For any j ∈ {1, . . . , n− 1}, define yj as follows:

yj = f(P 0, . . . , P 0︸ ︷︷ ︸
(n−j) times

, P 1, . . . , P 1︸ ︷︷ ︸
j times

).

So, yj is the chosen alternative, when (n− j) agents have their peak at the lowest alternative

and the remaining j agents have their peak at the highest alternative. Notice that which of

the j agents have their peaks at the highest alternative does not matter due to anonymity

of f .

169

We show that yj = yj+1 or yj+1 ≻ yj for any j ∈ {1, . . . , n− 1}. To see this consider two

profiles

P = (P 0, . . . , P 0︸ ︷︷ ︸
(n−j) times

, P 1, . . . , P 1︸ ︷︷ ︸
j times

)

P ′ = (P 0, . . . , P 0︸ ︷︷ ︸
(n−j−1) times

, P 1, . . . , P 1︸ ︷︷ ︸
(j+1) times

).

Only preference ordering of agent k ≡ n− j is changing from P to P ′. Note that f(P) = yj

and f(P ′) = yj+1. Since f is strategy-proof agent k cannot manipulate with true preference

P 0: yjP
0yj+1 or yj = yj+1. But the peak of agent k in P 0 is at the lowest alternative

according to ≻. So, either yj = yj+1 or yj+1 ≻ yj.

Note that y0 is the lowest alternative according to ≻ and yn is the highest alternative

according to ≻. By unanimity f(P 0, . . . , P 0) = y0 and f(P 1, . . . , P 1) = yn.

Step 2. Induction base. Consider a profile P = (P1, . . . , Pn) such that Pi ∈ {P 0, P 1} for

each i ∈ N . We show that

f(P) = med(y1, . . . , yn−1, P1(1), . . . , Pn(1)).

If Pi(1) = Pj(1) for all i, j ∈ N , then the claim is true due to unanimity. Else, suppose

k > 1 agents have preference P 1 and (n− k) > 1 agents have preference P 0. By definition,

f(P) = yk. By our earlier claim, yℓ ≻ yk or yℓ = yk if ℓ > k and yk ≻ yℓ or yℓ = yk if ℓ < k.

Hence, yk is the median of (y1, . . . , yn−1, P1(1), . . . , Pn(1)) as required.

Notation. From now on, at every preference profile, we writemed(P1, . . . , Pn) to denote

med((y1, . . . , yn−1, P1(1), . . . , Pn(1))).

Step 3. Induction. Now, let KP denote the number of agents who have either P 0 or P 1

as their preference. We complete the proof using an induction on KP . The induction base

case KP = n follows from Step 2. Fix a positive integer k such that 0 ≤ k < n and assume

that for all preference profiles P with KP > k we have f(P) = med(P1, . . . , Pn). Now, pick

a preference profile P with KP = k. Suppose f(P) = a and med(P1, . . . , Pn) = b. Assume

for contradiction that a ̸= b. Since k < n, there is an agent i such that Pi /∈ {P 0, P 1} and

let Pi(1) = c. We consider various cases.

170

Case 1. a = c. In this case, if b ≻ a = c, then moving peak Pi to P
0 does not change

the median. Also, suppose f(P 0, P−i) = x. Then, by strategy-proofness (P 0 not able to

manipulate to Pi), we must have xP 0a = c or a = x or a ≻ x. But that means b ≻ x.

As a result, we have f(P 0, P−i) ̸= med(P 0, P−i). But (P 0, P−i) is a profile where KP > k,

contradicting our induction hypothesis. Similarly, if a = c ≻ b, we move peak Pi to P
1,

which does not change the median. But by strategy-proofness f(P 1, P−i) = x ≻ a or x = a.

This again gives x ≻ b, i.e., f(P 1, P−1) ̸= med(P 1, P−i).

Case 2. Suppose a ≻ c. Consider P ′
i such that P ′

i (1) = Pi(1) = c but for every y, y′ ∈ A

such that c ≻ y′ and y ≻ c we have y′P ′
iy (left-side alternatives are preferred over right-side

alternatives). By peak-onlyness, f(P ′
i , P−i) = a. Further, med(P ′

i , P−i) = b (because peaks

of agents did not change from (Pi, P−i) to (P ′
i , P−i)). Then, consider a preference P ′′

i of agent

i where P ′′
i = P 0. Figure 7.3 illstrates the layout of various alternatives.

ac

f (P) = f (P 0
i ; P i)

P 1(1)P 0(1)

Pi(1) = P 0
i (1)P 00

i (1)

med(P 0
i ; P i)

b

Figure 7.3: Illustration of Case 1

Suppose f(P ′′
i , P−i) = x. We argue that x = a. By strategy-proofness (P ′′

i not manipu-

lating via P ′
i), we have x ⊁ a. If x is between a and c, by single peakedness, xP ′

ia, which

means P ′
i can manipulate to P ′′

i . If x is to the left of c, since a is to the right of c, by

construction, xP ′
i c (left alternatives are better than right). Again, P ′

i can manipulate to P ′′
i .

Hence, a = x.

Now, suppose b ≻ c. Then, by the property of median, med(P ′′
i , P−i) = b. If c ≻ b.

Since a ≻ c, we have a ≻ c ≻ b. As a result, by moving peak to the left from c to P 0(1),

we move the median to the left. Hence, b ≻ med(P ′′
i , P−i) or b = med(P ′′

i , P−i). Since

f(P ′′
i , P−i) = a ≻ b ⪰ med(P ′′

i , P−i), we have f(P ′′
i , P−i) ̸= med(P ′′

i , P−i). But this is a

contradiction to our induction hypothesis because K(P ′′
i ,P−i) > k.

171

Case 3. Suppose c ≻ a. This case is similar. Consider P ′
i such that P ′

i (1) = Pi(1) = c

but for every y′, y ∈ A such that c ≻ y′ and y ≻ c we have yP ′
iy

′. By peak-onlyness,

f(P ′
i , P−i) = a. Further, the med(P ′

i , P−i) = b. Then, consider a preference P ′′
i of agent i

where P ′′
i = P 1. Figure 7.3 illstrates the layout of various alternatives.

ca

f (P) = f (P 0
i ; P i)

P 1(1)P 0(1)

Pi(1) = P 0
i (1) P 00

i (1)

med(P 0
i ; P i)

b

Figure 7.4: Illustration of Case 2

Suppose f(P ′′
i , P−i) = x. We argue that x = a. By strategy-proofness (P ′′

i not manipu-

lating via P ′
i), we have a ⊁ x. Also, by strategy-proofness (P ′

i not manipulating to P ′′
i), we

have x ⊁ a. Hence, a = x.

Now, suppose c ≻ b. Then, by the property of median, med(P ′′
i , P−i) = b. Next, suppose

b ≻ c or b = c, then (i) b ≻ a; and (b) med(P ′′
i , P−i) ≻ b or b = med(P ′′

i , P−i). In either

case, f(P ′′
i , P−i) = a ̸= med(P ′′

i , P−i). But this is a contradiction to our induction hypothesis

because K(P ′′
i ,P−i) > k. ■

The peaks-only property assumed in the above proof (though natural) is implied by

strategy-proofness and unanimity. It is quite cumbersome to prove generally. Below, we give

a proof for two agents.

Claim 3 Suppose N = {1, 2} and f is a strategy-proof and efficient social choice function.

Let P and P ′ be two profiles such that Pi(1) = P ′
i (1) for all i ∈ N . Then, f(P) = f(P ′).

Proof : Consider preference profiles P and P ′ such that P1(1) = P ′
1(1) = a and P2(1) =

P ′
2(1) = b. Consider the preference profile (P ′

1, P2), and let f(P) = x but f(P ′
1, P2) = y. By

strategy-proofness, xP1y and yP ′
1x. This implies, if x and y belong to the same side of a,

then x = y. Then, the only other possibility is x and y belong to the different sides of a.

172

We will argue that this is not possible. Assume without loss of generality y ≻ a ≻ x.

Suppose, without loss of generality, a ≻ b. Then, by efficiency (Lemma 25) at profile P ′
1, P2,

we must have y ∈ [b, a]. This is a contradiction since y ≻ a. Hence, it is not possible that x

and y belong to the different sides of a. Thus, x = y or f(P1, P2) = f(P ′
1, P2).

Now, we can replicate this argument by going from (P ′
1, P2) to (P ′

1, P
′
2). This will show

that f(P ′
1, P

′
2) = x = f(P1, P2). ■

The peaks of the phantom voters reflect the degree of compromise the social choice

function has when agents have extreme preferences. If j agents have the highest alternative

as the peak, and the remaining n − j agents have the lowest alternative as the peak, then

which alternative is chosen? A true median will choose the peak which has more agents, but

the median voter social choice function may do something intermediate.

7.3 Randomized Social Choice Function

Randomization is a way of expanding the set of possible strategy-proof social choice function.

Lotteries are also common in practice. So, it makes sense to study the effects of randomization

on strategy-proofness.

As before let A = {a, b, c, . . .} be a finite set of alternatives with |A| = m and N =

{1, . . . , n} be the set of agents. Let L(A) denote the set of all probability distributions over

A. We will refer to this set as the set of lotteries over A. A particular element λ ∈ L(A) is
a probability distribution over A, and λa denotes the probability of alternative a. Of course

λa ≥ 0 for all a ∈ A and
∑

a∈A λa = 1. As before, every agent i has a linear order over A,

which is his preference ordering. A randomized social choice function picks a lottery over A

at every profile of preference orderings. Hence, the set of outcomes is the set of all lotteries

over A, i.e., L(A). Note that we have not defined a preference ordering over L(A). Hence, a
crucial component of analyzing randomized social choice functions is

how should two lotteries λ, λ′ ∈ L(A) be compared given a preference ordering over A?

We discuss below a very basic way of making such a comparison. Let P be the set of

all linear orders over A. The domain of interest may be any subset D ⊆ P . A randomized

173

social choice function (RSCF) f is a mapping f : Dn → L(A). We let fa(P) to denote

the probability of alternative a being chosen at profile P . To avoid confusion, we refer to

f : Dn → A as a deterministic social choice function (DSCF).

7.3.1 Defining Strategy-proof RSCF

There are several meaningful ways to define strategy-proofness in this setting. We follow one

of the first-proposed approaches (by Gibbard). It requires that an RSCF be non-manipulable

for every utility representation of linear orders when lotteries are evaluated using the expected

utility criteria.

A utility function u : A → R represents a preference ordering Pi ∈ D if for all a, b ∈ A,

u(a) > u(b) if and only if aPib. Given a utility representation u of Pi, the utility from a

lottery λ ∈ A is computed using the expected utility criteria, and is given by∑
a∈A

λau(a).

Notice that this is a domain restriction - the utility of a lottery outcome is restricted

to be the expected utility of the alternatives in its support. Hence, analysis of randomized

social choice function is similar to analyzing restricted domains, and therefore, we hope to

uncover more social choice functions than in the deterministic case.

Now, it is easy to define the notion of strategy-proofness. An RSCF is strategy-proof if

for every possible representation of orderings, the expected utility of telling the truth is not

less than the expected utility of lying.

Definition 49 An RSCF f : Dn → L(A) is strategy-proof if for all i ∈ N , all P−i ∈ Dn−1,

for all Pi ∈ D, and for all utility functions u : A→ R representing Pi, we have∑
a∈A

u(a)fa(Pi, P−i) ≥
∑
a∈A

u(a)fa(P
′
i , P−i) ∀ P ′

i ∈ D.

For the strategy-proofness of DSCF, we did not require this utility representation. However,

it is easy to verify that a DSCF is strategy-proof in the sense of Definition 38 if and only if it

is strategy-proof in the sense of Definition 49. Also, the qualifier “for all utility functions” in

the above definitions is extremely important. It underlines the fact that we are considering

174

ordinal social choice functions. If we were using “cardinal” social choice functions, then we

will elicit utility functions from the agents instead of preference orderings.

It is well known that the above formulation of strategy-proofness is equivalent to first-

order stochastic dominance. To define this formally, let B(a, Pi) = {b ∈ A : b = a or bPia}.
We can define the strategy-proofness in the following equivalent way.

Definition 50 An RSCF f : Dn → L(A) is strategy-proof if for all i ∈ N , all P−i ∈ Dn−1,

for all Pi ∈ D, and for all a ∈ A, we have∑
b∈B(a,Pi)

fb(Pi, P−i) ≥
∑

b∈B(a,Pi)

fb(P
′
i , P−i) ∀ P ′

i ∈ D.

The necessity of this first-order stochastic dominance is easy to derive. Fix some i ∈ N ,

some P−i, some Pi and some alternative a ∈ A. A particular u that represents Pi is of the

following form: u(b) → 1 for all b ∈ B(a, Pi) and u(b) → 0 for all b /∈ B(a, Pi). Then,

strategy-proofness gives that for every P ′
i , we must have∑

b∈A

u(b)fb(Pi, P−i) ≥
∑
b∈A

u(b)fb(P
′
i , P−i).

Substituting for u, we get

∑
b∈B(a,Pi)

fb(Pi, P−i) ≥
∑

b∈B(a,Pi)

fb(P
′
i , P−i).

It can also be shown that the first-order stochastic dominance condition is sufficient for

strategy-proofness (see Chapter 6 in Mas-Collel-Whinston-Green).

To understand this definition a little better let us take an example with two agents {1, 2}
and three alternatives {a, b, c}. The preference of agent 2 is fixed at P2 given by aP2bP2c.

Let us consider two preference orderings of agent 1: P1 : bP1cP1a and P ′
1 : cP1aP1b. Denote

P = (P1, P2) and P ′ = (P ′
1, P2). Suppose fa(P) = 0.6 and fb(P) = 0.1 and fc(P) = 0.3.

First order stochastic dominance requires the following.

fb(P) = 0.1 ≥ fb(P
′)

fb(P) + fc(P) = 0.4 ≥ fb(P
′) + fc(P

′).

Summarizing, we consider randomization but ordinal social choice functions. Agents have

preferences over alternatives and use that to evaluate lotteries. Our idea of truthfulness says

175

that the lottery given by the scf from truthtelling must first-order stochastically dominate

every other lottery that this agent can get from lying. This notion of strategy-proofness is

equivalent to preventing manipulation for all cardinalization of preferences when agents use

expected utility to evaluate lotteries.

Of course, we can think of other notions of strategy-proofness. We discuss two such

notions.

1. Weak-strategy-proof. In this notion, manipulation requires an agent has can get

a lottery which FOSD dominates the truth-telling lottery. Contrast this to strategy-

proofness, where truth-telling lottery was required to FOSD dominate every other

lottery that the agent could get. More formally, fix agent i and fix the preferences of

other agents at P−i. We say that agent i strongly manipulates f at (Pi, P−i) if there

exists P ′
i such that the lottery f(P ′

i , P−i) first order stochastically dominates f(Pi, P−i).

Then, we can say that f is weakly strategy-proof if no agent can manipulate it at any

profile.

2. lex-strategy-proof. Another method of defining strategy-proofness is lexicographic.

Again, fix agent i and fix the preferences of other agents at P−i. Take two preferences

Pi, P
′
i of agent i. Then, define a binary relation over every pair of lotteries using Pi

in a lexicographic manner. It evaluates lotteries f(Pi, P−i) and f(P ′
i , P−i) in the fol-

lowing way: it first looks at Pi(1) - the top ranked alternative in Pi, and compares

the two lotteries; if they are the same, then it looks at Pi(2), and so on. We can

define lex-strategy-proofness easily now - f(Pi, P−i) must be lexicographically better

than f(P ′
i , P−i), where the lexicographic comparison is done using Pi.

You are encouraged to reconsider the scfs discussed earlier (e.g., scoring rules) and see if

they satisfy these notions of strategy-proofness.

7.3.2 Randomization over DSCFs

A natural way to construct an RSCF is to take a collection of DSCFs and randomize over

them. We show a general result on strategy-proofness of RSCFs which can be expressed as

a convex combination of other strategy-proof RSCFs.

176

Proposition 9 Let f 1, f 2, . . . , fk be a set of k strategy-proof RSCFs, all defined on the

domain Dn. Let f : Dn → L(A) be defined as: for all P ∈ Dn and for all a ∈ A, fa(P) =∑k
j=1 λjf

j
a(P), where λj ∈ [0, 1] for all j ∈ {1, . . . , k} and

∑k
j=1 λj = 1. Then, f is strategy-

proof.

Proof : Fix an agent i and a profile P−i. For some preference Pi consider a utility represen-

tation u : A→ R. Then, for any P ′
i ,

∑
a∈A

u(a)fa(P) =
∑
a∈A

u(a)
k∑

j=1

λjf
j
a(P) =

k∑
j=1

λj
∑
a∈A

u(a)f j
a(P)

≥
k∑

j=1

λj
∑
a∈A

u(a)f j
a(P

′
i , P−i) =

∑
a∈A

u(a)
k∑

j=1

λjf
j
a(P

′
i , P−i)

=
∑
a∈A

u(a)fa(P
′
i , P−i).

■

Another way to interpret Proposition 9 is that the set of strategy-proof RSCFs form a

convex set. Since a DSCF cannot be written as convex combination of other social choice

functions, a strategy-proof DSCF forms an extreme point of the set of strategy-proof RSCFs.

Knowing the deterministic strategy-proof social choice functions automatically gives you a

class of strategy-proof RSCFs.

7.3.3 The Counterpart of Gibbard-Satterthwaite Theorem

To understand the implication of randomization, we go back to the complete domain model

in the Gibbard-Satterthwaite theorem. First, we define the notion of unanimity that we will

use in this model. 5 The notion of unanimity we use is the exact version of unanimity we

used in the deterministic social choice functions.

Definition 51 An RSCF f : Pn → L(A) satisfies unanimity if for all i ∈ N , all P ∈ Pn

such that P1(1) = P2(1) = . . . = Pn(1) = a, we have fa(P) = 1.

5In the deterministic model, there was an equivalence between unanimity, efficiency, and ontoness under

strategy-proofness - this is no longer true in the model with randomization.

177

As in the deterministic SCF case, we can see that the constant social choice function is

not unanimous. But there is even a bigger class of RSCFs which are strategy-proof but not

unanimous.

Definition 52 An RSCF f is a unilateral if there exists an agent i and α1 ≥ α2 ≥ . . . ≥
α|A| with αj ∈ [0, 1] and

∑|A|
j=1 αj = 1 such that for all P we have fPi(j) = αj for all

j ∈ {1, . . . , |A|}.

In a unilateral RSCF, there is a weak dictator i such that top ranked alternative of i gets

probability α1, second ranked alternative of i gets probability α2, and so on. Notice that

every unilateral is strategy-proof, but not unanimous.

We now define another broad class of RSCFs which are strategy-proof and unanimous.

Definition 53 An RSCF f : Pn → L(A) is a random dictatorship if there exists weights

β1, . . . , βn ∈ [0, 1] with
∑

i∈N βi = 1 such that for all P ∈ Pn,

fa(P) =
∑

i∈N :Pi(1)=a

βi.

If a particular agent i has βi = 1, then such a random dictatorship is the usual dicta-

torship. A random dictatorship can be thought to be a randomization over deterministic

dictatorships, where βi reflects the probability with which agent i is a dictator. For ex-

ample, if N = {1, 2, 3} and A = {a, b, c} and β1 = 1
2
, β2 = β3 = 1

4
, then at a profile

P where P1(1) = a, P2(1) = a, P3(1) = c, the output of this random dictatorship will be

fa(P) =
1
2
+ 1

4
= 3

4
and fc(P) =

1
4
.

Random dictatorship can be thought of as a convex combination of dictatorships, where

βi is the probability with which agent i is the dictator. Since dictatorship is strategy-proof,

one can show that random dictatorship is also strategy-proof. As a corollary of Proposition

9, we get the following.

Corollary 5 Every random dictatorship is strategy-proof.

Proof : A random dictatorship is a convex combination of dictatorships. Hence, it is

strategy-proof by Proposition 9. ■

We are now ready to state the counterpart of the Gibbard-Satterthwaite theorem for

RSCFs. This was proved by Gibbard.

178

Theorem 31 Suppose |A| ≥ 3. An RSCF is unanimous and strategy-proof if and only if it

is a random dictatorship.

The proof of this theorem is more involved than the Gibbard-Satterthwaite theorem. We

only do the case with two agents.

Proof : We have already shown that a random dictatorship is strategy-proof (Corollary 5).

It is also unanimous - if all agents have the same alternative as top ranked, βs will sum to 1

for that alternative. We now prove that any RSCF which is unanimous and strategy-proof

must be a random dictatorship for n = 2 case. We do the proof by showing two claims. Let

f be a strategy-proof and unanimous RSCF.

Claim 4 Let P ∈ P2 be a preference profile such that P1(1) ̸= P2(1). If fa(P) > 0 then

a ∈ {P1(1), P2(1)}.

Proof : Consider a preference profile P such that P1(1) = a ̸= b = P2(1). Let fa(P) = α

and fb(P) = β. Consider a preference ordering P ′
1 such that P ′

1(1) = P1(1) = a and

P ′
1(2) = P2(1) = b. Similarly, consider a preference ordering P ′

2 such that P ′
2(1) = P2(1) = b

and P ′
2(2) = P1(1) = a.

Strategy-proofness implies that fa(P
′
1, P2) = α. Also, by unanimity the outcome at

(P2, P2) is b. So, strategy-proofness implies that fa(P
′
1, P2) + fb(P

′
1, P2) ≥ fa(P2, P2) +

fb(P2, P2) = 1. Hence, fa(P
′
1, P2) + fb(P

′
1, P2) = 1.

Using a symmetric argument, we can conclude that fb(P1, P
′
2) = β and fa(P1, P

′
2) +

fb(P1, P
′
2) = 1.

Strategy-proofness implies that fb(P
′
1, P

′
2) = fb(P

′
1, P2) = 1 − α. and fa(P

′
1, P

′
2) =

fa(P1, P
′
2) = 1−β. But fa(P ′

1, P
′
2)+fb(P

′
1, P

′
2) ≤ 1 implies that α+β ≥ 1 and fa(P)+fb(P) ≤

1 implies α + β ≤ 1. Hence, α + β = 1. ■

Claim 5 Let P, P̄ ∈ P2 be such that P1(1) = a ̸= b = P2(1) and P̄1(1) = c ̸= d = P̄2(1).

Then fa(P) = fc(P̄) and fb(P) = fd(P̄).

Proof : We consider various cases.

179

Case 1: c = a and d = b. Strategy-proofness implies that fa(P1, P2) = fa(P̄1, P2). By

Claim 4, fa(P1, P2)+fb(P1, P2) = fa(P̄1, P2)+fb(P̄1, P2) = 1. Hence, fb(P1, P2) = fb(P̄1, P2).

Repeating this argument for agent 2 while going from (P̄1, P2) to (P̄1, P̄2), we get that

fa(P̄) = fa(P) and fb(P̄) = fb(P).

Case 2: c = a or d = b. Suppose c = a. Consider a preference profile (P1, P̂2) such that

P̂2(1) = d /∈ {a, b} and P̂2(2) = b. Assume without loss of generality that P2(1) = b and

P2(2) = d. Then, strategy-proofness implies that fb(P1, P̂2) + fd(P1, P̂2) = fb(P) + fd(P).

By Claim 4, fb(P1, P̂2) = fd(P) = 0. Hence, fb(P) = fd(P1, P̂2). This further implies that

fa(P) = fa(P1, P̂2). By Case 1, fa(P) = fa(P̄) and fb(P) = fd(P̄). An analogous proof

works if d = b.

Case 3: c = b and d /∈ {a, b}. Let P̂ = (P1, P̄2). By Case 2, fa(P) = fa(P̂) and fb(P) =

fd(P̂). Again, applying Case 2, we get fa(P) = fa(P̂) = fb(P̄) and fb(P) = fd(P̂) = fd(P̄).

Case 4: c /∈ {a, b} and d = a. A symmetric argument to Case 3 can be made.

Case 5: c = b and d = a. Since there are at least three alternatives there is a x /∈ {a, b}.
We construct a profile P̂ = (P̂1, P̄2) such that P̂1(1) = x. By Case 4, fx(P̂) = fa(P)

and fb(P) = fa(P̂). Now, applying Case 2, we can conclude that fx(P̂) = fb(P̄) and

fa(P̂) = fa(P̄).

Case 6: c /∈ {a, b} and d /∈ {a, b}. Consider a profile P̂ = (P̂1, P2) such that P̂1(1) = c. By

Case 2, fc(P̂) = fa(P) and fb(P̂) = fb(P). Applying Case 2 again, we get fc(P̄) = fc(P̂) =

fa(P) and fd(P̄) = fb(P̂) = fb(P). ■

Claims 4 and 5 establishes that f is a RSCF. ■

As we have seen a unilateral SCF is not unanimous but strategy-proof. Hence, unanimity

is a crucial assumption in Theorem 31. This shows that randomization does not expand the

set of strategy-proof SCFs in a satisfactory way. One may argue that a random dictatorship

is a reasonable SCF, but scoring rules may not be representable by a random dictatorship.

180

Chapter 8

Matching Theory

Matching theory refers to theory of a rich class of models where there are two “sides” and

one side is matched to the other. In the graph theory literature, a matching is formulated

more abstractly.1 Over the years, matching theory has been one of the prominent success

stories of economics. It has been applied extensively in practice: in school admissions; in

allocating houses and dorm rooms; in assigning doctors to internships; in exchanging organs

(liver and kidney) among patients. Sönmez and Ünver (2011) is an excellent starting point

to learn about these applications.

We study the theory of two kinds of matching: (a) one-sided matching and (b) two-sided

matching. In one-sided matching, there are agents on one side and objects on the other side,

and the objective is to match agents to objects. In this model, agents have preferences over

objects but objects do not have any preferences, and hence, the name one-sided matching.

We will refer to this model as the object assignment model. The other model is the two-sided

matching, where agents (workers) on one side are matched to the agents (firms) on the other

side. This model is often referred to as the marriage market model.

1Consider a graph with a set of vertices and (undirected) edges between the vertices. A matching is

a collection of edges that have no common end points. The matching theory we study here (and most of

economic theory) concerns with a particular kind of graph, called the bipartite graph, where the set of vertices

can be partitioned into two groups and edges run from one group to the other.

181

8.1 Object Assignment Model

In this section, we consider the object allocation model. There is a finite set of objects

M = {a1, . . . , am} and a finite set of agents N = {1, . . . , n}. We assume that m ≥ n. The

objects can be houses, jobs, projects, positions, candidates or students etc. Each agent has

a linear order over the set of objects, i.e., a complete, transitive, and anti-symmetric binary

relation. In this model, this ordering represents the preferences of the agents, and this is

their private information (type). The preference ordering of agent i will be denoted as ≻i. A

profile of preferences will be denoted as ≻≡ (≻1, . . . ,≻n). The set of all preference orderings

over M will be denoted as M. The top element amongst a set of objects S ⊆ M according

to ordering ≻i is denoted as ≻i (1, S), and the k-th ranked object by ≻i (k, S).

The main departure of this model is that agents do not have direct preference over

alternatives. We need to extract their preference over alternatives from their preference over

objects. What are the alternatives? An alternative is a feasible matching, i.e., an injective

mapping from N to M . The set of alternatives will be denoted as A, and this is the set of

all injective mappings from N to M . For a given alternative a ∈ A, if a(i) = j ∈ M , then

we say that agent i is assigned object j (in a).

Consider two alternatives a and b. Suppose agent 1 is is assigned the same object in both

a and b (this is possible if there are at least three objects). Then, it is reasonable to assume

that agent 1 will always be indifferent between a and b. Hence, for any preference ordering

of agent 1, aP1b and bP1a are not permissible. This restriction implies that the domain of

preference orderings over alternatives is not the unrestricted domain, which was the case in

the GS theorem. Because of this reason, we cannot apply the GS theorem. Indeed, we will

show that non-dictatorial social choice functions are strategy-proof in these settings.

A social choice function (direct mechanism) f is a mapping f : Mn → A. We denote

by f(≻) the matching produced at a preference profile ≻. We denote by fi(≻) the object

assigned to agent i at a preference profile ≻.

8.1.1 The fixed priority mechanism

A prominent mechanism in the object assignment model is the fixed priority (serial dicta-

torship) mechanism. We call this a mechanism but not a social choice function since it is

not a direct revelation mechanism. A priority is a bijective mapping σ : N → N , i.e., an

182

ordering over the set of agents. The fixed priority mechanism is defined inductively. Fix a

preference profile ≻. We now construct a matching a as follows:

a(σ(1)) =≻σ(1) (1,M)

a(σ(2)) =≻σ(2) (1,M \ {a(σ(1))})

a(σ(3)) =≻σ(3) (1,M \ {a(σ(1)), a(σ(2))})

.

a(σ(i)) =≻σ(i) (1,M \ {a(σ(1)), . . . , a(σ(i− 1))}

.

a(σ(n)) =≻σ(n) (1,M \ {a(σ(1)), . . . , a(σ(n− 1))}.

Now, at preference profile ≻, the fixed priority mechanism (and the underlying SCF) assigns

fσ(≻) = a.

Let us consider an example. The ordering over houses {a1, a2, . . . , a6} of agents {1, 2, . . . , 6}
is shown in Table 8.1. Fix a priority σ as follows: σ(i) = i for all i ∈ N . According to this

≻1 ≻2 ≻3 ≻4 ≻5 ≻6

a3 a3 a1 a2 a2 a1

a1 a2 a4 a1 a1 a3

a2 a1 a3 a5 a6 a2

a4 a5 a2 a4 a4 a4

a5 a4 a6 a3 a5 a6

a6 a6 a5 a6 a3 a5

Table 8.1: An example for housing model

priority, the fixed priority mechanism will let agent 1 choose his best object first, which is

a3. Next, agent 2 chooses his best object among remaining objects, which is a2. Next, agent

3 gets his best object among remaining objects {a1, a4, a5, a6}, which is a1. Next, agent 4

gets his object among remaining objects {a4, a5, a6}, which is a5. Next, agent 5 gets his best

object among remaining objects {a4, a6}, which is a6. So, agent 6 gets a4.

Note that a fixed priority mechanism is a generalization of dictatorship. Hence, this

mechanism is often referred to as the serial dictatorship mechanism. But unlike a dictator-

183

ship, here every agent can change the outcome by reporting different preferences. This is the

reason that the term “dictatorship” is not entirely appropriate to use for this mechanism.

We show below (quite obvious) that a fixed priority mechanism is strategy-proof. More-

over, it is efficient in the following sense.

Definition 54 A social choice function f is efficient (in the object assignment model) if

for every preference profile ≻, there exists no matching a ̸= f(≻) such that a(i) = fi(≻) or

ai ≻i fi(≻).

Proposition 10 Every fixed priority social choice function (mechanism) is strategy-proof

and efficient.

A word of caution here about the notion of strategy-proofness for the fixed priority mech-

anism (and other mechanisms discussed in this section). The fixed priority mechanism is

not a direct mechanism. However, using revelation principle, one can think of the associated

direct mechanism - agents report their entire ordering, and the mechanism designer executes

the fixed priority SCF on this ordering. Whenever we say that the fixed priority mechanism

is strategy-proof, we mean that the underlying direct mechanism is strategy-proof.

Proof : Fix a priority σ, and consider fσ- the associated fixed priority mechanism. The

strategy of any agent i is any ordering over M . Suppose agent i wants to deviate. Fix the

preferences reported (strategy) by other agents. When agent i is truthful, letM−i be the set

of objects allocated to agents who have higher priority than i (agent j has higher priority

than agent i if and only if σ(j) < σ(i)). So, by being truthful, agent i gets ≻i (1,M \M−i).

When agent i deviates, any agent j who has a higher priority than agent i continues to get

the same object that he was getting when agent i was truthful. So, agent i gets an object in

M \M−i. Hence, deviation cannot be better.

To show efficiency, assume for contradiction that fσ is not efficient. Consider a profile ≻
such that f(≻) = a. Let a′ ̸= a be another matching satisfying a′(i) ≻i a(i) or a

′(i) = a(i)

for all i ∈ N . Then, consider the first agent j in the priority σ such that a′(j) ≻j a(j). Since

agents before j in priority σ got the objects of matching a′, object a′(j) was still available

to agent j. This is a contradiction since agent j chose a(j) with a′(j) ≻j a(j). ■

184

Note that every fixed priority mechanism fσ is a dictatorship. In the fixed priority

mechanism fσ corresponding to priority σ, agent σ(1) is assigned his top object, and hence,

his top alternative. So, σ(1) is a dictator in fσ.

One can construct social choice functions which are strategy-proof but not a fixed priority

mechanism in this model. We show this by an example.

Example 5

Let N = {1, 2, 3} and M = {a1, a2, a3}. The social choice function we consider is f , and

is almost a fixed priority SCF. Fix a priority σ as follows: σ(i) = i for all i ∈ N . Another

priority is σ′: σ′(1) = 2, σ′(2) = 3, σ′(3) = 1. The SCF f generates the same outcome as fσ

whenever ≻2 (1,M) ̸= a1. If ≻2 (1,M) = a1, then it generates the same outcome as fσ′
. To

see that this is strategy-proof, it is clear that agents 1 and 3 cannot manipulate since they

cannot change the priority. Agent 2 can change the priority. But, can he manipulate? If

his top ranked house is a1, he gets it, and he cannot manipulate. If his top ranked house is

∈ {a2, a3}, then he cannot manipulate without changing the priority. If he does change the

priority, then he gets a1. But being truthful, either he gets his top ranked house or second

ranked house. So, he gets a house which is either a1 or some house which he likes more than

a1. Hence, he cannot manipulate.

Notice that it is possible for agent 2 to change the priority in Example 5. This means it

can change the allocation of other agents by reporting a different preference. Further, it can

do so when her own allocation is unchanged. For instance, consider two preferences of agent

2 as follows:

a2 ≻2 a1 ≻2 a3; a1 ≻′
2 a2 ≻′

2 a3.

Suppose agent 1’s preference is such that her top is a2. When agent 2 reports ≻2 as her

preference, then priority is σ. So, agent 1 gets a2 and agent 2 gets a1. But if agent 2 reports

≻′
2 as her preference, the priority is σ′. So, agent 2 gets a1 too. However, now agent 3

chooses next. If agent 3’s top-ranked object is also a2, then agent 1 can no longer get a2.

So, agent 2 can change the outcome of the mechanism without changing her own match-

ing. In this case, we call agent 2 bossy. The following axiom rules out bossiness. It was first

introduced in mechanism design literature in Satterthwaite and Sonnenschein (1981).

185

Definition 55 A social choice function f is non-bossy if for every i ∈ N , every ≻−i, and

every ≻i,≻′
i we have[
fi(≻i,≻−i) = fi(≻′

i,≻−i)
]
⇒

[
fj(≻i,≻−i) = fj(≻′

i,≻−i) ∀ j ∈ N
]

Though Example 5 is not non-bossy, every fixed priority mechanism is non-bossy. In fact,

fixed priority mechanisms are characterized by strategy-proofness, non-bossiness, and neu-

trality. To define neutrality, let ρ : M → M be a permutation of objects and ≻ρ be the

permutation of preference profile ≻ using ρ.

Definition 56 A social choice function f is neutral if for every permutation of objects ρ

and every preference profile ≻

fi(≻ρ) = ρ(fi(≻)) ∀ i ∈ N.

Svensson (1999) shows the following result.

Theorem 32 (Svensson (1999)) A social choice function is strategy-proof, non-bossy, and

neutral if and only if it is a fixed priority mechanism.

Proof : One direction is straightforward and omitted. For the other direction, let f be a

strategy-proof, non-bossy, and neutral scf. We start off by establishing a version of mono-

tonicity in this model.

Claim 6 Suppose ≻ and ≻′ are two preference profiles with f(≻) = a and {bk : a(i) ≻i

bk} ⊆ {bk : a(i) ≻′
i bk} for all i ∈ N . Then, f(≻′) = a.

Proof : Without loss of generality, we assume that ≻ and ≻′ differ only in the preference of

agent i – if they differ in more than one agent’s preference, then we can repeat the argument

below iteratively to conclude. So, ≻′≡ (≻′
i,≻−i). Let f(≻′) = b. By strategy-proofness,

b(i) = a(i) or a(i) ≻i b(i). If a(i) ≻i b(i), then by assumption, a(i) ≻′
i b(i). But

this contradicts strategy-proofness since agent i with true preference ≻′
i can manipulate by

reporting ≻i. Hence, a(i) = b(i). By non-bossiness, a = b. ■

Notice that Claim 6 did not require neutrality in the proof. So, strategy-proofness and

non-bossiness imply monotonicity.2 The second step is to show what happens at profiles

2Recall that in strategic voting models, strategy-proofness alone implies monotonicity.

186

where everyone has identical preferences.3

Claim 7 Let ≻ be a preference profile such that ≻1= . . . =≻n. Then, the matching f(≻) is

efficient, i.e., there does not exist b ̸= f(≻) such that b(i) = fi(≻) or b(i) ≻i fi(≻) for all

i ∈ N .

Proof : Let the common preference of agents in preference profile ≻ be:

a1 ≻i a2 ≻i . . . ≻i an ≻i . . . ≻i am.

Since m ≥ n, efficiency at such a profile means objects in {a1, . . . , an} must be allocated.

Assume for contradiction this is not the case. Then, there exists objects aj, aj+1 such that aj

is not allocated in matching f(≻) but aj+1 is allocated in matching f(≻). Consider another

common ranking preference profile, where we permute the role of objects aj and aj+1, i.e,

now object aj+1 is preferred to aj by everyone (and other objects are ranked the same way).

Denote the new preference profile as ≻′. Notice that ≻′ is obtained from ≻ by permuting aj

and aj+1. Table 8.2 shows the two profiles ≻ and ≻′.

≻ ≻′

a1 a1 . . . a1 a1 a1 . . . a1

a2 a2 . . . a2 a1 a1 . . . a1

. .

. .

aj aj . . . aj aj+1 aj+1 . . . aj+1

aj+1 aj+1 . . . aj+1 aj aj . . . aj

. .

. .

am am . . . am am am . . . am

Table 8.2: Common ranking preference profile

3A notable difference between voting models and private good (matching) models are predictions in

preference profiles where everyone has identical preference. In voting models, this indicates agreement,

and unanimity immediately gives us the answer. However, in matching models, this is where the most

disagreement occurs – if everyone likes the same object, who should get it?

187

Suppose fi(≻) = aj+1. By neutrality,

fk(≻′) =

fk(≻) if k ̸= i

aj if k = i.

But by Claim 6, f(≻′) = f(≻), and hence, fi(≻′) = aj+1. This is a contradiction. ■

We can now conclude the proof of the theorem. We first construct a permutation σ of

agents. Consider any preference profile ≻ where preferences of agents are identical as in

Claim 7. Without loss of generality, for every i ∈ N , let

a1 ≻i a2 ≻i . . . ≻i an ≻i . . . ≻i am.

By Claim 7, agents in N get objects in {a1, . . . , an}. For each i ∈ N , let σ(i) be the agent

such that fσ(i)(≻) = ai. Notice that by neutrality, at any preference profile where agents

have the same preference, the outcome coincides with the fixed priority mechanism with

respect to σ.

Now, pick an arbitrary preference profile ≻̄. Let

ā1 := ≻̄σ(1)(1,M); ā2 := ≻̄σ(2)(1,M \ {ā1}); . . . ; āk := ≻̄σ(k)(1,M \ {ā1, . . . , āk−1}); . . . ;

ān := ≻̄σ(n)(1,M \ {ā1, . . . , ān−1})

By construction, ā1 is the highest ranked object of σ(1) in ≻̄1. For agent σ(2), object ā2 is

better than {ā3, . . . , ām}. Similarly, for agent σ(k), object āk is better than {āk+1, . . . , ām};
and so on. Now, consider the common preference profile ≻̄′, where all the agents have the

common preference:

ā1 ≻̄′
i ā2 ≻̄′

i . . . ≻̄′
i ām.

Notice that for any k, agent σ(k) prefers object āk to objects in {āk+1, . . . , ām} at preference

profile ≻̄′. Hence, applying monotonicity of Claim 6, we conclude that f(≻̄) = f(≻̄′). But

by construction f(≻̄′) is the matching produced by the fixed priority mechanism according

to σ. Hence, we are done. ■

Theorem 32 shows what additional axioms are needed to get an analogue of a dictatorship

characterization in the object assignment model. Of course, unlike the characterizations

188

in the voting model, we did not use Pareto efficiency, but we used neutrality and non-

bossiness. How large are the class of strategy-proof and Pareto efficient mechanisms? The

class of strategy-proof, non-bossy, and Pareto efficient mechanisms are quite rich – these are

characterized by trading cycle (Pycia and Ünver, 2017). Pápai (2000) characterizes a smaller

family of mechanisms, which she calls hierarchical exchange rules, by strategy-proofness,

non-bossy, Pareto efficiency, and an additional property called reallocation-proofness. Both

classes of rules contain fixed priority mechanisms as a special case. In the next section, we

discuss a prominent subclass of hierarchical exchange rules.

8.1.2 Top Trading Cycle Mechanism with Fixed Endowments

The top trading cycle mechanism (TTC) with fixed endowment is a class of general mech-

anisms which are strategy-proof and Pareto efficient. We will study them in detail here.

We assume here m = n for simplicity. In the next subsection, we show how to relax this

assumption. To explain the mechanism, we start with an example. Consider the preference

profile shown in Table 8.3.

≻1 ≻2 ≻3 ≻4 ≻5

a4 a1 a5 a2 a4

a3 [a2] a1 a5 a2

[a1] a4 a2 a1 [a5]

a2 a5 a4 [a4] a3

a5 a3 [a3] a3 a1

Table 8.3: A preference profile

The mechanism is defined by an endowment, which is fixed across all profiles. An en-

dowment is another matching a∗. One can think of the mechanism to work as an algorithm

at each preference profile. This algorithm starts with matching a∗ and makes a sequence of

Pareto improvements to reach a Pareto efficient matching. For the example in Table 8.3, we

take a∗ as (shown in square brackets in Table 8.3):

a∗(i) = ai ∀ i ∈ {1, 2, 3, 4, 5}.

189

Notice that a∗ is Pareto inefficient: agents 4 and 5 can exchange their endowments to get

a matching that they prefer. The main idea of the algorithm is to repeatedly perform such

exchanges or trades.

Construct a directed graph with five vertices, one for each agent. Put a directed edge

from vertex of agent i to vertex of agent j if the top ranked object of agent i is endowed with

agent j. For the preference profile of Table 8.3, the directed graph looks as in Figure 8.1.

1; [a1]

2; [a2]

3; [a3]4; [a4]

5; [a5]

Figure 8.1: Top trading cycle trading graph

One notices from the cycle in the directed graph (blue edges) that agents 1,2, and 4

can trade their endowments and get their top ranked objects. In fact, any such directed

graph will have at least one cycle (a cycle may involve only one vertex and an edge from

that vertex to itself) and trading along these cycles makes the agents in the cycle improve

from their endowments. In the Figure 8.1, we make agents 1, 2, 4 trade their endowments

along the cycle: this results in a matching where a(1) = a4, a(2) = a1, a(4) = a2. After this

trade, agents 1, 2, 4 leave with objects {a1, a2, a4} and we are only left with agents 3 and

5 and their endowments {a3, a5}. This is a crucial greedy feature of the algorithm: at any

iteration, agents who trade leave with their assigned objects after trade and we are left with

the remaining agents and their endowments. Then, we apply the same step to this smaller

problem.

In this case, agents 3 and 5 point to their top ranked objects from {a3, a5}. This results
in a directed graph as shown in Figure 8.2. Here, we see that there is only one cycle involving

agent 5. Hence, we set a(5) = a5. Then, only agent 3 is left with her endowment a3, and so,

190

we set a(3) = a3. So, the final matching of the algorithm is

a(1) = a4, a(2) = a1, a(3) = a3, a(4) = a2, a(5) = a5.

3; [a3]5; [a5]

Figure 8.2: Top trading cycle trading graph

We now formally describe the top trading cycle (TTC) mechanism. At every preference

profile ≻, the mechanism runs the following algorithm, which is referred to as the top trading

cycle (TTC) algorithm. The TTC algorithm is due to Shapley and Scarf (1974), but they

acknowledge (See Section 6 of the paper) that the algorithm was suggested to them by David

Gale.

Fix an endowment of agents a∗. The mechanism maintains the remaining set of objects

Mk and remaining set of agent Nk in every Step k of the mechanism.

• Step 1: Set M1 = M and N1 = N . Construct a directed graph G1 with nodes N1.

There is a directed edge from node (agent) i ∈ N1 to agent j ∈ N1 if and only if

≻i (1,M
1) = a∗(j).

Allocate objects along every cycle of graph G1. Formally, if (i1, i2, . . . , ip, i1) is a cycle

in G1 then set a(i1) = a∗(i2), a(i2) = a∗(i3), . . . , a(ip−1) = a∗(ip), a(ip) = a∗(i1). Let

N̂1 be the set of agents allocated in such cycles in G1, and M̂1 be the set of objects

assigned in a to N1.

Set N2 = N1 \ N̂1 and M2 =M1 \ M̂1.

• Step k: Construct a directed graph Gk with nodes Nk. There is a directed edge from

node (agent) i ∈ Nk to agent j ∈ Nk if and only if ≻i (1,M
k) = a∗(j).

191

Allocate objects along every cycle of graph Gk. Formally, if (i1, i2, . . . , ip, i1) is a cycle

in Gk then set a(i1) = a∗(i2), a(i2) = a∗(i3), . . . , a(ip−1) = a∗(ip), a(ip) = a∗(i1). Let

N̂k be the set of agents allocated in such cycles in Gk, and M̂k be the set of objects

assigned in a to Nk.

Set Nk+1 = Nk \ N̂k and Mk+1 =Mk \ M̂k. If Nk+1 is empty, stop, and a is the final

matching chosen. Else, repeat.

Note that each TTC mechanism is defined by an endowment matching. We show below

that each TTC mechanism is strategy-proof and efficient.

Proposition 11 A TTC with fixed endowment mechanism is strategy-proof and efficient.

Proof : Consider agent i who wants to deviate. Suppose agent i is getting assigned in Step

k of the TTC mechanism if he is truthful. Hence, agent k gets the best object among Mk

(set of objects remaining in Step k).

Consider any Step j, where j ≤ k. We argue that agent i cannot gain by misreporting

her preference such that her outgoing edge changes in Step j. This of course will prove

that any manipulation can never given an object in M \Mk, thus completing the proof of

strategy-proofness.

We say agent i′ chases agent i in Step j if there exists a sequence of edges (i′, i1), (i1, i2), . . . , (ik, i)

in the directed graph in Step j. Note that when agent i is truthful, i is available in Step k.

Hence, if ik points to i in Step j (i.e., the endowment of agent i is the best object of agent

ik in M j), it continues to point to i in Step k. So, ik is available in Step k. Repeating this

argument along the path (i′, i1), (i1, i2), . . . , (ik, i), we conclude that i′ is available in Step

k. Hence, i does not strictly prefer the endowment of agent i′ to its matching when she is

truthful. As a consequence of this argument, we can conclude that agent i has no incentive to

manipulate so that she is matched to the endowment of agent i′, where i′ chases her in Step

j. But agent i cannot be assigned to the endowment of agent i′′ if agent i′′ is not chasing her

in Step j. Hence, agent i cannot gain by misreporting her preference such that her outgoing

edge changes in Step j.

Now, we prove efficiency. Let a be a matching produced by the TTC mechanism for

preference profile ≻. Assume for contradiction that this matching is not efficient, i.e., there

exists a different matching a′ such that a′(i) ≻i a(i) or a
′(i) = a(i) for all i ∈ N . Consider

192

the first step of the TTC mechanism where some agent i gets a(i) ̸= a′(i). Since all the

agents get the same object in a and a′ before this step, object a′(i) is available in this step,

and since a′(i) ≻i a(i), agent i cannot have an edge from i to the “owner” of a(i) in this step.

This means that agent i cannot be assigned to a(i). This gives a contradiction. ■

Note that a TTC mechanism need not be a dictatorship. To see this, suppose there are

three agents and three houses. Fix an endowment a∗ as a∗(i) = ai for all i ∈ {1, 2, 3}. Let

us examine the TTC mechanism corresponding to a∗. Consider the profile (≻1,≻2,≻3) such

that ≻i (1, N) = a1 for all i ∈ {1, 2, 3}, i.e., every agent has object a1 as his top ranked

object. Clearly, only agent 1 gets one of this top ranked alternatives (matchings) in this

profile according to this TTC mechanism. Now, consider the profile (≻′
1,≻′

2,≻′
3) such that

≻′
i (1, N) = a2 for all i ∈ {1, 2, 3}, i.e., every agent has object a2 as his top ranked object.

Then, only agent 2 gets one of his top ranked alternatives (matchings) according to this TTC

mechanism. Hence, this TTC mechanism is not a dictatorship.

Further, TTC mechanism violates neutrality, the axiom used to characterize fixed priority

mechanisms in Theorem 32. A characterization of TTC with fixed endowment is still illusive.

8.1.3 Stable House Allocation with Existing Tenants

We consider a variant of the house allocation problem. In this model, each agent already has

a house that he owns - if an agent i owns house j then he is called the tenant of j. This is the

model studied in Shapley and Scarf (1974). Immediately, one sees that the TTC mechanism

can be applied in this setting with initial endowment given by the house-tenant relationship.

This is, as we have shown, strategy-proof and efficient (Proposition 11).

We address another concern here, that of stability. In this model, agents own resources

that are allocated. So, it is natural to impose some sort of stability condition on the mech-

anism. Otherwise, a group of agents can break away and trade their houses amongst them-

selves.

Consider the example in Table 8.1. Let the existing tenants of the houses be given by

matching a∗: a∗(1) = a1, a
∗(2) = a3, a

∗(3) = a2, a
∗(4) = a4, a

∗(5) = a5, a
∗(6) = a6. Consider

a matching a as follows: a(i) = ai for all i ∈ N . Now consider the coalition of agents {3, 4}.
In the matching a, we have a(3) = a3 and a(4) = a4. But agents 3 and 4 can reallocate the

houses they own among themselves in a manner to get a better matching for themselves.

193

In particular, agent 3 can get a4 (house owned by agent 4) and agent 4 can get a2 (house

owned by agent 3. Note that a4 ≻3 a3 and a2 ≻4 a4. Hence, both the agents are better

off trading among themselves. So, they can potentially block matching a. We formalize this

idea of blocking below.

Let a∗ denote the matching reflecting the initial endowment of agents. We will use the

notation aS for every S ⊆ N , to denote a matching of agents in S to the houses owned by

agents in S. Whenever we write a matching a without any superscript we mean a matching

of all agents. Formally, a coalition (group of agents) S ⊆ N can block a matching a at a

preference profile ≻ if there exists a matching aS such that aS(i) ≻i a(i) or a
S(i) = a(i) for

all i ∈ S with aS(j) ≻j a(j) for some j ∈ S. A matching a is in the core at a preference

profile ≻ if no coalition of agents can block a at ≻. A social choice function f is stable if

for all preference profile ≻, f(≻) is in the core at preference profile ≻. Note that stability

implies efficiency - efficiency requires that the grand coalition cannot block.

We will now analyze if the TTC mechanism is stable. Note that when we say a TTC

mechanism, we mean the TTC mechanism where the initial endowment is the endowment

given by the house-tenant relationship.

Theorem 33 The TTC mechanism is stable. Moreover, there is a unique core matching for

every preference profile.

Proof : Assume for contradiction that the TTC mechanism is not stable. Then, there exists

a preference profile ≻, where the matching a produced by the TTC mechanism at ≻ is not

in the core. Let coalition S block this matching a at ≻. This means there exists another

matching aS such that aS(i) ≻i a(i) or a
S(i) = a(i) for all i ∈ S, with equality not holding

for all i ∈ S. Let T = {i ∈ S : aS(i) ≻i a(i)}. Assume for contradiction T ̸= ∅.
To remind notation, we denote N̂k to be the set of agents allocated houses in Step k

of the TTC mechanism, and M̂k be the set of these houses. Clearly, agents in S ∩ N̂1 are

getting their respective top ranked houses. So, (S ∩ N̂1) ⊆ (S \ T). Define Sk = S ∩ N̂k for

each stage k of the TTC mechanism. We now complete the proof using induction. Suppose

(S1 ∪ . . . ∪ Sk−1) ⊆ (S \ T) for some stage k. We show that Sk ⊆ (S \ T). Now, agents in

S∩N̂k are getting their respective top ranked houses amongst houses inM \(M̂1∪ . . .∪M̂k).

Given that agents in (S1 ∪ . . . ∪ Sk−1) get the same set of houses in aS and a, any agent in

Sk cannot be getting a better house in aS than his house in a. Hence, again Sk ⊆ (S \ T).

194

By induction, S ⊆ (S \ T) or T = ∅, which is a contradiction.

Finally, we show that the core matching returned by the TTC mechanism is the unique

one. Suppose the core matching returned by the TTC mechanism is a, and let a′ be another

core matching for preference profile ≻. Note that (a) in every Step k of the TTC mechanism

agents in N̂k get allocated to houses owned by agents in N̂k, and (b) agents in N̂1 get their

top ranked houses. Hence, if a(i) ̸= a′(i) for any i ∈ N̂1, then agents in N̂1 will block a′. So,

a(i) = a′(i) for all i ∈ N̂1.

Now, we use induction. Suppose, a(i) = a′(i) for all i ∈ N̂1 ∪ . . . ∪ N̂k−1. We will

argue that a(i) = a′(i) for all i ∈ N̂k. Agents in N̂k get their highest ranked house from

M \ M̂1 ∪ . . .∪ M̂k−1. So, given that agents in N̂1 ∪ . . .∪ N̂k−1 get the same houses in a and

a′, if some agent i ∈ N̂k get different houses in a and a′, then it must be a(i) ≻i a
′(i). This

means, agents in N̂k will block a′. This contradicts the fact that a′ is a core matching.

This shows that a = a′, a contradiction. ■

The TTC mechanism with existing tenants has another nice property. Call a mechanism

f individually rational if at every profile ≻, the matching f(≻) ≡ a satisfies a(i) ≻i a
∗(i)

or a(i) = a∗(i) for all i ∈ N , where a∗ is the matching given by the initial endowment or

existing tenants.

Clearly, the TTC mechanism is individually rational. To see this, consider a profile ≻
and let f(≻) = a. Note that the TTC mechanism has this property that if the house owned

by an agent i is matched in Step k, then agent i is matched to a house in Step k too. If

a(i) ̸= a∗(i) for some i, then agent i must be part of a trading cycle where he is pointing to

a house better than a∗(i). Hence, a(i) ≻i a
∗(i).

This also follows from the fact that the TTC mechanism is stable and stability implies

individual rationality - individual rationality means no coalition of single agent can block.

In the model of house allocation with existing tenants, the TTC mechanism satisfies three

compelling properties along with stability - it is strategy-proof, efficient, and individually

rational. Remarkably, these three properties characterize the TTC mechanism in the existing

tenant model. We skip the proof.

Theorem 34 (Ma (1994)) A mechanism is strategy-proof, efficient, and individually ratio-

nal if and only if it is the TTC mechanism.

Proof : Since the TTC mechanism is strategy-proof, efficient, and individually rational, it

195

is enough to show that there is a unique mechanism satisfying these properties. The proof

we give is due to Sethuraman (2016).

Let f be a strategy-proof, efficient, and individually rational mechanism and f ̸= fTTC ,

where fTTC is the TTC mechanism. Notations. At any profile of preferences ≻, define

Bi(≻i) = {ak : ak ≻i a
∗(i)} ∪ {a∗(i)} ∀ i ∈ N

These are the set of houses agent i prefers to her endowment a∗(i) and a∗(i) itself.

Since f ̸= fTTC , there is some profile of preferences ≻ such that f(≻) ̸= fTTC(≻).

Choose ≻ such that
∑

i∈N |Bi(≻i)| is minimized. Let N∗ := {i ∈ N : fi(≻) ̸= fTTC
i (≻)}.

The proof works in two steps.

Step 1. We show that |Bi(≻i)| = 2 for all i ∈ N∗. Pick any i ∈ N∗. First, Bi(≻i) = {a∗(i)}
is impossible because by individual rationality, fi(≻) = fTTC

i (≻) = a∗(i), a contradiction to

the definition of N∗. Hence, assume for contradiction |Bi(≻i)| > 2. There are two cases to

consider.

Case 1. Suppose fi(≻) ≻i fTTC
i (≻). Hence, by individual rationality, fi(≻) ̸= a∗(i).

Consider another preference ≻′
i such that the top two objects ≻′

i is {fi(≻), a∗(i)}, and
the ranking of these two objects is the same as in ≻i (i.e., fi(≻) ≻i a∗(i)). Suppose

fi(≻) = ak, f
TTC
i (≻) = at and fi(≻′

i,≻−i) = ak′ , f
TTC
i (≻′

i,≻−i) = at′ . By construction, top-

ranked object in ≻′
i is ak followed by a∗(i). By individual rationality {ak′ , at′} ⊆ {ak, a∗(i)}.

By strategy-proofness of f ,

ak′ ≻′
i ak or ak′ = ak.

If ak′ ̸= ak, then ak′ = a∗(i). Hence, agent i can manipulate to ≻i at preference ≻′
i to

get ak ≻′
i a∗(i), which contradicts strategy-proofness. So, we have ak′ = ak.

4 We argue

that at′ = a∗(i). By our assumption (that fi(≻) ≻i fTTC
i (≻)), we have ak ≻i at. By

individual rationality, at′ ∈ {ak, a∗(i)}. Assume for contradiction at′ = ak. Then, agent i can

manipulate in TTC when her preference is ≻i by reporting ≻′
i, a contradiction to strtaegy-

proofness. Hence, at′ = a∗(i). As a result, fi(≻′
i,≻−i) ̸= fTTC

i (≻′
i,≻−i). But |Bi(≻′

i)| = 2

4This argument is similar to the proof of Claim 6.

196

and |Bi(≻i)| > 2, contradicting minimality of ≻.

Case 2. Suppose fTTC
i (≻) ≻i fi(≻). Hence, by individual rationality, fTTC

i (≻) ̸= a∗(i).

Consider another preference ≻′
i such that the top two objects ≻′

i is {fTTC
i (≻), a∗(i)}, and

the ranking of these two objects is the same as in ≻i (i.e., f
TTC
i (≻) ≻i a∗(i)). The rest of

the proof is identical to Case 1 by changing the position of fTTC
i and fi.

Step 2. Let N̄ be the set of agents who strictly prefer their matched objects in f to fTTC

(according to ≻). Similarly, let Ñ be the set of agents who strictly prefer their matched

objects in fTTC to f (according to ≻). Since f and fTTC are individually rational, for each

i ∈ N̄ ,

≻i (1,M) = fi(≻) ≻i fTTC
i (≻) = a∗(i) =≻i (2,M).

Similarly, for each i ∈ Ñ ,

≻i (1,M) = fTTC
i (≻) ≻i fi(≻) = a∗(i) =≻i (2,M).

Now, pick any i ∈ N̄ . We argue that a∗(i) must be assigned to an agent in N̄ in f . We know

that i is assigned a∗(i) in TTC. Suppose j is assigned to a∗(i) in f . If j /∈ N̄ ∪ Ñ , then j

must be assigned a∗(i) in TTC too, which is not the case. Hence, if j /∈ N̄ , then j ∈ Ñ . But

this implies that fj(≻) = a∗(j) ̸= a∗(i), a contradiction.

This means that agents in N̄ are assigned objects in ∪i∈N̄a
∗(i) in the mechanism f . A

similar argument shows that agents in Ñ are assigned objects owned by agents in Ñ in TTC.

Clearly N̄ ∪ Ñ ̸= ∅. Hence, N̄ is non-empty or Ñ is non-empty. If N̄ is non-empty, we

observe the following. Agents in N̄ prefer their matched object in f to their matched object

in the TTC mechanism. Hence, the following matching Pareto dominates fTTC(≻).

a(i) =

fi(≻) if i ∈ N̄

fTTC
i (≻) otherwise.

Notice that a is a feasible matching because

• agents in N̄ are assigned objects in ∪i∈N̄a
∗(i) in the mechanism f (we showed this)

• each agent i ∈ N̄ is assigned a∗(i) in fTTC (by our construction)

197

• hence, agents in N \ N̄ are assigned objects in ∪i∈N\N̄a
∗(i) in fTTC

This contradicts Pareto efficiency of TTC. Similarly, if Ñ is non-empty, then we can

reallocated objects in Ñ according to the match in fTTC to Pareto dominate the matching

in f , contradicting Pareto efficiency of f . ■

Note that the serial dictatorship with a fixed priority is strategy-proof and efficient but

not individually rational. The“status-quo mechanism”where everyone is assigned the houses

they own is strategy-proof and individually rational but not efficient. So, the properties of

individual rationality and efficiency are crucial for the characterization of Theorem 34.

8.1.4 Generalized TTC Mechanisms

In this section, we generalize the TTC mechanisms in a natural way so that one extreme

covers the TTC mechanism we discussed and the other extreme covers the fixed priority

mechanism. We can now handle the case where the number of objects is not equal to the

number of agents. We now define fixed priority TTC (FPTTC) mechanisms. In a FPTTC

mechanism, each house aj is endowed with a priority σj : N → N over agents. This generates

a profile of priorities σ ≡ (σ1, . . . , σn). Every FPTTC mechanism is defined by a profile of

priorities σ. We denote the FPTTC mechanism corresponding to a priority profile σ as fσ.

The FPTTC mechanism then goes in stages, with each stage executing a TTC mechanism

but the endowments in each stage changing with the fixed priority profile σ.

We first illustrate the idea with the example in Table 8.4.

≻1 ≻2 ≻3 ≻4

a3 a2 a2 a1

a2 a3 a4 a4

a1 a4 a3 a3

a4 a1 a1 a2

Table 8.4: An example for housing model

Consider two priorities σ1 and σ2, where σ1(i) = i for all i ∈ N and σ2 is defined as

σ2(1) = 2, σ2(2) = 1, σ2(3) = 4, σ2(4) = 3. Suppose houses a1 and a2 are assigned priority σ1

but houses a3 and a4 are assigned priority σ2.

198

In stage 1, the endowments are derived from the priorities of houses. Since houses a1 and

a2 have agent 1 as top in their priority σ1, agent 1 is endowed with these houses. Similarly,

agent 2 is endowed houses a3 and a4 by priority σ2. Now, the TTC phase of stage 1 begins.

By the preferences of agents, each agent points to agent 1, except agent 1, who points to

agent 2 (agent 2 is endowed house a3, which is agent 1’s top ranked house). So, trade takes

place between agents 1 and 2. This is shown in Figure 8.3 - the endowments of agents are

shown in square brackets. The edges also reflect which object it is pointing to.

[a3,a4]1 2

3

4

[a1,a2]

Figure 8.3: Cycle in stage 1 of the FPTTC mechanism

In the next stage, only agents 3 and 4 remain. Also, only houses a1 and a4 remain. We

look at the priority of σ1 of house a1. Of the remaining agents, agent 3 is the top. Then,

for priority σ2 of house a4, the top agent among remaining agent is agent 4. So, the new

endowment is agent 3 gets a1 and agent 4 gets a4. We run the TTC phase now. Agent 3

points to agent 4 and agent 4 points to agent 3. So, they trade, and the FPTTC mechanism

gives the following matching ā: ā(1) = a3, ā(2) = a2, ā(3) = a4, ā(3) = a1. This is shown in

Figure 8.4.

[a1]

3 4 [a4]

Figure 8.4: Cycle in stage 2 of the FPTTC mechanism

If all the houses have the same fixed priority, then we recover the fixed priority mechanism.

199

To see this, notice that because of identical priority of houses, all the houses are endowed

to the same agent in every stage of the FPTTC mechanism. As a result, at stage i, the ith

agent in the priority gets his top-ranked house. Hence, we recover the fixed priority (serial

dictatorship) mechanism.

On the other extreme, if all the houses have priorities such that the top ranked agents in

the priorities are distinct (i.e., for any two houses aj, ak with priorities σj and σk, we have

σj(1) ̸= σk(1)), then the endowments of the agents do not change over stages if the number of

houses is equal to the number of agents. If there are more houses than number of agents, the

endowment of each agent increases (in terms of set inclusion) across stages. So, we recover

the traditional TTC mechanism for the case of equal number of agents and houses.

The following proposition can now be proved using steps similar to Proposition 11.

Proposition 12 For every priority profile σ, the FPTTC mechanism fσ is strategy-proof

and efficient.

8.2 The Two-sided Matching Model

The house allocation model is a model of one-sided matching - only agents (one side of the

market) had preference over the houses. In many situations, the matching market can be

partitioned into two sides, and an agent on one side will have preference over agents on the

other side. For instance, consider the scenario where students are matched to schools. It is

plausible that not only students have preferences over the schools but schools also have a

preferences over students. Other applications of two-sided matching include job applicants

matched to firms, doctoral students matched to faculty etc.

Let M be a set of men and W be a set of women. For simplicity, we will assume that

|M | = |W | - but this is not required to derive the results. Every man m ∈ M has a strict

preference ordering ≻m over the set of women W . So, for x, y ∈ W , x ≻m y will imply that

m ranks x over y. A matching is a bijective mapping µ :M → W , i.e., every man is assigned

to a unique woman. If µ is a matching, then µ(m) denotes the woman matched to man m

and µ−1(w) denotes the man matched to woman w. This model is often called the “marriage

market” model or “two-sided matching” model. We first discuss the stability aspects of this

model, and then discuss the strategic aspects.

200

8.2.1 Stable Matchings in Marriage Market

As in the house allocation model with existing tenants, the resources to be allocated to agents

in the marriage market model are owned by agents themselves. Hence, stability becomes an

important criteria for designing any mechanism.

We consider an example with three men and three women. Let M = {m1,m2,m3} and

W = {w1, w2, w3}. Their preferences are shown in Table 8.5.

≻m1 ≻m2 ≻m3 ≻w1 ≻w2 ≻w3

w2 w1 w1 m1 m3 m1

w1 w3 w2 m3 m1 m3

w3 w2 w3 m2 m2 m2

Table 8.5: Preference orderings of men and women

Consider the following matching µ: µ(m1) = w1, µ(m2) = w2, µ(m3) = w3. This matching

is unstable in the following sense. The pair (m1, µ(m2) = w2) will block this matching (ex

post) since m1 likes w2 over µ(m1) = w1 and w2 likes m1 over µ−1(w2) = m2. So, (m1, w2)

will break away, and form a new pair. This motivates the following definition of stability.

Definition 57 A matching µ is pairwise unstable at preference profile (≻) if there exists

m,m′ ∈M such that (a) µ(m′) ≻m µ(m) and (b) m ≻µ(m′) m
′. The pair (m,µ(m′)) is called

a blocking pair of µ at (≻). If a matching µ has no blocking pairs at a preference profile ≻,

then it is called a pairwise stable matching at ≻.

The following matching µ′ is a pairwise stable matching at ≻: µ′(m1) = w1, µ
′(m2) =

w3, µ
′(m3) = w2 for the example in Table 8.5. The question is: Does a pairwise stable

matching always exist? The answer to this question is remarkably yes, as we will show next.

One can imagine a stronger requirement of stability, where groups of agents block instead

of just pairwise blocking. We say that a coalition S ⊆ (M ∪W) blocks a matching µ at a

profile ≻ if there exists another matching µ′ such that (i) for all m ∈M ∩S, µ′(m) ∈ W ∩S
and for all w ∈ W ∩ S, µ′−1(w) ∈ M ∩ S, and (ii) for all m ∈ M ∩ S, µ′(m) ≻m µ(m) and

for all w ∈ M ∩ S, µ′−1(w) ≻w µ
−1(w). We say a matching µ is in core at a profile ≻ if no

coalition can block µ at ≻. The following theorem suggests that this notion of stability is

equivalent to the pairwise notion of stability we have initially defined.

201

Theorem 35 A matching is pairwise stable at a profile if and only if it belongs to the core

at that profile.

Proof : Consider a matching µ which is pairwise stable at ≻. Assume for contradiction that

µ is not in the core at ≻. Then, there must exist S ⊆ (M ∪W) and a matching µ̂ such that

for all m ∈ M ∩ S and for all w ∈ W ∩ S with µ̂(m), µ̂−1(w) ∈ S we have µ̂(m) ≻m µ(m)

and µ̂−1(w) ≻w µ
−1(w). This means for some m ∈ S we have µ̂(m) ∈ W ∩S. Let µ̂(m) = w.

We know w ≻m µ(m). Then, we have m ≻w µ
−1(w). Hence, (m,w) is a blocking pair at ≻

for µ. This implies that µ is not pairwise stable, which is a contradiction.

The other direction of the proof is trivial. ■

For this reason, we will say a matching is stable at a preference profile if it is pairwise

stable at that preference profile. We will also drop that qualified “at a preference profile” at

some places where the preference profile in question is clear from the context.

8.2.2 Deferred Acceptance Algorithm

In this section, we show that a stable matching always exists in the marriage market model.

The fact that a stable matching always exists is proved by constructing an algorithm to find

such a matching (this algorithm is due to David Gale and Lloyd Shapley, and also called

the Gale-Shapley algorithm). There are two versions of this algorithm. In one version men

propose to women and women either accept or reject the proposal. In another version, women

propose to men and men either accept or reject the proposal. We describe the men-proposal

version.

• S1. First, every man proposes to his top ranked woman.

• S2. Then, every woman who has at least one proposal keeps (tentatively) the top man

amongst these proposals and rejects the rest.

• S3. Then, every man who was rejected in the last round, proposes to the top woman

amongst those women who have not rejected him in earlier rounds.

• S4. Then, every woman who has at least two proposals, including any proposal ten-

tatively kept from earlier rounds, keeps (tentatively) the top man amongst these pro-

posals and rejects the rest. The process is then repeated from Step S3 till each woman

202

has a proposal, at which point, the tentative proposal accepted by a woman becomes

permanent.

Since each woman is allowed to keep only one proposal in every round, no woman will

be assigned to more than one man. Since a man can propose only one woman at a time, no

man will be assigned to more than one woman. Since the number of men and women are

the same, this algorithm will terminate at a matching. Also, the algorithm will terminate

finitely since in every round, the set of women a man can propose does not increase, and

strictly decreases for at least one man.

We illustrate the algorithm for the example in Table 8.5. A proposal from m ∈ M to

w ∈ W will be denoted by m→ w.

• In the first round, every man proposes to his best woman. So, m1 → w2,m2 →
w1,m3 → w1.

• Hence, w1 has two proposals: {m2,m3}. Since m3 ≻w1 m2, w1 rejects m2 and keeps

m3.

• Now, m2 is left to choose from {w2, w3}. Since w3 ≻m2 w2, m2 now proposes to w3.

• Now, every woman has exactly one proposal. So the algorithm stops with the matching

µm given by µm(m1) = w2, µm(m2) = w3, µm(m3) = w1.

It can be verified that µm is a stable matching. Also, note that µm is a different stable

matching than the stable matching µ′ which we discussed earlier. Hence, there can be more

than one stable matching.

One can also state a women proposing version of the deferred acceptance algorithm. Let

us run the women proposing version for the example in Table 8.5. As before, a proposal

from w ∈ W to m ∈M will be denoted by w → m.

• In the first round, every woman proposes to her top man. So, w1 → m1, w2 → m3, w3 →
m1.

• So, m1 has two proposals: {w1, w3}. We note that w1 ≻m1 w3. Hence, m1 rejects w3

and keeps w1.

203

• Now, w3 is left to choose from {m2,m3}. Since m3 ≻w3 m2, w3 proposes to m3.

• This implies that m3 has two proposals: {w2, w3}. Since w2 ≻m3 w3, m3 rejects w3 and

keeps w2.

• Now, w3 is left to choose only m2. So, the algorithm terminates with the matching µw

given by µw(m1) = w1, µw(m2) = w3, µw(m3) = w2.

Note that µw is a stable matching and µm ̸= µw.

8.2.3 Stability and Optimality of Deferred Acceptance Algorithm

Theorem 36 At every preference profile, the Deferred Acceptance Algorithm terminates at

a stable matching for that profile.

Proof : Consider the Deferred Acceptance Algorithm where men propose (a similar proof

works if women propose) for a preference profile ≻. Let µ be the final matching of the

algorithm. Assume for contradiction that µ is not a stable matching. This implies that there

exists a pair m ∈M and w ∈ W such that (m,w) is a blocking pair. By definition µ(m) ̸= w

and w ≻m µ(m). This means that w rejected m earlier in the algorithm (else m would have

proposed to w at the end of the algorithm). But a woman rejects a man only if she gets

a better proposal, and her proposals improve in every round. This implies that w must be

assigned to a better man than m, i.e., µ−1(w) ≻w m. This contradicts the fact that (m,w)

is a blocking pair. ■

The men-proposing and the women-proposing versions of the Deferred Acceptance Algo-

rithm may output different stable matchings. Is there a reason to prefer one of the stable

matchings over the other? Put differently, should we use the men-proposing version of the

algorithm or the women-proposing version?

To answer this question, we start with some notations. A matching µ is men-optimal

stable matching if µ is stable and for every other stable matching µ′ we have µ(m) ≻m µ′(m)

or µ(m) = µ′(m) for all man m ∈ M . Similarly, a matching µ is women-optimal stable

matching if µ is stable and for every other stable matching µ′ we have µ−1(w) ≻w µ′−1(w)

or µ−1(w) = µ′−1(w) for all woman w ∈ W .

204

Note that by definition, a men-optimal stable matching is unique - if there are two men

optimal stable matchings µ, µ′, then they must differ by at least one man’s match and this

man must be worse in one of the matchings. Similarly, there is a unique women-optimal

stable matching.

Theorem 37 The men-proposing version of the Deferred Acceptance Algorithm terminates

at the unique men-optimal stable matching and the women-proposing version of the Deferred

Acceptance Algorithm terminates at the unique women-optimal stable matching.

Proof : We do the proof for men-proposing version of the algorithm. The proof is similar

for the women-proposing version. Let µ̂ be the stable matching obtained at the end of the

men-proposing Deferred Acceptance Algorithm. Assume for contradiction that µ̂ is not men-

optimal. Then, there exists a stable matching µ such that for some m ∈M , µ(m) ≻m µ̂(m).

Let M ′ = {m ∈M : µ(m) ≻m µ̂(m)}. Hence, M ′ ̸= ∅.
Now, for every m ∈ M ′, since µ(m) ≻m µ̂(m), we know that m is rejected by µ(m) in

some round of the algorithm. Denote the round in which m ∈M ′ is rejected by µ(m) by tm.

Choose m′ ∈ argminm∈M ′ tm, i.e., choose a man m′ who is the first to be rejected by µ(m′)

among all men inM ′. Since µ(m′) rejects m′, she must have got a better proposal from some

other man m′′, i.e.,

m′′ ≻µ(m′) m
′. (8.1)

Now, consider µ(m′) and µ(m′′). If m′′ /∈M ′, then µ̂(m′′) = µ(m′′) or µ̂(m′′) ≻m′′ µ(m′′).

Since m′′ is eventually assigned to µ̂(m′′), it must be the last woman that m′′ must have

proposed in DAA. The fact that m′′ proposed to µ(m′) earlier means µ(m′) ≻m′′ µ̂(m′′).

Using, µ̂(m′′) = µ(m′′) or µ̂(m′′) ≻m′′ µ(m′′), we get

µ(m′) ≻m′′ µ(m′′).

If m′′ ∈ M ′, then, since tm′′ > tm′ and the fact that m′′ proposed to µ(m′) in round

tm′ implies that m′′ has not been rejected by µ(m′′) till round tm′ . This means, again, m′′

proposed to µ(m′) before proposing to µ(m′′). Hence, as in the earlier case, we get

µ(m′) ≻m′′ µ(m′′). (8.2)

205

By Equations 8.1 and 8.2, (m′′, µ(m′)) forms a blocking pair. Hence, µ is not stable. This is

a contradiction. ■

We will denote the unique men-optimal stable matching as µM and the unique women-

optimal stable matching as µW . The natural question is then whether there exists a stable

matching that is optimal for both men and women. The answer is no. The example in Table

8.5 has two stable matchings, one is optimal for men but not for women and one is optimal

for women but not for men.

We explore the structure of stable matchings a bit further.

Theorem 38 Let µ and µ′ be a pair of stable matchings. Then, µ(m) ≻m µ′(m) or µ(m) =

µ′(m) for all m ∈M if and only if µ′−1(w) ≻w µ
−1(w) or µ′−1(w) = µ−1(w) for all w ∈ W .

Proof : Let µ, µ′ be two stable matchings with µ(m) ≻m µ′(m) or µ(m) = µ′(m) for all m ∈
M . Assume for contradiction that µ−1(w) ≻w µ′−1(w) for some w. Suppose m ≡ µ−1(w).

By definition, w ≻m µ′(m). Hence, (m,w) is a blocking pair of µ′, contradicting the fact

that µ′ is stable.

A similar proof can be given to show the other direction. ■

Theorem 38 and Theorem 37 suggest that the men-optimal stable matching µM is the

worst stable matching for women and the women-optimal stable matching µW is the worst

stable matching for men. Indeed, we can now define a preference relation ◁ on the set of

stable matchings. For any pair of stable matchings µ, µ′, we say µ◁ µ′ if for every m ∈ M ,

µ(m) = µ′(m) or µ(m) ≻m µ′(m) (or equivalently, µ′−1(w) = µ−1(w) or µ′−1(w) ≻w µ
−1(w)

for every w). Note that ◁ is not a complete relation. Similarly, we can define the relation

▷ over the set of stable matchings by considering the preferences of women. In particular,

for any pair of stable matchings µ, µ′, we say µ ▷ µ′ if for every µ−1(w) = µ′−1(w) or

µ−1(w) ≻w µ′−1(w) for every w. The following is an immediate corollary to Theorems 37

and 38.

Theorem 39 For any stable matching µ, the following holds:

µM ◁ µ◁ µW

µW ▷ µ▷ µM .

206

m m′

µ w µ(m′)

µ′ µ′(m) w

µ′′ w w

Table 8.6: µ′′ is a matching

There is more to the structure of stable matchings. For any pair of stable matchings

µ, µ′, we construct another matching µ′′ ≡ (µ ∨m µ′) as follows: for every m ∈M , we define

µ′′(m) = µ(m) if µ(m) ≻m µ′(m) or µ(m) = µ′(m), and µ′′(m) = µ′(m) if µ′(m) ≻m µ(m).

We write this equivalently as for all m ∈M ,

(µ ∨m µ′)(m) = max
≻m

(µ(m), µ′(m)).

It is not clear if µ′′ is a matching. The following theorem shows that µ′′ is a stable matching.

Similarly, we can define the matching µ ∨w µ′ as follows: for every w ∈ W , we define

(µ ∨w µ′)−1(w) := max
≻w

(µ−1(w), µ′−1(w)).

The following theorem shows that these are stable matchings.

Theorem 40 For every pair of stable matchings µ, µ′, (µ∨mµ′) and (µ∨wµ′) are also stable

matchings.

Proof : Take a pair of stable matchings µ, µ′ and let µ′′ ≡ (µ∨mµ′). Assume for contradiction

that µ′′ is not a matching. Then, there must exist m,m′ ∈M such that µ′′(m) = µ′′(m′).

Then, it must be that (see Table 8.6) there is some w ∈ W with w := µ(m) = µ′(m′)

and w ≻m µ′(m) and w ≻m′ µ(m′) - there is also a similar case where the role of µ and µ′

is reversed. Since µ′ is stable, then m′ ≻w m. But then (m′, w) form a blocking pair of µ,

contradicting the fact that µ is stable.

Next, we show that µ′′ is a stable matching. Assume for contradiction (m,w) is a blocking

pair of µ′′. Suppose m is matched to w1 and w is matched to m1 in µ′′. Hence, since (m,w)

is a blocking pair

m ≻w m1, and w ≻m w1

207

m m1

µ w1 w?

µ′ w2 w?

µ′′ w1 w

Table 8.7: µ′′ is a stable matching

Now, suppose w1 = µ(m) and w2 = µ′(m) - it is possible that w1 = w2. See Table 8.7.

By definition of µ′′, w1 ≻m w2 or w1 = w2. Hence, we conclude that

w ≻m w1 and w ≻m w2.

We now argue that w is not matched to m1 in µ. Suppose w is matched to m1 in µ. Note

that µ(m) = w1. Since m ≻w m1 and w ≻m w1, (m,w) form a blocking pair for µ.

Similarly, w is not matched to m1 in µ′. Suppose w is matched to m1 in µ′. Note that

µ′(m) = w2. Since m ≻w m1 and w ≻m w2, (m,w) form a blocking pair for µ′.

Since w is not matched to m1 in both µ and µ′, w and m1 cannot be matched with each

other in µ′′. This is a contradiction.

A similar proof shows that (µ ∨w µ′) is a stable matching. ■

For every pair of stable matchings µ and µ′, we can also define the minimum matchings

as (µ ∧m µ′) and (µ ∧w µ′), where (µ ∧m µ′)(m) = min≻m(µ(m), µ′(m)) for all m and (µ ∧w

µ′)−1(w) = min≻w(µ
−1(w), µ′−1(w)) for all w. You are encouraged to think (a) if these are

stable matchings and (b) their relationship with the matchings (µ ∨m µ′) and (µ ∨w µ′).

An example clarifies the results. Consider the preferences of four men and four women

in Table 8.8. It can be verified that there are four stable matchings in this example:

µ1 : (m1, w1), (m2, w2), (m3, w4), (m4, w3)

µ2 : (m1, w2), (m2, w1), (m3, w4), (m4, w3)

µ3 : (m1, w1), (m2, w2), (m3, w3), (m4, w4)

µ4 : (m1, w2), (m2, w1), (m3, w3), (m4, w4)

Now, it is easy to verify that µ2 ∨m µ3 = µ1 and µ2 ∨w µ3 = µ4. Indeed µ1 is the

men-optimal stable matching and µ4 is the women-optimal stable matching.

208

≻m1 ≻m2 ≻m3 ≻m4 ≻w1 ≻w2 ≻w3 ≻w4

w1 w2 w4 w3 m2 m1 m3 m4

w2 w1 w3 w4 m1 m2 m4 m3

w3 w3 w1 w2 m3 m3 m2 m1

w4 w4 w2 w1 m4 m4 m1 m2

Table 8.8: Preference orderings of men and women

8.2.4 Unequal number of men and women

In the model in the previous section, we assumed that |M | = |W |. This was only for

simplicity. As far as stability is concerned, none of the results change if |M | ≠ |W |. To

see this, assume |M | > |W |. Then, introduce a set of dummy women D such that |D| =
|M | − |W |. For every dummy woman, d ∈ D, endow her with some arbitrary preference ≻d

over M . For every m ∈M , extend his preference ≻m over W ∪D such that for every w ∈ W

and every d ∈ D, we have w ≻m d. Call this the extended marriage market. The extended

marriage market has the same number of men and women. The DAA produces a stable

matching of the extended marriage market. Further, the men-proposing (women-proposing)

DAA produces men-optimal (women-optimal) stable matching.

A matching in the extended marriage market has the following interpretation: if a man

is matched to a dummy woman, then he is not matched to any woman. We argue that

the matching µ produced in the extended marriage market is a stable matching in the

original market. To see, assume for contradiction some (m,w) blocks this matching. So,

m ≻w µ−1(w) and w ≻m µ(m). If m is unmatched in µ, then it is matched to some

dummy woman d in extended marriage market. Since w is preferred to being unmatched, it

is also preferred to being the dummy woman d. Hence, (m,w) also block in the extended

marriage market. If m is matched in µ, then it is matched to a non-dummy woman in the

extended market. This means that (m,w) also block in the extended marriage market. So,

in both cases, we have a contradiction since µ is a stable matching of the extended marriage

market. A similar analysis shows that the men-optimal and women-optimal stable matchings

in the extended marriage market corresponds to the men-optimal and women-optimal stable

matchings in the original market.

The following result shows what happens if |M | ≠ |W |. In this case, we will assume that

209

every man (woman) prefers to be matched to some woman (man) than to remain unmatched.

Theorem 41 The set of matched agents is the same at every stable matching.

Proof : Let µM be the men-optimal stable matching and µ be any arbitrary stable matching.

Let M̃ and W̃ be the set of men and women matched in µM respectively. Similarly, let M̂

and Ŵ be the set of men and women matched in µ. By definition

|M̃ | = |W̃ | |M̂ | = |Ŵ |

Since µM is men-optimal stable matching, any man matched in µ must be matched in

µM . So, M̂ ⊆ M̃ . Hence, we get

|W̃ | = |M̃ | ≥ |M̂ | = |Ŵ | (8.3)

By Theorem 38, every woman prefers µ to µM . As a result, any woman matched in µM is

also matched in µ. Hence, W̃ ⊆ Ŵ . Hence, |Ŵ | ≥ |W̃ |. Combining with (8.3), we get

|W̃ | = |M̃ | = |M̂ | = |Ŵ |

As a result, M̂ = M̃ and Ŵ = M̂ . ■

A result similar in spirit to Theorem 41 is the following.

Theorem 42 Suppose w is ranked last by every man at a preference profile. Then w is

matched to the same man in every stable matching. Similarly, suppose m ranked last by

every woman at a preference profile. Then m is matched to the same woman in every stable

matching.

Proof : We do the proof for man, and a similar proof works for woman. Supposem is ranked

last by all women at a preference profile. We will argue that at every stable matching the

match of m is the same as that in the men-optimal stable matching µM . By Theorem 41, if

m is unmatched in µM , it is unmatched in all stable matchings, and we are done. Suppose

m is matched to w1 in an arbitrary stable matching µ. Assume for contradiction that m is

not matched to w1 in µM . Then, w1 is matched to some m1 ̸= m in µM . Further, suppose

m1 is matched to w′
1 in µ. The matchings are shown in Table 8.9.

210

µ µM

(m,w1)

(m1, w
′
1) (m1, w1)

Table 8.9: Stable matchings µ and µM

Since (m1, w1) do not block µ and m1 ≻w1 m (since m is last ranked), it must be that

w′
1 ≻m1 w1

This implies m1 strictly prefers his match in µ to his match in µM , a contradiction to men-

optimality of µM . ■

Theorems 41 and 42 are famously referred to as the rural hospital theorem. An important

application of matching is to match doctors to hospitals. Often, hospitals in rural areas are

the worst choice for doctors. Theorem 41 and 42 says that if we choose a stable matching,

then these hospitals see the same matching in all stable matchings.

8.2.5 Strategic Issues in Deferred Acceptance Algorithm

We next turn to strategic properties of the Deferred Acceptance Algorithm (DAA). We first

consider the men-proposing version. We define the notion of strategyproofness informally

here. Strategyproofness is with respect to the direct revelation mechanism. The DAA is

strategy-proof if reporting a non-truthful preference ordering does not result in a better

outcome for an agent for any reported preferences of other agents.

We first show that the men-proposing version of the Deferred Acceptance Algorithm is

not strategyproof for women (i.e., women can manipulate). Let us return to the example

in Table 8.5. We know if everyone is truthful, then the matching is: µ(m1) = w2, µ(m2) =

w3, µ(m3) = w1. We will show that w1 can get a better outcome by not being truthful. We

show the steps here.

• In the first round, every man proposes to his best woman. So, m1 → w2,m2 →
w1,m3 → w1.

211

• Next, w2 only has one proposal (fromm1) and she accepts it. But w1 has two proposals:

{m2,m3}. If she is truthful, she should accept m3. We will see what happens if she is

not truthful. So, she accepts m2.

• Now, m3 has two choices: {w2, w3}. He likes w2 over w3. So, he proposes to w2.

• Now, w2 has two proposals: {m1,m3}. Since she likes m3 over m1, she accepts m3.

• Now, m1 has a choice between w1 and w3. Since he likes w1 over w3, he proposes to

w1.

• Now, w1 has two proposal: {m1,m2}. Since she prefers m1 over m2 she accepts m1.

• So, m2 is only left with {w2, w3}. Since he likes w3 over w2 he proposes to w3, which

she accepts. So, the final matching µ̂ is given by µ̂(m1) = w1, µ̂(m2) = w3, µ̂(m3) = w2.

Hence, w1 gets m1 in µ̂ but was getting m3 earlier. The fact that m1 ≻w1 m3 shows that

not being truthful helps w1. However, the same result does not hold for men. Similarly, the

women-proposing DAA is not strategy-proof for men.

Theorem 43 The men-proposing version of the Deferred Acceptance Algorithm is strate-

gyproof for men. The women-proposing version of the Deferred Acceptance Algorithm is

strategyproof for women.

Proof : Suppose there is a profile π = (≻m1 , . . . ,≻mn ,≻w1 , . . . ,≻wn) such that man m1 can

misreport his preference to be ≻∗, and obtain a better matching. Let this preference profile

be π′. Let µ be the stable matching obtained by the men-proposing deferred acceptance

algorithm when applied to π. Let ν be the stable matching obtained by the men-proposing

algorithm when applied to π′. We show that if ν(m1) ≻m1 µ(m1), then ν is not stable at π′,

which is a contradiction.

Let R = {m : ν(m) ≻m µ(m)}. Since m1 ∈ R, R is not empty. We show that {w :

ν−1(w) ∈ R} = {w : µ−1(w) ∈ R} - in other words, the set of women matched to men in R

is the same in µ and ν. Take any w such that ν−1(w) ∈ R, we will show that µ−1(w) ∈ R,

and this will establish the claim. If µ−1(w) = m1, then we are done by definition. Else, let

w = ν(m) and m′ = µ−1(w) with m′ ̸= m1. Since w ≻m µ(m), stability of µ at π implies

212

that m′ ≻w m. Stability of ν at π′ implies that ν(m′) ≻m′ w. Therefore, m′ ∈ R. Let

S = {w : ν−1(w) ∈ R} = {w : µ−1(w) ∈ R}. Note that for any w ∈ S, µ−1(w) ̸= ν−1(w) (if

this is true, then m := µ−1(w) = ν−1(w), and since m ∈ R this gives w ≻m w).

By definition ν(m) ≻m µ(m) for all m ∈ R. By stability of µ (at π), we then have

µ−1(w) ≻w ν
−1(w) for all w ∈ S. Now, pick any w ∈ S. By definition, w ≻ν−1(w) µ(ν

−1(w)).

This implies that during the execution of the men-proposing deferred acceptance algorithm

at π, ν−1(w) ∈ R must have proposed to w which she had rejected.

Letm ∈ R be the last man in R to make a proposal and get accepted during the execution

of the men-proposing deferred acceptance algorithm at π. Suppose this proposal is made to

w ≡ µ(m) ∈ S. As argued, w rejected ν−1(w) earlier. This means that when m proposed to

w, she had some tentative matching in DAA, say to m′, which she rejected. By definition,

m′ cannot be in R - because m′ must have proposed after m. This means that m′ ̸= ν−1(w),

and since m′ was accepted by w after rejecting ν−1(w),

m′ ≻w ν
−1(w).

Since m′ /∈ R, µ(m′) ≻m′ ν(m′) or µ(m′) = ν(m′). Also, since m′ proposed to w before

proposing to µ(m′), w ≻m′ µ(m′). This shows that

w ≻m′ ν(m′).

This shows that (m′, w) form a blocking pair for ν at π′. ■

Does this mean that no mechanism can be both stable and be strategyproof to all agents?

The answer is yes. We give a proof when agents do not necessarily rank themselves at the

bottom. Hence, now, a man m ranks all the women in W and himself. Similarly, a woman

w ranks all the men in M and herself.

Theorem 44 No mechanism which gives a stable matching can be strategy-proof for both

men and women.

213

Proof : Consider the following preference profile of two men and two women.

≻m1 : w1 ≻m1 w2 ≻m1 m1

≻m2 : w2 ≻m2 w1 ≻m2 m2

≻w1 : m2 ≻w1 m1 ≻w1 w1

≻w2 : m1 ≻w2 m2 ≻w2 w2

At this profile, there are two stable matchings: (m1, w1), (m2, w2) and (m1, w2), (m2, w1). If

there is a stable mechanism, it must choose one of them.

Suppose it chooses the men-optimal one: (m1, w1), (m2, w2). Suppose w1 misrepresents

her preference to be

≻′
w1
: m2 ≻w1 w1 ≻w1 m1

In the new preference profile (≻m1 ,≻m2 ,≻′
w1
,≻w2), the unique stable matching is (m1, w2), (m2, w1).

Hence, the mechanism must select it. But then, w1 is better off by manipulation.

Suppose it chooses the women-optimal one: (m1, w2), (m2, w1). Supposem1 misrepresents

her preference to be

≻′
m1

: w1 ≻m1 m1 ≻m1 w2

Then, there is a unique stable mechanism (m1, w1), (m2, w2) at this preference profile. This

means m1 is better off by manipulating. ■

However, one can trivially construct strategy-proof mechanisms for both men and women.

Consider a mechanism which ignores all men (or women) orderings. Then, it can run a fixed

priority mechanism for men (or women) or a TTC mechanism with fixed endowments for

men (or women) to get a strategy-proof mechanism.

8.2.6 College Admission Problem

The deferred acceptance algorithm can be suitably modified to handle the generalization of

college admission problems. In a college admission problem, there is a set of students S.

There is a set of colleges C. Each student s has a preference ≻s over set of colleges. We

assume these preferences are strict orderings.

214

Each college c has a quota qc ≥ 1, which is the maximum number of students it can

take. One approach is to model preferences over subsets of students for each college. We

assume that this preference over subsets is “responsive” to preference over singleton students

in the following way. We allow for the fact that a college may find a particular student

“unacceptable” – so, not admitting a student may be preferred over admitting a particular

student. For a matching µ, we denote by µ(s), the college assigned to student s. By µ(c),

we denote the set of students assigned to college c. We will assume that µ(c) only contains

acceptable students of college c (this is a weak form of stability condition).

Definition 58 Preference Pc of college c over subsets of students satisfy responsiveness if

1. for all T ⊆ S with |T | < qc and for all s ∈ S \ T ,

(T ∪ {s}) Pc T if and only if {s} Pc ∅

2. for all T ⊆ S with |T | = qc and for all s ∈ S and s′ /∈ S \ T ,

(T \ {s′} ∪ {s}) Pc T if and only if {s} Pc {s′}

In other words, choice of taking an extra student depends on whether that student is ac-

ceptable. Further, choice between two students depend on the ranking of those two students

only.

The deferred acceptance algorithm can be modified in a straightforward way in these

settings. The student proposing version works as follows. Each student proposes to its

favorite remaining acceptable school. A college c evaluates the set of proposals it has, and

accepts the top subset of students from the proposals. The procedure is repeated as was

described earlier. One can extend the stability, student-optimal stability, and strategy-

proofness results of previous section to this setting in a straightforward way. Here, we give

a formal definition of stability.

Definition 59 A student, college pair (s, c) blocks matching µ if c ≻s µ(s) and

{s} Pc {s′} for some s′ ∈ µ(c) if |µ(c)| = qc

{s} Pc ∅ if |µ(c)| < qc

A matching is stable if there are no blocking pairs.

215

Theorem 45 The student-proposing DAA produces a stable matching.

Proof : Let St and St+1 be the subset of students accepted by a college c in round t and

(t+ 1) with |St| = |St+1| = qc. We first prove the following. If s /∈ St and for every s′ ∈ St,

{s′} Pc {s}, then for every s′′ ∈ St+1, we have {s′′} Pc {s}. To see this, pick s /∈ St such

that for every s′ ∈ St, {s′} Pc {s}. Then, pick s′′ ∈ St+1. If s′′ ∈ St, we are done. Else,

s′′ /∈ St. Then, there must exist a student ŝ ∈ St which is not there in St+1 (because

|St| = |St+1| = qc). Hence, S
t+1 Pc S

t+1 \ {s′′} ∪ {ŝ}. By responsiveness, {s′′} Pc {ŝ}. But,
we know that {ŝ} Pc {s} for every s /∈ St. By transitivity of Pc, we get {s′′} Pc {s} for every

s /∈ St.

Next, we argue that if at any round, the subset of accepted students St by college c is

such that |St| = qc, then in every future round t̂ > t, we have |S t̂| = qc. Suppose not.

Then, there is some round t′ such that |St′ | = qc but |St′+1| < qc. But the students in St′

are acceptable and available in t′ + 1. Since |St′+1| < qc, there must exist some acceptable

student s ∈ St which is not in St′+1. By responsivness, St′+1 ∪ {s} Pc S
t′+1, a contradiction

to the fact that college c chose the best set of students in St′+1.

Now, assume for contradiction that the DAA did not produce a stable matching. Then,

there exists a pair (s, c) that can block the DAA matching µ. Then, student s must have

proposed to c and got rejected. Let Sc be the students tentatively accepted by c at that

time.

If |Sc| < qc, it must be that c is unacceptable to s (else, by responsive preferences, Sc∪{s}
is preferred to Sc). But this cannot be because (s, c) blocks µ. Hence, |Sc| = qc. In that

case, by our earlier arguments, the set of students accepted in any future rounds must have

size qc. Further, for every ŝ accepted in future round, we must have {ŝ} Pc {s}. If Ŝc

be the set of students matched to college c at the end of DAA, by responsive preferences,

Ŝc Pc Ŝc \ {ŝ} ∪ {s} for each ŝ ∈ Ŝc. Hence, (s, c) cannot block, a contradiction. ■

Similarly, one can prove that the college-proposing DAA produces a stable matching and

the lattice properties continue to hold in the college admission problem.

216

8.3 Two-sided matching with priorities

Now, consider a matching model, where agents have preferences over objects and objects

have priorities over agents. So, if N is the set of agents, then each i ∈ N has a strict

preference ordering ≻i over the set of objects in M . Similarly, each object ak ∈ M has a

priority (a strict ranking) of the set of agents. An object may be a school, which can admit

more than one student (agent). In that case, we can assume responsive priorities.

This formulation of two-sided matching is slightly different from the formulation we had

earlier. Here, the priorities of the objects are not preferences – they are assumed to be

common knowledge and given exogenously. For instance, this can be some rules imposed

by regulators on how schools can have priorities over students. This allows us to use two

mechanisms in this model.

• The agent-proposing DAA. This is strategy-proof for agents. It is stable with respect

to preferences of agents and priorities of objects. Indeed, it gives the agent-optimal

stable matching.

• The fixed priority TTC. This is strategy-proof for agents. It is Pareto efficient with

respect to preferences of agents.

There is a potential tradeoff between stability and Pareto efficiency as the following

example illustrates. Suppose there are three agents N = {1, 2, 3} and three objects M =

{a1, a2, a3}. The preferences and priorities are shown in Table 8.10. In this problem, if

we run agent-proposing DAA or object-proposing DAA we get the same matching: µ(1) =

a1, µ(2) = a2, µ(3) = a3. Hence, this is the unique stable matching. But this is not Pareto

efficient for agents: the matching µ′ given by µ′(1) = a2, µ
′(2) = a1, µ

′(3) = a3 dominates

matching µ with respect to preferences of agents. Indeed, µ′ is the matching obtained when

we run the FPTTC mechanism with priority profile σ. Notice that µ′ can be blocked by

(3, a1). This shows that the FPTTC may not be stable and DAA may not be Pareto efficient.

217

σa1 σa2 σa3 ≻1 ≻2 ≻3

1 2 2 a2 a1 a1

3 1 1 a1 a2 a2

2 3 3 a3 a3 a3

Table 8.10: Two-sided matching with priorities

218

Bibliography

Kenneth J Arrow. The property rights doctrine and demand revelation under incomplete

information. In Economics and human welfare, pages 23–39. 1979.

Larry Ausubel and Paul Milgrom. Ascending proxy auctions. In Peter Cramton, Yoav

Shoham, and Richard Steinberg, editors, Combinatorial Auctions, chapter 3, pages 266–

290. MIT Press, Cambridge, MA, 2006.

Helmut Bester and Roland Strausz. Imperfect commitment and the revelation principle: the

multi-agent case. Economics Letters, 69(2):165–171, 2000.

Helmut Bester and Roland Strausz. Contracting with imperfect commitment and the reve-

lation principle: the single agent case. Econometrica, 69(4):1077–1098, 2001.

Duncan Black. On the rationale of group decision-making. The Journal of Political Economy,

pages 23–34, 1948.

J. Bulow and P. Klemperer. Auctions versus negotiations. American Economic Review, 86:

180–194, 1996.

Ruggiero Cavallo. Optimal decision-making with minimal waste: Strategyproof redistribu-

tion of vcg payments. In Proceedings of the fifth international joint conference on Au-

tonomous agents and multiagent systems, pages 882–889. ACM, 2006.

Shurojit Chatterji and Arunava Sen. Tops-only domains. Economic Theory, 46(2):255–282,

2011.

Edward H Clarke. Multipart pricing of public goods. Public choice, 11(1):17–33, 1971.

219

Peter Cramton, Robert Gibbons, and Paul Klemperer. Dissolving a partnership efficiently.

Econometrica: Journal of the Econometric Society, pages 615–632, 1987.

Jacques Cremer and Richard P McLean. Full extraction of the surplus in bayesian and

dominant strategy auctions. Econometrica: Journal of the Econometric Society, pages

1247–1257, 1988.

Claude d’Aspremont and Louis-André Gérard-Varet. Incentives and incomplete information.

Journal of Public economics, 11(1):25–45, 1979.

Claude d’Aspremont, Jacques Crémer, and Louis-André Gérard-Varet. Balanced bayesian

mechanisms. Journal of Economic Theory, 115(2):385–396, 2004.

Geoffroy De Clippel. Behavioral implementation. American Economic Review, 104(10):

2975–3002, 2014.

Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the

generalized second-price auction: Selling billions of dollars worth of keywords. The Amer-

ican economic review, 97(1):242–259, 2007.

Allan Gibbard. Manipulation of voting schemes: a general result. Econometrica: journal of

the Econometric Society, pages 587–601, 1973.

Jerry R Green and Jean-Jacques Laffont. Incentives in public decision making. North-

Holland, 1979.

Theodore Groves. Incentives in teams. Econometrica: Journal of the Econometric Society,

pages 617–631, 1973.

Mingyu Guo and Vincent Conitzer. Worst-case optimal redistribution of vcg payments in

multi-unit auctions. Games and Economic Behavior, 67(1):69–98, 2009.

John C Harsanyi. Games with incomplete information played by ?bayesian? players part i.

the basic model. Management Science, 14(3):159–182, 1968a.

John C Harsanyi. Games with incomplete information played by ?bayesian? players part ii.

bayesian equilibrium points. Management Science, 14(5):320–334, 1968b.

220

John C Harsanyi. Games with incomplete information played by’bayesian’players, part iii.

the basic probability distribution of the game. Management Science, 14(7):486–502, 1968c.

Sergiu Hart and Philip J Reny. Maximal revenue with multiple goods: Nonmonotonicity and

other observations. Theoretical Economics, 10(3):893–922, 2015.

Leonid Hurwicz. Optimality and informational efficiency in resource allocation processes.

Stanford University Press, 1960.

Jean-Jacques Laffont and Eric Maskin. A differential approach to dominant strategy mech-

anisms. Econometrica, pages 1507–1520, 1980.

Yan Long, Debasis Mishra, and Tridib Sharma. Balanced ranking mechanisms. Games and

Economic Behavior, 105:9–39, 2017.

Jinpeng Ma. Strategy-proofness and the strict core in a market with indivisibilities. Inter-

national Journal of Game Theory, 23(1):75–83, 1994.

Alejandro M Manelli and Daniel R Vincent. Multidimensional mechanism design: Revenue

maximization and the multiple-good monopoly. Journal of Economic theory, 137(1):153–

185, 2007.

R Preston McAfee and Philip J Reny. Correlated information and mecanism design. Econo-

metrica: Journal of the Econometric Society, pages 395–421, 1992.

Debasis Mishra and Tridib Sharma. A simple budget-balanced mechanism. Social Choice

and Welfare, 50(1):147–170, 2018.

Hervé Moulin. On strategy-proofness and single peakedness. Public Choice, 35(4):437–455,

1980.

Hervé Moulin. Almost budget-balanced vcg mechanisms to assign multiple objects. Journal

of Economic theory, 144(1):96–119, 2009.

Michael Mussa and Sherwin Rosen. Monopoly and product quality. Journal of Economic

theory, 18(2):301–317, 1978.

221

Roger B Myerson. Incentive compatibility and the bargaining problem. Econometrica, pages

61–73, 1979.

Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73,

1981.

Roger B Myerson and Mark A Satterthwaite. Efficient mechanisms for bilateral trading.

Journal of economic theory, 29(2):265–281, 1983.

Szilvia Pápai. Strategyproof assignment by hierarchical exchange. Econometrica, 68(6):

1403–1433, 2000.

Marek Pycia and M Utku Ünver. Incentive compatible allocation and exchange of discrete

resources. Theoretical Economics, 12(1):287–329, 2017.

Rene Saran. Menu-dependent preferences and revelation principle. Journal of Economic

Theory, 146(4):1712–1720, 2011.

Mark A Satterthwaite and Hugo Sonnenschein. Strategy-proof allocation mechanisms at

differentiable points. The Review of Economic Studies, 48(4):587–597, 1981.

Mark Allen Satterthwaite. Strategy-proofness and arrow’s conditions: Existence and corre-

spondence theorems for voting procedures and social welfare functions. Journal of eco-

nomic theory, 10(2):187–217, 1975.

Arunava Sen. Another direct proof of the gibbard–satterthwaite theorem. Economics Letters,

70(3):381–385, 2001.

Jay Sethuraman. An alternative proof of a characterization of the ttc mechanism. Operations

Research Letters, 44(1):107–108, 2016.

Lloyd Shapley and Herbert Scarf. On cores and indivisibility. Journal of mathematical

economics, 1(1):23–37, 1974.

Tayfun Sönmez and M Utku Ünver. Matching, allocation, and exchange of discrete resources.

In Handbook of social Economics, volume 1, pages 781–852. 2011.

222

Roland Strausz. Deterministic mechanisms and the revelation principle. Economics Letters,

79(3):333–337, 2003.

Lars-Gunnar Svensson. Strategy-proof allocation of indivisible goods. Social Choice and

Welfare, 16(4):557–567, 1999.

William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal

of finance, 16(1):8–37, 1961.

223

	Introduction to Mechanism Design
	Private Information and Utility Transfers
	Examples in Practice

	A General Model of Preferences
	Social Choice Functions and Mechanisms
	Dominant Strategy Incentive Compatibility
	Bayesian Incentive Compatibility
	Failure of revelation principle

	Mechanism Design with Transfers and Quasilinearity
	A General Model
	Allocation Rules
	Payment Functions
	Incentive Compatibility
	An Example
	Two Properties of Payments
	Efficient Allocation Rule is Implementable

	The Vickrey-Clarke-Groves Mechanism
	Illustration of the VCG (Pivotal) Mechanism
	The VCG Mechanism in the Combinatorial Auctions
	The Sponsored Search Auctions

	Affine Maximizer Allocation Rules are Implementable
	Public Good Provision
	Restricted and Unrestricted Type Spaces

	Mechanism Design for Selling a Single Object
	The Single Object Auction Model
	The Vickrey Auction
	Facts from Convex Analysis
	Monotonicity and Revenue Equivalence
	The Efficient Allocation Rule and the Vickrey Auction
	Deterministic Allocations Rules
	Individual Rationality
	Beyond Vickrey auction: examples
	Bayesian incentive compatibility
	Independence and characterization of BIC

	The One Agent Problem
	Monopolist problem

	Optimal Auction Design
	Correlation and full surplus extraction

	Redistribution mechanisms
	A model of redistributing a single object
	Characterizations of IC and IR constraints
	Dissolving a partnership
	Corollaries of Theorem 14

	Dominant strategy redistribution
	The dAGV mechanism

	Multidimensional Mechanism Design
	Incentive Compatible Mechanisms
	An illustration

	The Implementation Problem
	Revenue Equivalence
	Optimal Multi-Object Auction

	Extensions
	Classical Preferences
	Type Spaces with Income Effects
	Mechanisms and Incentive Compatibility
	Vickrey Auction with Income Effect

	Interdependent valuations
	Mechanisms and Ex-post Incentive Compatibility
	Efficiency: Impossibility and Possibility

	The Strategic Voting Model
	The Unrestricted Domain Problem
	Examples of Social Choice Functions
	Implications of Properties
	The Gibbard-Satterthwaite Theorem
	Proof of the Gibbard-Satterthwaite Theorem

	Single Peaked Domain of Preferences
	Possibility Examples in Single-Peaked Domains
	Median voter social choice function
	Properties of Social Choice Functions
	Characterization Result

	Randomized Social Choice Function
	Defining Strategy-proof RSCF
	Randomization over DSCFs
	The Counterpart of Gibbard-Satterthwaite Theorem

	Matching Theory
	Object Assignment Model
	The fixed priority mechanism
	Top Trading Cycle Mechanism with Fixed Endowments
	Stable House Allocation with Existing Tenants
	Generalized TTC Mechanisms

	The Two-sided Matching Model
	Stable Matchings in Marriage Market
	Deferred Acceptance Algorithm
	Stability and Optimality of Deferred Acceptance Algorithm
	Unequal number of men and women
	Strategic Issues in Deferred Acceptance Algorithm
	College Admission Problem

	Two-sided matching with priorities

