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1 Introduction

Auctions are widely used methods of allocating resources. A typical auction involves two

types of agents: (a) sellers, those who own the resources and want to sell them; (b) buyers,

those who do not own the resources but want to buy them. Depending on the number of

buyers and the number of sellers, one can roughly classify the settings as follows.

• The most commonly studied auctions are those where there is a single seller, who is

interested in selling a single object (or multiple objects) to a set of buyers. We will be

mainly interested in analyzing such auctions. Examples of such auction setting include:

Govt selling rights to mine to various companies; Google selling advertisement slots on

search pages; Used cars sold on various websites (cars24.com) using auction. In these

examples, there is a single seller (for instance, the owner of the used car) who is selling

the object she owns to a set of buyers (those who logged in to the website to buy the

car). In some of these cases, the seller need not be the auctioneer, but an intermediary

agent conducts the auction.

• An analogous theory of auctions can also be developed for settings where there is a

single buyer who is interested to buy an object and there are many sellers who can

sell or supply the object. These are procurement auctions. Procurement auctions

are mainly used by firms to procure raw materials for manufacturing. They are also

used by Governments and other organizations to procure vaccines and other medical

supplies. The analysis of auctions for single seller and multiple buyers can be straight-

forwardly adapted to the procurement settings. However, there are other concerns in

a procurement auction, which separates it from normal auction setting. For instance,

consider procurement of a raw material (say, spare parts of a car) by a firm (a car

manufacturer). Several suppliers (sellers) can supply the raw material. The firm is

interested in two dimensions of the raw material: (a) price and (b) quality. Each sup-

plier can supply the raw material at different (price, quality) pairs. The buyer (firm)

has to choose a supplier by considering offers of suppliers in both the dimensions. A

standard method to aggregate these offers is through scoring rule, where a weight is

given to each dimension and the aggregated score of each supplier is used to select the

final supplier.
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• There are settings where multiple sellers simultaneously sell their objects to a set

of buyers. These are double auctions, where sellers post ask prices and buyers put

offers/bids, and a market-clearing mechanism matches buyers and sellers. While used

in many settings, we will not cover such auctions. Double auctions usually have the

additional requirement that trade has to be budget-balanced: payments received by

the sellers must equal the buyers’ payments.

Unless stated explicitly, we will only be discussing settings with a single seller and mul-

tiple buyers, and that too in a single object model.

Why auction? The most prominent procedure for selling products is the posted-price mech-

anism. The posted-price mechanism is an excellent procedure when (a) the seller has a good

idea about the willingness to pay of buyers; (b) the buyers cannot come together to an auc-

tion. If the seller does not have a good idea of the willingness to pay of buyers, then the

seller can potentially get low revenues from posted-price mechanism: too low a posted price

generates low revenue and too high a posted price reduces the probability of winning. On

the other hand, auction allows us a discovery of willingness to pay.

Tools for analysis. The analysis of auctions is based on game theory. The willingness to pay

information is private to individual buyers. Hence, an auction setting induces a Bayesian

game of incomplete information.

2 Standard auction formats

We see various auction formats in practice (for selling a single object). Broadly, these

auctions can be classified into two categories:

(a) sealed-bid auctions; These are auctions where bidders submit a one-time bid and winner

and payments are decided based on these bids.

(b) open-cry auctions; These are auctions where prices are announced iteratively and de-

mands of bidders at these prices are elicited. The auction ends when demands of

bidders equal supply.
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Under sealed-bid auctions, there are many variants. The two most common variants are

(a) first-price auction and (b) second-price auction. In both the auctions, bidders (buyers)

place bids and the bidder with the highest bid wins the auction. In both the auctions, a

bidder pays only if she wins the object. The auctions differ in their payment rule: (a) in

the first-price auction, the winner pays her own bid; (b) in the second-price auction, the

winner pays the second-highest bid. While these are two popular sealed-bid auctions, there

are other sealed-bid auctions which are studied in the auction theory literature. One such

auction format is called the all-pay auction. As the name suggests, in an all-pay auction,

the highest bidder wins the object but every bidder (including losers) pay their bid. Such

auction are used to model contests, where the effort level works as a proxy for bid, which is

paid by every bidder.

In open-cry auctions, there are two popular auction formats: (a) ascending price auction

(English auction) and (b) descending price auction (Dutch auction). While various imple-

mentations of these auctions are present, it is convenient to think of the continuous clock

implementation. In this implementation, the seller keeps a continuous price clock. In the

ascending price auction, this price clock starts at a low (zero) price and the price keeps in-

creasing continuously. Bidders can decide to exit the auction at any time during the auction.

Once a bidder exits the auction, she may not come back. The price clock stops as soon as

there is exactly one bidder remaining in the auction.1 At that point, the only other bidder

remaining wins the auction and pays the price in the auction clock.

There are practical benefits of each auction. For instance, price-based auctions, like the

English and the Dutch auctions are transparent procedures with a lot of privacy preserving

features. On the other hand, they require presence of bidders when auction takes place and

can become complex in terms of communication. The sealed-bid auctions can allow bidders

to send bids by communicating them beforehand. A sealed-bid auction is a centralized

algorithm where inputs are processed centrally by the seller. On the other hand, ascending

and descending price auctions are decentralized iterative communication procedures. We

will see that there are differences in theoretical properties of these auction formats.

1There is an implicit tie-breaking used here. If two bidders exit the auction at the same time, the auction
may order the bidders and allow them to exit one after the other. In particular, if the last exit results in no
bidder in the auction, the auction picks one of the bidders at random and allows everyone else to exit.
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3 Modeling auctions

The willingness to pay for the object of a bidder determines her strategy in any auction.

The willingness to pay of a bidder is the maximum amount a bidder is willing to pay such

that she is indifferent between buying the object and not buying. This is referred to as the

valuation of the bidder. Models of auctions differ in the way they model valuations of the

bidders.

3.1 An example: auction in 19th century Gujarat guilds

To understand models of auctions, let us consider an example of auction conducted in the

guilds of Gujarat in the 19th century. These auctions are studied in Sen and Swamy (2004).

The guilds of Gujarat were trading associations involving traders doing similar trades. Like

any professional association, such guilds needed money to do various community activities

and provide public goods. They had a unique procedure to raise funds for the guild. Sen

and Swamy (2004) quote the following from the Gazetter of the city of Surat:

A favorite device for raising money is for men of the craft or trade to agree, on

a certain day, to shut all their shops but one. The right to keep open this one

shop is then put up to auction, and the amount bid is credited to the guild fund.

While it is not easy to analyze such auctions because the winning bid in this auction

is used by guild (bidders themselves), let us make the simplifying assumption that winning

bid is used to provide a public good, which does not change the payoff of the bidders. For

instance, the public good is provided irrespective of which bidder wins, but the winning

bidder gets the additional benefit of keeping its shop open. So, the valuation of a bidder is

its valuation for keeping the shop open.

What is the valuation of keeping a shop open? This valuation will depend on the demand

on the shop on the day. We consider three models with n bidders.

(i) Suppose all shops trade the same good (medicine). Then, by keeping its shop open, a

bidder captures the aggregate demand of all the shops in the guild. If we write di as

the demand (no of customers) to shop i, then the valuation of a shop is a function of∑
i di. If the prices are the same across all the shops, then it is reasonable to assume
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that the valuation is some function v : R+ → R+, where v(
∑

i di) is the valuation of

any bidder which keeps the shop open. We observe that the valuation is the same for

all the bidders in this model. However, each bidder i only observes his own demand

di. So, even though the bidders know that everyone has the same valuation, they do

not this value ex-ante.

Such a model of valuation is called the common values model. In common values model,

each bidder receives a signal (demand for the shop) which is her private information,

and the signals of all bidders determine a common valuation for the object. Common

value models were first analyzed theoretically in Wilson (1967, 1969). Common value

models are used to analyze sale of oil tracts, sale of goods in the resale market (for

instance, most car buyers in the used car market are dealers who resell the car).

(ii) Suppose all shops trade in different goods. Then, by keeping its shop open, a bidder

captures the demand of her own shop. Since she know the demand of her shop, she

knows the valuation. However, this demand (and hence, valuation) information is

private to her – each shop only knows its own demand. Such a model of valuation is

called the the private values model. Private values models are used to analyze sale of

art, procurement auctions, sale of real estate by auction. The first study of auctions

in private values model is Vickrey (1961).

(iii) In reality, most practical models of auction are somewhere between the private values

and the common values. To understand this, suppose half the shops in the guild trade

medicines and the other half trade books. Each shop only observes her own demand

but cares about demand of shops which trade the same good as hers. So, the valuation

of a medicine shop will depend on the aggregate demand of all medicine shops, but it

will not depend on the the demand of book shops.

Such a model of valuation is called the interdependent values model. Interdependent

values model is general enough to capture the common values and the private values

as special cases. These models were first studied in Milgrom and Weber (1982).
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4 Objectives of an auction

There are two reasons to analyze auctions. First, we would like to understand the behavior of

bidders. For this, we will adopt an appropriate notion of equilibrium and analyze equilibrium

behavior of bidders. Second, we would like to compare auction formats in terms of their

equilibrium outcomes. We will carry out these exercises in all the models we will study: (a)

private values model and (b) interdependent values model. The private values model is a

special case of the interdependent values model, but it is analyzed separately because it is

more tractable and simpler than the general interdependent values model.

When comparing auction formats, we usually use two parameters: (a) expected revenue

to seller; (b) efficiency. Efficiency is the standard notion of Pareto efficiency here and

boils down to the following simple notion: an auction is efficient if the bidder with highest

valuation of the object wins the object. This is an ex-post notion of efficiency. Expected

revenue reflects an ex-ante objective of the seller to maximize expected revenue across auction

formats. Under reasonable conditions, we will be able to rank standard auctions in terms of

expected revenue and efficiency.2

5 Private values model and prior-free auctions

We now formally define a private values model. There is a single object for sale by a seller.

There are n bidders and the set of bidders is denoted by N = {1, . . . , n}. The valuation of

each bidder is a random variable denoted by Vi, and its realization is denoted by vi. Each

bidder privately observes the realization of her valuation before entering the auction: this is

the private values model.

We assume that the support of the distribution of this random variable is a set Ti, which

we refer to as the type set of bidder i. The utility of not winning the object is normalized

to zero. If the probability of winning the object with a payment pi is qi, utility from this

outcome is given by qi(vi− pi). This form of utility function is consistent with a risk neutral

bidder, and we will study extensions to other forms of utility functions later.

2Most popular criticism of an auction is by looking at the revenue of one instance. But, revenue to a
seller is a random variable, and observed revenue is just one realization of that random variable. Hence, the
right criticism of an auction format should be based on expected revenue it can generate.
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5.1 Second-price auction

In a second-price auction, the strategy of a bidder is a map si : Ti → R+. If bidders bid

b ≡ (b1, . . . , bn), let qi(b) denote the winning probability of bidder i and pi(b) denote the

payment of bidder i. Note that

qi(b) =

1 if bi > maxj 6=i bj

0 if bi < maxj 6=i bj

Further, pi(b) = 0 if qi(b) = 0 and pi(b) = maxj 6=i bj otherwise.

Definition 1 Bidding strategy si of bidder i is weakly dominant if for every (vi, v−i) and

for every s−i,

qi(si(vi), s−i(v−i))
[
vi − pi(si(vi), s−i(v−i))

]
≥ qi(bi, s−i(v−i))

[
vi − pi(bi, s−i(v−i))

]
∀ bi.

Strategy si is truthful for bidder i if si(vi) = vi for all vi ∈ Ti.

Theorem 1 (Vickrey (1961)) In the Vickrey auction, truthful strategy is a weakly domi-

nant strategy for every bidder.

Proof : Fix a profile of valuations v ≡ (vi, v−i). Fix a buyer i and suppose each of the other

bidder j 6= i bids bj – so, we have fixed an arbitrary profile of bids of other bidders {bj}j 6=i.
This profile of bids is generated due to some arbitrary strategy profile of other bidders. We

will argue whatever this bid profile may be, bidder i weakly prefers to bid vi to every other

bid.

Before proceeding with the proof, consider Figure 1. It plots the payoff of a buyer i along

the Y -axis and bid of the buyer i along the X-axis. The payoff of the buyer i is zero if it

bids below max
j 6=i

bj. Otherwise (if he bids above max
j 6=i

bj),

• if the value of the buyer i is above max
j 6=i

bj, then its payoff of the buyer is given by the

blue line (line above Y -axis),

• if the value of the buyer i is below max
j 6=i

bj, then its payoff of the buyer is given by the

red line (line below Y -axis).
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Hence, each bidder i, independent of its value can partition its strategies into two sets:

(i) below max
j 6=i

bj and (ii) above max
j 6=i

bj. It gets the same payoff by bidding anything in each

of these sets. A buyer whose value is above max
j 6=i

bj prefers the blue part to the orange part

in Figure 1, but a buyer whose value is below max
j 6=i

bj prefers the orange part to the blue part

in Figure 1.

bi

ui(bi; b−i)

max
j 6=i

bj

vi −max
j 6=i

bj

v0i −max
j 6=i

bj

0
vi v0i

if value is v0i

if value is vi

Figure 1: Weakly dominant strategy in Vickrey auction

Figure 1 gives an idea on why bidding value maximizes payoff of any buyer. Below, we

formally show that it is indeed a weakly dominant strategy. Suppose buyer i has value vi.

We consider two cases.

Case 1. vi > maxj 6=i bj. In this case, the payoff of buyer i from bidding vi is vi−maxj 6=i bj >

0. As long as he bids more than maxj 6=i bj, buyer i’s payoff remains the same: she still wins

the object and pays the same. By bidding strictly less than maxj 6=i bj she does not win the

object and gets a payoff of zero. By bidding equal to maxj 6=i bj, she gets the object but with

some probability q ≤ 1 and pays maxj 6=i bj. Hence, her payoff is q(vi −maxj 6=i bj), which is

not more than what she was getting by bidding vi.

Case 2. vi ≤ maxj 6=i bj. In this case, the payoff of buyer i from bidding vi is zero. This

is because either she is not getting the object (in which case his payoff is zero) or she is

sharing the object in which case she is paying maxj 6=i bj = vi. This is the case for all bids

strictly less than maxj 6=i bj. If she bids greater than or equal to maxj 6=i bj, she wins (with

some probability) but pays maxj 6=i bj ≥ vi. Hence, her payoff is non-positive. Hence, bidding
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vi is at least as good as bidding anything else.3 �

The weak dominance is a very strong strategic requirement. It states that the truthful

strategy is better than every other strategy (a) in every state of the world and (b) for any

strategy of other players. Thus, it is independent of the distributional assumptions. The

English auction shares similar properties.

5.2 Ascending price auction

The ascending price auction induces an extensive form game. Strategy in an extensive form

game is more complicated. Remember, we modelled the ascending price auction using a

continuous price clock. At every price p, denote the history at p as hp. This will include all

the bidders who have dropped out and at what prices they have dropped out. Let H be the

set of all possible histories. A strategy of bidder i is a map

si : Ti × R+ ×H → [0, 1]

with the requirement that si(·, p, ·) = 0 implies si(·, p′, ·) = 0 for all p′ > p (i.e., once you exit

an auction, you cannot come back). So, si(vi, p, h
p) = 1 denotes that bidder i with value vi

stays in auction at price p with history hp. With this definition of strategy, Definition 1 also

works for ascending price auction to define a weakly dominant strategy.

Strategy si is truthful for bidder i in ascending price auction if si(vi, p, h
p) = 1 for all

p ≤ vi and for all hp, and si(vi, p, h
p) = 0 otherwise.

Theorem 2 In the ascending price auction, truthful strategy is a weakly dominant strategy

for each bidder.

Proof : The proof is quite simple and does not require any notation. Fix the strategies of

other players, and consider any other strategy in which bidder i is not truthful. Consider an

arbitrary valuation profile. Then, there are couple of cases to consider.

3To show that bidding vi is weakly dominant, we must also show that vi is strictly better than any other
bid for some bid vector of other players. For this, fix vi and some strategy bi 6= vi. As we saw from the two
cases, if bi > vi, then when vi < maxj 6=i bi < bi, it is strictly better for buyer i to bid vi. Similarly, if bi < vi,
then when bi < maxj 6=i bi < vi, it is strictly better for buyer i to bid vi.

10



Case 1. Suppose bidder i wins the auction at price pi by being truthful. In that case,

the only action performed by bidder i is 1 at each price p ≤ pi. By following any other

strategy if bidder i wins then also the only action performed by bidder i is 1 at each price in

the auction. Since other bidders are following the same strategy, the history in the auction

remains the same. As a result, the auction again ends at price pi.

By not being truthful, if she does not win the auction, then she gets zero payoff, which

is weakly worse than following the truthful strategy and winning.

Case 2. Suppose bidder i does not win the auction by being truthful. By not being truthful,

if she still does not win the auction, then her payoff remains the same.

By not being truthful, if she wins the auction, then the actions taken by other bidders

remain the same till price hits vi. In that case, the auction must end at a price ≥ vi. So,

she will win the auction at price above vi, which gives lower payoff than zero. �

Though the truthful strategy is weakly dominant in both second-price and ascending

price auctions, the definition of truthful strategy is different in both the auction formats.

Ascending price auction is a more complex extensive form game, and we established that

truthful strategy is a weakly dominant strategy. A recent paper by Li (2017) studies a

stronger equilibrium concept than weakly dominant strategies in extensive games called

obviously strategy-proof, and shows that the ascending price auction is obviously strategy-

proof but the second-price auction is not.

Since truthful strategy is weakly dominant, the payment of winning bidder is equal to

the second highest value of all bidders. This is exactly the payment of the winning bidder in

the second-price auction. Further, both the auctions are efficient, i.e., the bidder with the

highest value wins the object. Thus, we have established the following corollary.

Corollary 1 The outcome of the second-price auction and the ascending price auction are

identical and efficient in weakly dominant strategies.
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6 Symmetric Bayesian equilibria in first-price

auctions

Let Ti = [0, a] for all i ∈ N . We will assume that the values of bidders are independently

and identically distributed. The cummulative distribution function of values will be denoted

by F . We will assume F is differentiable with a positive density f . Hence, bidders are

symmetric ex-ante.

In any sealed-bid auction, a strategy of bidder i is a map: si : [0, a] → R+. A strategy

profile s ≡ (s1, . . . , sn) is symmetric if s1 = . . . , sn. In that case we will denote the strategy

of each bidder as s. A strategy s is monotone if s(x) > s(y) for each x, y ∈ [0, a] with

x > y.

Given a monotone strategy s, the value s(x) denotes the bid amount of any bidder with

valuation x ∈ [0, a]. In first-price auction, given a bid b of bidder i and given all the other

bidders are following symmetric monotone strategy s, bidder i wins if b > s(vj) for all j 6= i.

The probability of this event is [F (s−1(b))]n−1, where we use s−1(b) = a if b > s(a) and

s−1(b) = 0 if b < s(0). Denote this as

Q(b; s) := [F (s−1(b))]n−1

.

We formally define a Bayesian equilibrium using this notation. The definition accounts

for the fact that if a bidder does not win the object she pays zero and her payoff is zero.

Definition 2 A symmetric strategy profile s ≡ (s, . . . , s) is a Bayesian equilibrium of first-

price auction if for every bidder i, for every value vi ∈ [0, a]

Q(s(vi); s)
[
vi − s(vi)

]
≥ Q(b; s)

[
vi − b

]
∀ b ∈ R+ (1)

The following lemma shows that only a particular kind of incentive constraints must hold

for a symmetric strategy profile to be a Bayesian equilibrium.

Lemma 1 (Imitation lemma) A symmetric strategy profile s ≡ (s, . . . , s), where s is

monotone, is a Bayesian equilibrium of first-price auction if and only if for every bidder
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i, for every value vi ∈ [0, a]

Q(s(vi); s)
[
vi − s(vi)

]
≥ Q(s(v′i); s)

[
vi − s(v′i)

]
∀ v′i ∈ [0, a] (2)

Proof : Constraints in (1) clearly imply (2). For the other direction, suppose for every

bidder i, for every value vi ∈ [0, a], (2) holds. Note that Q(s(0); s) = 0. This is because if

other bidders follow s, whenever one other bidder has value x > 0, she bids s(x) > s(0) and

the bidder bidding s(0) does not win. As a result, the probability of winning by bidding s(0)

is the probability that all the other bidders have value zero, which is zero.

Now, for every ε > 0, we have Q(s(ε); s) > 0. This is because if other bidders have

value less than ε, then they will bid less than s(ε), and the bidder bidding s(ε) wins. The

probability that (n− 1) bidders have value less than ε is positive since density f is positive.

Using (2) with vi = ε and v′i = 0 implies that Q(s(ε); s)(ε− s(ε)) ≥ 0 or ε ≥ s(ε). Using

monotonicity of s, we get ε > s(0). Hence, s(0) < ε for all ε, which means s(0) = 0.

Now, pick some b ∈ R+. Since other bidders follows s, they never bid more that s(a).

Hence, by bidding b > s(a), bidder i always wins. Hence, if b > s(a), then Q(b; s) = 1.

But Q(s(a); s) = 1 too. This is because the only event when bidder i does not win with

probability 1 is when one of the other bidders have value equal to a. This has zero probability.

Hence, we have for every vi ∈ [0, a]

Q(s(vi); s)
[
vi − s(vi)

]
≥ Q(s(a); s)

[
vi − s(a)

]
≥ Q(b; s)

[
vi − b

]
,

where the first inequality follows from (2). Hence, (1) holds for all b > s(a).

Now, using s(0) = 0, we only need to show (1) holds for any b ∈ [s(0), s(a)]. Since s

is strictly increasing, for every b ∈ [s(0), s(a)], there exists a unique v′i ∈ [0, a] such that

s(v′i) = b. Then, (2) implies (1). �

Theorem 3 Suppose s ≡ (s, . . . , s) is a symmetric strategy profile, where s is a monotone

and differentiable strategy in the first-price auction. Then, the following are equivalent.

1. (s, . . . , s) is a Bayesian equilibrium.
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2. s satisfies

s(x) = x− 1

[F (x)]n−1

x∫
0

[F (y)]n−1dy ∀ x ∈ [0, a] (3)

Proof : For every x ∈ [0, a], let u(x) = Q(s(x); s)
[
x − s(x)

]
. Since s is monotone and

highest bidder wins, Q(s(x); s) = [F (x)]n−1, and we write G(x) ≡ Q(s(x); s). Notice that G

is the cdf of highest (n−1) draws using F . Let g denote the density of this random variable:

g(x) = (n− 1)[F (x)]n−2f(x) for each x ∈ [0, a]. Hence, u(x) = G(x)(x− s(x)). Note that if

s is differentiable, u is differentiable. By Lemma 2, we know that s is a Bayesian equilibrium

if and only if

u(x) ≥ u(y) +G(y)(x− y) ∀ x, y ∈ [0, a] (4)

Necessity. Suppose s is a Bayesian equilibrium. Then, fix some x, x+ δ ∈ [0, a], where δ > 0.

Using (4) we get

u(x+ δ) ≥ u(x) + δG(x)

u(x) ≥ u(x+ δ)− δG(x+ δ)

Hence, we get

δG(x+ δ) ≥ u(x+ δ)− u(x) ≥ δG(x)

By continuity of G, we thus get that

d[u(x)]

dx
= G(x) ∀ x ∈ [0, a] (5)
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Since u(0) = 0, (11) and the fundamental theorem of calculus implies that

u(x) =

x∫
0

G(y)dy

⇒ G(x)(x− s(x)) =

x∫
0

G(y)dy

⇒ s(x) = x− 1

[F (x)]n−1

x∫
0

[F (y)]n−1dy

Sufficiency. Suppose s is as defined in (9). Then, for every x ∈ [0, a], we have

u(x) = G(x)(x− s(x)) =

x∫
0

G(y)dy

Hence, for any x, y ∈ [0, a], we have

u(x)− u(y) =

x∫
y

G(z)dz,

If x > y, then since G is increasing, G(z) > G(y) for all z > y. Hence,
x∫
y

G(z)dz >

(x−y)G(y). If x < y, then G(z) < G(y) and this means
x∫
y

G(z)dz = −
y∫
x

G(z) > (x−y)G(y).

Thus, (4) holds, and we are done. �

Remark. Theorem 3 shows that there is a unique symmetric equilibrium in monotone and

differentiable strategies. Focusing on symmetric equilibrium is natural in an environment

where bidders draw their value independently and identically. However, one may ask if there

are asymmetric and non-monotone equilibria in this environment. Maskin and Riley (2003)

show that the equilibrium identified in Theorem 3 is unique under reasonable conditions.

By Theorem 3, in a symmetric equilibrium (with monotone and differentiable) strategies,

a bidder with value x bids according to (4). Since this is a symmetric strategy profile with
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monotone strategies, for any two bidders with values x, y we see that s(x) > s(y) if and

only if x > y. Hence, the symmetric equilibrium identified in Theorem 3 is efficient: the

highest valued bidder makes the highest bid and wins. Hence, the probability of winning of

a bidder with value x is G(x) =
[
F (x)

]n−1
. Hence, using Theorem 3, the expected payment

of a bidder with value x in this symmetric equilibrium is given by

G(x)s(x) = xG(x)−
x∫

0

G(y)dy =

x∫
0

yg(y)dy (6)

The last expression
x∫
0

yg(y)dy is the expected value of the random variable highest of

(n − 1) values given that it is less than x. Hence, the expected payment of a bidder with

value x is the expected value of the second highest valuation in the region she wins.

In a second-price auction, bidders have a weakly dominant strategy to bid their value.

In this equilibrium, a bidder with value x pays zero if she does not win but pays the highest

of (n − 1) other bidders’ values if she wins. Hence, her expected payment is the expected

value of the random variable highest of (n − 1) values given that it is less than x, which is

exactly (6).

Since all the bidders are symmetric, the expected revenue of a seller in the first-price and

the second-price auction (in the equilibrium described) is given by

n

a∫
0

G(x)s(x)f(x)dx = n

a∫
0

( x∫
0

yg(y)dy
)
f(x)dx

= n

a∫
0

( a∫
x

f(y)dy
)
xg(x)dx

= n

a∫
0

x(1− F (x))g(x)dx

= n(n− 1)

a∫
0

x(1− F (x))
[
F (x)

]n−2
f(x)dx

Thus, we have come to an important result in auction theory.
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Theorem 4 (Revenue equivalence, Vickrey (1961)) The expected payment of each bid-

der in the symmetric equilibrium of the first-price auction and the weakly dominant strategy

of the second-price auction are the same. The expected revenue of the seller is identical

across these two auctions:

n(n− 1)

a∫
0

x(1− F (x))
[
F (x)

]n−2
f(x)dx.

While this is a striking result, let us remember the assumptions we have made:

• Values are private.

• Bidders are ex-ante identical: values are independently and identically distributed.

• Bidders are risk neutral.

But this benchmark result will serve as a template for the rest of the course. We will

relax various assumptions in this result and compare auction formats.

6.0.1 Descending price and first-price auctions

The equivalence between first-price and second-price auction formats automatically induce

equivalence with the ascending price auction (1). We explore the equivalence with the

descending price auction. A strategy in a descending price auction can be defined similar

to an ascending price auction. The history in a descending auction does not change till the

auction ends: the action to show interest in the object, ends the auction. Hence, strategy

in a descending auction is just a function si : [0, a]× [0, P̄ ]→ {0, 1}, where P̄ is the highest

possible price in the auction. Here, si(vi, p) = 0 indicates that the bidder is not interested

in the object and si(vi, p) = 1 indicates the bidder is interested in the object. Hence,

si(vi, p) = 1 implies si(vi, p
′) = 1 for all p′ < p. Thus, there is a cutoff price p∗ such that

si(vi, p) = 0 for all p > p∗ and si(p) = 1 for all p ≤ p∗. Thus, a strategy of a bidder is to

figure out for each vi, a cut-off price p∗ such that the bidder is interested in the object below

that price. Note that if the bidder wins the auction she pays p∗ in this case.

The decision in a first-price auction is similar for a bidder. Given the value vi of bidder

i, she has to decide how much to bid. This bid is the amount she pays if she wins. This
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bid is exactly similar to p∗. Hence, the first-price auction and the descending price auction

are equivalent strategically. Thus, the equivalence in Theorem 4 extends to all standard

auctions. We formalize this below.

6.1 Symmetric equilibrium in standard auctions

There are many sealed-bid auction formats that one can think of: first-price, second-price,

third-price etc. A sealed-bid auction is a standard auction if

(a) highest bidder wins;

(b) winner pays non-negative amount;

(c) losers payment is zero;

(d) payment is non-decreasing: higher bid does not lead to lower payment to a bidder.

Each of these assumptions are trivially satisfied by first-price, second-price, and third-price

auctions. We will see the analysis of the first-price auction extends to any standard auction.

Let s be a strategy in a standard auction. If all the other bidders follow strategy s,

then the probability of winning by bidding b is given similarly: bidder i with bid b wins if

b > maxj 6=i s(vj) and probability of this event is [F (s−1(b))]n−1. As before, we will denote

this as Q(b; s). Note that if bidder i also follows the strategy s, then probability of winning

is [F (s−1(s(vi)))]
n−1 = [F (vi)]

n−1, which we will denote as G(vi).

If all bidders play s, then let P (b; s) be the expected payment of a bidder by bidding

b. In the first-price auction, this expected payment is bQ(b; s). In the second-price auction,

this expected payment is the expected value of Ev−i:max(s(v−i))<b max(s(v−i)).
4

It is without loss of generality to denote the standard auction by (Q,P ): these are the

only things that will be required for analysis (given a strategy). Using this notation a

symmetric strategy profile s ≡ (s, . . . , s) is a Bayesian equilibrium in a standard auction if

for every i ∈ N , for every vi ∈ [0, a]

Q(s(vi); s)vi − P (s(vi); s) ≥ Q(b; s)vi − P (b; s) ∀ b ∈ R+ (7)

4 We know that in the second-price auction s(vi) = vi is a weakly dominant strategy but we do not use
this specific s here.
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Lemma 2 (Imitation lemma) Let s be a monotone strategy in a standard auction (Q,P ).

Strategy s is a Bayesian equilibrium of a standard auction (Q,P ) if and only if for every

bidder i, for every value vi ∈ [0, 1]

Q(s(vi); s)vi − P (s(vi); s) ≥ Q(s(v′i); s)vi − P (s(v′i); s) ∀ v′i ∈ [0, a] (8)

Proof : Constraints in (7) clearly imply (8). For the other direction, note that by bidding

less than s(0), a bidder always loses and pays zero. Hence, for any b < s(0), Q(b; s) = 0 and

P (b; s) = 0. Similarly, by bidding b = s(0), a bidder wins with positive probability only if all

other bidders have value 0 (in which case they bid s(0)), and this event happens with zero

probability. Hence, Q(s(0); s) = P (s(0); s) = 0. Using this for all b < s(0), we see that for

every vi ∈ [0, a], (8) implies

Q(s(vi); s)vi − P (s(vi); s) ≥ Q(s(0); s)vi − P (s(0); s) = 0 = Q(b; s)vi − P (b; s)

Similarly, for all b > s(a), Q(b; s) = Q(s(a); s) = 1 and P (b; s) ≥ P (s(a); s) by non-

decreasing payment. Hence, (8) implies that for every b > s(a) and for every vi ∈ [0, a],

Q(s(vi); s)vi − P (s(vi); s) ≥ Q(s(a); s)vi − P (s(a); s) ≥ Q(b; s)vi − P (b; s)

Now, consider b ∈ [s(0), s(a)]. Since s is monotone, there exists v′i such that s(v′i) = b.

Hence, (8) implies (7) holds.

This exhausts all cases, and hence, (8) implies that s ≡ (s, . . . , s) is a Bayesian equilib-

rium. �

Once the imitation lemma is done, the equilibrium characterization proof is similar. Note

that we do not need differentiable strategy now.

Theorem 5 Suppose s ≡ (s, . . . , s) is a symmetric strategy profile, where s is a monotone

strategy in a standard auction (Q,P ). Then, the following are equivalent.

1. (s, . . . , s) is a Bayesian equilibrium.
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2. s satisfies

P (s(x); s) = x[F (x)]n−1 −
x∫

0

[F (y)]n−1dy ∀ x ∈ [0, a] (9)

Proof : For every x ∈ [0, a], let u(x) = Q(s(x); s)x−P (s(x); s). Since the highest bidder wins

and s is monotone, Q(s(x); s) = [F (x)]n−1, and we write G(x) ≡ Q(s(x); s). Hence, u(x) =

xG(x) − P (s(x); s). Unlike the proof of Theorem 3, we cannot assume u is differentiable

without loss of generality. However, the rest of the proof can be modified slightly. By Lemma

2, we know that s is a Bayesian equilibrium if and only if

u(x) ≥ xG(y)− P (s(y); s) = u(y) +G(y)(x− y) ∀ x, y ∈ [0, a] (10)

Necessity. Suppose s is a Bayesian equilibrium. Then, (10) holds. Pick x, y ∈ [0, a] and λ ∈
[0, 1] with z = λx+(1−λ)y. Then, u(x) ≥ u(z)+G(z)(x−z) and u(y) ≥ u(z)+G(z)(y−z).

Multiplying the first inequality by λ and the second by (1−λ) gives λu(x)+(1−λ)u(y) ≥ u(z).

Hence, u is convex. A convex function is differentiable almost everywhere in the interior of

[0, a].

Then, fix some x, x + δ ∈ [0, a], where δ > 0 and u is differentiable at x. Using (10) we

get

u(x+ δ) ≥ u(x) + δG(x)

u(x) ≥ u(x+ δ)− δG(x+ δ)

Hence, we get

δG(x+ δ) ≥ u(x+ δ)− u(x) ≥ δG(x)

By continuity of G, we thus get that

d[u(x)]

dx
= G(x) ∀ x ∈ [0, a] (11)

where u is differentiable. Since u(0) = 0 and using the fact that u is differentiable almost
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everywhere in [0, a], (11) and the fundamental theorem of calculus imply that for all x ∈ [0, a]

u(x) =

x∫
0

G(y)dy

⇒ G(x)x− P (s(x); s) =

x∫
0

G(y)dy

⇒ P (s(x); s) = x[F (x)]n−1 −
x∫

0

[F (y)]n−1dy

Sufficiency. Suppose s is as defined in (9). Then, for every x ∈ [0, a], we have

u(x) = G(x)x− P (s(x); s) =

x∫
0

G(y)dy

Note that G(x) = [F (x)]n−1, and hence, G is increasing. Hence, for any x, y ∈ [0, a], we have

u(x)− u(y) =

x∫
y

G(z)dz ≥ (x− y)G(y),

where the inequality follows since G is increasing. Thus, (10) holds, and we are done. �

Remark. Theorem 5 is a characterization of symmetric equilibrium in monotone strategies

in a standard auction. Not all the four conditions in the definition of standard auction are

used in both the direction. A careful look at the proof of the theorem shows that for (1)

implies (2), we only need that (a) winner is the highest bidder; and (b) losers payment is

zero (or u(0) = 0). For the other direction ((2) implies (1)), we need all the four conditions

of a standard auction, which is primarily used to reduce the set of incentive constraints in

the imitation lemma. Usually, the direction (1) implies (2) is referred to as the revenue

equivalence theorem in auction theory.
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6.2 Ranking distributions of revenue

The revenue of any auction is a random variable for the seller. We denote the random

variable corresponding to the revenue of the first-price auction as R1 and that of the second-

price auctions as R2. Let Hi be the cdf and hi be the density function of random variable

Ri for each i ∈ {1, 2}. The revenue equivalence theorem showed that

a∫
0

rh1(r)dr =

a∫
0

rh2(r)dr

This compares the two random variables R1 and R2 based on the mean. But there are

other ways to compare two random variables.

Definition 3 Random variable R1 concave dominates random variable R2 if for all concave

functions u : R+ → R,

a∫
0

u(r)h1(r)dr ≥
a∫

0

u(r)h2(r)dr

Concave dominance is equivalent to the well known second order stochastic dominance.

Theorem 6 The first price auction revenue concave dominates the second-price auction

revenue. Hence, a risk averse seller prefers the first-price auction over the second-price

auction.

Proof : Let s be the unique symmetric equilibrium strategy of the first-price auction. The

random variable R2 is the second-highest of n draws using F . To be precise we denote the

k-th highest of n draws using F as Xn
(k). The conditional expectations are related in the

following way:

E[Xn
(2)|Xn

(1) = x] = E[Xn−1
(1) |X

n−1
(1) < x]

where the inequality follows from the fact that taking expectation of Xn
(2) when Xn

(1) = x is

the same as taking expectation of Xn−1
(1) when its value is less than x. But the equilibrium
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bid in the first price auction is

s(x) =
1

G(x)

x∫
0

yg(y)dy = E[Xn−1
(1) |X

n−1
(1) < x]

Hence,

E[R2|R1 = r] = E[Xn−1
(1) |X

n−1
(1) < s−1(r)] = s(s−1(r)) = r

�

7 Reserve Prices

Reserve price is commonly used in many auction formats. In a sealed-bid auction (first-price

or second-price), with reserve price, a bid is eligible if it exceeds the reserve price. The

payment of the winning bidder in the first-price auction is still her bid, but a bidder wins

only if she bids the highest and the bid exceeds the reserve price. The payment of the

winning bidder in the second-price auction is the maximum of the second highest bid and

the reserve price.

A consequence of reserve price is that an object is not sold at some profiles of bids.

This seems like a wasted opportunity to raise some revenue. So, why do sellers post reserve

prices in sealed-bid auctions? The simple intuition for this is that even though the seller

loses revenue by not selling some times, she raises more revenue when the object is sold.

To see this, consider a second-price auction with two bidders whose values are uniformly

distributed in [0, 1]. The expected revenue in a second-price auction without a reserve price

is the expected value of the lowest of two values, which is 1
3
. Now, suppose we conduct a

second-price auction with a reserve price of 1
2
. Then, the object is sold only when one of the

bidder bids more than 1
2
. But note that even when the losing bidder bids less than 1

2
, the

winning bidder pays 1
2
. Indeed, as we will show next, bidding your value is still a weakly

dominant strategy in second-price auction with reserve price. Hence, the expected revenue

in this auction can be calculated as follows: the object is sold if at least one bidder has value
1
2

and this probability is 3
4
. When the object is sold, the price paid by the winning bidder is
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at least 1
2
. Hence, the second-price auction with a reserve price of 1

2
collects at least 3

4
× 1

2
= 3

8

expected revenue. Since 3
8
> 1

3
, setting this particular reserve price improves revenue. Of

course, setting too high a reserve price means the object is not sold often and the expected

revenue will be low. Hence, there is some optimal reserve price which maximizes expected

revenue.

7.1 Reserve price in second-price auction

The second-price auction with a reserve price r is defined as follows. At every profile of

bids, if the highest bid is less than r, the object is not sold. Else, the highest bidder wins

and pays an amount equal to the maximum of r and the second highest bid. If there are

multiple highest bidders with bid more than r, then each of them becomes the winning

bidder with equal probability (and pay the maximum of r and the second highest bid with

equal probability).

A simple way to interpret this auction is as if the seller (a non-strategic bidder) places a

bid of r. Clearly, the incentives in the standard second-price auction works for any r (refer

to Theorem 1). As a result, we have the following.

Theorem 7 In the second-price auction with a reserve price, truthful strategy is a weakly

dominant strategy.

What is the expected payment of a bidder with value x in a second-price auction with

reserve price r? If x ≤ r, she does not win the auction and pays zero. If x > r, she pays r if

the maximum of other bidders’ values is less than r and pays the maximum of other bidders’

values if maximum of other bidders’ values is between r and x. Let G be the cummulative

distribution function of maximum of (n−1) draws of values using F and let g be the density

function. Then, the probability that maximum of (n−1) values is less than r is G(r). Hence,

the expected payment of bidder with value x > r is:

rG(r) +

x∫
r

yg(y)dy = rG(r) + [yG(y)]xr −
x∫
r

G(y)dy = xG(x)−
x∫
r

G(y)dy (12)

Hence, the expected payment from a bidder is (noting that bidder with value less than r
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pays zero)

a∫
r

xG(x)f(x)dx−
a∫
r

( x∫
r

G(y)dy
)
f(x)dx =

a∫
r

xG(x)f(x)dx−
a∫
r

( a∫
x

f(y)dy
)
G(x)dx

=

a∫
r

xG(x)f(x)dx−
a∫
r

(1− F (x))G(x)dx

=

a∫
r

[
x− 1− F (x)

f(x)

]
G(x)f(x)dx

Hence, the expected revenue from a second-price auction with reserve price r is (using

that all n bidders are ex-ante identical):

Rev2(r) = n

a∫
r

[
x− 1− F (x)

f(x)

]
G(x)f(x)dx (13)

The term x − 1−F (x)
f(x)

is called the virtual value of bidder with value x. We denote the

virtual value function as ψ

ψ(x) = x− 1− F (x)

f(x)
∀ x ∈ [0, a]

Note that the virtual value function depends on the distribution. In order to find the optimal

reserve price, we use the following assumption on distributions.

Definition 4 The virtual value function satisfies single crossing if there exists v∗ ∈ [0, a]

such that ψ(x) < 0 for all x < v∗ and ψ(x) > 0 for all x ≥ v∗.

Since ψ is continuous, single crossing also implies that ψ(v∗) = 0. Since

Rev2(r) = n

a∫
r

ψ(x)G(x)f(x)dx (14)

it is clear that r = v∗ is an optimal reserve price if virtual value satisfies single crossing.

A distribution F satisfies monotone hazard rate (MHR) if f(x)
1−F (x)

is non-decreasing

in x. MHR implies that x− 1−F (x)
f(x)

is strictly increasing in x. Since x− 1−F (x)
f(x)

is negative at
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x = 0 and positive at x = a, MHR implies ψ is increasing and crosses zero at most once.

If r < v∗, where ψ(v∗) = 0, then the expected revenue (14) can be improved by raising

r a little bit because that gets rid of negative terms in the expressions. If r > v∗, then the

expected revenue (14) can be improved by lowering r a little bit because that adds some

positive terms in the expression. Hence, the optimal reserver price is v∗ under the single

crossing condition. This leads to the main theorem of this section.

Theorem 8 Suppose the distribution of values of bidders is such that the virtual value func-

tion satisfies single crossing. Then, the optimal (expected revenue maximizing) reserve price

in a second-price auction is the unique solution to the equation r − 1−F (r)
f(r)

= 0.

Uniform distribution satisfies MHR (and hence, single crossing condition): f(x) = 1
a

and F (x) = x
a
. Then, f(x)

1−F (x)
= 1

a−x , which is increasing in x. Hence, the solution to

r − 1−F (r)
f(r)

= r − (a− r) = 2r − a = 0 or r∗ = a
2
.

7.2 Reserve price in first-price auction

The first price auction with a reserve price r works as follows. Bidders submit bids and the

highest bidder wins the object (with ties broken in some way) if her bid is more than r. Else,

the object is not sold. The winning bidder pays her bid.

In the first-price auction placing any bid less than or equal to r has the same effect as

placing a bid of r: in either case, the bidder does not win the object and pays zero. So, we

will assume that bidders only use strategies where they bid at least r.

Definition 5 A strategy s : [0, a] → [r,∞) is r-monotone if there exists a cutoff v∗ such

that s(x) = r for all x ≤ v∗ and s(x) > s(y) for all x > y ≥ v∗.

Theorem 9 (Riley and Samuelson (1981)) Let s be a r-monotone strategy which is dif-

ferentiable in (r, a). Then, the following are equivalent.

1. (s, . . . , s) is a Bayesian equilibrium of the first-price auction with reserve price r.

2. For every x ∈ [0, a],

s(x) =


r if x ≤ r

x− 1
G(x)

x∫
r

G(y)dy if x > r.
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Figure 2: A r-monotone strategy

Proof : Let s be a r-monotone strategy and (s, . . . , s) is a Bayesian equilibrium. We first

argue that v∗ = r. If v∗ > r, for sufficiently small ε > 0, consider the value x = r+ ε. When

other bidders have value less than x, they place a bid of r. In that the bidder can place a

bid of r + ε
2

and win the object to get a payoff ε
2
. This happens with positive probability

(since the probability that others have value r + ε is positive). Hence, by bidding r + ε
2
, the

bidder gets positive payoff. On the other hand, by following s, the bidder would have bid r

and not won the object. This contradicts that (s, . . . , s) is a Bayesian equilibrium. Hence,

v∗ ≤ r.

Next, suppose v∗ < r. By continuity of s, there exists a value x > v∗ but arbitrarily

close to v∗ with x < r such that s(x) > r. When other bidders have value less than x,

which happens with positive probability, this bidder wins (as others bid less than s(x) by

r-monotonicity of s). By winning, the bidder pays s(x) > r > x, and hence, gets negative

payoff. By bidding r, she gets zero payoff. This contradicts that (s, . . . , s) is a Bayesian

equilibrium. Hence, we conclude that v∗ = r. The strategy is shown in Figure 2.

Now, fix a bidder i and suppose other bidders follow s. Suppose bidder i has a value

x ≥ r. The payoff she gets by following s is u(x) := G(x)(x − s(x)), where G(x) is the

probability that other bidders have value less than x, which is also the probability with

which bidder i wins. Suppose bidder i bids b ∈ [r, s(a)]. By r-monotonicity, there is a value

y ∈ [r, a] such that s(y) = b. Hence, Bayesian equilibrium implies that

u(x) ≥ G(y)(x− s(y)) = u(y) + (x− y)G(y) (15)
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Inequality (15) holds for all x, y ∈ [r, a]. Using an argument analogous to the proof of

Theorem 3, we conclude that d[u(x)]
dx

= G(x) for all x ∈ [r, a]. Hence, by fundamental

theorem of calculus,

u(x) = u(r) +

x∫
r

G(y)dy =

x∫
r

G(y)dy ∀ x ∈ [r, a],

where we use the fact that u(r) = G(r)(r−s(r)) = 0 since s(r) = r. But u(x) = G(x)(x−s(x)

implies that for all x ∈ [r, a], we must have

s(x) = x− 1

G(x)

x∫
r

G(y)dy (16)

For the converse, we want to show that (s, . . . , s), where s is defined as in (16), is

a Bayesian equilibrium. For this, suppose all the bidders exccept i follow s. Then the

maximum bid by others is s(a). If i bids b > s(a) she wins for sure with payoff equal to

x− b, where x is her payoff. By bidding s(a) also i wins with probability 1 (the probability

that others bid less than s(a) is 1) with payment s(a) < b. Hence, as long as we can show that

i cannot manipulate to s(a), we can also ensure that she cannot manipulate to b > s(a).

Similarly, bidding less than r gives a payoff of zero and following s ensures non-negative

payoff. Finally, if value of i is less than or equal to r, she gets a payoff of zero by using s.

Any bid b > r implies i wins with non-zero probability and pays b > r. This means her

expected payoff is negative. So, all types with value less than or equal to r must follow s.

So, to show (s, . . . , s) is a Bayesian equilibrium, we need to ensure that if bidder i has

value x > r, she should bid s(x) and cannot be better off by bidding b ∈ [r, s(a)]. By

r-monotonicity, by bidding b ∈ [r, s(a)] is equivalent to bidding s(y) ≡ b where y ∈ [r, a]. So,

we need to show that

u(x) ≥ G(y)(x− s(y)) = u(y) + (x− y)G(y)

⇔ u(x)− u(y) ≥ (x− y)G(y).

But u(x)− u(y) =
∫ x
r
G(z)dz−

∫ y
r
G(z)dz =

∫ x
y
G(z)dz ≥ (x− y)G(y), where the inequality

follows from the fact that G is increasing. �
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By Theorem 9, the expected payment of a bidder with value x > r in the first-price

auction with reserve price r is

xG(x)−
x∫
r

G(y)dy,

and the expected payment of a bidder with value x ≤ r is zero (as such a bidder never wins).

This is identical to the second-price auction with reserve price r (see (12)). Hence, expected

revenue in the first-price auction with reserve price r is equal to the expected revenue in the

second-price auction with reserve price r. Further, the optimal reserve price in the first-price

auction is the same as that in the second-price auction. We summarize these discussions

below using Theorem 8.

Theorem 10 The expected revenue from a first-price auction with reserve price r and a

second-price auction with reserve price r is the same. Under MHR, the optimal reserve price

is the unique solution to the equation

r − 1− F (r)

f(r)
= 0.

The optimal reserve prices depend on the MHR assumption. Without the MHR assump-

tion, the determination of an optimal reserve price is tricky. Kotowski (2018) shows that

dividing the bidders into two groups and setting different reserve prices for them improves

revenue over a single reserve price for all the bidders.

Again, it is important to remind ourselves of the assumptions that drive these results:

(a) private values (b) independent and identical bidders; (c) risk neutral bidders. Also,

an ascending price auction where the clock starts at price r is strategically equivalent to

a second-price auction with reserve price r. Similarly, a descending price auction where

the clock stops at price r is equivalent to a first-price auction with reserve price r. Hence,

Theorem 10 extends to all standard auctions with appropriate implementation of reserve

price.

In practice, reserve prices have other uses besides revenue maximization. For instance,

a reserve price may just indicate the cost of producing a good (which is normalized to zero

here). A reserve price may be used to stop bidders from colluding – collusion is a strategic
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behaviour among groups of bidders (bidding rings) where all group members place lower

bids.

8 Risk Averse Bidders

We are going to assume that bidders are risk averse. So, each bidder has a utility function

π : R → R, which is strictly increasing, concave and differentiable. The interpretation of π

is the following. If a bidder i with value vi receives the object and pays p for it, her utility

from that is

π(vi − p)

We are going to normalize and assume that π(0) = 0.

In the risk neutral case, this utility was just π(vi − p) = vi − p. An important feature of

this assumption is the following. Suppose a bidder with value vi faces a lottery 1
3

probability

of receiving the object at price p1 and 2
3

probability of receiving the object at price p2, then

according to a bidder with π, she evaluates the lottery as

1

3
π(vi − p1) +

2

3
π(vi − p2) < π

(1

3
(vi − p1) +

2

3
(vi − p2)

)
In the case of risk neutral bidder, the above expression would be an equality. Notice that

the preference of the bidder over eventual alternatives (winning/not winning, payment)

is still uniquely determined by a single parameter: her value vi. It is just that how she

evaluates a lottery changes. So, the interim preference of bidders which is over such lotteries

of the eventual ex-post outcome will be shaped by the π function. This π function is assumed

to be known in the model.

How does risk aversion change bidding behavior in first-price and second-price auctions?5

Theorem 11 In a second-price auction with risk averse bidders, it is weakly dominant

strategy for each bidder to bid her value.

5The equivalence of first-price with descending price auction and second-price with the ascending price
auction remains even with risk averse bidders.
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Proof : The proof is identical to the case where bidders were risk neutral. The basic idea of

the earlier proof carries over: your bid does not determine your payment in case you win. To

give an idea, suppose bidder i is deciding to bid with value vi and others bid b−i. If she bids

vi and wins, she pays b∗ ≡ max(b−i), and her utility is π(vi−b∗). Can she do better? As long

as she wins, her utility remains the same as her payment still remains b∗. Obviously, bidding

something to lose is not profitable. Similarly, if she bids vi and loses, her vi < b∗. In that

case, the only way to win is to bid more than b∗, in which case her utility is π(vi− b∗) < π(0)

since vi < b∗ and π is increasing. �

Notice that the proof does not even require that π is concave. The robustness of second-

price (and ascending price) auction to preferences over lotteries makes it complelling in its

own rights. This stems from the fact that the second-price auction gives payoffs to agents in

an ex-post sense. On the other hand, first-price auction gives payoffs to agents at an interim

stage.

Theorem 12 (Holt Jr (1980)) Let (s, . . . , s) be the unique symmetric monotone equilib-

rium of the first-price auction with risk-neutral bidders. Let (s̄, . . . , s̄) be a symmetric mono-

tone equilibrium of first-price auction with risk-averse bidders. Then, for almost all x ∈ [0, a],

s̄(x) > s(x)

Hence, the expected revenue in a first-price auction is greater than the expected revenue in a

second-price auction with risk-averse bidders.

Proof : The proof does not derive an expression for equilibrium in a first-price auction (as

was done in Theorem 3). It starts from the premise that a symmetric monotone equilibrium

(s̄, . . . , s̄) exist. Any such equilibrium has the following feature. Consider bidder i. If other

bidders follow s̄, for this to be equilibrium, i must bid s̄(x) for each x ∈ [0, a]. In particular,

she should not be able to imitate to a type y when her true type is x. What is her probability

of winning if she bids s̄(y) when others follow s̄? Well, for this others have to bid less than

s̄(y), which in turn means the highest of (n − 1) values have to be less than y. Hence, the

probability of winning by bidding s̄(y) remains G(y).
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So, following s̄ gives bidder i with value x a payoff equal to

u(x) = G(x)π(x− s̄(x))

Imitating to y gives a payoff equal to

G(y)π(x− s̄(y))

Note that equilibrium requires that the maximum of the above expression must occur at

y = x. A necessary condition for that is the first-order condition needs to be satisfied at

y = x.

G(y)π′(x− s̄(y))s̄′(y) = g(y)π(x− s̄(y)),

where π′ and s̄′ denotes the derivatives of the respective functions.

Since this must hold at y = x, we get

G(x)

g(x)
=
π(x− s̄(x))

π′(x− s̄(x))

1

s̄′(x)
(17)

Now, in case of risk-neutral bidders, Theorem 3 showed that for all x ∈ [0, a],

G(x)s(x) = xG(x)−
x∫

0

G(y)dy

⇒ G(x)s′(x) + g(x)s(x) = xg(x)

⇒ G(x)

g(x)
= (x− s(x))

1

s′(x)

Using this with Equation (17), we get

π(x− s̄(x))

π′(x− s̄(x))

1

s̄′(x)
= (x− s(x))

1

s′(x)
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Hence, we must have for all x ∈ [0, a],

s̄′(x)

s′(x)
=
π(x− s̄(x))

π′(x− s̄(x))

1

x− s(x)
(18)

Since π is a concave and increasing function: π(z) =
∫ z
0
π′(y)dy > zπ′(z) for all z > 0.

Hence, we can conclude from Equation (18), that for all x ∈ (0, a],

s̄′(x)

s′(x)
>
x− s̄(x)

x− s(x)
(19)

We will now argue that s̄(x) > s(x) for almost all x ∈ [0, a]. Note that a feature of the

equilibrium, with risk averse and risk-neutral bidders is that s̄(0) = s(0) = 0. First, a small

claim.

Claim 1 For every x ∈ (0, a], if s(x) ≥ s̄(x), then s̄′(x) > s′(x).

Proof : If s(x) ≥ s̄(x), then (19) implies that

s̄′(x)

s′(x)
>
x− s̄(x)

x− s(x)
≥ 1.

Hence, s̄′(x) > s′(x). �

Now, we argue that there cannot be an interval [x̃, x̃+ h], where h > 0 such that s(x̃) =

s̄(x̃) and s(x) ≥ s̄(x) for all x ∈ [x̃, x̃+ h]. Such an interval is shown in Figure 3.

If such an interval exists, then by Claim 1, for all x ∈ [x̃, x̃ + h], we have s̄′(x) > s′(x).

As a result, for any x ∈ (x̃, x̃+ h],

s̄(x) = s̄(x̃) +

x∫
x̃

s̄′(y)dy > s(x̃) +

x∫
x̃

s′(y)dy = s(x),

which is a contradiction.

We can now complete our argument that s̄(x) > s(x) for almost all x ∈ [0, a). If not,

there must exist an interval [x̃, x̃+ h] with h > 0 such that s(x̃) = s̄(x̃) and s(x) ≥ s̄(x) for

all x in the interval. But we just showed that such an interval cannot exist. This proves the

first part of the theorem.
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s(x)

s̄(x)

Figure 3: An interval where s(x) ≥ s̄(x)

For the second part, we observe that the expected payment of a bidder with value x in

second-price auction remains the same (due to Theorem 11) in the case of risk-neutral and

risk-averse bidders. Hence, a bidder with value x makes an expected payment equal to her

expected payment in a first-price auction with risk neutral bidder (Theorem 4): G(x)s(x).

But the expected payment of a bidder with value x in a first-price auction with risk averse

bidders is G(x)s̄(x). Hence, we have

G(x)s(x) < G(x)s̄(x).

So, with risk averse bidders, a bidder with value x makes higher expected payment in the

first-price auction than in a second-price auction. Thus, the expected revenue in a first-price

auction is higher than the second-price auction with risk averse bidders. �

So, the usual revenue equivalence between first-price and second-price auction breaks

down with risk-averse bidders. A corollary of this result is also that the descending price

auction (equivalent to the first-price auction) generates more expected revenue than an

ascending price auction (equivalent to the second-price auction) with risk-averse bidders.

Why does risk aversion lead to aggressive bidding in first-price auction? The basic in-

tuition is that an increase in bid leads to two outcomes: (a) an increase in probability of
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winning and (b) decrease in ex-post payoff. With risk aversion, a bidder cares more about

increasing the probability of winning. We now look at two specific form of risk aversion and

see how bidding of such bidders change.

8.1 CRRA Bidders

A bidder is called a CRRA bidder, if her coefficient of relative risk aversion −zπ′′(z)
π′(z)

is

constant. With a CRRA bidder, the utility function takes the following specific form:

π(z) = zα,

where 0 < α < 1 and the coefficient of relative risk aversion becomes

−zπ
′′(z)

π′(z)
= (1− α)

We can describe the functional form of symmetric equilibrium for CRRA bidders.

Theorem 13 Let (s̄, . . . , s̄) be a symmetric and monotone strategy profile. Then, the fol-

lowing are equivalent.

1. (s̄, . . . , s̄) is a Bayesian equilibrium.

2. For every x ∈ [0, a],

s̄(x) = x− 1

Gα(x)

x∫
0

Gα(y)dy

where Gα(y) = [G(x)]
1
α .

Proof : 1 ⇒ 2. Suppose (n − 1) bidders follow the equilibrium strategy s̄. A bidder with

value x by imitating a bidder of type y

• wins the auction with probability G(y)

• and gets a payoff (x− s̄(y))α
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Expected utility:= G(y)(x− s̄(y))α. In equilibrium, this expected utility must be maxi-

mized at y = x. First order condition gives

g(y)(x− s̄(y))α −G(y)αs̄′(y)(x− s̄(y))α−1 = 0

⇐⇒ g(y)(x− s̄(y))−G(y)αs̄′(y) = 0

α
G(x)

g(x)
=
x− s̄(x)

s̄′(x)

This is similar to risk-neutral case except the α multiplier.

Let Gα(x) = [G(x)]
1
α for all x ∈ [0, a]. Note Gα is a probability distribution. Let its pdf

be gα. For every x ∈ [0, a],

Gα(x)

gα(x)
=

[G(x)]
1
α

g(x) 1
α

[G(x)]
1
α
−1

= α
G(x)

g(x)

So, first order condition reduces to

α
G(x)

g(x)
=
Gα(x)

gα(x)
=
x− s̄(x)

s̄′(x)

So, in any symmetric and monotone equilibrium with CRRA bidders,

Gα(x)

gα(x)
=
x− s̄(x)

s̄′(x)

When α = 1, we get the same condition as risk-neutral bidders.

Hence, with CRRA bidders, equilibrium involves bidding like in risk-neutral case but as

if value is drawn from Fα ≡ F
1
α . Solving similar to risk-neutral case, we get

s̄(x) = x− 1

Gα(x)

x∫
0

Gα(y)dy

2 ⇒ 1. For this, we only show that a bidder with type x cannot gain by imitating a

bidder with type y by bidding s̄(y), given that other bidders follow s̄.
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Expected utility by bidding s̄(y) is

G(y)
[
x− s̄(y)

]α
= [Gα(y)]α

[
x− s̄(y)

]α
=
[
Gα(y)

(
x− s̄(y)

)]α
If all bidders were risk-neutral and bidders drew their values using [F ]

1
α , then the equi-

librium is s̄. Hence,

Gα(y)
(
x− s̄(y)

)
≤ Gα(x)

(
x− s̄(x)

)
Putting all together,

G(y)
[
x− s̄(y)

]α
≤
[
Gα(x)

(
x− s̄(x)

)]α
= [Gα(x)]α

[
x− s̄(x)

]α
= G(x)

[
x− s̄(x)

]α
,

which is the required incentive constraint. �

Hence, a CRRA bidder with coeffficient of risk-aversion α, bids as if the highest of (n−1)

values is drawn from Gα. Since Gα first-order stochastic dominates G, the expected revenue

with risk-averse bidders is higher. In particular,

1

Gα(x)

x∫
0

Gα(y)dy =

x∫
0

[G(y)

G(x)

] 1
α
dy

≤
x∫

0

[G(y)

G(x)

]
dy =

1

G(x)

x∫
0

G(y)dy

where we use α < 1. This implies that

for every x ∈ [0, a],

s̄(x) = x− 1

Gα(x)

x∫
0

Gα(y)dy ≥ x− 1

G(x)

x∫
0

G(y)dy = s(x)
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Finally, using the fact that the probability of winning in both cases is G(x) for a bidder

with value x implies that the expected payment of a bidder with type x satisfies G(x)s̄(x) >

G(x)s(x). Hence, expected revenue is higher with risk-averse bidders.

8.2 CARA Bidders

A bidder is called a CARA bidder, if her coefficient of absolute risk aversion −π′′(z)
π′(z)

is

constant. With a CARA bidder, the utility function has the following specific form:

π(z) = 1− exp(−αz),

where α > 0 is the coefficient of absolute risk aversion.

Now, consider the uncertainty over prices faced by a CARA bidder in a second-price

auction. Since the bidder pays the highest of (n − 1) values when she is the winner, her

expected utility conditional on winning when value is x and bid is z is given by

EY1

[
π(x− Y1) : Y1 < z

]
,

where Y1 is the random variable of highest (n − 1) values. Let the certainty equivalent of

this gamble be ρ(x, z). Formally,

π(x− ρ(x, z)) = EY1

[
π(x− Y1) : Y1 < z

]
Using the expression for π, we see that

1− exp(−α(x− ρ(x, z)) =
1

G(z)

z∫
0

(
1− exp(−α(x− y))

)
g(y)dy

=
1

G(z)

[
G(z)−

z∫
0

exp(−α(x− y))g(y)dy
]

= 1− 1

G(z)

z∫
0

exp(−α(x− y))g(y)dy
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Hence, we get

exp(−α(x− ρ(x, z)) =
1

G(z)

z∫
0

exp(−α(x− y))g(y)dy

⇐⇒ exp(αρ(x, z))

exp(αx)
=

1

G(z)

z∫
0

exp(αy)

exp(αx)
g(y)dy

⇐⇒ exp(αρ(x, z)) =
1

G(z)

z∫
0

exp(αy)g(y)dy

Notice that the RHS is independent of x. Hence, ρ is independent of x, and we simply write

ρ(x, z) ≡ ρ(z), and for every z, ρ(z) solves

exp(αρ(z)) =
1

G(z)

z∫
0

exp(αy)g(y)dy

Hence, we write

π(x− ρ(z)) = EY1

[
π(x− Y1) : Y1 < z

]
(20)

We now argue that ρ is the unique symmetric and monotone equilibrium with CARA bid-

ders. Further, bidders are indifferent between first-price and second-price auctions. So, even

though the seller prefers the first-price auction (Theorem 12), CARA bidders are indifferent

between auction formats.

Theorem 14 (Matthews (1987)) There is a unique symmetric and monotone equilib-

rium (ρ, . . . , ρ) in the first-price auction with CARA bidders:

exp(αρ(x)) =
1

G(x)

x∫
0

exp(αy)g(y)dy ∀ x ∈ [0, a] (21)

Further, the expected utility of every bidder is the same in the first-price and the second-price

auction.

Proof : First, by Theorem 11, truthful bidding is a Bayesian equilibrium (weakly dominant)
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in the second-price auction. In a second-price auction, by bidding z, a bidder with value x

gets an expected utility equal to

G(z)EY1

[
π(x− Y1) : Y1 < z

]
Since truthful strategy is a Bayesian equilibrium, this expression is maximized at z = x.

x ∈ arg max
z

[
G(z)EY1

[
π(x− Y1) : Y1 < z

]]
But Equation (20) implies that

x ∈ arg max
z

[
G(z)π(x− ρ(z))

]
Conversely, this equilibrium must be unique. This is because if there is some equilibrium

(s̄, . . . , s̄), then it must be the case that

x ∈ arg max
z

[
G(z)π(x− s̄(z))

]
We know that the certainty equivalent of the “price gamble” in the second-price auction is

given by a solution to the Equation (20). Hence, s̄ ≡ ρ, and ρ is uniquely determined. This

shows uniqueness.

Finally,

G(x)π(x− ρ(x)) = G(x)EY1

[
π(x− Y1) : Y1 < x

]
implies the expected payoff of a bidder with value x is the same in both the first-price and

the second-price auction for a CARA bidder. �

9 Asymmetric auctions: two bidders

While symmetry is a plausible assumption in some settings, it is violated in many settings:

bidders come from heterogeneous backgrounds and there is no reason to believe that their

values will be distributed similarly. For instance, two teams bidding for a player in a cricket
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league auction will most likely draw their values from different distributions (value of a

player will depend on the players the teams they already have, which may be different across

teams).

In an asymmetric environment, the strategies of agents become asymmetric – remember,

strategy of a player is a map from set of types to real numbers, and the set of types are

potentially different across players. So, we allow for asymmetric equilibria in first-price

auction. The analysis of equilibrium in first-price auction with asymmetric bidders is quite

complex – seminal papers are Lebrun (1999); Maskin and Riley (2000b). Of course, truthful

bidding remains a weakly dominant strategy in the second-price auction. So, the focus of

this section is on the analysis of first-price auction.

9.1 Two examples

We present two examples to illustrate the effect of asymmetry. In both the examples, there

are two bidders: {1, 2}

• In this example, bidder 1 draws her value uniformly from [0, 1] and bidder 2 draws

her value from [2, 3]. The expected revenue in a second-price auction is the expected

value of bidder 1: 1
2
. The following is an asymmetric equilibrium of the first-price

auction: bidder 1 bids her value and bidder 2 bids 1. To see this, if bidder 2 bids 1,

then it is optimal for bidder 2 to bid her value. If bidder 1 bids her value, consider

a bid b of bidder 2 such that b ≤ 1. The expected payoff of bidder 2 by bidding b is

b(v2 − b), where v2 is the value of bidder 2. Differentiating, v2 − 2b ≥ 0 since v2 ≥ 2

and b ≤ 1, we see that the expected payoff is maximized at b = 1. Bidding more than

1 is not optimal because bidder 1 never bids more than 1. This shows that the given

strategies constitute a Bayesian equilibrium. The expected revenue in the first-price

auction is 1 – bidder 2 always wins and pays 1. Hence, there exists an equilibrium in

the first-price auction where the expected revenue of the first-price auction is higher

than in the second-price auction.

• The second example is somewhat special. It has a finite type space and we will not

compute an equilibrium (a mixed strategy equilibrium will exist). The type space is as

follows. Bidder 1 has a value of 2 with probability 1 but bidder 2 has a value of 0 with
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probability 1
2

and a value of 2 with probability 1
2
. Bidder 2 of type 0 must bid 0 in any

equilibrium. Hence, bidder 1 can always bid arbitrarily close to 0 and win the auction

whenever bidder 2 has type 0. This happens with probability 1
2
. Hence, bidder 1 can

guarantee herself a payoff of 1
2
(2 − 0) = 1. Hence, she will never bid more than 1 in

equilibrium (by doing so, her payoff is less than 2− 1 = 1). So, bidder 2 of type 2 can

always bid slightly more (but arbitrarily close to) 1 to win the auction, and ensure a

payoff of 2 − 1 = 1. This happens with probability 1
2
. Hence, bidder 2 can guarantee

an expected payoff of 1
2

in any equilibrium. So, total expected payoffs of bidders is at

least 3
2

in any equilibrium. Notice that the winner is always a bidder with value not

more than 2. Hence, the total expected surplus is not more than 2. Since expected

revenue is expected surplus minus expected payoff of bidders, we conclude that the

expected revenue in the first-price auction is not more than 1
2

in any equilibrium.

The expected revenue in a second-price auction is 1
2
×2 = 1 (i.e., second higest value is 0

with probability 1
2

and 2 with probability 1
2
). Thus, the second-price auction generates

more expected revenue than the first-price auction in any equilibrium.

9.2 First-price auction: two bidders

We analyze properties of equilibria in a two bidder setting. Suppose bidder 1 draws her value

from [0, a1] using distribution F1 and bidder 2 draws her value from [0, a2] using distribution

F2. We will assume that distribution of bidder 2 dominates the distribution of bidder 1 in

terms of reverse hazard rate:

a2 ≥ a1

f2(x)

F2(x)
>
f1(x)

F1(x)
∀ x ∈ (0, a1)

Reverse hazard rate ordering of random variables is stronger than usual first-order stochastic

dominance of random variables (Shaked and Shanthikumar, 2007). We will refer to bidder

1 as the weak bidder and bidder 2 as the strong bidder. A class of distribution that can be

ordered in terms of reverse hazard rate dominance is: for all x ∈ [0, 1], we have F (x) = xα

for some α ∈ (0, 1]. These distributions have support [0, 1] and for α > α̂, we have two
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s1(a1) = s2(a2)

a1 a2
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φ1(z) φ2(z)

Figure 4: Asymmetric bidding in first-price auction

distributions F and F̂ such that

f(x)

F (x)
=
α

x
>
α̂

x
=
f̂(x)

F̂ (x)
∀ x ∈ (0, 1)

A strategy for bidder i ∈ {1, 2} is a map si : [0, ai]→ R+. We assume that si is strictly

increasing and differentiable. The main result of the section is the following.

Theorem 15 (Maskin and Riley (2000a)) Suppose (s1, s2) is a Bayesian equilibrium in

the first-price auction. Then, the weak bidder bids more aggressively than the strong bidder

in equilibrium:

s1(x) > s2(x) ∀ x ∈ [0, a1]

Proof : In any equilibrium (s1, s2), it must be that s1(0) = s2(0) = 0. Further, s1(a1) =

s2(a2). If s1(a1) > s2(a2), then bidder 1 can do better by lowering her bid when her type

is a1. A similar argument works if s2(a2) > s1(a1). Hence, we assume that s1(a1) = s2(a2).

We let b̄ = s1(a1) = s2(a2). The two bid functions are shown in Figure 4.

For every bidder i ∈ {1, 2}, define φi(z) := s−1i (z) ∀ z ∈ [0, b̄]. This is the inverse bidding

function of each bidder. Note that since s1(a1) = s2(a2), the domain of the inverse bidding

function is the same for both the bidders. Figure 4 illustrates this.
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Suppose bidder j follows sj. Then, bidder i 6= j does not deviate by bidding b ∈ [0, b̄].

But by bidding b, bidder i wins if sj(v2) < b or v2 < φj(b). The probability of this event is

Fj(φj(b)). Hence, expected payoff of bidder i with value x when she bids b is

Fj(φj(b))
[
x− b

]
The first order condition is fj(φj(b))φ

′
j(b)(x − b) = Fj(φj(b)). This must hold for all x ∈

(0, ai). Since in equilibrium b = si(x), we can write x = φi(b). So, one way to write the first

order condition is for all z ∈ [0, b̄], we must have

fj(φj(z))φ′j(z)(φi(z)− z) = Fj(φj(z)) (22)

⇐⇒ fj(φj(z))

Fj(φj(z))
=

1

φ′j(z)(φi(z)− z)
(23)

Note that this implies that φi(z) > z if z is in the interior.

Suppose φ1(z) = φ2(z) for some z. Then, using this condition and the fact that F2 reverse

harzard rate dominates F1, we get

1

φ′2(z)(φ1(z)− z)
=
f2(φ2(z))

F2(φ2(z))
=
f2(φ1(z))

F2(φ1(z))
>
f1(φ1(z))

F1(φ1(z))
=

1

φ′1(z)(φ2(z)− z)
=

1

φ′1(z)(φ1(z)− z)

Using φ1(z) > z, we get that φ′1(z) > φ′2(z) whenever φ1(z) = φ2(z). An implication of this

is that whenever φ1 curve meets φ2 curve, they cross each other – if they only tangentially

touched each other, then φ′1(z) must equal φ′2(z).

We next show that if φ1(z) > φ2(z) for some z ∈ (0, b̄), then φ1(ẑ) > φ2(ẑ) for all

ẑ ∈ [z, b̄). Suppose not. Then, by continuity, for some ẑ, we have φ1(ẑ) = φ2(ẑ). Hence,

φ′1(ẑ) > φ′2(ẑ). Then, for some interval [z, ẑ) we have φ1(y) > φ2(y) and φ′1(y) > φ′2(y) for

all y ∈ [z, ẑ). Then, φ1(ẑ) = φ1(z) +
∫ ẑ
z
φ′1(y) > φ2(z) +

∫ ẑ
z
φ′2(y) = φ2(ẑ), a contradiction.

Now, we consider two cases.

Case 1. Suppose a1 < a2. In that case φ1(b̄) = a1 < a2 = φ2(b̄). Hence, there is some point

ẑ in interior (0, b̄) but sufficiently close to b̄ such that φ1(ẑ) < φ2(ẑ). But then, there cannot

be a z ∈ (0, b̄) such that φ1(z) > φ2(z).
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Case 2. Suppose a1 = a2. Then, assume for contradiction that there is a z ∈ (0, b̄) such

that φ1(z) > φ2(z). We know that this implies for any ẑ arbitrarily close to b̄, we have

φ1(b) > φ2(b). Since φ1(b̄) = a1 = a2 = φ2(b̄) and b is arbitrarily close to b̄, we get that

F1(φ1(b)) > F2(φ2(b)) and the derivatives of F1 and F2 at these points must have the opposite

relation: φ′1(b)f1(φ1(b)) < φ′2(b)f2(φ2(b)). Using (23), we see that

φ1(b) = b+
F2(φ2(z))

φ′2(b)f2(φ2(b))
< b+

F1(φ1(z))

φ′1(b)f1(φ1(b))
= φ2(b),

which is a contradiction.

Hence, we have shown that there cannot be a z ∈ (0, b̄) such that φ1(z) > φ2(z). But there

cannot be any interval where (ẑ, ẑ+h) such that φ1(z) = φ2(z) for all z in this interval. This

is because, by our earlier claim, we will have φ′1(z) > φ′2(z) for all z in this interval, which

contradicts the fact that φ1(z) = φ2(z) in the interval. We have already argued that φ1 and

φ2 cannot tangentially touch each other. This shows that φ1(z) < φ2(z) for all z ∈ (0, b̄),

which is same as s1(x) > s2(x) for all x ∈ [0, a1]. �

Theorem 15 has efficiency consequences. Because at a type profile (x, x), where both the

bidders have same value x ∈ (0, a1), bidder 1 bids more than bidder 2. By continuity, there

is a profile (x − ε, x), where ε > 0 but sufficiently small, such that s1(x − ε) > s2(x). That

is, bidder 1 wins even though she has a lower value. Hence, the first-price auction is not

efficient with asymmetric bidders.

The other comment about the proof of Theorem 15 is that the first order conditions along

with the relevant boundary conditions define a unique Bayesian equilibrium of the first-price

auction. This and some conditions on F1 and F2 under which revenue in two auction formats

can be compared are discussed in Maskin and Riley (2000a).

10 Optimal auction design

In this section, we discuss the design of optimal auctions for selling a single object. Optimal

auction refers to an auction that maximizes expected revenue over all possible auctions, where

a Bayesian equilibrium exists. However, we consider an even larger class of mechanisms which
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need not be an auction, e.g. a posted-price mechanism, where a price is announced and the

first buyer to express willingness to pay buys at the announced price.

Auction design is slightly different from analyzing auctions. Typically, when we theo-

retically analyze auctions, we try to look for its equilibria. In design of auctions, we only

consider auctions which have an equilibrium. We do not worry about characterizing the

equilibria. Rather, we try to see what outcomes can be achieved in some equilibrium.

To understand design of optimal auctions, we first have to formally reduce the same

of mechanisms that we need to consider. For this, we first define the notion of a social

choice function (SCF). There are n agents and let the type space of each agent i be Di.
Let D = D1 × . . . × Dn be the set of type profiles. We associate with every agent i a

utility function: ui : [0, 1]× R×D → R, i.e., for every allocation probability, payment, and

type, it specifies a utility. So, ui(qi, pi; vi) denotes the utility from winning the object with

probability qi and paying pi when type is vi. A special form of this utility function is qivi−pi,
the quasilinear utility function. Potentially, this can also be a risk averse utility function.

A social choice function (SCF) is a pair of maps (qi, pi) for each i ∈ N such that

qi : D → [0, 1] is the allocation function of agent i and pi : D → [0, 1] is the payment function

of agent i. There is no restriction on the value (positive, negative, zero) of pi. But qis need

to satisfy feasibility:
∑n

i=1 qi(v) ≤ 1 for each v ∈ D. We will denote such an SCF by simply

(q, p).

An SCF reflects designer’s goal from a mechanism, i.e., if the designer knew the types of

the agents, how she would set the outcomes. A mechanism is a more complicated object than

an SCF. The main objective of a mechanism is to set up rules of interaction between agents.

These rules are often designed with the objective of realizing the outcomes of a social choice

function. The basic ingredient in a mechanism is a message. A message is a communication

between an agent and the mechanism designer. You can think of it as an action chosen in

various contingencies of a Bayesian game - these messages will form the actions for various

contingencies of agents in a Bayesian game that the designer will set up.

A mechanism must specify the message space for each agent. A message space has to

specify various contingencies that may arise in a mechanism and available actions at each of

the contingencies. This in turn induces a Bayesian game with messages playing the role of

actions. Given a message profile, the mechanism chooses an outcome.

46



Definition 6 A mechanism is a collection of message spaces and a decision rule: M ≡
(M1, . . . ,Mn, (φ, π)), where

• for every i ∈ N , Mi is the message space of agent i and

• φ : M1 × . . .×Mn → [0, 1]n is the allocation decision and π : M1 × . . .×Mn → Rn is

the payment decision.

A mechanism is a direct mechanism if Mi = Di for every i ∈ N .

In a mechanism ((M1, . . . ,Mn), (φ, π)), if a message profile (m1, . . . ,mn) is sent by

agents, then agent i gets the object with probability φi(m1, . . . ,mn) and pays πi(m1, . . . ,mn).

In a direct mechanism, every agent communicates a type from his type space to the

mechanism designer. Hence, if (q, p) is an scf, then ((D1, . . . ,Dn), (q, p)) is a direct mechanism

- for simplicity, we will just refer to (q, p) as a (direct) mechanism.

The message space of a mechanism can be quite complicated. Consider the sale of a single

object by a “price-based” procedure. The mechanism designer announces a price and asks

every buyer to communicate if he wants to buy the object at the announced price. The price

is raised if more than one buyer expresses interest in buying the object, and the procedure

is repeated till exactly one buyer shows interest. The message space in such a mechanism is

quite complicated. Here, a message must specify the communication of the buyer (given his

type) for every contingent price.

10.1 Dominant Strategy Incentive Compatibility

We now introduce the notion of incentive compatibility. The idea of a mechanism and

incentive compatibility is often attributed to the works of Hurwicz - see (Hurwicz, 1960).

The goal of mechanism design is to design the message space and decision rules in a way such

that when agents participate in the mechanism they have (best) actions (messages) that they

can choose as a function of their private types such that the desired outcome is achieved.

The most fundamental, though somewhat demanding, notion of incentive compatibility in

mechanism design is the notion of dominant strategies.

A strategy is a map si : Di → Mi, which specifies the message each agent i will choose

for every realization of her type. A strategy si is a dominant strategy for agent i in
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mechanism (M1, . . . ,Mn, (φ, π)), if for every vi ∈ Di we have

ui(φi(si(vi),m−i), πi(si(vi),m−i); vi) ≥ ui(φi(m
′
i,m−i), πi(m

′
i,m−i); vi) ∀ m′i, ∀ m−i

Definition 7 A social choice function (q, p) is implemented in dominant strategy equi-

librium by a mechanism (M1, . . . ,Mn, (φ, π)) if there exists strategies (s1, . . . , sn) such that

1. (s1, . . . , sn) is a dominant strategy equilibrium of (M1, . . . ,Mn, (φ, π)), and

2. φi(s1(v1), . . . , sn(vn)) = qi(v1, . . . , vn) and πi(s1(v1), . . . , sn(vn)) = pi(v1, . . . , vn) for all

i ∈ N and for all (v1, . . . , vn) ∈ D.

For direct mechanisms, we will look at equilibria where everyone tells the truth.

Definition 8 A direct mechanism is strategy-proof or dominant strategy incentive

compatible (DSIC) if for every agent i ∈ N and every vi ∈ Di, the truth-telling strategy

si(vi) = vi for all vi ∈ Di is a dominant strategy.

So, to verify whether a social choice function is implementable or not, we need to search

over infinite number of mechanisms whether any of them implements this SCF. A fundamen-

tal result in mechanism design says that one can restrict attention to the direct mechanisms.

Proposition 1 (Revelation Principle, Myerson (1979)) If a mechanism implements

a social choice function (q, p) in dominant strategy equilibrium, then the direct mechanism

(q, p) is strategy-proof.

Proof : Suppose mechanism (M1, . . . ,Mn, (φ, π)) implements (q, p) in dominant strategies.

Let si : Di →Mi be the dominant strategy of each agent i.

Fix an agent i ∈ N . Consider two types vi, v
′
i ∈ Di. Consider v−i to be the report of

other agents in the direct mechanism. Let si(vi) = mi and s−i(v−i) = m−i. Similarly, let

si(v
′
i) = m′i. Then, using the fact that (q, p) is implemented by our mechanism in dominant

strategies, we get

ui(φi(mi,m−i), πi(mi,m−i); vi) ≥ ui(φi(m
′
i,m−i), πi(m

′
i,m−i); vi)
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But qi(vi, v−i) = φi(mi,m−i), qi(v
′
i, v−i) = φi(m

′
i,m−i), pi(vi, v−i) = πi(mi,m−i) and pi(v

′
i, v−i) =

πi(m
′
i,m−i). Then: ui(qi(vi, v−i), pi(vi, v−i); vi) ≥ ui(qi(v

′
i, v−i), pi(v

′
i, v−i); vi), which estab-

lishes that (q, p) is strategy-proof. �

Thus, a social choice function (q, p) is implementable in dominant strategies if and only

if the direct mechanism (q, p) is strategy-proof. Revelation principle is a central result

in mechanism design. One of its implications is that if we wish to find out what social

choice functions can be implemented in dominant strategies, we can restrict attention to

direct mechanisms. This is because, if some non-direct mechanism implements a social

choice function in dominant strategies, revelation principle says that the corresponding direct

mechanism is also strategy-proof. For instance, if we know that the equilibrium in the

ascending price auction implements the second-price auction outcome, then it is without

loss of generality to focus attention on the direct mechanism, which is the second-price

auction.

10.2 Bayesian Incentive Compatibility

While dominant strategy incentive compatibility required the equilibrium strategy to be the

best strategy under all possible strategies of opponents, Bayesian incentive compatibility

requires this to hold in expectation. This means that in Bayesian incentive compatibility,

an equilibrium strategy must give the highest expected utility to the agent, where we take

expectation over types of other agents. To be able to take expectation, agents must have

information about the probability distributions from which types of other agents are drawn.

Hence, Bayesian incentive compatibility is informationally demanding. In dominant strat-

egy incentive compatibility the mechanism designer needed information on the type space

of agents, and every agent required no prior information of other agents to compute his

equilibrium. In Bayesian incentive compatibility, every agent needs to know the distribution

from which agents’ types are drawn.

Since we need to compute expectations, we will assume that values of agents v ≡
(v1, . . . , vn) are jointly drawn using a distribution F . Hence, we are being more general

than the models of auctions we studied by allowing for correlation of values of agents. Given

agent i has value vi, we denote by F−i(·|vi) the conditional distribution of values of agents

49



in N \ {i}
To understand Bayesian incentive compatibility, fix a mechanism (M1, . . . ,Mn, φ, π). A

strategy of agent i ∈ N for such a mechanism is a mapping si : Di →Mi. A strategy profile

(s1, . . . , sn) is a Bayesian equilibrium if for all i ∈ N , for all vi ∈ Di we have∫
v−i

ui(φi(si(vi), s−i(v−i)), πi(si(vi), s−i(v−i)); vi)dF−i(v−i|vi)

≥
∫
v−i

ui(φi(mi, s−i(v−i)), πi(mi, s−i(v−i)); vi)dF−i(v−i|vi) ∀ mi ∈Mi.

A direct mechanism (social choice function) (q, p) is Bayesian incentive compatible

if si(vi) = vi for all i ∈ N and for all vi ∈ Di is a Bayesian equilibrium, i.e., for all i ∈ N
and for all vi, v

′
i ∈ Di we have∫

v−i

ui(qi(vi, v−i), pi(vi, v−i); vi)dF−i(v−i|vi)

≥
∫
v−i

ui(qi(v
′
i, v−i), pi(v

′
i, v−i); vi)dF−i(v−i|vi).

A dominant strategy incentive compatible mechanism is Bayesian incentive compatible. A

mechanism (M1, . . . ,Mn, φ, π) implements a social choice function (q, p) in Bayesian equi-

librium if there exists strategies si : Di →Mi for each i ∈ N such that

1. (s1, . . . , sn) is a Bayesian equilibrium of (M1, . . . ,Mn, φ, π) and

2. φi(s1(v1), . . . , sn(vn)) = qi(v1, . . . , vn), πi(s1(v1), . . . , sn(vn)) = pi(v1, . . . , vn) for all i ∈
N and for all (v1, . . . , vn) ∈ D.

Analogous to the revelation principle for dominant strategy incentive compatibility, we

also have a revelation principle for Bayesian incentive compatibility.

Proposition 2 (Revelation Principle) If a mechanism implements a social choice func-

tion (q, p) in Bayesian equilibrium, then the direct mechanism (q, p) is Bayesian incentive

compatible.

Proof : Suppose (M1, . . . ,Mn, φ, π) implements (q, p). Let (s1, . . . , sn) be the Bayesian

equilibrium strategies of this mechanism which implements (q, p). Fix agent i and vi, v
′
i ∈ Di.
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Now, ∫
v−i

ui(qi(vi, v−i), pi(vi, v−i); vi)dF−i(v−i|vi)

=

∫
v−i

ui(φi(si(vi), s−i(v−i)), πi(si(vi), s−i(v−i)); vi)dF−i(v−i|vi)

≥
∫
v−i

ui(φi(si(v
′
i), s−i(v−i)), πi(si(v

′
i), s−i(v−i)); vi)dF−i(v−i|vi)

=

∫
v−i

ui(qi(v
′
i, v−i), pi(v

′
i, v−i); vi)dF−i(v−i|vi),

where the equalities come from the fact that the mechanism implements (q, p) and the

inequality comes from the fact that (s1, . . . , sn) is a Bayesian equilibrium of the mechanism.

�

Like the revelation principle of dominant strategy incentive compatibility, the revelation

principle for Bayesian incentive compatibility is not immune to criticisms for multiplicity of

equilibria.

An example of (symmetric) first-price auction.

Consider a symmetric environment and first-price auction. In particular, suppose there

are two bidders whose values are drawn independently from [0, 1] using uniform distribution.

We know that a unique symmetric Bayesian equilibrium of this first-price auction is that

each buyer i bids 1
2
vi.

What does the revelation principle say here? Since there is an equilibrium

of this mechanism, the revelation principle says that there is a direct mechanism with a

truth-telling Bayesian equilibrium. Such a direct mechanism is easy to construct here.

1. Ask buyers to submit their values (v1, v2).

2. The buyer i with the highest value wins but pays 1
2
vi.

Notice that the first-price auction implements the outcome of this direct mechanism.

Since the first-price auction had this outcome in Bayesian equilibrium, this direct mechanism

is Bayesian incentive compatible.
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10.3 Characterization of Bayesian incentive compatibility

Due to the revelation principle, we can focus our analysis to direct mechanisms. Our first

step is to characterize, i.e., give an alternate description, of the set of direct mechanisms. The

characterization is an important step to simplify our goal of describing an optimal auction.

From this section onwards, we will assume independent distribution of values. So, we

will assume that value of bidder i is distributed in [0, ai] using cdf Fi and positive density fi.

Note that even though values are independent, we allow the distributions to be different.

Take any Bayesian incentive compatible (BIC) mechanism (q, p). Consider any agent

i ∈ N who has value vi. Her expected payoff from reporting v′i when her type is vi is (given

that others are truthfully reporting types)

vi

∫
v−i

qi(v
′
i, v−i)f−i(v−i)dv−i −

∫
v−i

pi(v
′
i, v−i)f−i(v−i)dv−i

To make this notationally simple, we will introduce two notations,

Qi(v
′
i) =

∫
v−i

qi(v
′
i, v−i)f−i(v−i)dv−i

Pi(v
′
i) =

∫
v−i

pi(v
′
i, v−i)f−i(v−i)dv−i

So, Qi(v
′
i) is the interim allocation probability of winning the object for agent i when she

reports v′i. Similarly, Pi(v
′
i) is the interim payment made by agent i when she reports v′i.

This is calculated by integrating out (taking expectation over) v−i of the ex-post allocation

probability and payment terms.

Hence, the BIC constraints, can be written succinctly as

viQi(vi)− Pi(vi) ≥ viQi(v
′
i)− Pi(v′i)

In other words, a mechanism (q, p) is Bayesian incentive compatible if for every i ∈ N and

every vi, v
′
i ∈ Di we have

viQi(vi)− Pi(vi) ≥ viQi(v
′
i)− Pi(v′i)
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Given a mechanism (q, p), we can define the interim utility of each agent i from the

mechanism by a function ui : Di → R as follows:

ui(vi) = viQi(vi)− Pi(vi) ∀ vi ∈ Di

Note that for any vi, v
′
i,

viQi(v
′
i)− Pi(v′i) = (vi − v′i)Qi(v

′
i) + v′iQi(v

′
i)− Pi(v′i) = ui(v

′
i) + (vi − v′i)Qi(v

′
i)

Hence, a mechanism (q, p) is Bayesian incentive compatible if for every i ∈ N and every

vi, v
′
i ∈ Di we have

ui(vi) ≥ ui(v
′
i) + (vi − v′i)Qi(v

′
i)

Theorem 16 (Myerson (1981)) A mechanism (q, p) is Bayesian incentive compatible if

and only if for each i ∈ N

1. Qi is monotone, i.e., Qi(vi) ≥ Qi(v
′
i) for all vi > v′i

2. ui(vi) = ui(0) +
∫ vi
0
Qi(x)dx for all vi ∈ [0, ai]

Before proceeding with the proof, we point out that ui(vi) = viQi(vi)−Pi(vi) for any vi.

Hence, a simple substitution reveals that (2) in the theorem can be alternatively written as

Pi(vi) = Pi(0) + viQi(vi)−
vi∫
0

Qi(x)dx ∀ vi ∈ [0, ai] (24)

Proof : Suppose (q, p) is Bayesian incentive compatible. Then, for any vi > v′i, the two IC

constraints (one where vi type does not manipulate to v′i and the other where v′i type does

not manipulate to vi) must hold:

ui(vi) ≥ ui(v
′
i) + (vi − v′i)Qi(v

′
i)

ui(v
′
i) ≥ ui(vi) + (v′i − vi)Qi(vi)

Adding these two IC constraints give us (vi − v′i)(Qi(vi)−Qi(v
′
i)) ≥ 0. Since vi > v′i, we get
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Qi(vi) ≥ Qi(v
′
i). This proves necessity of (1).

For necessity of (2), we first show that ui is a convex function. Take any vi, v
′
i ∈ [0, ai]

and suppose v′′i = λvi + (1 − λ)v′i where λ ∈ (0, 1). Then, IC constraints vi → v′′i (i.e., vi

type not reporting v′′i ) and v′i → v′′i give us:

λui(vi) ≥ λui(v
′′
i ) + λ(vi − v′′i )Qi(v

′′
i )

(1− λ)ui(v
′
i) ≥ (1− λ)ui(v

′′
i ) + (1− λ)(v′i − v′′i )Qi(v

′′
i )

Adding gives the necessary convexity constraint:

λui(vi) + (1− λ)ui(v
′
i) ≥ ui(v

′′
i )

A convex function need not be differentiable everywhere (for instance, a convex function

consisting of two line segments with different slopes will not be differentiable at the point of

intersection of the line segments), but it is differentiable almost everywhere. That is, the set

of points where a convex function is not differentiable has zero measure.

Indeed if ui is differentiable at vi in the interior of [0, ai], then we can pick h arbitrarily

close to zero and write the IC constraint vi + h→ vi:

ui(vi + h) ≥ ui(vi) + hQi(vi)

Hence, we have

ui(vi + h)− ui(vi)
h

≥ Qi(vi)

Taking h→ 0, we get

dui(vi)

dvi
≥ Qi(vi) (25)

Next, consider the IC constraint (vi − h)→ vi:

ui(vi − h) ≥ ui(vi)− hQi(vi)
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Hence, we have

ui(vi)− ui(vi − h)

h
≤ Qi(vi)

Taking h→ 0, we get

dui(vi)

dvi
≤ Qi(vi) (26)

Combining (25) and (26), we get for almost all vi ∈ (0, ai), we have

dui(vi)

dvi
= Qi(vi)

By the fundamental theorem of calculus,

ui(vi) = ui(0) +

vi∫
0

Qi(x)dx ∀ vi ∈ [0, ai]

This completes one direction of the proof.

For the other direction, suppose (q, p) satisfies (1) and (2). Take vi, v
′
i ∈ [0, ai] and note

that

ui(vi)− ui(v′i) =

vi∫
v′i

Qi(x)dx ≥ (vi − v′i)Qi(v
′
i),

where the equality follows from (2) and inequality follows from (1), i.e., monotonicity of Qi.

Hence, every IC constraint vi → v′i holds. So, (q, p) is Bayesian incentive compatible. �

Implications. One crucial implication of Theorem 16 is the usual revenue equivalence

result in auction theory (Theorem 5). Take any two auction formats which in equilibrium

satisfy the following two conditions:

1. They allocate the object to the highest valued bidder. This will happen if the two

auctions have symmetric equilibria – in that case highest bidder is also the highest

valued bidder. Hence, these two auctions have the same Qi function for each bidder

i. As an example, if bidders are symmetric (i.e., draw values from same distribution),
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then the allocation rules in the first-price and the second-price auction are the same.

2. Further, if two auction formats are such that the utility of the lowest type (zero type)

is the same. This also happens in all the standard auctions. This assumption is not

true if there are two auction formats, and one of them charges entry fee and the other

one does not.

If these two assumptions hold, then Theorem 16 (in particular, (24)) says that the ex-

pected payment of every bidder in these two auction formats are the same. This result

generalizes Theorem 5 since it holds for mechanisms where equilibrium need not allocate

efficiently. This also explains why in asymmetric environment, first-price and second-price

are not revenue equivalent. The first-price auction need not allocate the object efficiently

in equilibrium (Theorem 15) but the second-price auction continues to allocate the object

efficiently. This leads to different Qi functions in the two auction formats. As a result, the

expected revenue is different.

10.4 Characterization of dominant strategy incentive compatibility

A characterization similar to Theorem 16 is possible for dominant strategy incentive compat-

ible (DSIC) direct mechanisms. The only difference is we will have ex-post version (instead

of interim version) of monotonicity and payoff equivalence.

Note that the DSIC constraints, can be written succinctly as: for all i, for all v−i, and

for all vi, v
′
i

viqi(vi, v−i)− pi(vi, v−i) ≥ viqi(v
′
i, v−i)− pi(v′i, v−i)

Given a mechanism (q, p), we can define the ex-post utility of each agent i from the

mechanism by a function Ui : D → R as follows:

Ui(vi, v−i) = viqi(vi, v−i)− pi(vi, v−i) ∀ (vi, v−i) ∈ D

Note that for any vi, v
′
i,

viqi(vi, v−i)− pi(vi, v−i) = Ui(vi, v−i) ≥ viqi(v
′
i, v−i)− pi(v′i, v−i) = Ui(v

′
i, v−i) + (vi − v′i)qi(v′i, v−i)

56



1

κi(v−i)
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qi(vi; v−i)
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Figure 5: Step function

Hence, a mechanism (q, p) is DSIC if for every i ∈ N , for every v−i and every vi, v
′
i ∈ Di

we have

Ui(vi, v−i) ≥ Ui(v
′
i, v−i) + (vi − v′i)qi(v′i, v−i)

So, the analogue of Theorem 16 is as follows – we skip the proof, which is almost identical

to Theorem 17.

Theorem 17 (Myerson (1981)) A mechanism (q, p) is dominant strategy incentive com-

patible if and only if for each i ∈ N

1. qi is monotone, i.e., qi(vi, v−i) ≥ qi(v
′
i, v−i) for all vi > v′i and for all v−i

2. Ui(vi, v−i) = Ui(0, v−i) +
∫ vi
0
qi(x, v−i)dx for all vi ∈ [0, ai] and for all v−i

10.4.1 Deterministic mechanisms

A mechanism (q, p) is deterministic if qi(v) ∈ {0, 1} for all v. First-price and second-price

auctions (with deterministic tie-breaking) are deterministic. If q is deterministic, monotonic-

ity means it has to be a step function (as in Figure 5).

For every i and every v−i, qi(·, v−i) is zero below some cutoff κi(v−i) and 1 above it.

Suppose pi(0, v−i) = 0 in a mechanism (zero type always pays zero) – this may not hold
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if there is an entry fee. Using DSIC characterization

pi(vi, v−i) = pi(0, v−i) + viqi(vi, v−i)−
vi∫
0

qi(x, v−i)dx

If qi(vi, v−i) = 0, then qi(x, v−i) = 0 for all x < vi (by monotonicity). So, pi(vi, v−i) = 0. If

qi(vi, v−i) = 1, then qi(x, v−i) = 1 for all x ∈ (κi(v−i, vi) and qi(x, v−i) = 0 for all x < κi(v−i).

Hence, if qi(vi, v−i) = 1, then

pi(vi, v−i) = vi −
vi∫
0

qi(x, v−i)dx = vi − (vi − κi(v−i)) = κi(v−i)

So, we can write

pi(vi, v−i) = qi(vi, v−i)κi(v−i)

This leads to a cleaner result for deterministic mechanisms.

Theorem 18 (Myerson (1981)) A mechanism (q, p) is deterministic dominant strategy

incentive compatible if and only if for each i ∈ N

1. qi is a step function, i.e., for all v−i, there is a cutoff κi(v−i) such that qi(vi, v−i) = 0

if vi < κi(v−i) and qi(vi, v−i) = 1 if vi > κi(v−i)

2. Pi(vi, v−i) = Pi(0, v−i) + qi(vi, v−i)κi(v−i) for all vi ∈ [0, ai] and for all v−i

Given v−i, what is κi(v−i)? The amount κi(v−i) is the minimum i needs to bid to have

qi(·, v−i) = 1. Now, consider the second-price auction. If bidder i wins in a second-price

auction than vi ≥ maxj 6=i vj. What is the mininum bidder i needs to bid to win? This is

clearly maxj 6=i vj: highest of other bidders’ values or the second highest value. If bidder i

wins, she pays this: second-highest value/bid.

We could think of many deterministic DSIC auctions using Theorem 18. Consider the

following direct mechanism with two bidders whose values are in [0, 1]. if bidder 1 reports
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v1 and bidder 2 reports v2, the object is allocated as follows. Bidder 1 wins if (v1)
2 is more

than v2. Else, bidder 2 wins.

We use Theorem 18 to compute payments. First, given v2, the bidder 1 wins as long as

her report v1 is more than
√
v2. So, this is a step function as required in (1) of Theorem

18. Similarly, for bidder 2: given v1, bidder 2 wins as long as her report is more than (v1)
2,

again a step function.

For payment, at any type profile (v1, v2), we consider two cases.

1. Bidder 1 wins: v1 >
√
v2. In that case, κ1(v2) =

√
v2 – this is the minimum value

bidder 1 needs to have to win against bidder 2 with value v2. So bidder 1 pays
√
v2.

2. Bidder 2 wins: v1 ≤
√
v2. In that case, κ2(v1) = (v1)

2 – this is the minimum value

bidder 2 needs to have to win against bidder 1 with value v2. So bidder 2 pays (v1)
2.

Using Theorem 18, this is a DSIC mechanism.

10.5 Participation constraints

If we are designing a mechanism, we must ensure that there is incentive for bidders to

participate in the auction. The incentive to participate will depend on the outside option

of the bidders. Here, we assume that bidders get zero utility if they do not participate in

the auction. Thus, to ensure participation, bidders should be given non-negative utility (in

equilibrium) in the auction. There are again two stages where such utility comparisions can

be done.

1. Ex-post. The final payoff in the mechanism is non-negative. This means for every

type profile, the payoff of each bidder must be non-negative in the direct mechanism.

Since the direct mechanism has truth-telling equilibrium, this boils down to the fol-

lowing definition of participation constraint.

Definition 9 A mechanism (q, p) is ex-post individually rational (EIR) if for

every bidder i and every type profile (vi, v−i), we have

viqi(vi, v−i)− pi(vi, v−i) ≥ 0
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Equivalently, this says that ui(vi, v−i) ≥ 0 for all i and all (vi, v−i).

2. Interim. This participation cares about the interim payoff, i.e., the expected payoff

from the direct mechanism (in truth-telling equilibrium) given the type of the agent.

Definition 10 A mechanism (q, p) is interim individually rational (IIR) if for

every bidder i and every type vi, we have

viQi(vi)− Pi(vi) ≥ 0

Equivalently, this says that Ui(vi) ≥ 0 for all i and all vi

Clearly, if a mechanism is EIR, it is also IIR. The following lemma characterizes EIR and

IIR through simpler constraints.

Lemma 3 Suppose (q, p) is a DSIC mechanism. Then, it is EIR if and only if pi(0, v−i) ≤ 0

for all i ∈ N and for all v−i.

Suppose (q, p) is a BIC mechanism. Then, it is IIR if and only if Pi(0) ≤ 0.

Proof : Suppose (q, p) is a BIC mechanism. Then, by Theorem 16, we know that for every

i and every vi, we have ui(vi) = ui(0) +
∫ vi
0
Qi(x)dx ≥ ui(0). Hence, if ui(0) ≥ 0 ensures

ui(vi) ≥ 0 for all vi. Of course, ui(vi) ≥ 0 for all vi implies ui(0) ≥ 0. Hence, IIR is equivalent

to requiring for all i ∈ N , we have ui(0) ≥ 0. But ui(0) = −Pi(0) implies IIR is equivalent

to requiring for all i ∈ N , we have Pi(0) ≤ 0.

The proof for the DSIC mechanism and EIR is similar (using Theorem 17). �

10.6 Optimal auction design

In this section, we will be concerned with designing a direct mechanism which maximizes the

expected revenue of the seller under incentive and participation constraints. More precisely,

this is how we define an optimal mechanism.
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Definition 11 A BIC and IIR mechanism (q, p) is optimal if for every other BIC and

IIR mechanism (q′, p′),

∫
v

[ n∑
i=1

pi(v)
]
f(v)dv ≥

∫
v

[ n∑
i=1

p′i(v)
]
f(v)dv

An equivalent way of writing down the expected revenue expression is through interim

payments:

n∑
i=1

[ ∫ ai

0

Pi(vi)fi(vi)dvi

]
≥

n∑
i=1

[ ∫ ai

0

P ′i (vi)fi(vi)dvi

]
Our first result says that every optimal mechanism must maximize the expected virtual

values of agents. The virtual value of agent i with value x is defined as:

ψi(x) = x− 1− Fi(x)

fi(x)

The virtual value is useful in deriving a simple expression for expected revenue. For an

arbitrary BIC and IIR mechanism (q̂, p̂), we use the characterization in Theorem 16) to write

an expression for expected revenue. The expected payment of bidder i of type x is

P̂i(x) = P̂i(0) + xQ̂i(x)−
∫ x

0

Q̂i(z)dz

Hence, expected payment of bidder i to the seller is∫ ai

0

P̂i(x)fi(x)dx = P̂i(0) +

∫ ai

0

xQ̂i(x)fi(x)dx−
∫ ai

0

[ ∫ x

0

Q̂i(z)dz
]
fi(x)dx

= P̂i(0) +

∫ ai

0

xQ̂i(x)fi(x)dx−
∫ ai

0

∫ ai

x

fi(z)dzQ̂i(x)dx

= P̂i(0) +

∫ ai

0

xQ̂i(x)fi(x)dx−
∫ ai

0

(1− Fi(x))Q̂i(x)dx

= P̂i(0) +

∫ ai

0

[
x− 1− Fi(x)

fi(x)

]
Q̂i(x)fi(x)dx

= P̂i(0) +

∫ ai

0

ψi(x)Q̂i(x)fi(x)dx,

where the second equality follows by changing the order of integration. Hence, the expected
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revenue of any BIC and IIR mechanism is (sum of expected payments of all bidders):

n∑
i=1

P̂i(0) +
n∑
i=1

∫ ai

0

ψi(x)Q̂i(x)fi(x)dx

=
n∑
i=1

P̂i(0) +
n∑
i=1

∫ ai

0

ψi(x)
(∫

v−i

q̂i(x, v−i)f−i(v−i)
)
fi(x)dx

=
n∑
i=1

P̂i(0) +
n∑
i=1

∫ ai

0

∫
v−i

ψi(vi)q̂i(vi, v−i)f−i(v−i)fi(vi)dvi

=
n∑
i=1

P̂i(0) +
n∑
i=1

∫
v

ψi(vi)q̂i(v)f(v)dv

=
n∑
i=1

P̂i(0) +

∫
v

n∑
i=1

[
ψi(vi)q̂i(v)

]
f(v)dv (27)

Since this mechanism is IIR, by Lemma 3, P̂i(0) ≤ 0 for all i ∈ N .

Theorem 19 Suppose (q, p) is a BIC and IIR mechanism. Then, (q, p) is an optimal mech-

anism if and only if for every BIC and IIR mechanism (q′, p′), we have

∫
v

n∑
i=1

[
ψi(vi)qi(v)

]
f(v)dv ≥

∫
v

n∑
i=1

[
ψi(vi)q

′
i(v)
]
f(v)dv (28)

Pi(0) = 0 ∀ i ∈ N (29)

Proof : Necessary direction. If (q, p) is an optimal mechanism, we must have Pi(0) = 0

for all i ∈ N – if not, we can construct another BIC and IIR mechanism with (q, p′) (same

allocation rule but different p′) such that P ′i (0) = 0 and P ′i (vi) is given by the revenue

equivalence formula (by Theorem 16 such a mechanism is BIC and IIR). By Equation (27),

this mechanism generates more revenue since Pi(0) ≤ 0 for all i. This means that the

expected revenue of the optimal mechanism (q, p) is

∫
v

n∑
i=1

[
ψi(vi)qi(v)

]
f(v)dv

Since (q, p) is optimal, its expected revenue is greater than the expected revenue of

any BIC and IIR mechanism (q′, p′) where P ′i (0) = 0. The expected revenue from such a
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mechanism is ∫
v

n∑
i=1

[
ψi(vi)q

′
i(v)
]
f(v)dv.

By optimality of (q, p), we get

∫
v

n∑
i=1

[
ψi(vi)qi(v)

]
f(v)dv ≥

∫
v

n∑
i=1

[
ψi(vi)q

′
i(v)
]
f(v)dv

Sufficient direction. Suppose (q, p) is a BIC and IIR mechanism satisfying (28) and (29).

The expected revenue from any BIC and IIR mechanism (q′, p′) is

n∑
i=1

P ′i (0) +

∫
v

n∑
i=1

[
ψi(vi)q

′
i(v)
]
f(v)dv ≤

∫
v

n∑
i=1

[
ψi(vi)q

′
i(v)
]
f(v)dv

≤
∫
v

n∑
i=1

[
ψi(vi)qi(v)

]
f(v)dv

=
n∑
i=1

Pi(0) +

∫
v

n∑
i=1

[
ψi(vi)qi(v)

]
f(v)dv

where the first inequality is due to the fact that (q′, p′) is IIR and P ′i (0) ≤ 0 for all i and the

last inequality and equality follow from (28) and (29) respectively. So, (q, p) generates more

expected revenue. �

We make the following assumption on virtual values (assumed in Theorem 8).

Definition 12 A distribution Fi of bidder i is regular if the virtual value function is

strictly increasing, i.e., for all v′i > vi, we have ψi(v
′
i) > ψi(vi).

Note that if fi(x)
1−Fi(x) is increasing, then ψ is strictly increasing. Further, fi(x)

1−Fi(x) is called

the hazard rate of distribution Fi at x. Hence, hazard rate increasingness implies regularity.

Several well-known distributions satisfy hazard rate monotonicity: uniform, exponential. For

uniform, Fi(x) = x
ai

, and hence, hazard rate is 1
ai−x , which is clearly increasing in x.

The main result of this section is the following.

Theorem 20 (Myerson (1981)) Suppose distributions of all bidders are regular. Then,
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there is an optimal mechanism (q, p) such that for all v and for all i ∈ N

qi(v) =

1 if ψi(vi) > maxj 6=i ψj(vj) and ψi(vi) ≥ 0

0 if ψi(vi) < maxj 6=i ψj(vj) or ψi(vi) < 0

In words, theorem is saying that an optimal mechanism must allocate the object to the

bidder with the highest non-negative virtual value – in case of ties, it can be allocated to

any highest non-negative virtual value agent. The proof follows immediately from Theorem

19.

Proof : From Theorem 19, an optimal mechanism must maximize the expression

∫
v

n∑
i=1

[
ψi(vi)qi(v)

]
f(v)dv

over all BIC and IIR mechanisms (q, p). If we forget the fact that we maximize over BIC

and IIR mechanisms, and just maximize the expression
∫
v

∑n
i=1

[
ψi(vi)qi(v)

]
f(v)dv, then

we can do so by point-wise maximizing it. That is, for each v, we maximize the expression∑n
i=1

[
ψi(vi)qi(v)

]
. This can be maximized by choosing a (q, p) such that qi(v) is 1 whenever

ψi(v) ≥ 0 and ψi(vi) ≥ maxj 6=i ψj(vj) and zero otherwise.

This defines an optimal solution to
∫
v

∑n
i=1

[
ψi(vi)qi(v)

]
f(v)dv. But are the ignored

BIC and IIR constraints satisfied by this mechanism? We invoke Theorem 16. For this,

we check monotonicity of qi. For this fix v−i, and v′i > vi. If qi(vi, v−i) = 1, then

ψi(vi) ≥ max(maxj 6=i ψj(vj), 0). By regularity, ψi(v
′
i) > ψi(vi) ≥ max(maxj 6=i ψj(vj), 0).

Hence, qi(v
′
i, v−i) = 1 by the definition of q. So, qi is monotone in the sense of Theorem 17.

Indeed, this is a step function. To satisfy DSIC characterization of Theorem 17, we choose

pi(0, v−i) = 0 (satisfies EIR) and choose payment according to κi(v−i): minimum value at

which virtual value crosses zero and exceeds the virtual value of others.

Hence, the chosen mechanism is a deterministic DSIC mechanism. satisfying EIR.

Thus, there is an optimal mechanism satisfying the claim of the theorem. �

This completes the description of the optimal mechanism: it is a DSIC mechanism which

allocates the object to the agent with highest non-negative virtual value. In particular, if

there is no agent with non-negative virtual value, the object is unassigned.
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10.6.1 Symmetric bidders

If there are symmetric bidders, then they have identical type space: [0, a] and values are

distributed identically: F̂ with density f̂ . In that case, all the bidders have identical virtual

value functions, i.e., for all x ∈ [0, a], virtual value of any bidder with type x is

ψ(x) = x− 1− F̂ (x)

f̂(x)

Suppose the distribution is regular. At a type profile v ≡ (v1, . . . , vn) if vi > vj then

ψ(vi) = vi −
1− F̂ (vi)

f̂(vi)
> vj −

1− F̂ (vj)

f̂(vj)
= ψ(vj)

where the inequality follows from regularity (virtual value function is strictly increasing).

Hence, with symmetric distribution, we see that vi > vj if and only if ψ(vi) > ψ(vj). Using

Theorem 20, the object goes to the highest valued bidder who has non-negative virtual value.

When does a bidder have non-negative virtual value, i.e., for what x does ψ(x) = 0. Since

ψ is strictly increasing, there is a unique value ψ−1(0) at which virtual value becomes zero.

This means if the highest bidder has value more than ψ−1(0), she gets the object; else the

object is not sold. The loser pays zero and the winner pays the cutoff type when she starts

winning: this will be highest of ψ−1(0) and max of others values. Hence, with symmetric

type, the optimal auction is the second-price auction with a reserve price ψ−1(0) – this is

also the optimal reserve price in a second-price auction (Theorem 8).

Theorem 21 Suppose values of bidders are indepdendently and identically distributed us-

ing a regular distribution. Then, the optimal mechanism is a second-price auction with an

optimally chosen reserve price.

For instance, if values of bidders are uniformly distributed in [0, 1], then ψ−1(0) = 1
2

(the

optimal reserve price in a second-price auction does not depend on the number of bidders).

Hence, the optimal auction (with any number of bidders n) is a second-price auction with

reserve price 1
2
.
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10.6.2 Examples

It is instructive to look at some particular examples where values are differently distributed.

For instance, suppose n = 2 and bidder 1 draws its value uniformly from [0, 1] and bidder 2

draws its value uniformly from [0, 2].

For uniform distribution with support [0, a], the virtual value function is x − 1−x
a

1
a

=

x− (a− x) = 2x− a. Hence, ψ1(v1) = 2v1 − 1 and ψ2(v2) = 2v2 − 2. This means, bidder 1

will have negative virtual value below 1
2

and cannot win in the optimal auction if her value

is less than 1
2
. Similarly, bidder 2 cannot win in the optimal auction if her value is less than

1. Consider the following value profiles.

• v1 = 0.3, v2 = 1.2. Virtual value of bidder 1 is negative and bidder 2 is positive.

Hence, bidder 2 wins and pays the cutoff price: the minimum she needs to bid to win

if v1 = 0.3 is 1.

• v1 = 0.9, v2 = 1.1. In this case ψ1(0.9) = 2×0.9−1 = 0.8 and ψ2(1.1) = 2×1.1−2 = 0.2.

So, both bidders have positive virtual value but bidder 1 has a higher virtual value

(even though she has a lower value than bidder 2). So, bidder 1 wins. To determine

cutoff price, note that bidder 1 has to beat the virtual value of bidder 2 and have

non-negative virtual value. When bidder 1 has a value of 0.6 she has a virtual value of

0.2, equal to the virtual value of bidder 2. Hence, her payment is 0.6.

• v1 = 0.4, v2 = 0.8. In this case, the virtual values of both the bidders are negative and

the object is not sold.

These examples show two sources of inefficiency in the optimal auction (a) inefficiency

due to the fact that the object may be not sold (even though there are bidders with positive

value) and (b) inefficiency due to the fact that the object is sold to the lower valued bidder.

The latter inefficiency does not arise with symmetric bidders, but may occur with asymmetric

bidders.

10.6.3 The must-sell case

In many settings, the object must be sold in an auction. This is not a feature of the optimal

auction: optimal auction necessarily does not sell the object if virtual values are negative.
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If the object must be sold, then similar arguments to Theorem 20 reveals that allocating

the object to the bidder with the highest virtual value (even if this bidder’s virtual value is

negative) is optimal (under regularity). Note that the bidder with the highest virtual value

need not be the bidder with the highest value: if bidders are symmetric, highest virtual

value is also highest value. Hence, even in the must-sell case, the optimal auction need

not be an efficient auction (like a second-price auction). If bidders are symmetric, then the

second-price auction is also an optimal auction.
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