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Abstract

We study deterministic voting mechanisms by considering an ordinal notion of Bayesian incentive com-
patibility (OBIC). If the beliefs of agents are independent and generic, we show that a mechanism is OBIC 
and satisfies an additional condition called elementary monotonicity if and only if it is a dominant strategy 
incentive compatible mechanism. Our result works in a large class of preference domains (that include the 
unrestricted domain, the single-peaked domain, the single-dipped domain, and some single-crossing do-
mains). We can significantly weaken elementary monotonicity in our result in the single-peaked domain if 
we assume unanimity and in a large class of domains if we assume unanimity and tops-onlyness.
© 2016 Elsevier Inc. All rights reserved.

JEL classification: D71; D82
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1. Introduction

In standard models of voting, dominant strategy incentive compatibility (DSIC) is usu-
ally too demanding. This is illustrated by the Gibbard–Satterthwaite theorem (Gibbard, 1973;
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Satterthwaite, 1975), which shows that the only DSIC and unanimous deterministic voting mech-
anism in the unrestricted domain is a dictatorship.1 This motivates the study of weaker solution 
concepts in these models. In this paper, we consider ordinal Bayesian incentive compatibility 
(OBIC) introduced by d’Aspremont and Peleg (1988). A voting mechanism is OBIC if for every 
agent, his interim/expected outcome probability vector from truth-telling first-order stochastic-
dominates any interim outcome probability vector obtained by deviating. In the unrestricted 
domain of preferences, Majumdar and Sen (2004) show that OBIC with independent and generic 
priors is equivalent to DSIC under unanimity.2 We investigate the robustness of this result to the 
unrestricted domain assumption.

We construct a non-DSIC, unanimous, and anonymous mechanism that is OBIC with respect 
to some generic priors when the domain of preferences is restricted to be the single-peaked do-
main. However, our main results suggest that the equivalence between OBIC and DSIC voting 
mechanisms can be restored in various restricted domains under weak additional axioms. The 
main additional axioms that we use are elementary monotonicity and its weaker versions along 
with unanimity. Elementary monotonicity, which we formally define later, is a very mild form of 
Maskin monotonicity, and requires a mechanism to respond positively to changes in the prefer-
ences of agents. It is satisfied by a variety of mechanisms.

Our core result says that OBIC and elementary monotonicity are equivalent to DSIC in a 
large class of domains. In the single-peaked domain, the equivalence between OBIC and DSIC 
holds with a significantly weaker version of elementary monotonicity if we assume unanimity. If 
we assume unanimity and tops-onlyness, the weakened version of elementary monotonicity and 
OBIC are equivalent to DSIC in a large class of domains.

Our results provide a foundation for using dominant strategy voting mechanisms in various 
restricted domains if we use ordinal deterministic mechanisms.3 An implication of our results is 
that if we want to design Bayesian incentive compatible voting mechanisms, we must consider 
randomized and/or cardinal mechanisms. All our results hold even if we weaken OBIC to only 
prevent manipulations of each agent to his adjacent preferences – we call this requirement locally
OBIC (LOBIC). Incentive compatibility with local incentive constraints were recently studied 
in Carroll (2012) and Sato (2013), who identified domains where local incentive constraints 
imply all incentive constraints. All our proofs use ideas from this literature. Thus, our results 
bring together two different ideas (OBIC and local incentive compatibility) in strategic voting 
literature.

Our results extend the result in Majumdar and Sen (2004) by identifying the precise connec-
tion between DSIC and OBIC mechanisms with (and without) unanimity in restricted domains. 
Also, they corroborate the different implications of OBIC with generic and uniform priors (a uni-
form prior requires that each preference in the domain is drawn with equal probability). This is 
because Majumdar and Sen (2004) had shown that every neutral mechanism satisfying elemen-
tary monotonicity is OBIC under uniform priors in the unrestricted domain – this covers many 
reasonable mechanisms. In contrast, our results show a very different implication of elementary 
monotonicity with generic priors.

1 Throughout the paper, we only consider deterministic voting mechanisms.
2 We define a generic prior formally later – it is a generic subset of the set of independent priors.
3 Restricting attention to ordinal and deterministic mechanisms in this setting is with loss of generality – see Borgors 

and Postl (2009), Borgors and Smith (2014), who discuss this issue in detail.
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1.1. Relation to literature

Our results parallel recent contributions in the single object auction quasilinear utility models 
(and some of its extensions) by Manelli and Vincent (2010) and Gershkov et al. (2013), who 
establish a weaker version of equivalence between Bayesian incentive compatible and DSIC 
mechanisms. The equivalence in these papers is in terms of interim outcome probabilities. Be-
sides, these papers look at cardinal mechanisms with quasilinearity, whereas we consider ordinal 
mechanisms without transfer.

One way to interpret our results is that we are replacing DSIC by weaker axioms – LOBIC and 
some additional axioms. In a recent paper, such an approach of decomposing the DSIC axiom is 
pursued in Muto and Sato (2014). They use three weaker axioms than DSIC and show that they 
are equivalent to DSIC in the unrestricted domain. Though they do not consider OBIC, some 
of their axioms (more precisely, some weakening of their axioms) are implied by OBIC with 
generic priors. Their result only applies to the unrestricted domains, while our results apply to 
many restricted domains.

Besides Majumdar and Sen (2004), Bhargava et al. (2015) study OBIC voting mechanisms 
with correlated priors in the unrestricted domain. They show how correlation allows one to escape 
the Gibbard–Satterthwaite impossibility result using OBIC. OBIC mechanisms have been studied 
in the context of matching problems in Majumdar (2003), Ehlers and Masso (2007, 2015). These 
papers study the implication of stability and OBIC in two-sided matching problems. Though 
some of our results extend to private good allocation problems, most of our results are specific 
to voting environment.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 for-
mally states the unrestricted domain result and gives two counterexamples to show that the result 
breaks down in a restricted domain or if the number alternatives is two. Section 4 formally de-
fines all the domains we use in the paper. Section 5 contains all the results and Section 5.5 gives 
specific examples of domains where our results can be applied. We end with some discussions in 
Section 6.

2. The model

We formally introduce our model in this section. Let A be a finite set of alternatives and P
be the set of all strict linear orders over A – P will be referred to as the unrestricted domain of 
preferences. Let D ⊆P be some subset of strict linear orders. We will refer to D as the domain. 
There are n agents. The set of agents is denoted by N = {1, . . . , n}. The private preference of 
each agent i ∈ N is a strict linear order Pi ∈D.

A social choice function (scf) is a map f : Dn → A.

Definition 1. An scf f : Dn → A is dominant strategy incentive compatible (DSIC) if for 
every i ∈ N , every P−i , and every Pi ∈D, there exists no P ′

i ∈D such that

f (P ′
i , P−i )Pif (Pi,P−i ).

We now introduce the notion of ordinal Bayesian incentive compatibility. We first introduce 
the assumptions that we make about the priors in our model. We will assume that there are com-
mon beliefs that each agent i independently draws his preference using a probability distribution 
μi : D → [0, 1]. Hence, the belief of agent i that agents other than i have a preference profile 
P−i will be denoted as μ(P−i) ≡ ×j �=iμj (Pj ). We will refer to {μi}i∈N as a profile of priors.
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We make the following assumption about generic priors in the paper.

Definition 2. The profile of priors {μi}i∈N is generic if for every j ∈ N and for every S, T ⊆
Dn−1 we have

[ ∑

P−j ∈S
μ(P−j ) =

∑

P−j ∈T
μ(P−j )

] ⇒ [S = T ].

Genericity requires that if we consider an agent j and consider two distinct subsets of profiles 
of preferences of agents in N \ {j}, then the probability that agents in N \ {j} have preferences 
in these subsets cannot be the same. Mathematically, these priors are generic in a topological 
sense (Majumdar and Sen, 2004) – to be precise, Majumdar and Sen (2004) show this fact when 
D = P , but an identical proof works if D ⊆ P .4 One notable prior that is not generic is the 
uniform prior that assigns the same probability to all the preferences.

Given a social choice function f , we can compute the interim outcome probability of each 
agent from this scf using the priors. For this, consider a profile of priors {μi}i∈N . For each agent 
i ∈ N , define πf

i (a, Pi) as the interim outcome probability of the scf f choosing alternative a
when agent i reports Pi as his preference (and other agents report truthfully):

π
f
i (a,Pi) =

∑

P−i∈Dn−1:f (Pi ,P−i )=a

μ(P−i ).

Note that πf
i depends on the priors, but we have suppressed it from the notation for simplicity.

For any alternative a ∈ A and any Pi ∈ D, let B(a, Pi) := {a} ∪ {b ∈ A : bPia}.

Definition 3. (d’Aspremont and Peleg, 1988) An scf f is ordinally Bayesian incentive com-
patible (OBIC) with respect to profile of priors {μi}i∈N if for every i ∈ N , for every Pi,P

′
i ∈ D, 

and for every a ∈ A, we have
∑

b∈B(a,Pi)

π
f
i (b,Pi) ≥

∑

b∈B(a,Pi)

π
f
i (b,P ′

i ).

An equivalent definition of OBIC is to require that for every i ∈ N , for every Pi, P ′
i ∈ D, for 

every utility function u : A →R representing Pi , we have
∑

a∈A

u(a)π
f
i (a,Pi) ≥

∑

a∈A

u(a)π
f
i (a,P ′

i ).

A well known fact to note is that if an scf is OBIC with respect to all beliefs, then it is DSIC. 
We also want to point out that OBIC is a solution concept for ordinal scfs. In principle, the 
private information (or type) of an agent is a vNM-utility function. But we restrict attention to 
scfs that only elicit ordinal preference over alternatives. In other words, OBIC requires robustness 
with respect to cardinal representation of ordinal preferences. Hence, the incentive constraints in 
OBIC have to make sure that an agent does not manipulate irrespective of which cardinal utility 
function represents his ordinal preferences.

4 Denote by � the unit simplex of dimension |D| −1. The set of common independent beliefs is the n-th order Cartesian 
product of unit simplices �, and is given by �n . The set of priors ruled out by genericity are given by equations that 
define a finite set of hyperplanes in �n , which has Lebesgue measure zero in �n.
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Our approach of modeling a type does not have any concrete decision-theoretic foundation. 
One way to think about it is that agents find it difficult to think about their preferences over 
lotteries, and the designer exogenously imposes a restriction on mechanisms where agents only 
state their ordinal preferences over alternatives.

Throughout, we also restrict attention to OBIC with respect to generic priors.

Definition 4. An scf f is G-OBIC if there exists a profile of generic priors {μi}i∈N such that f
is OBIC with respect to {μi}i∈N .

G-OBIC requires OBIC with respect to some profile of generic priors (it may be just one 
profile of generic priors), but need not be all profile of generic priors.

3. The unrestricted domain result

We now discuss the implication of G-OBIC along with unanimity in the unrestricted domain. 
At any preference ordering P , we will denote by P(k) the k-th ranked alternative according to P .

Definition 5. An scf f : Dn → A is unanimous if for every P ≡ (P1, . . . , Pn) with P1(1) = . . . =
Pn(1), we have f (P) = P1(1).

The following result extends the Gibbard–Satterthwaite theorem using G-OBIC in the unre-
stricted domain.

Theorem 1. (Majumdar and Sen, 2004) Let |A| ≥ 3 and f :Pn → A be a unanimous scf, where 
P is the unrestricted domain. Then, f is G-OBIC if and only if it is DSIC.

Instead of showing that every unanimous and G-OBIC scf is DSIC, and then using the 
Gibbard–Satterthwaite theorem to conclude dictatorship, Majumdar and Sen (2004) directly 
prove that G-OBIC and unanimity imply dictatorship. Hence, one does not obtain any intuition 
from their proof whether Theorem 1 will hold in other domains.

3.1. A two alternatives example

We give an example with two alternatives to show how Theorem 1 can break down. The exam-
ple gives insights on why G-OBIC and non-DSIC mechanisms may exist when the assumptions 
of Theorem 1 are relaxed.

Let A = {a, b} and N = {1, 2, 3}. We define an scf f̄ as follows. If all the agents have the 
same top ranked alternative, then f̄ picks that alternative. Else, f̄ picks the alternative which is 
top ranked for less number of agents.

Clearly, f̄ is unanimous. We next argue that f̄ is G-OBIC. Since there are only two alterna-

tives, we only need to show that πf̄
i (Pi(1), Pi) ≥ π

f̄
i (Pi(1), P ′

i ) for all i ∈ N , for all Pi, P ′
i . For 

simplicity, for every agent i ∈ N , we will denote the preference ordering where a is top ranked as 
Pi and the preference ordering where b is top ranked as P ′

i . For every i ∈ N , let the probability 
that agent i has preference Pi be pi and the probability that he has preference P ′

i be (1 − pi). 
Now, we can compute the interim outcome probabilities for agent 1 as follows.

If agent 1 has preference P1 (where a is top ranked), then the probability that b will be the 
outcome in f̄ is the probability that agents 2 and 3 have different preferences. This probability is 
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Table 1
Interim outcome probabilities of agent 1 in f̄ .

P1 P ′
1

π
f̄
1 (a, ·) 1 − p2 − p3 + 2p2p3 p2 + p3 − 2p2p3

π
f̄
1 (b, ·) p2 + p3 − 2p2p3 1 − p2 − p3 + 2p2p3

exactly p2(1 − p3) + p3(1 − p2) = p2 + p3 − 2p2p3. Hence, if agent 1 has preference P1, then 
the probability that a will be the outcome in f̄ is 1 −p2 −p3 +2p2p3. An analogous calculation 
can be used to compute interim outcome probabilities when agent 1 has preference P ′

1. This is 
summarized in Table 1.

The interim outcome probabilities of agents 2 and 3 can be computed in an analogous manner. 
It is easily seen from Table 1 that OBIC constraints can be satisfied for agent 1 if and only if 
1 − p2 − p3 + 2p2p3 ≥ p2 + p3 − 2p2p3, which is equivalent to requiring that (1 − 2p2)(1 −
2p3) ≥ 0.

Collecting the OBIC constraints for all the agents, we can then conclude that f̄ is OBIC if 
and only if priors satisfy

(1 − 2p2)(1 − 2p3) ≥ 0

(1 − 2p1)(1 − 2p3) ≥ 0

(1 − 2p1)(1 − 2p2) ≥ 0

This is possible if and only if either p1, p2, p3 ∈ (0, 0.5) or p1, p2, p3 ∈ (0.5, 1). To see why 
p1, p2, p3 can be picked such that the priors become generic, note that the set of priors satisfy-
ing either p1, p2, p3 ∈ (0, 0.5) or p1, p2, p3 ∈ (0.5, 1) is a subset of (0, 1)3 with a non-empty 
interior. Hence, it will have a non-empty intersection with the set of generic priors.5

Intuitively, if agent 1 has a as top, then the only profiles where agent 1 gets a as outcome are 
those where the other two agents have the same preference. So, if the probability that any pair of 
agents have the same preference is high enough, then interim outcome probability of a will be 
high, and the scf will be OBIC.

3.2. An example in the single-peaked domain

We now extend the two alternatives example to the single-peaked domain. Single peaked 
domain is an important domain restriction in strategic voting literature with applications in po-
litical economy and other disciplines. It is a domain where existence of anonymous, unanimous, 
and DSIC scfs is guaranteed (Moulin, 1980), and thus, allows one to escape the negative con-
sequences of the Gibbard–Satterthwaite theorem.6 In this domain, we give an example of an 
scf with three alternatives and three agents that is G-OBIC, unanimous, and anonymous but not 
DSIC.7

5 For instance, one can verify that p1 = 0.49, p2 = 0.47, p3 = 0.43 results in generic priors.
6 Conversely, Chatterji et al. (2013) have shown that any domain that admits a “well-behaved” social choice function 

must be roughly single-peaked.
7 Informally, anonymity requires that if we permute the preferences of agents and consider the new profile of prefer-

ences, the outcome at the new profile must be the same as the old one.
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Table 2
The single-peaked domain.

a b b c

b a c b

c c a a

The single-peaked domain is defined as follows. Let � be a strict linear order of the set of 
alternatives A.

Definition 6. A preference ordering P is single-peaked with respect to � if for every b, c ∈ A

with P(1) � b � c or c � b � P(1), we have bPc.

We assume that A = {a, b, c} and N = {1, 2, 3}. Suppose the preferences are single-peaked 
with respect to the strict linear order � given by a � b � c. The set of all single-peaked preference 
orderings with respect to � is denoted by S . For this example, the domain S is shown in Table 2, 
where each column is a preference in S .

Our scf considers the number of agents who prefer a to b and the number of agents who prefer 
b to a. We say a is a loser in {a, b} at P if |{i ∈ N : aPib}| < |{i ∈ N : bPia}|. Else, we say b is 
a loser in {a, b} at P. Now, the scf f ∗ is defined as follows. For any preference profile P ∈ S3,

1. if all the agents have the same top ranked alternative then f ∗ chooses that alternative,
2. if all the agents do not have the same top ranked alternative but every agent prefers b to a, 

then f ∗(P) = b,
3. if both the above conditions fail, then f ∗ chooses the loser alternative at P.

The following proposition shows that f ∗ is G-OBIC.

Proposition 1. The scf f ∗ is unanimous, anonymous, and G-OBIC, but not DSIC.

The proof of Proposition 1 and all subsequent proofs are given in the Appendix. The intuition 
for why Proposition 1 works is similar to that of the two alternatives example. In contrast to the 
unrestricted domain, the set of preferences in the single-peaked domain is less. This allows us to 
extend the two alternatives example in a natural way to this domain. However, in the unrestricted 
domain, there are too many manipulations to take care of, and these rules fail to be G-OBIC.

4. The local domains

We will now formally define the restricted domains that we consider in this paper. For each 
of these restricted domains, we show equivalence of G-OBIC and DSIC under some additional 
conditions.

All our results work in a class of restricted domains that we call local domains. To define 
these restricted domains, we first introduce the notion of local incentive compatibility. Consider 
an agent i and two alternatives a, b ∈ A. Suppose Pi is a preference ordering such that Pi(k) = a

and Pi(k + 1) = b. Now, consider P ′
i such that P ′

i (k + 1) = a, P ′
i (k) = b, and P ′

i (j) = Pi(j) for 
all j /∈ {k, k + 1}. In other words, a and b are consecutively ranked in Pi , and P ′

i is constructed 
by swapping only their positions. In this case, we say that P ′ is an (a, b)-swap of Pi . Note that 
i
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if P ′
i is an (a, b)-swap of Pi , then the position of b improves from Pi to P ′

i . Hence, (a, b)-swap 
is different from (b, a)-swap.

Definition 7. An scf f is locally dominant strategy incentive compatible (LDSIC) if for every 
i ∈ N , every P−i ∈Dn−1, and every Pi ∈D there exists no P ′

i ∈ D such that P ′
i is an (a, b)-swap 

of Pi for some a, b ∈ A and

f (P ′
i , P−i )Pif (Pi,P−i ).

Local DSIC only prevents manipulations across preferences which are swaps of each other. 
Using the notion of LDSIC, we now define a class of domains.

Definition 8. A domain D is a local domain if every LDSIC f : Dn → A in that domain is also 
DSIC.

Many interesting domains like the unrestricted domain, the single-peaked domain, and a suc-
cessive single-crossing domain are known to be local domains (Carroll, 2012; Sato, 2013). We 
formally define and discuss some of these domains in Section 5.5.

We now introduce a subclass of local domains where we have stronger results. These are a 
class of local domains introduced in Sato (2013). Two preferences P and P ′ are adjacent if there 
is x, y ∈ A such that P ′ is an (x, y)-swap of P .

Definition 9. A distinct sequence of preferences (P 0, P 1, . . . , P k, P k+1) in D is without 
restoration if

• for every j ∈ {0, 1, . . . , k}, P j and P j+1 are adjacent,
• there exists no distinct j, j ′ ∈ {0, 1, . . . , k} and x, y ∈ A such that P j+1 is a (x, y)-swap of 

P j and P j ′+1 is a (y, x)-swap of P j ′
.

A domain D is connected without restoration if for every P, P ′ ∈ D, there exists a sequence 
of distinct preferences (P = P 0, P 1, . . . , P k, P k+1 = P ′) in D without restoration.

The without restoration property requires that no pair of alternatives is swapped more than 
once along the sequence. The connected without restoration property requires the existence of 
at least one such sequence. Sato (2013) shows that if a domain is connected without restoration, 
then it is a local domain. Further, he shows that the unrestricted domain and the single-peaked 
domain are connected without restoration.

We remark that besides the single-peaked domain, there are other interesting domains that 
are connected without restoration – see Sato (2013). We identify some specific domains that are 
connected without restoration in Section 5.5.

For some of our results, we will impose the following richness condition.

Definition 10. A domain D is rich if for every alternative a, there exists a preference ordering 
P ∈D such that P(1) = a.
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5. The results

We will now present our results. Our results extend Theorem 1 to various local domains under 
additional conditions. We define and discuss the additional conditions before stating the results. 
Though we use additional axioms, we use the following weaker notion of incentive compatibility 
than G-OBIC.

Definition 11. An scf f is locally ordinally Bayesian incentive compatible (LOBIC) with 
respect to profile of priors {μi}i∈N if for every i ∈ N , for every Pi, P ′

i ∈ D such that P ′
i and Pi

are adjacent, and for every a ∈ A, we have
∑

b∈B(a,Pi )

π
f
i (b,Pi) ≥

∑

b∈B(a,Pi )

π
f
i (b,P ′

i ).

An scf f is G-LOBIC if there exists some profile of generic priors {μi}i∈N such that f is LOBIC 
with respect to {μi}i∈N .

Clearly, if f is OBIC, then it is also LOBIC. In general, LOBIC is a very weak incentive 
compatibility requirement since it requires only a small subset of incentive constraints to hold. 
We do not know if LOBIC implies OBIC in a local domain – by definition, LDSIC implies DSIC 
in a local domain.

5.1. Equivalence in local domains

Our first result uses one of the following two axioms.

Definition 12. An scf f satisfies elementary monotonicity if for every i ∈ N , every P−i ∈Dn−1, 
and every Pi, P ′

i ∈ D such that P ′
i is an (a, b)-swap of Pi for some a, b ∈ A and f (Pi, P−i ) = b, 

we have f (P ′
i , P−i ) = b.

The next axiom is similar in spirit to elementary monotonicity.

Definition 13. An scf f is positively responsive if for every agent i ∈ N , for every preference 
profile P−i , and for every Pi, P ′

i , with f (Pi, P−i ) = a and P ′
i (1) = a, we have f (P ′

i , P−i ) = a.

Both the axioms are one-agent axioms – we fix preferences of other agents at some P−i and 
change the preference of agent i from Pi to P ′

i . These axioms require that the scf responds in 
a positive manner if the change in preference lifts the outcome. In case of elementary mono-
tonicity, the outcome is lifted from Pi to P ′

i by one position in a local way. In case of positive 
responsiveness, the outcome is lifted to the top in P ′

i , but the ranking among other alternatives are 
allowed to change. In both the cases, agent i is providing positive support to the current outcome 
by lifting its position. In case of positive responsiveness, the support is more natural because it 
is lifted to the top.

These are relatively weak axioms that are satisfied by many well know social choice functions. 
We refer to discussions on them in Moulin (1983), Majumdar and Sen (2004). We provide a brief 
discussion on them in Section 6. We are now ready to state our first main result.
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Theorem 2. Let f : Dn → A be an scf. Consider the following statements

1. f is DSIC.
2. f is G-LOBIC and elementary monotone.
3. f is G-LOBIC and positively responsive.

Statements (1) and (2) are equivalent if D is a local domain. Statements (1), (2), and (3) are 
equivalent if D is a rich connected domain without restoration.

Note that Theorem 2 does not assume unanimity. It also does not require any condition on the 
range of the scf. An immediate corollary of Theorem 2 gives an indirect characterization of local 
domains.

Corollary 1. Suppose D is any domain. Every scf on Dn satisfying elementary monotonicity and 
G-LOBIC is DSIC if and only if D is a local domain.

Proof. Theorem 2 already establishes one direction. For the other direction, fix a domain D
where every scf satisfying elementary monotonicity and G-LOBIC is DSIC. By Lemma 4 (see 
proof of Theorem 2 in the Appendix), every LDSIC scf satisfies elementary monotonicity and 
G-LOBIC. So, every LDSIC scf is also DSIC. Hence, the domain is a local domain. �
5.2. Equivalence in the single-peaked domain

We will now investigate subdomains where unanimity allows us to weaken elementary mono-
tonicity (or positive responsiveness). Our strongest result comes in the single-peaked domain, 
where we weaken elementary monotonicity as follows.

Fix a domain D. A profile of preferences P ∈ Dn is a top-2 profile if for every i, j ∈ N , 
Pi(k) = Pj (k) for all k > 2. At a top-2 profile, agents differ in their ranking of alternatives only 
for the top two alternatives. Further, if (Pi, P−i ) and (P ′

i , P−i ) are two top-2 profiles, then P ′
i is 

a (Pi(1), Pi(2))-swap of Pi . Let Dn(2) be the set of all top-2 profiles in D.

Definition 14. An scf f : Dn → A satisfies weak elementary monotonicity if f restricted to 
Dn(2) satisfies elementary monotonicity.

Note that weak elementary monotonicity is also a weakening of positive responsiveness prop-
erty since in the subdomain Dn(2), elementary monotonicity and positive responsiveness is the 
same. Weak elementary monotonicity applies to very specific preference profiles. First, it requires 
that P ′

i is a (Pi(1), Pi(2))-swap of Pi . Second, it requires that every agent in N \ {i} must have 
either Pi or P ′

i as his preference. A typical pair of preference profiles where weak elementary 
monotonicity can be applied is shown in Table 3. We assume A = {a, b, c, d} and n = 3. Profiles 
(P1, P2, P3) and (P ′

1, P2, P3) in Table 3 differ in agent 1’s preference and P ′
1 is a (a, b)-swap 

of P1. Also, notice that P2 = P1, P3 = P ′
1 (hence, P2 �= P3). Weak elementary monotonicity 

applies to such profiles and requires that if f (P1, P2, P3) = b, then f (P ′
1, P2, P3) = b.

As before, we denote by S the set of all single-peaked preferences with respect to the strict 
linear order �. We now state our result for the single-peaked domain.
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Table 3
Weak elementary monotonicity.
P1 P2 P3 P ′

1 P2 P3

a a b b a b

b b a a b a

c c c c c c

d d d d d d

Theorem 3. Suppose f : Sn → A is a unanimous scf, where S is the single-peaked domain with 
respect to �. Then, the following statements are equivalent.

1. f is G-LOBIC and satisfies weak elementary monotonicity.
2. f is DSIC.

Since weak elementary monotonicity is a relatively weak condition, this result shows how 
little is required on top of unanimity to get the counterpart of Theorem 1 in the single-peaked 
domain. In other words, though Theorem 1 breaks down in the single-peaked domain, the nature 
of the break down is very nuanced.

The result in Theorem 3 can also be extended to some extensions of single-peaked domain. For 
instance, Demange (1982) defines a notion of single-peakedness on a tree graph, which requires 
single-peakedness along paths of a tree graph whose vertices are alternatives. Our result can be 
easily extended to such a domain. Similarly, it can also be extended to multiple single-peaked 
domain discussed in Reffgen (2015).

5.3. Equivalence in a large class of local domains

We now provide a generalization of Theorem 3 to a larger class of local domains with the help 
of an additional condition.

Definition 15. An scf f is tops-only if for every pair of profiles P and P′ in its domain with 
Pi(1) = P ′

i (1) for all i ∈ N , we have f (P) = f (P′).

Tops-only property requires that the scf is only sensitive to the top ranked alternatives of each 
agent. This is a well-studied axiom is social choice theory. In many domains, DSIC and una-
nimity implies the tops-only property (Weymark, 2008; Saporiti, 2009; Chatterji and Sen, 2011). 
One of the motivations for using voting mechanisms which satisfy this axiom is computational – 
in models with a large number of alternatives, such scfs can only use information of the top alter-
natives of the agents. Tops-onlyness and unanimity allow us to weaken positive responsiveness 
in Theorem 2.

Theorem 4. Suppose f : Cn → A is a tops-only and unanimous scf, where C is any connected 
domain without restoration. Then, the following statements are equivalent.

1. f is G-LOBIC and satisfies weak elementary monotonicity.
2. f is DSIC.
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The proof of Theorem 4 is given in the Appendix. We do not know if the tops-only property 
is redundant in this result.

5.4. Equivalence in the unrestricted domain

We now come to the final result of the paper, which is a strengthening of Theorem 1.

Theorem 5. Suppose |A| ≥ 3 and f : Pn → A is a G-LOBIC scf, where P is the unrestricted do-
main. If f satisfies unanimity, then it satisfies elementary monotonicity. Hence, if f is G-LOBIC 
and unanimous, then it is DSIC.

Theorem 5 is a strengthening of Theorem 1 since we use G-LOBIC instead of G-OBIC. How-
ever, one can still deduce the result of Theorem 5 from existing results in the literature as follows. 
Carroll (2012) notes that his results also hold if he considers Bayesian incentive compatibility. 
Since he shows local incentive compatibility implies full incentive compatibility in the unre-
stricted domain, we can conclude that if f is LOBIC (with respect to some prior) then it is 
OBIC. We can then use Theorem 1 to conclude that if f is G-LOBIC and unanimous, then it 
must be a dictatorship. Since the proof of Theorem 1 in Majumdar and Sen (2004) directly es-
tablishes dictatorship (using induction on the number of agents), our proof provides an alternate 
and stronger version of their result.

5.5. Connected domains without restoration

In this section, we identify some domains that are connected without restoration to show that 
the results in Theorems 2 and 4 apply to a large class of domains. As we noted earlier, Sato (2013)
has already shown that the unrestricted domain and the single-peaked domain are connected 
without restoration. We present two more domains that are connected without restoration.

Definition 16. A preference ordering P is single-dipped with respect to an ordering � over 
alternatives if for every a, b ∈ A with a � b � P(|A|) or P(|A|) � b � a, we have aPb.

A domain is the single-dipped domain if it contains all the single-dipped preferences with 
respect to �.

The single-dipped domain is important in studying various practical problems including the 
problem of locating a public “bad”. It admits various interesting DSIC scfs (Klaus et al., 1997;
Peremans and Storcken, 1999; Barberà et al., 2012; Manjunath, 2014). Notice that there are only 
two alternatives (the maximal and the minimal alternatives in �) which can be top ranked in any 
single-dipped preference.

Lemma 1. The single-dipped domain is a connected domain without restoration.

Proof. Take any preference ordering P , and denote by P̄ the reverse of the preference order-
ing P , i.e., P̄ (j) = P(|A| − j + 1) for all j . Note that P is single-dipped with respect to � if 
and only if P̄ is single-peaked with respect to �. Now, consider two single-dipped preference 
orderings P and P ′. Since the single-peaked domain is connected without restoration, there is a 
sequence of distinct single-peaked preferences without restoration between P̄ and P̄ ′. By taking 
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the reverse of each preference ordering in this sequence, we get the desired sequence without 
restoration between P and P ′. �

Another important class of domains that can be shown to be connected without restoration is 
the class of successive single-crossing domains introduced in Carroll (2012).

Definition 17. A set of preferences D is a single-crossing domain if there exists a strict linear 
order � on the set of alternatives and a strict linear order � on the set of preferences D such that 
for all a, b ∈ A and for all P, P ′ ∈ D,

• a � b, P � P ′, and aPb implies aP ′b
• a � b, P � P ′, and bP ′a implies bPa.

Single crossing domains are a well studied domain in voting and political economy since they 
ensure existence of a Condorcet winner (Saporiti, 2009).

For any ordering P over A and any ordering � over A, let X(P, �) := {(a, b) : a � b, aPb}. 
Clearly, a set of preferences D is a single-crossing domain if and only if there exists a strict linear 
order � on the set of alternatives and a strict linear order � on the set of preferences D such that 
for any P, P ′ ∈ D with P � P ′, we have X(P, �) � X(P ′, �) (notice the strict inclusion). We 
will denote a single-crossing domain as D�,�.

A single-crossing domain D�,� := {P 1, . . . , P l} with P 1 � . . . � P l is a successive single-
crossing domain if for every j ∈ {1, . . . , l − 1}, |X(P j , �)| + 1 = |X(P j+1, �)|. Successive 
single-crossing domains were introduced in Carroll (2012).

Lemma 2. A successive single-crossing domain is connected without restoration.

Proof. Let D�,� := {P 1, . . . , P l} be a successive single-crossing domain with P 1 � P 2 �
. . . � P l . Pick P j , P k ∈ D�,� with j < k. The sequence of preferences (P j , P j+1, . . . , P k)

satisfies the fact that for any j ′ ∈ {j, j + 1, . . . , k − 1}, P j ′
and P j ′+1 are adjacent – this follows 

from the definition of a successive single-crossing domain. Now, assume for contradiction, there 
is some pair of alternatives x, y ∈ A such that they are swapped more than once in this sequence. 
But the single-crossing property requires that if x � y, once xP k′

y for some P k′
in the sequence, 

it must remain xP l′y for all l′ > k′. Hence, getting swapped more than once will violate the 
single-crossing property. This means that every successive single-crossing domain is connected 
without restoration. �

In Theorem 2, we require the domain to be rich and connected without restoration. A con-
nected domain without restoration need not be rich. For instance, the single-dipped domain is 
not a rich domain. However, rich successive single-crossing domains exist – see Mishra et al.
(2016).

6. Discussions on elementary monotonicity

The elementary monotonicity condition plays an important role in our analysis. The scf f ∗
discussed in Proposition 1 is an example of an scf that satisfies G-LOBIC but fails elementary 
monotonicity. Hence, we cannot hope to drop elementary monotonicity in Theorem 2.

As discussed in the literature, elementary monotonicity is satisfied by a variety of scfs (Moulin, 
1983; Majumdar and Sen, 2004). However, it is admittedly a strong enough condition along with 
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G-LOBIC to imply DSIC in local domains. The positive responsiveness property is equiva-
lent to elementary monotonicity in a large class of local domains under G-LOBIC. Both these 
conditions are weaker versions of Maskin monotonicity, which is known to be necessary and 
sufficient for dominant strategy incentive compatibility in the unrestricted domain (Kalai and 
Muller, 1977). To see why elementary monotonicity or positive responsiveness is much weaker 
than Maskin monotonicity, note that these axioms are satisfied by a large class of scfs but Maskin 
monotonicity and unanimity imply dictatorship in the unrestricted domain.

Since the additional axioms that we have used are weak, they are useful to rule out scfs that 
are not G-LOBIC in many domains. We give two examples. Consider the status-quo scf, which 
is specified by a status-quo alternative. It chooses the status-quo alternative at all the preference 
profiles except when everyone’s top ranked alternative is the same. When everyone’s top ranked 
alternative is the same, then that alternative is chosen. This scf clearly satisfies positive respon-
siveness, elementary monotonicity, and unanimity. However, it is not DSIC in many domains 
(including the single-peaked domain). We can then conclude from our results that the status-quo 
scf cannot be G-LOBIC in those domains.

Similarly, some scoring rules cannot be G-LOBIC. It is easy to see that all scoring rules satisfy 
elementary monotonicity. But scoring rules may not be DSIC in many interesting domains. To 
see this, consider the single-peaked domain in Table 2. Consider a scoring rule in this domain 
where the top ranked alternative gets a score of 2, the second ranked alternative gets a score 
of 1, and the last ranked alternative gets a score of 0. If there is a tie in the score, we break the 
tie using a linear order �, where a � b � c. Now, suppose agent 1 has the preference where a
is top ranked, b is second ranked, and c is third ranked. Further, agents 2 and 3 have identical 
preference, where c is top, b is second, and a is third. The outcome of the scoring rule at this 
profile is c. But agent 1 can get the outcome b if he reports a preference ordering where b is top. 
Hence, this scoring rule is not DSIC. Using our results, we can conclude that such a scoring rule 
is not G-LOBIC in the single-peaked domain.

We also point out that elementary monotonicity plays an important role in the analysis of 
OBIC scfs with uniform priors and correlated priors. Majumdar and Sen (2004) show that when 
agents have uniform priors, every neutral scf satisfying elementary monotonicity is OBIC in 
the unrestricted domain. Thus, they show that a large class of scfs that are not DSIC are OBIC 
with uniform priors in the unrestricted domain. A similar result is shown with correlated priors 
in Bhargava et al. (2015). In contrast, our results show a negative implication of elementary 
monotonicity under independent generic priors.

Appendix

Proof of Proposition 1. Clearly, f ∗ is unanimous and anonymous. However, f ∗ is not DSIC. 
To see this, consider a profile P such that for all agents i �= 3, we have Pi(1) = a – note that 
since a is the leftmost alternative, there is a unique preference ordering where a is top ranked. 
For agent 3, pick any preference ordering where b is preferred to a. As a result, f ∗(P) = b. 
A possible profile is shown in Table 4 – note that aP1b. Now, fixing the preference profile of all 
agents except agent 1, if agent 1 reports a preference ordering P ′

1 such that P ′
1(1) = b, P ′

1(2) = a, 
then f ∗ will choose a – see Table 4. Hence, agent 1 can manipulate.

However, we show that f ∗ is G-OBIC. Let the prior of each agent i be given by the map 
μi : S → (0, 1). To show that f ∗ is OBIC with respect to {μi}i∈N such that these are generic 
priors, we will compute the interim outcome probabilities of every agent in {1, 2, 3}.
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Table 4
Failure of DSIC of f ∗.
P1 P2 P3 P ′

1 P2 P3

a a b b a b

b b a a b a

c c c c c c

If an agent i ∈ {1, 2, 3} has preference Pi then define

O
f ∗
i (Pi) := {x ∈ A : f ∗(Pi,P−i ) = x for some P−i}.

By definition of f ∗, for every i ∈ {1, 2, 3} and for every Pi ∈ S , Of ∗
i (Pi) ⊆ {a, b, Pi(1)}, and if 

Pi(1) �= c, then Of ∗
i (Pi) = {a, b}. Let P̄ be the unique preference ordering where the leftmost 

alternative a is top ranked. Denote the probability that agent i has preference P̄ as qi ≡ μi(P̄ ). 
Similarly, denote by q̂i ≡ μi(P̂ ), where P̂ is the unique ordering where alternative c is top 
ranked. We fix an agent i ∈ {1, 2, 3} and denote the other two agents in {1, 2, 3} as j and k. We 
consider three possible cases.

CASE 1. Suppose Pi = P̄ . Note that Of ∗
i (Pi) = {a, b}. Then his interim outcome probability for 

alternative a can be computed as follows. Note that f ∗(Pi, Pj , Pk) �= a if Pj and Pk are such 
that either (aPjb and bPka) or (aPkb and bPja). The probability of this event is

qj (1 − qk) + qk(1 − qj ).

Here, we used the fact that the probability that agent j has preference Pj such that bPja is just 
(1 − qj ) and, similarly, the probability that agent k has preference Pk such that bPka is (1 − qk). 
Since f ∗(Pi, Pj , Pk) ∈ {a, b}, the interim outcome probability of choosing a at Pi for agent i is

1 − qj − qk + 2qjqk,

and the interim outcome probability of choosing b at Pi for agent i is

qj + qk − 2qjqk.

CASE 2. Suppose Pi is such that Pi(1) = b – this is possible for two preference orderings. Note 
that Of ∗

i (Pi) = {a, b}. Then, his interim outcome probability for alternative b can be computed 
as follows. Note that f ∗(Pi, Pj , Pk) �= b if Pj and Pk are such that either (aPjb and bPka) or 
(aPkb and bPja). The probability of this event is

qj (1 − qk) + qk(1 − qj ).

Hence, the interim outcome probability of choosing b at Pi for agent i is

1 − qj − qk + 2qjqk.

Since Of ∗
i (Pi) = {a, b}, the interim outcome probability of choosing a at Pi for agent i is

qj + qk − 2qjqk.

CASE 3. Suppose Pi is such that Pi(1) = c, i.e., Pi = P̂ . Then, Of ∗
i (Pi) = {a, b, c}. His interim 

outcome probability for alternative c can be computed straightforwardly – c is chosen if and 
only if Pj (1) = Pk(1) = Pi(1) = c. This is possible if and only if both agents j and k have the 



940 D. Mishra / Journal of Economic Theory 163 (2016) 925–954
Table 5
Interim outcome probabilities.

Case 1: Pi = P̄ Case 2: Pi(1) = b Case 3: Pi = P̂

π
f ∗
i

(a,Pi ) 1 − qj − qk + 2qj qk qj + qk − 2qj qk qj + qk − 2qj qk

π
f ∗
i

(b,Pi ) qj + qk − 2qj qk 1 − qj − qk + 2qj qk 1 − qj − qk + 2qj qk − q̂j q̂k

π
f ∗
i

(c,Pi ) 0 0 q̂j q̂k

preference P̂ . The probability of this event is q̂j q̂k . Hence, the interim outcome probability for 
alternative Pi(1) at Pi for agent i is q̂j q̂k . Next, the interim outcome probability for agent i for 
alternative a can be computed as follows. For this, note that cPibPia. Hence, f ∗(Pi, Pj , Pk) = a

if Pj and Pk are such that either (aPjb and bPka) or (aPkb and bPja) – notice that these events 
ensure that tops of all agents are not the same and a is not dominated by b. The probability of 
this event is

qj (1 − qk) + qk(1 − qj ).

Hence, the interim outcome probability of choosing a at Pi for agent i is

qj + qk − 2qjqk.

Since Of ∗
i (Pi) = {a, b, Pi(1)}, the interim outcome probability of choosing b at Pi for agent i

is

1 − qj − qk + 2qjqk − q̂j q̂k.

We enumerate all the interim outcome probabilities in Table 5 by considering the three cases 
for an agent i ∈ {1, 2, 3} by denoting the other two agents as j and k.

Now, notice from Table 5 that if agent i has preference Pi ≡ P̄ , the only OBIC constraint to 
satisfy is

1 − qj − qk + 2qjqk ≥ qj + qk − 2qjqk.

Alternatively, we must have

(1 − 2qj )(1 − 2qk) ≥ 0. (1)

This prevents any manipulation of agent i to a preference in Case 2 or Case 3. Also, Inequality 
(1) ensures OBIC constraints when agent i has a preference Pi such that Pi(1) = b. Finally, 
Inequality (1) also ensures OBIC constraints when agent i has a preference Pi such that Pi(1) = c

– this can be verified by checking from Table 5 that the truthtelling lottery first-order stochastic 
dominates other lotteries as long as Inequality (1) is satisfied.

Hence, f ∗ is OBIC if and only if the priors of agents 1, 2, and 3 satisfy

(1 − 2q2)(1 − 2q3) ≥ 0,

(1 − 2q1)(1 − 2q3) ≥ 0,

(1 − 2q1)(1 − 2q2) ≥ 0.

This is satisfied if and only if q1, q2, q3 ∈ (0, 0.5) or q1, q2, q3 ∈ (0.5, 1). It also puts no restric-
tion on the probabilities of orderings in S \ {P̄ }. Hence, the set of priors of all agents satisfying 
q1, q2, q3 ∈ (0, 0.5) or q1, q2, q3 ∈ (0.5, 1) is a full dimensional subset of the set of all indepen-
dent priors. As a result, it must have a non-empty intersection with the set of independent generic 
priors. �
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Proof of Theorem 2. The proof is done by establishing two important lemmas. We start by 
identifying a property that is implied by G-LOBIC.

Definition 18. An scf f satisfies swap monotonicity if for every i ∈ N , for every Pi, P ′
i ∈ D, 

where P ′
i is an (a, b)-swap of Pi , we have for every P−i ∈Dn−1,

• f (P ′
i , P−i ) = f (Pi, P−i ) if f (Pi, P−i ) /∈ {a, b},

• f (P ′
i , P−i ) ∈ {a, b} if f (Pi, P−i ) ∈ {a, b}.

Our first claim shows the necessity of swap monotonicity.

Lemma 3. If an scf is G-LOBIC, then it satisfies swap monotonicity.

Proof. Let f be an LOBIC scf with respect to independent generic priors {μi}i∈N . For this, 
consider agent i ∈ N , and pick two preference orderings Pi and P ′

i such that P ′
i is an (a, b)

swap of Pi . By definition Pi(k) = a, Pi(k + 1) = b and P ′
i (k + 1) = a, P ′

i (k) = b for some k and 
Pi(j) = P ′

i (j) for all j /∈ {k, k + 1}. We will do the proof in three steps.

STEP 1. Consider an alternative x ∈ A \ {a, b} such that Pi(k
′) = P ′

i (k
′) = x, where k′ < k. 

We will show that {P−i ∈ Dn−1 : f (Pi, P−i ) = x} = {P−i ∈Dn−1 : f (P ′
i , P−i ) = x}. We do this 

using induction on k′. If k′ = 1, by observing that Pi(k
′′) = P ′

i (k
′′) for all k′′ < k, LOBIC implies 

that
∑

P−i :f (Pi ,P−i )=Pi(1)

μ(P−i ) ≥
∑

P−i :f (P ′
i ,P−i )=Pi(1)

μ(P−i )

∑

P−i :f (P ′
i ,P−i )=P ′

i (1)

μ(P−i ) ≥
∑

P−i :f (Pi ,P−i )=P ′
i (1)

μ(P−i ).

Combining these inequalities, we get
∑

P−i :f (Pi ,P−i )=Pi(1)

μ(P−i ) =
∑

P−i :f (P ′
i ,P−i )=Pi(1)

μ(P−i ).

Since priors are generic, we get that

{P−i : f (Pi,P−i ) = Pi(1)} = {P−i : f (P ′
i , P−i ) = Pi(1)}.

Now, suppose the claim is true for all k′′ < k′. Notice that the top k′ alternatives in Pi and P ′
i are 

the same – denote this set as B . Now, we apply LOBIC to top k′ alternatives in Pi and P ′
i to get

∑

P−i :f (Pi ,P−i )∈B

μi(P−i ) ≥
∑

P−i :f (P ′
i ,P−i )∈B

μi(P−i )

∑

P−i :f (P ′
i ,P−i )∈B

μi(P−i ) ≥
∑

P−i :f (Pi ,P−i )∈B

μi(P−i ).

Using genericity of μi gives us

{P−i : f (Pi,P−i ) ∈ B} = {P−i : f (P ′
i , P−i ) ∈ B}.

Using the induction hypothesis, we have for all k′′ < k′,
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{P−i : f (Pi,P−i ) = Pi(k
′′)} = {P−i : f (P ′

i , P−i ) = Pi(k
′′)}.

Hence, we get

{P−i : f (Pi,P−i ) = Pi(k
′)} = {P−i : f (P ′

i , P−i ) = Pi(k
′)}.

STEP 2. In this step, we show that {P−i : f (Pi, P−i ) ∈ {a, b}} = {P−i : f (P ′
i , P−i ) ∈ {a, b}}. 

Applying LOBIC, we get
∑

P−i :f (Pi ,P−i )∈B(b,Pi )

μi(P−i ) ≥
∑

P−i :f (P ′
i ,P−i )∈B(b,Pi)

μi(P−i )

∑

P−i :f (P ′
i ,P−i )∈B(a,P ′

i )

μi(P−i ) ≥
∑

P−i :f (Pi ,P−i )∈B(a,P ′
i )

μi(P−i ).

Since B(b, Pi) = B(a, P ′
i ), by genericity we get

{P−i : f (Pi,P−i ) ∈ B(b,Pi)} = {P−i : f (P ′
i , P−i ) ∈ B(b,Pi)}.

By Step 1, this implies that {P−i : f (Pi, P−i ) ∈ {a, b}} = {P−i : f (P ′
i , P−i ) ∈ {a, b}}.

STEP 3. Consider an alternative x ∈ A \ {a, b} such that Pi(k
′) = P ′

i (k
′) = x, where k′ > k + 1. 

Using the facts in Steps 1 and 2, we can mimic the method in Step 1 to show that {P−i ∈ Dn−1 :
f (Pi, P−i ) = x} = {P−i ∈Dn−1 : f (P ′

i , P−i ) = x}.
Steps 1, 2, and 3 show that f satisfies swap monotonicity. �
Note that Lemma 3 holds in any arbitrary domain. We now use this to prove the following 

result.

Lemma 4. Suppose D is any domain and f : Dn → A is an scf on this domain. Then, the 
following statements are equivalent.

1. f is G-LOBIC and satisfies elementary monotonicity.
2. f is LDSIC.

Proof. First, we show that a LDSIC scf f satisfies elementary monotonicity. To see this, consider 
i ∈ N and P−i . Let Pi and P ′

i be two preferences in D such that P ′
i is an (a, b)-swap of Pi

and f (Pi, P−i ) = b. Assume for contradiction that f (P ′
i , P−i ) = c �= b. If cPib, then i can 

manipulate from Pi to P ′
i . If bPic, then, by construction, bP ′

i c, and again, agent i can manipulate 
from P ′

i to Pi . This is a contradiction.
Further, an LDSIC scf is LOBIC with respect to all priors, and hence, it is G-LOBIC. Now, 

we show that if f : Dn → A is G-LOBIC and satisfies elementary monotonicity, then it is LD-
SIC. Fix an agent i and P−i . Now, pick two preference orderings Pi and P ′

i such that P ′
i is an 

(a, b)-swap of Pi , where Pi(k) = a, Pi(k + 1) = b and P ′
i (k + 1) = a, P ′

i (k) = b for some k. 
Suppose f (Pi, P−i ) = x and f (P ′

i , P−i ) = y. Suppose Pi(k
′) = x. If k′ < k or k′ > k + 1, then 

by Lemma 3, we have y = x (swap monotonicity). So, agent i cannot manipulate from Pi to P ′
i . 

If k′ = k, then x = a, and by swap monotonicity f (P ′
i , P−i ) ∈ {a, b}. Since aPib, agent i cannot 

manipulate from Pi to P ′
i . The other possibility is k′ = k + 1. In that case, x = b, and elementary 

monotonicity ensures that f (P ′
i , P−i ) = b. Hence, agent i cannot manipulate from Pi to P ′

i . This 
shows that f is LDSIC. �
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Proof of Theorem 2. EQUIVALENCE OF (1) AND (2). This equivalence follows from Lemma 4
because in local domains an LDSIC scf is DSIC.

EQUIVALENCE OF (2) AND (3). If D is a rich connected domain without restoration, we first 
show that a G-LOBIC f satisfying elementary monotonicity also satisfies positive respon-
siveness. To see this, fix agent i ∈ N , P−i ∈ Dn−1 and Pi, P ′

i ∈ D such that f (Pi, P−i ) =
a and P ′

i (1) = a. Since D is connected without restoration there is a connected sequence 
(P 0 ≡ Pi, P 1, . . . , P k ≡ P ′

i ). Consider P j and P j+1 in this sequence. By construction, P j+1

is a (xj , yj )-swap of P j for some pair of alternatives xj , yj . If f (P j , P−i ) /∈ {xj , yj }, then 
f (P j , P−i ) = f (P j+1, P−i ) by Lemma 3. By elementary monotonicity, if f (P j , P−i ) = yj , 
then f (P j+1, P−i ) = yj = f (P j , P−i ). We argue that f (P j , P−i ) �= xj , and we will be done.

To see this, note that since D is a connected domain without restoration, no swap along 
the sequence (P 0 ≡ Pi, P 1, . . . , P k ≡ P ′

i ) is repeated. Since P ′
i (1) = a, connectedness with-

out restoration implies that the rank of a along this sequence can never go down. Hence, a �= xj

for any j . Hence, f (P 0, P−i ) �= x0. This implies that f (P 1, P−i ) = a. Using induction, if we 
assume f (P j , P−i ) = a and since a �= xj , we get f (P j+1, P−i ) = a, and we are done.

For the converse, suppose f is G-LOBIC and satisfies positive responsiveness. We will show 
that f satisfies elementary monotonicity. Fix agent i ∈ N , P−i ∈ Dn−1 and Pi, P ′

i ∈ D such that 
P ′

i is an (a, b)-swap of Pi with f (Pi, P−i ) = b. Note that bP ′
i a. Assume for contradiction that 

f (P ′
i , P−i ) �= b. By Lemma 3, f (P ′

i , P−i ) = a. Since D is rich, there is a preference ordering P ′′
i

with P ′′
i (1) = b. Further, since the domain is connected without restoration, there is a connected 

sequence (P 0 ≡ P ′
i , P

1, . . . , P K ≡ P ′′
i ).

For any P j in this sequence, define as before B(b, P j) = {x ∈ A : xP jb or x = b}. We show 
that for any P j in this sequence, f (P j , P−i ) /∈ B(b, P j ). Since f (P 0, P−i ) = a, the claim is 
true for j = 0. Suppose the claim is true for all the preferences in the sequence till P k . Suppose 
P k+1 is a (x, y)-swap of P k .

Consider the case when {x, y} ⊆ B(b, P k). Since f (P k, P−i ) /∈ B(b, P k), Lemma 3 implies 
that f (P k, P−i ) = f (P k+1, P−i ), which further implies that f (P k+1, P−i ) /∈ B(b, P k+1).

Now, consider the case when {x, y} ⊆ (A \ B(b, P k)). By Lemma 3, f (P k+1, P−i ) /∈
B(b, P k+1).

The only case that remains is x = b and y /∈ B(b, P k), i.e., y is just below b in P k . Since D is 
connected without restoration and the connected sequence (P 0 ≡ P ′

i , P
1, . . . , P k ≡ P ′′

i ) satisfies 
P ′′

i (1) = b, the rank of b can never go down along this sequence. Hence, b �= x. Hence, this case 
is not possible.

Hence, by induction f (P ′′
i , P−i ) /∈ B(b, P ′′

i ) = {b}. But the fact that f (Pi, P−i ) = b and 
P ′′

i (1) = b implies that f does not satisfy positive responsiveness, a contradiction. �
Proof of Theorem 3. Let f be a unanimous and G-LOBIC scf satisfying weak elementary 
monotonicity. The proof goes in many steps.

STEP 1. We start by stating a fact from Sato (2013).

Fact 1. (Sato, 2013) The single-peaked domain is connected without restoration.

We now prove a claim using this fact.
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Table 6
Profiles (Pi , P−i ) and (P ′

i
, P−i ).

Pi P−i P ′
i

P−i

· . . . . . . . . . . . . · . . . . . . . . . . . .

c c . . . c . . . b . . . a . . . c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . . . . . . . . . . . . . . . . .

a a . . . b . . . c . . . c . . . b a . . . b . . . c . . . c . . .

b . . . . . . . . . . . . a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . . · b . . . a . . . a . . . b . . .

· . . . . . . . . . . . . · . . . . . . . . . . . .

Claim 1. Suppose Pi ∈ S is a preference ordering such that aPib. Then, there exists a preference 
ordering P ′

i ∈ S such that P ′
i (1) = a and B(b, Pi) = B(b, P ′

i ). Moreover, for all P−i ∈ Sn−1

with f (Pi, P−i ) = b, we have f (P ′
i , P−i ) = b.

Proof. The first part of the claim follows from the single-peaked domain – if aPib, then we 
can always lift a to the top and keep all the alternatives that are above b in Pi between a
and b and all others below b in the new preference ordering. Let P ′

i be such an ordering. By 
Fact 1, we know that there is a distinct sequence of preferences (Pi = P 0, P 1, P 2, . . . , P k,

P k+1 = P ′
i ) without restoration such that consecutive preferences in the sequence are swaps 

of each other. Since B(b, Pi) = B(b, P ′
i ) and the sequence is without restoration, none of 

these swaps involve b. By repeatedly applying swap monotonicity along the sequence, we get 
f (P ′

i , P−i ) = f (Pi, P−i ) = b. �
STEP 2. In this step, we show that if an scf is G-LOBIC and unanimous, then it must be Pareto 
efficient. For this consider a profile P with f (P) = b. Assume for contradiction that there exists 
a �= b such that aPib for all i ∈ N . By repeated application of Claim 1, there exists a preference 
profile P′ such that f (P′) = b and P ′

i (1) = a for all i ∈ N . This is a contradiction since unanimity 
implies that f (P′) = a.

STEP 3. Now, consider an agent i ∈ N and P−i ∈ Sn−1. Let Pi, P ′
i ∈ S be such that P ′

i is an 
(a, b)-swap of Pi and f (Pi, P−i ) = b. We will show that f (P ′

i , P−i ) = b. This will show that f
satisfies elementary monotonicity and we will be done by Theorem 2. Note that if agents in P−i

have the same ranking of a and b then the claim is obvious. Hence, we assume that agents in P−i

do not have the same ranking of a and b. We consider two cases.

CASE 3-1. Suppose Pi(k) = a and k > 1, i.e., the swap from Pi to P ′
i is not happening at the 

top of the preference ordering. Since a and b are consecutively ranked in Pi and P ′
i and neither 

of them are top ranked in Pi and P ′
i , it must be that a and b are not neighbors (in �). This is 

because if a and b are neighbors then they can only be swapped if they are at the top.
Hence, consider a neighbor c of a such that c is between a and b in � (i.e., if a � b, then 

a � c, c � b and if b � a then b � c, c � a). By single-peakedness, cPia and cP ′
i b. Further, for 

any other agent j �= i, there are four possible rankings between a, b, c in Pj : (1) cPjaPjb, (2) 
cPjbPja, (3) bPj cPja, and (4) aPjcPjb. The two profiles (Pi, P−i ) and (P ′

i , P−i ) are shown in 
Table 6. Table 6 shows that there are four possible groups of agents in P−i with different rankings 
between a, b, c. We now modify the profile (Pi, P−i ) in a sequence of steps to reach the profile 
(P ′, P−i ).
i
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Table 7
Profile in Step 3-1-a.
Pi Other agents

· . . . . . . . . . a . . .

c c . . . c . . . b . . . c . . .

· . . . . . . . . . . . .

a a . . . b . . . c . . . . . .

b . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 8
Profile in Step 3-1-b.
Pi Other agents

· . . . . . . . . . c . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

a a . . . b . . . c . . . . . .

b . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 9
Profile in Step 3-1-c.

P ′
i

Other agents

· . . . . . . . . . c . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

b a . . . b . . . c . . . . . .

a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

STEP 3-1-a. In this step, we modify the preferences of agents in P−i who rank a better than 
c better than b. For each such agent j , we construct P ′

j such that P ′
j (1) = a, P ′

j (2) = c and 
B(b, P ′

j ) = B(b, Pj ). Notice that since a and c are neighbors, single-peakedness implies that 
such a P ′

j can be constructed such that it is single-peaked. Further, using a reasoning similar to 
Claim 1, we can argue that we can go from Pj to P ′

j using a without restoration sequence and 
since B(b, P ′

j ) = B(b, Pj ), b will not be involved in any swaps. As a result, the outcome at the 
new profile will be b. The new profile is shown in Table 7.

STEP 3-1-b. In this step, we modify the profile in Table 7 as follows. For every agent, who ranks a
at the top, c second, we perform the (a, c)-swap. Notice that this leads to a feasible single-peaked 
preference ordering since a and c are neighbors. The new profile is shown in Table 8. By swap 
monotonicity, the outcome at the new profile is b.

STEP 3-1-c. In this step, we perform (a, b)-swap of Pi to reach P ′
i . The new profile is shown in 

Table 9. By swap monotonicity, the outcome at the new profile is in {a, b}. Note that at the new 
profile cPja for all j ∈ N . Hence, by Pareto efficiency the outcome at the new profile is b.
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Table 10
Profile in Step 3-1-d.

P ′
i

Other agents

· . . . . . . . . . . . .

c c . . . c . . . b . . . a . . .

· . . . . . . . . . . . .

b a . . . b . . . c . . . c . . .

a . . . . . . . . . . . .

· b . . . a . . . a . . . b . . .

· . . . . . . . . . . . .

Table 11
Profile in Case 3-2.
Pi P−i

a . . . . . .

b a . . . b . . .

· . . . . . .

· b . . . a . . .

· . . . . . .

Table 12
Profile in Step 3-2-a.
Pi Other agents

a a . . . . . .

b . . . b . . .

· . . . . . .

· b . . . a . . .

· . . . . . .

STEP 3-1-d. We can now consider the profile in Table 9 and alter the preferences of last (fifth) 
column of agents by performing a (c, a)-swap and then doing a sequence of without restoration 
swaps to go to their preference at the start of Step 3-1-a (see preferences in Table 6). The new 
profile is shown in Table 10.

Since none of these swaps involve alternative b, the outcome at this new profile is b due to 
swap monotonicity. But this profile is exactly (P ′

i , P−i ). Hence, f (P ′
i , P−i ) = b.

CASE 3-2. The other case is Pi(k) = a and k = 1, i.e., the swap from Pi to P ′
i is occurring at the 

top. The profile (Pi, P−i ) is shown below in Table 11. We now do the proof in many steps.

STEP 3-2-a. Now, consider every agent j �= i such that aPjb (agents in second column of Ta-
ble 11). By Claim 1, we can construct a preference ordering from Pj such that a is top ranked 
and the outcome remains b. We change the preferences of all the agents in the profile of Table 11
who prefer a to b in this manner to arrive at the new profile. The new profile is shown in Table 12
and the outcome at the new profile is b.

STEP 3-2-b. Now, for every agent j �= i such that a is top tanked in the profile of Table 12, we 
consider a preference ordering where a is top ranked and b is second ranked. The new profile is 
shown in Table 13.
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Table 13
Profile in Step 3-2-b.

Pi Other agents

a a . . . . . .

b b . . . b . . .

· . . . . . .

· . . . a . . .

· . . . . . .

Table 14
Profile in Step 3-2-c.

Pi Other agents

a a . . . b . . .

b b . . . . . .

· . . . . . .

· . . . a . . .

· . . . . . .

Table 15
Profile in Step 3-2-d.

Pi Other agents

a a . . . b . . .

b b . . . a . . .

· . . . . . .

· . . . . . .

· . . . . . .

By Sato (2013), such a preference ordering can be reached by swaps without restoration. 
Hence, a will not be involved in such swaps. Swap monotonicity implies that the outcome at the 
new profile is not a.

STEP 3-2-c. Now, consider every agent j �= i such that b is preferred to a in the preference profile 
in Step 3-2-b (agents in third column of Table 13). By Claim 1, we can construct a preference 
ordering from this preference ordering such that b is top ranked and the alternatives that were 
below a do not change. The new profile is shown in Table 14. By definition, we can go to this new 
profile by doing a sequence of without restoration swaps that do not involve a. Hence, by swap 
monotonicity, the outcome at the new profile is not a. Then, by Pareto efficiency, the outcome at 
this new profile must be b.

STEP 3-2-d. In this step, we consider all the agents who have b top-ranked in the profile in 
Step 3-2-c (agents in the third column in Table 14). For every such agent, we consider another 
preference ordering where b is top-ranked and a is second ranked. The new profile is shown in 
Table 15. By Sato (2013), we can go to this new preference ordering by doing a sequence of 
without restoration swaps. Hence, by swap monotonicity, the outcome at the new profile is b.

Now, consider any agent who ranks a at the top in the profile in Step 3-2-d. If his preference 
ordering is not the same as Pi , then we can transform it to Pi by a sequence of without restoration 
swaps. Since this will not involve any swaps of b, by swap monotonicity the outcome will remain 
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Table 16
Profile (Pi , P−i ).

Pi P−i

a . . . . . .

b . . . . . .

· a . . . b . . .

· . . . . . .

· . . . . . .

· b . . . a . . .

· . . . . . .

· . . . . . .

b at the new profile. A similar argument can be made to transform the preference ordering of 
every agent who ranks b at the top to the preference ordering P ′

i . As a consequence, the profile 
in Table 15 can be transformed to a profile where every agent j �= i has preference ordering Pi

or P ′
i and the outcome at this profile is b. Denote this profile as (Pi, P̄−i ). This, we conclude that 

f (Pi, P̄−i ) = b.
Now, assume for contradiction f (P ′

i , P−i ) = a. We now repeat the above procedure at the pro-
file (P ′

i , P−i ) to arrive at the profile (P ′
i , P̄−i ) and the outcome at this profile is f (P ′

i , P̄−i ) = a. 
But (P ′

i , P̄−i ), (Pi, P̄−i ) ∈ Dn(2). Hence, f (Pi, P̄−i ) = b and f (P ′
i , P̄−i ) = a is a contradic-

tion. �
Proof of Theorem 4. Let f be a tops-only, unanimous, G-LOBIC scf satisfying weak elemen-
tary monotonicity. We will show that f satisfies elementary monotonicity and we will be done by 
Theorem 2. Consider an agent i ∈ N and a preference profile (Pi, P−i ). Let P ′

i be an (a, b)-swap 
of Pi and f (Pi, P−i ) = b. By swap monotonicity, f (P ′

i , P−i ) ∈ {a, b}. Assume for contradiction 
that f (P ′

i , P−i ) = a. By tops-only property Pi(2) = P ′
i (1) = b and Pi(1) = P ′

i (2) = a.
Notation: For any pair of adjacent preferences, P and P ′, we say P ′ is a top-swap of P if 

P ′ is a (P (1), P(2))-swap of P . We now do the proof in several steps, where each step achieves 
some technical milestone towards the eventual claim.

STEP 1. The profile (Pi, P−i ) consists of agents who rank a above b and agents who rank b
above a – see Table 16.

Pick an agent j �= i such that aPjb. Since the domain is connected without restoration, 
there exists a sequence of preferences without restoration (P 1, . . . , P k) such that P 1 ≡ Pj and 
P k ≡ Pi . By the without restoration property, for every P � in the sequence aP �b, and hence, 
P �(1) �= b. This also implies that b is never involved in a top-swap along the sequence. By 
tops-only property and swap monotonicity, we conclude that f (P k, P−j ) = b. Repeating this 
argument for all agents j �= i such that aPjb, we reach a profile shown in Table 17, where the 
outcome of f is b.

STEP 2. Now, we consider an agent j such that bPja. Since the domain is connected without 
restoration, there exists a sequence of preferences without restoration (P 1, . . . , P k) such that 
P 1 ≡ Pj and P k ≡ P ′

i . Note that P ′
i (1) = b and P ′

i (2) = a. Also, if Pj (1) = b, then Pj = P ′
i , 

and this sequence has exactly one preference. Else, this is a sequence without restoration, and b
will be involved in a top-swap at most once along the sequence. Let P �(1) = x, P �(2) = b and 
P �+1(1) = b, P �+1(2) = x for some P � along the sequence. Since this is a sequence without 
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Table 17
Profile reached at the end of Step 1.

Pi Agents with preference Pi Other agents

a a . . . . . .

b b . . . . . .

· . . . b . . .

· . . . . . .

· . . . . . .

· . . . a . . .

· . . . . . .

· . . . . . .

Table 18
Profile at the end of Step 2.

Pi Agents with preference Pi Other agents

a a . . . x . . .

b b . . . b . . .

· . . . . . .

· . . . a . . .

· . . . . . .

· . . . . . .

Table 19
Profile in Step 3.

Pi P̂−i

a a . . . b . . .

b b . . . x . . .

· . . . . . .

· . . . a . . .

· . . . . . .

· . . . . . .

restoration, we conclude that b is always ranked higher than a along the sequence, and hence, 
x �= a.

Now, for every j such that bPja, we change the preference along the sequence to P �. Since 
these changes do not involve top-swap of b, the outcome at the new profile is b. The new profile 
is shown in Table 18.

STEP 3. Now, we consider all the agents in the third column of the preference profile in Table 18
and change their preference to P �+1. The new profile is shown in Table 19. By swap monotonic-
ity the outcome of f at this profile is either x or b. We argue that it is b. Assume for contradiction 
that it is x. Then, we can change the preferences of agent i and all the agents in the second col-
umn of the preference profile in Table 19 to P ′

i (note that all these agents have preference Pi at 
the profile in Table 19). By swap monotonicity, the outcome of f is at this new profile is still x, 
which will contradict unanimity.

STEP 4. Finally, we can change the preference of all the agents in the third column of the profile 
in Table 19 along the sequence (P �+1, . . . , P k), where P k = P ′. The new profile is shown in 
i
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Table 20
Profile in Step 4 – a top-2 profile.

Pi Agents with preference Pi Agents with preference P ′
i

a a . . . b . . .

b b . . . a . . .

· . . . . . .

· . . . . . .

Table 21
Profiles (Pi , P−i ) and (P ′

i
, P−i ).

Pi P−i P ′
i

P−i

· . . . . . . · . . . . . .

· . . . . . . · . . . . . .

a b . . . a . . . b b . . . a . . .

b . . . . . . a . . . . . .

· a . . . b . . . · a . . . b . . .

· . . . . . . · . . . . . .

Table 20. Since no swaps along this sequence involves b, swap monotonicity ensures that the 
outcome at this top-2 profile is b. Denote this preference profile as (Pi, P̂−i ). An analogous 
argument starting from the profile (P ′

i , P−i ) and ending at (P ′
i , P̂−i ) can be made to show that 

f (P ′
i , P̂−i ) = a. But f (Pi, P̂−i ) = b contradicts weak elementary monotonicity. �

Proof of Theorem 5. We first show that if f : Pn → A is G-LOBIC and unanimous, then it is 
Pareto efficient. Suppose f is G-LOBIC and unanimous but assume for contradiction that it is 
not Pareto efficient. For this, we consider a profile P such that f (P) = b but there exists a ∈ A

such that aPib for all i ∈ N . Consider an agent i ∈ N such that Pi(k) = a and k �= 1. Suppose 
Pi(k−1) = x. Consider P ′

i which is a (x, a)-swap of Pi . By swap monotonicity, f (P ′
i , P−i ) = b. 

We can repeat such swaps to reach a preference ordering P ′′
i for agent i such that P ′′

i (1) = a and 
f (P ′′

i , P−i ) = b. Now, we can repeat this procedure for every agent j such that Pj (k) = a and 
k �= 1 to arrive at a profile P′′ such that f (P′′) = b. But this will contradict unanimity since 
P ′′

j (1) = a for all j ∈ N .
Hence, we show that any f : Pn → A that is G-LOBIC and Pareto efficient must satisfy 

elementary monotonicity. By Theorem 2, we will be done.
To do so, we consider an agent i ∈ N , a preference profile P−i of other agents, and Pi, P ′

i

such that P ′
i is an (a, b)-swap of Pi and f (Pi, P−i ) = b. The two profiles are shown in Table 21. 

Notice that there are some agents in P−i who prefer a to b and some prefer b to a.
We will now show that f (P ′

i , P−i ) = b. By swap monotonicity, f (P ′
i , P−i ) ∈ {a, b}. Assume 

for contradiction that f (P ′
i , P−i ) = a. Now, we do the proof in several steps.

STEP 1. We modify the profile (Pi, P−i ) to bring one of the alternatives not in {a, b} (such 
an alternative exists since |A| ≥ 3) just below {a, b} for all the agents. Let x /∈ {a, b} be some 
alternative. If aPjx and bPjx for some j ∈ N , then we can do a series of swaps to lift x up 
such that it is just below b if aPjb or just below a if bPja (note that none of these swaps will 
involve b). By swap monotonicity, the outcome at the new profile continues to be b. Using a 
similar argument, if bPjx and xPja for some j ∈ N , then we can come to a preference ordering 
where x is just below a maintaining the outcome to be b.
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Table 22
Profile P̄.

P̄

. . . . . . . . . . . .

. . . . . . . . . . . .

a b a x

. . . . . . . . . b

. . . . . . . . . . . .

b a x . . .

x x b a

. . . . . . . . . . . .

. . . . . . . . . . . .

Table 23
Profiles (P̄ ′

i
, P̄ ′−i

) and (P̄ ′′
i

, P̄ ′−i
).

P̄ ′
i

P̄ ′−i
P̄ ′′

i
P̄ ′−i

· . . . . . . · . . . . . .

· . . . . . . · . . . . . .

a b . . . a . . . b b . . . a . . .

b . . . . . . a . . . . . .

x a . . . b . . . x a . . . b . . .

· x . . . x . . . · x . . . x . . .

· . . . . . . · . . . . . .

Now, consider j ∈ N , such that xPjb. If x and b are not consecutive in Pj , then again we 
can do a series of swaps to come to a preference ordering such that x is just above b (note again 
that none of these swaps will involve b). By swap monotonicity, the outcome at the new profile 
continues to be b. Let us denote this new profile by P̄.

So, we have reached a profile P̄, where for every j ∈ N , either x is just above b in P̄j or [x is 
just below b if aP̄j b and x is just below a if bP̄j a]. Table 22 shows the profile P̄.

Now, for every j ∈ N such that x is just above b in P̄j (Columns 3 and 4 in Table 22). We 
do a (x, b)-swap. By swap monotonicity the outcome at the new profile is either x or b. But b
is preferred to x by all the agents, and hence, Pareto efficiency implies that the outcome at this 
profile is b. For every j belonging to Column 4 in Table 22, we then do a sequence of swaps 
to get x just below a. Denote this new preference ordering by P̄ ′

j . By swap monotonicity the 

outcome at the new profile is b. Denote the new profile as P̄′ and note that f (P̄′) = b.
Now, consider the (a, b)-swap of P̄ ′

i and denote this preference ordering as P̄ ′′
i . Since 

f (P ′
i , P−i ) = a, an analogous argument will show that f (P̄ ′′

i , P̄ ′−i ) = a. The two profiles 
(P̄ ′

i , P̄
′−i ) and (P̄ ′′

i , P̄ ′−i ) are shown in Table 23.

STEP 2. In this step, we modify the profile (P̄ ′
i , P̄

′−i ) in a particular way. First, we look at an 
agent j ∈ N , such that aP̄ ′

j b and bP̄ ′
j x. We perform a (b, x) swap for each of these agents. The 

new profile is shown in Table 24. By swap monotonicity, the outcome at the new profile must 
be in {b, x}. But since a is ranked higher than x for all the agents, Pareto efficiency implies the 
outcome at the new profile must be b.

STEP 3. In this step, we modify the profile in Table 24 further. In particular, we lift x just above a. 
For agent i and for all j �= i such that x is just below a, this can be done by a (a, x)-swap. For 
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Table 24
New profile in Step 2.
Agent i Other agents
· . . . . . .

· . . . . . .

a b . . . a . . .

x . . . . . .

b a . . . x . . .

· x . . . b . . .

· . . . . . .

Table 25
New profile in Step 3.
Agent i Other agents
· . . . . . .

· . . . . . .

x b . . . x . . .

a . . . a . . .

b x . . . . . .

· a . . . b . . .

· . . . . . .

Table 26
New profile in Step 4.
Agent i Other agents
· . . . . . .

· . . . . . .

x b . . . x . . .

b . . . a . . .

a x . . . . . .

· a . . . b . . .

· . . . . . .

all other agents, this requires a series of swaps – note that these swaps can be done by without 
involving b. The new profile is shown in Table 25. Since none of the swaps involve b, swap 
monotonicity implies that the outcome at the new profile remains b.

STEP 4. In this step, we modify the profile in Step 3 by changing only agent i’s preference 
ordering. We do this by doing an (a, b)-swap of the preference ordering of agent i in the profile 
shown in Table 25. The new profile is shown in Table 26. By swap monotonicity, the outcome 
at the new profile is in {a, b}. But x is better than a for all agents, and hence, Pareto efficiency 
implies the outcome at the new profile is b.

STEP 5. In this step, we modify the profile in Step 4 by changing the preferences of those agents 
who prefer x to a and a to b (the third column of agents in Table 26). We perform a series 
of swaps to bring x just one position above b. The new profile is shown in Table 27. By swap 
monotonicity, the outcome at this profile remains b.

STEP 6. Now, we perform an (x, b)-swap of preferences of those agents who rank x just above b
in the profile in Step 5 – this will be agent i and agents in the third column in Table 27. The new 
profile is shown in Table 28. By swap monotonicity, the outcome at the new profile is in {x, b}. 
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Table 27
New profile in Step 5.
Agent i Other agents
· . . . . . .

· . . . . . .

x b . . . a . . .

b . . . . . .

a x . . . x . . .

· a . . . b . . .

· . . . . . .

Table 28
New profile in Step 6.
Agent i Other agents
· . . . . . .

· . . . . . .

b b . . . a . . .

x . . . . . .

a x . . . b . . .

· a . . . x . . .

· . . . . . .

Table 29
New profile in Step 7.
Agent i Other agents
· . . . . . .

· . . . . . .

b b . . . a . . .

a . . . . . .

x a . . . b . . .

· x . . . x . . .

· . . . . . .

But b is preferred to x for all the agents. Hence, Pareto efficiency implies the outcome at the new 
profile remains b.

STEP 7. Finally, we perform a (x, a)-swap for the preferences of all agents in the profile in Step 6 
who rank x just above a – this will include agent i and agents in the second column of Table 28. 
The new profile is shown Table 29. By swap monotonicity, the outcome at this profile remains b.

But the profile shown in Table 29 is exactly the profile (P̄ ′′
i , P̄ ′−i ) (see Table 23) and we had 

assumed that f (P̄ ′′
i , P̄ ′−i ) = a. This is a contradiction. �
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