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ORDINALLY BAYESIAN INCENTIVE COMPATIBLE VOTING RULES

BY DIPJYOTI MAJUMDAR AND ARUNAVA SEN!

We study strategic voting after weakening the notion of strategy-proofness to Ordi-
nal Bayesian Incentive Compatibility (OBIC). Under OBIC, truth-telling is required to
maximize the expected utility of every voter, expected utility being computed with re-
spect to the voter’s prior beliefs and under the assumption that everybody else is also
telling the truth. We show that for a special type of priors, i.e., the uniform priors, there
exists a large class of social choice functions that are OBIC. However, for priors that
are generic in the set of independent beliefs, a social choice function is OBIC only
if it is dictatorial. This result underlines the robustness of the Gibbard-Satterthwaite
Theorem.

KEYWORDS: Voting rules, truth-telling, ordinal Bayesian incentive compatibility,
Gibbard-Satterthwaite Theorem.

1. INTRODUCTION

IN THE CLASSICAL MODEL of strategic voting, each voter knows his own pref-
erences but is ignorant of the preferences of other voters. The objectives of the
social planner are represented by a social choice function that associates a fea-
sible alternative with every profile of voter preferences. Voters are fully aware
of their strategic opportunities; by making different announcements of their
preferences, they can influence the alternative that is selected. The goal of the
planner is to select a social choice function that gives voters appropriate incen-
tives to reveal their private information truthfully. It is clear that the choice of
equilibrium concept is critical. The concept that has been preponderant in the
literature is strategy-proofness. This requires truth-telling for each voter to be
a dominant strategy. In other words, each voter cannot do better by deviating
from the truth irrespective of what he believes the other voters will announce.
This is clearly a demanding requirement. And this intuition is confirmed by
the celebrated Gibbard-Satterthwaite Theorem which states that under mild
assumptions, the only social choice functions that are strategy-proof are dicta-
torial. A dictatorial social choice function is one that always selects the maximal
element of a particular voter (who is the dictator). It is quite clear that this is a
powerful negative result.

Our objective in this paper is to analyze the implications of weakening the
truth-telling requirement from strategy-proofness to ordinal Bayesian incentive
compatibility. This notion was introduced in d’Aspremont and Peleg (1988) in
the context of a different problem, that of the representation of committees.
It is the obvious adaptation to voting theory of the notion of incentive com-
patibility that is widely used in standard incentive theory (for instance, in the
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theory of auctions). Truth-telling is required to maximize the expected utility of
each voter. This expected utility is computed with reference to the voter’s prior
beliefs about the (possible) preferences of the other voters and based on the
assumption that other voters follow the truth-telling strategy. More formally,
truth-telling is required to be a Bayes—Nash equilibrium in the direct revela-
tion game, modeled as a game of incomplete information. Since social choice
functions depend only on voters’ ranking of various alternatives, truth-telling
is required to maximize expected utility for every representation of the voter’s
true ranking.

Ordinal Bayesian incentive compatibility is a significant weakening of the
truth-telling requirement. Note that whether or not a social choice function
satisfies ordinal Bayesian incentive compatibility depends on the beliefs of each
voter. It satisfies strategy-proofness only if it satisfies ordinal Bayesian incen-
tive compatibility with respect to all beliefs of each voter. However, we are
able to prove the following. Assume that voters have a common prior that is
independently distributed. There is a set of beliefs C that is generic in the set
of all independently distributed beliefs and has the following property. Pick an
arbitrary belief u € C. A social choice function is ordinally Bayesian incentive
compatible with respect to w only if it is dictatorial. Our only other assump-
tions are that there are at least three alternatives and that the social choice
function satisfies the mild requirement of unanimity.

Our result underlines the extraordinary robustness of the Gibbard-Satterth-
waite Theorem. For “almost all” beliefs, the weaker requirement of ordi-
nal Bayesian incentive compatibility is sufficient to force dictatorship. The
Gibbard-Satterthwaite Theorem is, of course, a corollary of our result but the
latter also provides a precise picture (in the space of beliefs), of how pervasive
the dictatorship problem is.

The negative generic result requires a very important qualification. A signif-
icant nongeneric case is the one where each voters’ beliefs about the prefer-
ences of the others is a uniform distribution. This is an important case in deci-
sion theory and is the so-called case of “complete ignorance.” A dramatically
different picture emerges here. We provide a weak sufficient condition for a
social choice function to be ordinally Bayesian incentive compatible and show
that a variety of well-behaved social choice functions do satisfy this condition
(for instance, selections from scoring correspondences). The overall picture is
therefore complex and nuanced. Generically, ordinal Bayesian incentive com-
patibility implies dictatorship but in nongeneric cases that are of considerable
interest, significant possibility results exist.

The paper is organized as follows. In Section 2 we set out the basic nota-
tion and definitions. In Sections 3 and 4, we consider respectively the case of
uniform priors and the generic case. We discuss our results in Section 5 while
Section 6 concludes. The proof of the main result is contained in the Appendix.
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2. NOTATION AND DEFINITIONS

The set N = {1, ..., N} is the set of voters or individuals. The set of out-
comes is the set 4 with | 4| = m. Elements of A will be denoted by a, b, c, d,
etc. Let IP denote the set of strict orderings® of the elements of 4. A typical
preference ordering will be denoted by P; where aP;b will signify that a is pre-
ferred (strictly) to b under P;. A preference profile is an element of the set PV.
Preference profiles will be denoted by P, P, P, etc. and their ith components
as P;, P;, P/, respectively, withi=1, ..., N. Let (P;, P_;) denote the preference
profile where the ith component of the profile P is replaced by P;.

Forall P,ePand k=1,..., M, let r,(P;) denote the kth ranked alternative
in P;, i.e., r,(P;) = a implies that |{b # a | bP;a}| = k — 1.

DEFINITION 2.1: A Social Choice Function or SCF f is amapping f : PN — A.

A SCF can be thought of as representing the objectives of a planner, or
equivalently, that of society as a whole. An important observation in the con-
text of our paper is that we assume SCF’s to be ordinal. In other words, the
only information used for determining the value of an SCF are the rankings
of each individual over feasible alternatives. This is a standard assumption in
voting theory.

Throughout the paper, we assume that SCF’s under consideration satisfy the
axiom of unanimity. This is an extremely weak assumption that states that in
any situation where all individuals agree on some alternative as the best, then
the SCF must respect this consensus. More formally, we have the following
definition.

DEFINITION 2.2: A SCF f is unanimous if f(P) = a; whenever a; = ri(P;)
for all individuals i € N.

We assume that an individual’s preference ordering is private information.
Therefore SCF’s have to be designed in a manner such that all individuals have
the “correct” incentives to reveal their private information. It has been stan-
dard in the strategic voting literature to require that SCF’s be strategy-proof,
i.e., they provide incentives for truth-telling behavior in dominant strategies.
A strategy-proof SCF has the property that no individual can strictly gain by
misrepresenting his preferences, no matter what preferences are announced
by other individuals.

DEFINITION 2.3: A SCF f is strategy-proof if there does not exist i € N,
P;, P/ € P,and P_; € PV~!, such that

fPLP_)Pif(P, Py).

2A strict ordering is a complete, transitive, and antisymmetric binary relation.
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The Gibbard-Satterthwaite Theorem characterizes the class of SCF’s that
are strategy-proof and unanimous. This is the class of dictatorial SCF’s.

DEFINITION 2.4: A SCF f is dictatorial if there exists an individual i such
that, for all profiles P we have f(P) = r(F;).

THEOREM 2.1 (Gibbard (1973), Satterthwaite (1975)): Assume m > 3.
A SCF is unanimous and strategy-proof if and only if it is dictatorial.

In this paper, we explore the consequences of weakening the incentive re-
quirement for SCF’s from strategy-proofness to ordinal Bayesian incentive com-
patibility. This concept originally appeared in d’Aspremont and Peleg (1988)
and we describe it formally below.

DEFINITION 2.5: A belief for an individual i is a probability distribution on
the set PV, i.e., it is a map u; : PV — [0, 1] such that >, v ui(P) = 1.

We assume that all individuals have a common prior belief u. Clearly u be-
longs to the unit simplex of dimension m!" — 1. For all u, for all P_; and P;,
we shall let w(P_;|P;) denote the conditional probability of P_; given P;. The
conditional probability w(P_;|P;) belongs to the unit simplex of dimension
mN-1— 1.

DEFINITION 2.6: The utility function u : A — R represents P; € P, if and only
ifforalla,be A,

aPb < u(a) > u(b).

We will denote the set of utility functions representing P; by U(P;).
We can now define the notion of incentive compatibility that we use in the

paper.

DEFINITION 2.7: A SCF f is Ordinally Bayesian Incentive Compatible (OBIC)
with respect to the belief u if for all i € N, for all P;, P! € P, for all u e U(P,),
we have

(1) N u(F PP YPLIPY = Y. ul(f(P), P-)(PIP).

P_;ePN-1 P_;ePN-1

Let f be a SCF and consider the following game of incomplete information
as formulated originally in Harsanyi (1967). The set of players is the set N.
The set of types for a player is the set P that is also the set from which a
player chooses an action. If player i’s type is P;, and if the action-tuple cho-
sen by the players is P/, then player i’s payoff is u(f(P’)) where u is a utility
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function that represents P;. Player i’s beliefs are given by the probability dis-
tribution w. The SCF f is OBIC if truth-telling is a Bayes—Nash equilibrium of
this game. Since SCF’s under consideration are ordinal by assumption, there is
no “natural” utility function for expected utility calculations. Under these cir-
cumstances, OBIC requires that a player cannot gain in expected utility (condi-
tional on type) by unilaterally misrepresenting his preferences no matter what
utility function is used to represent his true preferences.

It is clear that strategy-proofness is a more stringent requirement than OBIC
with respect to a particular belief. We record without proof the precise rela-
tionship between the two concepts below.

REMARK 2.1: A SCF is strategy-proof if and only it is OBIC with respect to
all beliefs .

It is possible to provide an alternative definition of OBIC in terms of stochas-
tic dominance. Let f be a SCF and pick an arbitrary individual i and a prefer-
ence ordering P;. Suppose alternative a is first-ranked under P;. Let « denote
the probability conditional on P; that a is the outcome when i announces P;
assuming that other players are truthful as well. Thus « is the sum of w(P_;|P;)
over all P_; such that f(P;, P_;) = a. Similarly, let 8 be the probability that a
is the outcome if he announces P;, i.e., B is the sum of w(P_;|P;) over all P_;
such that f(P], P_;) = a. If f is OBIC with respect to u, then we must have
a > B. Suppose this is false. Then there exists a utility function, which gives a
utility of one to a and virtually zero to all other outcomes, that represents P;
and such that the expected utility from announcing the truth for agent i with
preferences P; is strictly lower than from announcing P;. Using a similar argu-
ment, it follows that the probability of obtaining the first & ranked alternatives,
k=1,...,m, according to P; under truth-telling must be at least as great as
under misreporting via P;. We make these ideas precise below.

For all i € N, for any P; € P, and for any a € A, let B(a,P;) ={be A |
bP;a} U {a}. Thus B(a, P;) is the set of alternatives that are weakly preferred
to a under P;.

DEFINITION 2.8: The SCF f is OBIC with respect to the belief w if for all
i € N, for all integers k =1, ..., m, and for all P; and P/,

(2) M({P—i |f(Pi7P—i)GB(rk(Pi)ypi)“Pi)
= ,U«({P—i | (P, P_;) € B(ri(Py), Pi)}|Pi)~
We omit the proof of the equivalence of the two definitions of OBIC.

The proof is easy and we refer the interested reader to Theorem 3.11 in
d’Aspremont and Peleg (1988).
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3. UNIFORM PRIORS

We begin by analyzing the case of uniform priors. Our objective is to provide
a weak sufficient condition for OBIC with respect to this prior. Although we
shall demonstrate in the next section that this possibility result disappears if
the prior is perturbed, it is nevertheless of interest because of the importance
of uniform priors in decision theory.

ASSUMPTION 3.1: For all i, for all P;, P}, and for all P_; and P’ ,, we have
w(P_i|P;) = u(P_|P)).

We denote these uniform beliefs by u. Restating Definition 2.8 in the present
context, we have this proposition:

PROPOSITION 3.1: The SCF f is OBIC with respect to the belief i if, for all i,
forall integers k =1, ..., m, for all P; and P!, we have

3) [{P_i | f(Pi, P_)) € B(ri(P), P)}|
> |{P,,- | f(P,P_)e B(rk(Pi)aPi)H-

We omit the (trivial) proof of this Proposition. It will be convenient to ex-
press equation (3) in a more compact way. For all P, ¢ P and x € A4, let

TI(X,Pi)E|{P—i|f(Pi,P—i)=x}|~

Equation (3) can now be expressed as follows. For all 7, for all integers k =
1,...,m, for all P; and P/, we have

k k
@) D (P, P) =Y (P, P)).

t=1 t=1
We now give an example of a nondictatorial SCF that is OBIC with respect
to k.
EXAMPLE 3.1: Let A ={a, b, c}, N ={1,2}. Consider the SCF defined be-

low.

abc acb bac bca cab cba

abc a a a b c a
acb a a b a a c
(5) bac b a b b b c
bca a b b b c b
cab a c c b c c
cha ¢ a b c c c
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In the array above, individual 1’s preferences appear along the rows and
individual 2’s along the columns. The SCF is well-behaved; in particular it is
neutral (this will be defined shortly), nondictatorial, and Pareto efficient. To
verify that it is OBIC with respect to fi, it suffices to observe that for each
preference ordering of an individual, the frequency of occurrence of its first-
ranked alternative is four and of its second and third-ranked alternatives, one
each respectively. It is easy to modify the example slightly in order to obtain
a SCF that is anonymous (i.e., invariant with respect to the permutation of
individuals). Details may be found in Majumdar (2002, Chapter 2).

We introduce some definitions that are required for the main result of this
section.

DEFINITION 3.1: Let o: A — A be a permutation of 4. Let P” denote the
profile (P7, ..., Py) where for all i and for all a, b € A,

aP:b= o(a)Po(b).

The SCF f satisfies neutrality if, for all profiles P and for all permutation func-
tions o, we have

fP)=olf(P)].

Neutrality is a standard requirement for social choice functions and corre-
spondences (see, for example, Moulin (1983)). All alternatives are treated sym-
metrically in neutral SCF’s, i.e., the “names” of the alternatives do not matter.

Let P; be an ordering and let a € 4. We say that P; represents an elementary
a-improvement of P; if:

e forall x,ye A\ {a}, xP,y & xPly;
o [a=n(P)]l=la=r(P)],ifk>1;
o [a=n(P)]= [a=nr(P)]

DEFINITION 3.2: The SCF f satisfies elementary monotonicity if for all i, P;,
P/ and P_,,

[f(P;, P_;) = a and P! represents an a-elementary

improvement of P;] = [f (P}, P_;) = al.

Let P be a profile where the outcome is a. Suppose a moves up one place in
some individual’s ranking without disturbing the relative positions of any other
alternative. Then elementary monotonicity requires a to be the outcome at the
new profile. This is a relatively weak axiom whose implications we will discuss
more fully after stating and proving the main result of this section.
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THEOREM 3.1: A SCF that satisfies neutrality and elementary monotonicity is
OBIC with respect to fi.

PROOF: Let f be a SCF which is neutral and satisfies elementary monotonic-
ity. We will show that it is OBIC with respect to ft.

Our first step is to show that the neutrality of f implies that, for all i,
for all integers k =1, ..., m, and for all P; and P/, we have n(r.(P,), P;) =
n(r«(P}), P!). Pick an individual i and orderings P; and P;. Define a permuta-
tion function on A as follows: for all integers k =1, ..., m,

o(re(P)) =r(P)).

Observe that P7 = P/. Fix an integer k € {1,...,m}. Let P_; be such that
f(P;, P_;) =i (P;). Since f is neutral,

(6) [P, P%) =olf (P, P-)] = olrn(P)]=rc(P).
Equation (6) above establishes that
n(re(P), Py) < n(re(P)), P)).

By using the permutation o', the argument above can be replicated to prove
the reverse inequality.

The next step in the proof is to show that for all 7, for all integers k =
1,...,m—1, and for all P;,

N (P)) = n(ra ().

Pick i, k € {1,...,m — 1}, and P,. Let P; be an elementary ry,(P;)-improve-
ment of P;. Since f satisfies elementary monotonicity, we must have

(7 {P—i | f(Pi, Pi) = rk+1(Pi)} < {P—i | f(P, P_y) :rk+1(Pi)}~
Equation (7) above implies that
8) N1 (P), P) = (1 (Pr), Pr).

But the left-hand side of equation (8) equals 1 (7 (P}), P!), which from the first
part of the proof equals 0 (7, (P;), P;). This proves our claim. Observe that this
claim implies that

©) n(r(P;), P;) = n(r(P;), P;) whenever k <t.

We now complete the proof of the Theorem. Let i be an individual, let k €
{1,..., m} be an integer, and let P; and P! be orderings. Let T' = {s | r,(P]) =
r.(P;) for some t € {1, ..., k}}. From the first part of the proof we have

k

(10) > n((P), P) =Y n(r(P), P).

t=1 teT
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But from equation (9)

k
(A1) Y (P, P <) m(r(P), P).
1

teT t=

Combining equations (10) and (11), we obtain

k k
> (P, P) =Y n(r(P), P))
t=1 t=1

so that f is OBIC with respect to j. Q.E.D.

Theorem 3.1 is a positive result. Neutrality and elementary monotonicity are
relatively weak requirements for SCF’s to satisfy. We provide an important
class of examples below.

EXAMPLE 3.2 (Scoring correspondences): Lets = (sy, 52, ..., S») be a vector
in R™ with the property that s; > s, > --- > 5, and s; > s,,. Let P be a profile.
The score assigned to alternative a in P by individual i is sy if 7, (P;) = a. The
aggregate score of a in P is the sum of its individual scores in P. Let W,(P)
denote the set of alternatives whose scores in P are maximal. The social choice
correspondence W defined by this procedure is called a scoring correspondence
and is discussed in greater detail in Moulin (1983). Important correspondences
that belong to this class are the plurality and the Borda correspondences.

We define a SCF f that is a selection from W in the following manner. For
all profiles P, f(P) is the alternative in W,(P) that is maximal according to P,
i.e., it is the element in the set W, (P) that is the highest ranked in individual 1’s
preferences. Observe that f is neutral. We also claim that it satisfies elementary
monotonicity. To see this, suppose f(P) = a and let P/ be an a-improvement of
P, for some individual i. Observe that the score of a in P; increases relative to
that in P; while that of the other alternatives either remains constant or falls.
Therefore the aggregate score of a in the profile (P;, P_;) is strictly greater
than in P while that of the other alternatives is either the same or less. There-
fore W, (P}, P_;) = {a} = f(P!, P_;) and elementary monotonicity is satisfied.
Theorem 3.1 allows us to conclude that f is OBIC with respect to . Indeed
any neutral selection from a scoring correspondence will satisfy this property.

Moulin (1983) contains a more extensive discussion of elementary monoto-
nicity (which he calls monotonicity). He shows (Chapter 3, Lemma 1) that in
addition to scoring correspondences, Condorcet-type correspondences (those
that select majority winners whenever they exist) such as the Copeland and
Kramer rules, the Top-cycle, and the uncovered set, all satisfy elementary
monotonicity. It is easy to show that a neutral selection of these correspon-
dences obtained, for instance, by breaking ties in the manner of the previous
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example (using the preference ordering of a given individual), generates a SCF
that is OBIC with respect to .

REMARK 3.1: Theorem 3.1 only provides a sufficient condition for a SCF to
be OBIC with respect to fi. In order to see this, observe that the SCF in Exam-
ple 3.1 is neutral but violates elementary monotonicity. For instance, observe
that f(abc, cba) = a but f(abc, cab) = c.

REMARK 3.2: There are SCF’s that are not OBIC with respect to . For
instance, modify the SCF in Example 3.1 by changing the outcome when voter
1’s preference is abc and voter 2’s preference is cba from a to c. The SCF
satisfies unanimity but is not OBIC with respect to i. In particular, voter 1 of
type abc will deviate to acbh.

4. THE GENERIC CASE

The main result of this section is to show that the possibility results of the
previous section do not hold generally. However we need to make a crucial
assumption regarding admissible beliefs.

ASSUMPTION 4.1: All admissible beliefs u are independent, i.e., for all k =
1,2,..., N, there exist probability distributions pu : P — [0, 1] such that

N

w(P)= k>:<l i (Pr).

We denote the set of all independent priors by A’. The set A’ is the Nth order
Cartesian product of unit simplices A, where each A is of dimension m! — 1.
We can now state the main result of this section.

THEOREM 4.1: Let m > 3 and assume that beliefs are independent. There exists
a subset C of A" such that:
o C is open and dense in A';
o Al — C has Lebesgue measure zero;
o if f is unanimous and is OBIC with respect to u where u € C, then f is dicta-
torial.

The theorem states that there is a subset of the set of independent beliefs
that is generic in the latter set, which has the property that every unanimous
SCF that is OBIC with respect to any belief in this set, is dictatorial. We em-
phasize that the genericity is in the set of independently generated beliefs and
not in the space of all probability distributions of types.

The proof of the theorem is contained in the Appendix.
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REMARK 4.1: Theorem 4.1 can easily be extended to cover the case where
voters do not have common beliefs. Here OBIC has to be defined with respect
to an N-tuple of beliefs or a belief system. If the belief of each voter is assumed
to be independent, then there exists a set of beliefs for each voter with the
following property: every unanimous SCF that is OBIC with respect to a be-
lief system where each voter’s belief is picked arbitrarily from this set, must
be dictatorial. In addition, the same genericity properties hold for these sets
of beliefs. The arguments required to prove this result are virtually identical
to those in the paper. There is however a sense in which this result is more
general than the one in the common priors case. We no longer need to assume
independence of each voter’s beliefs in the case where there are more than two
voters—the weaker assumption of free beliefs introduced in d’Aspremont and
Gérard-Varet (1982) suffices. The common prior assumption in conjunction
with free beliefs implies that the common prior satisfies independence. Re-
sults relating to the noncommon priors case can be found in Majumdar (2002,
Chapter 2).

REMARK 4.2: The Gibbard-Satterthwaite Theorem is a corollary of Theo-
rem 4.1. This follows immediately from Remark 2.1.

5. DISCUSSION

In this section we attempt to provide some insight into our results. In or-
der to do so we return to the two person, three alternative SCF described in
Example 3. Assume that the common belief is independent; in particular let
M1, M2, - - - 5 b denote the row voter’s belief that the column voter’s preferences
(types) are abc, ach, ..., cba, respectively.

Suppose that the row voter’s true ordering is abc and she considers misrep-
resenting her preferences by announcing acb. Observe that by telling the truth,
she obtains a with probability p; + u, + us3 + s while by lying, she gets a with
probability u; + uy + ps + ps. We claim that OBIC requires that

1+ o+ ps e = g + po + g+ s

Suppose that the inequality does not hold, i.e., the quantity on the right-hand
side strictly exceeds that on the left-hand side. Then there exists a cardinaliza-
tion of abc where u(a) =1, u(b) = 6 > 0, and u(c) = 0 with 6 sufficiently small
such that the expected utility from truth telling is strictly smaller than that from
lying via acb.

Now suppose that the row voter’s true preference is ach and she considers
lying by announcing abc. Replicating the argument above, we obtain the re-
verse inequality. (Note that in order to make this claim, we are making use of
the independence assumption.) Combining the two inequalities, we have

M1t o+ M3+ e = M1t Mo+ Mg+ s
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This equality does hold in the uniform prior case where both left and right-
hand sides are equal to 4/6. However, it will break down if the prior is per-
turbed. Therefore the SCF will not be OBIC with respect to these perturbed
priors. These observations provide an intuition for our results, both positive
and negative. In the uniform priors case, the position in which various out-
comes occur in the rectangular array that represents the SCE, is (relatively)
unimportant because only frequencies of occurrence matter. However, in the
generic case these positions are critical—alternatives must “line up” in very
specific ways in order to satisfy OBIC. These restrictions precipitate a negative
result.

We employ a general version of the arguments above to prove Theorem 4.1.
We define the set C of independent beliefs to be the product of marginal dis-
tributions over preference types satisfying the following property: If the prob-
ability that a voter’s type belongs to a set S equals the probability that his type
belongs to the set 7', then we must have S = 7. This is clearly violated (in the
most extreme way) when the marginal distribution is uniform. But it is clearly
generic in the set of all independent beliefs. B

Now consider voter i and preference orderings P; and P; for this voter with
the property that the sets of the first k (k is an integer between 1 and m — 1)
ranked alternatives in the two orderings are identical. Denote the set of these
first k alternatives by B. For instance, in Example 3.1, if the two orderings for
the row voter are abc and acb, then k =1 and B = {a}; if the orderings are
abc and bac, then k =2 and B = {a, b}, etc. Let f be a SCF that is OBIC with
respect to some belief lying in the set C. Let S be the set of preferences of
voters other than i, P_; such that f(P;, P_;) € B. Similarly let T be the set of
all P_; such that f(P;, P_;) € B. Using the argument outlined earlier, we can
conclude (from OBIC) that the probability measures of the sets § and T must
be the same. But since beliefs lie in the set C, the sets S and 7 must be the
same. Therefore, if f(P;, P_;) € B, then f(P;, P_;) € B.

This last condition is a montonicity type of condition on SCF’s. Although we
are unable to show directly that it implies strategy-proofness, we demonstrate
that together with unanimity, it implies dictatorship. The proof proceeds by
induction on the number of voters. We show that it holds for two voters and
then use a “cloning” of voters argument to establish the induction step.

It is clear that Theorem 4.1 depends heavily on the requirement that the ex-
pected utility from truth-telling is at least as great as that from lying for various
cardinalizations of true preferences. A natural question is whether all cardi-
nalizations are required for the result, i.e., whether the full force of OBIC is
necessary. We can provide a fairly clear answer to this question. Reexamining
previous arguments we can verify the following: for any preference ordering
and any alternative not ranked last, we require cardinalizations that make the
utility gap between the weak better-than set (with respect to this alternative)
and the strictly worse-than set, as large as possible. For instance, if the utility
of the best and worst alternatives are normalized to be one and zero, respec-
tively, then for all alternatives x and all real numbers 6 € (0, 1), there must
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exist a cardinalization u such that u(x) — u(y) > 6 where y is the alternative
ranked immediately below x. If there are exactly three alternatives, then all
cardinalizations of each preference ordering are indeed required. However,
this is not necessary if there are more than three alternatives.

It is worth pointing out an important feature of the set of beliefs C that we
construct. For all marginal distributions derived from beliefs in this set, all pref-
erence orderings get strictly positive probability. To see this, consider the two
person three alternative example once again and suppose that u; =0. Then
1+ m2 = uo so that the probabilities that the column voter’s type belongs to
the distinct sets {abc, acb} and {abc} are the same. This implies that admissi-
ble beliefs are such that no domain restriction is introduced. Observe that such
a requirement is necessary because it is possible to construct strategy-proof
nondictatorial SCF’s satisfying unanimity over restricted domains.

Finally we would like to make an observation that may be of help in inter-
preting our result. We know that if we require a SCF to be robust in the sense
of being incentive compatible with respect to all beliefs, we are, in effect, im-
posing strategy-proofness. We then immediately obtain dictatorship. In fact,
we may not need robustness with respect to all beliefs—even a local version of
this requirement may be sufficient (Ledyard (1978)). Our results suggest that
a related negative result obtains when robustness is imposed not on beliefs but
on utility representations.

6. CONCLUSION

We have examined the implications of weakening the incentive requirement
in the standard voting model from dominant strategies to ordinal Bayesian in-
centive compatibility. The set of ordinal Bayesian incentive compatible social
choice functions clearly depends on the beliefs of each agent. A case of particu-
lar interest is the case of uniform priors. We provide a weak sufficient condition
for incentive compatibility and show that a large class of well-behaved social
choice functions satisfy these conditions. However, we show that these possibil-
ity results vanish if we perturb these beliefs. We are thus unable to escape the
negative conclusion of the Gibbard—Satterthwaite Theorem for generic priors.

Several questions remain to be answered. Although OBIC is a natural con-
cept in an ordinal setting, it is a reasonably strong requirement. It is vital there-
fore, to investigate a fully cardinal model where the value of a SCF can depend
on the cardinalization of individual preferences. It would also be worthwhile to
examine the effects of correlation in the voting model as has been done quite
extensively in models with money and quasi-linear utility functions (see, for in-
stance, d’Aspremont, Crémer, and Gérard-Varet (2002)). We hope to address
some of these issues in future work.
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APPENDIX

PROOF OF THEOREM 4.1: The proof proceeds in several steps. In Step 1, we define the sets
C and show that they are open and dense subsets of A’ and the Lebesgue measure of their com-
plement sets are zero. In Step 2, we show that if f is OBIC with respect to the belief u where
w € C, then f must satisfy a certain property that we call Property M. In Steps 3 and 4, we show
by induction on the number of individuals that a SCF satisfying Property M must be dictatorial.
In Step 3, we show that this is true in the case of two individuals. In Step 4, we complete the
induction step.

Step 1:  We define the set C below.
For any Q C PV, let u(Q) = ZPEQ n(P). The set C is defined as the set of beliefs u satisfying
the following property: for all Q, T c PV,

(@) =u(D)]= [0 =T].
We first show that C is open in A’. Pick any u € C and let

¢(u)= min |u(S)—pu(T)|.
S, TCPN, SAT
Observe that ¢ (u) > 0. Since ¢ is a continuous function of u, there exists € > 0 such that for
all i e A" with d(f, u) < €, we have ¢ (i) > 0. But this implies that ji € C. Therefore C is open
in AV,
We now show that A’ — C has Lebesgue measure zero. We begin with the observation that A’
is the Cartesian product of N simplices, each of which is of dimension m! — 1. On the other hand,

A—c= J {ped |m@ =uD)}

Q,TcPN

Therefore the set A’ — C is the union of a finite number of hypersurfaces intersected with A’.
It follows immediately that it is a set of lower dimension and hence has zero Lebesgue measure.

Pick u € A" — C and consider an open neighborhood of radius € > 0 with center w. Since this
neighborhood has strictly positive measure and since A’ — C has measure zero, it must be the case
that the neighborhood has a nonempty intersection with the set C. This establishes that C is dense
in A7,

This completes Step 1.

Step 2:  Let f be a SCF that is OBIC with respect to the belief u € C. Our goal in this step of
the proof is to show that f must satisfy Property M, which we define below.

Let P be a preference profile, let i be an individual, and let P be an ordering such that the
top k elements in P; coincide with the top k elements of P/. Then Property M requires that if
f(P) is one of the top k elements of P;, the f (P}, P_;) must also be one of these top k elements.
Formally, we state the following definition.

DEFINITION A.1: The SCF f satisfies Property M, if for all individuals i, for all integers k =
1,2,...,m,for all P_; and for all P;, P; such that B(r,(P;), P;) = B(rx(P}), P}), we have

[f(Pin—i) GB(rk(Pi)yPi)] = [f(P,{yP—i) GB(Vk(P;),P;)]-

3d(., .) here signifies Euclidean distance.
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In order to establish Step 2, we first need to prove an intermediate result.

Let w € Al and i € I. Then u_; and w; denote, respectively, the induced (conditional) probabil-
ity over preferences of individuals other than i and the marginal distribution over #’s preferences.
Thus p_;(P_;) will denote the probability that individuals other than i have preferences P_;. Sim-
ilarly w;(P;) will denote the probability that i’s preference is P;.

LEMMA A.1: Let w € C. Then, forall Q, T c PN71,
(n-i(Q)=pi(D]=[0=T].

PROOF: Suppose not. Then there exists w € C and Q, T ¢ P¥~! with Q and T distinct such
that u_;(Q) = u_;(T). Pick an ordering for individual i, P;, and observe that

i Q)i (Pr) = p—i (T pi(Pr),
which implies that

w(Q x {Pi}) = (T x {P;}).
Since Q and T are distinct, Q x {P;} and T x {P;} are also distinct. But this contradicts the as-
sumption that u € C. Q.E.D.

We now complete the proof of Step 2. Let i be an individual and let P; and P; be such that
B(ri(Py), P;) = B(ri(P)), P}). Suppose i’s “true” preference is P;. Since f is OBIC with respect
to u, we have, by using (2),

(A1) p—i({P-i | f(Pi, P_p) € B (Py), P)}) = u—i({P-i | f (P}, P_;) € B(ri(Py), Py)}).
Suppose i’s “true” preference is P;. Applying equation (2), we have

(A2) p—i({P-i | f(P}, Py) € Bri(P)), PD}) = ui({P=i | f(Pi, P_y) € B(ri(P)), PD}).
Since B(ry(P;), P;) = B(r(P}), P}), equations (A.1) and (A.2) imply

(A3) ,Uv—i({P—i | f(P;, P_y) GB(rk(Pi)yPi)}) = M—i({P—i \ f(P;,P,,-) € B("k(P,{),P;)})~
Since u € C, it follows from Lemma A.1 and equation (A.3) that

(A.4) {P—i | f(Pi, P_y) ’EB(Vk(Pi),Pi)} = {P—i | f(P,P_)e B(Vk(P;),P;)}~

Now suppose for some P;, we have f(P;, P_;) € B(ry(P;), P;). Then equation (A.4) implies that
f(P}, P_;) € B(ri(P}), P}). Thus Property M is satisfied and Step 2 is complete.

Step 3:  In this step, we show that a two person SCF that satisfies Property M must be dicta-
torial. Let N = {1, 2} and let f satisfy Property M.

CLAIM A: For all profiles (Py, Py), either f(Py, P,) =r (Py) or f(Py, P,) = ri(P,) must hold.

Suppose that the Claim is false. Let (P;, P,) be a profile where individual 1’s first-ranked
alternative is a, individual 2’s first-ranked alternative is b and suppose f(P;, P,) = ¢ where c is
distinct from a and b. Consider an ordering P, where a is ranked first and b is ranked second. By
unanimity, f(P;, P,) = a. Consider an ordering P; where b is ranked first and a second. Observe
that the top two elements in the orderings P, and P coincide. Moreover, f (P, P,) is one of these
top two elements. It follows therefore from Property M that f(P;, P}) € {a, b}. Now suppose that
f(Py, P)) =b. Since P, and P; have the same top element, Property M implies that f(P;, P,) = b,
which contradicts our supposition that the outcome at this profile is ¢. Therefore f (P, P;) = a.

Let P be an ordering where a and b are ranked first and second, respectively. Since P; has the
same top element as P; (which is a), Property M also implies that f(P;, P;) = a.
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Now consider the profile (P}, P;). By considering an ordering P, where b is ranked first and
a second, we can duplicate an earlier argument to conclude that f(P;, P,) is either a or b. But
if it is b, then Property M would imply that f(P;, P;) = b, which would contradict our earlier
conclusion that the outcome at this profile is a. Therefore f(P], P,) = a. But then Property M
would imply that f(P;, P,) = a, whereas we have assumed that the outcome at this profile is c.
This proves the Claim.

CLAIM B: If f picks 1’s first-ranked alternative at a profile where 1 and 2’s first-ranked outcomes
are distinct, then f picks 1s first-ranked alternative at all profiles.

Let (Py, P,) be a profile where the first-ranked alternatives according to P, and P, are a and b,
respectively. It follows from Claim A that f(P;, P,) is either a or b. Assume without loss of
generality that it is a. Holding P, fixed, observe that the outcome for all profiles where a is ranked
first for 1 must be a; otherwise Property M will be violated. By a similar argument, holding P;
fixed, the outcome b can never be obtained in all those profiles where 2’s top-ranked outcome
is b. Now consider an arbitrary profile where a is ranked first for 1 and b for 2. Using Claim A
and the arguments above, it follows that the outcome must be a.

Consider an outcome c distinct from a and b. In view of the arguments in the previous para-
graph, we can assume without loss of generality that c is second-ranked under P;. Let P be
an ordering where ¢ and a are first- and second-ranked, respectively. Property M implies that
f (P}, P,) is either a or c. But Claim A requires the outcome at this profile to be either b or c.
Therefore f(P], P,) = c. Applying the arguments in the previous paragraph, it follows that f
always picks 1’s first-ranked alternative whenever 2’s first-ranked alternative is b.

Let (P;, P,) be a profile where a and b are first-ranked in P; and P, respectively. Pick an
alternative x distinct from a and b. Applying earlier arguments, we can assume that x is second-
ranked in P,. Let P} be an ordering where x is first and b is second ranked. It follows from
Claim A that f(P;, P}) is either x or a. But if it is x, Property M would imply that f(P;, P»)
would either be b or x which we know to be false. Therefore f(P;, P;) = a. Replicating earlier
arguments, it follows that the outcome at any profile is 1’s first-ranked alternative provided that
2’s first-ranked alternative is x. Since x is arbitrary, the Claim is proved.

It follows immediately from Claim B that f must be dictatorial. Therefore Step 3 is complete.

Step 4 'We now complete the induction step. Pick an integer N with N > 2. We assume the
following:

For all K with K < N, if f : PX — A satisfies Property M, then f is dictatorial.

Our goal is to prove the following:

If f: PN — A satisfies Property M then f is dictatorial.

Let f : P¥ — A be a SCF that satisfies Property M. Define a SCF g : P¥~! — A as follows. For
all (P],P},P4,...,PN)€]P>N71,

8Py, P3, Py, ..., Py)=f(Py, Py, Ps, ..., Py).

The idea behind this construction is simple and appears frequently in the literature on strategy-
proofness, for example in Sen (2001). Individuals 1 and 2 are “cloned” to form a single individual
in the SCF g. This coalesced individual in g will be referred to as {1, 2}.

It is trivial to verify that g satisfies unanimity. We will show that g satisfies Property M. Pick
an individual i and suppose P; and P; are such that B(ri(P;), P;) = B(ri(P}), P;) for some in-
teger k that lies between 1 and m. Further, suppose that for some profile P_; € P¥~2, we have
g(P;, P_;) € B(ry(P;), P;). We will show that g(P}, P_;) € B(ry(P}), P}). Observe that if i is an
individual from the set {3, ..., N}; then this follows immediately from our assumption that f sat-
isfies Property M. The only nonobvious case is the one where i is the coalesced individual {1, 2}.
In this case, observe that since f satisfies Property M, f(Py, Py, Ps, ..., Py) € B(ri(P;), P;) im-
plies that f (P}, Py, P3, ..., Py) € B(ri(P}), P}), which in turn implies that f (P, P, Ps, ..., Py) €
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B(ri(P)), P)). Therefore, g(P;, Ps, ..., Py) € B(r,(P}), P}), which is what was required to be
proved.

Since g satisfies Property M, our induction assumption implies that g is dictatorial. There are
two cases that will be considered separately.

Case 1:  The dictator is the cloned individual {1, 2}. Thus whenever individuals 1 and 2 have
the same preferences, the outcome under f is the first-ranked alternative according to this com-
mon preference ordering.

Fix an N — 2 person profile (P, Py, ..., Py) € PN~2 and define a two person SCF /1 : P? — A4
as follows: for all (Py, P,) € P?,

h(Py, ) = f(P1, P2, Ps, ..., Py).

Since {1, 2} is a dictator, 4 satisfies unanimity. Since f satisfies Property M, it follows immediately
that / also satisfies Property M. From Step 3, it follows that / is dictatorial. Assume without loss
of generality that this dictator is 1. We now show that 1 is a dictator in f. In other words, the
identity of the dictator in /# does not depend on (P, Py, ..., Py).

Let j € {3,4,..., N} and suppose that there exists an N — 2 person profile (P;,..., Py)
where j can change the identity of the dictator in A (say from 1 to 2) by changing his pref-
erences from P; to Pj. We shall show that this is not possible when P; and P; differ only
over a pair of alternatives. This is sufficient to prove the general case because the change
from P; to P} can be decomposed into a sequence of changes where successive preferences
along the sequence differ only over a pair of alternatives. Assume therefore that there exists
a pair x, y such that r,(P;) = x, iy (P;) =y, and ry (P/’.) =y, rk+1(P/’.) = x. Moreover for any
alternative z distinct from x and y, its rank in P; and P} is the same. Consider the profile
P=(P,,P,,Ps,...,P,..., Py) where P, and P, have distinct first-ranked alternatives. Then
individual j by switching from P; to P} changes the outcome. Observe that P; and P; have the
same top s elements where s=1,2,...,k—1,k+1,..., m. Since f satisfies Property M, it fol-
lows that f(P) and f (P}, P_;) can differ only if f(P) = f(P;, P_;) € {x, y}. But f(P}, P_;) € {x, y}
implies that f(P}, P_;) € {x, y}. The above statement again follows from the fact that f satisfies
Property M. Now pick P; and P, such that the first-ranked alternatives in these two orderings
is x and z respectively where z is distinct from x and y. Since j changes the identity of the dic-
tatator in 4 from 1 to 2, it follows that f (PJ’-, P_;) = z which contradicts our earlier claim that
J (P}, P_j) € {x, y}. Therefore j cannot change the identity of the dictator in A by changing his
preferences. Therefore the dictator in /4 is the dictator in f.

Case 1I:  The dictator in g is an individual j € {3, ..., N}. Assume without loss of generality
that j = 3. Now define an N — 1 person SCF g’ by coalescing individuals 1 and 3 rather than 1
and 2 as in g. Of course, g’ satisfies unanimity and Property M. Therefore it is dictatorial (by the
induction hypothesis). If the dictator is the coalesced individual {1, 3}, then Case I applies and we
can conclude that f is dictatorial. Suppose therefore that {1, 3} is not the dictator. We will show
that this is impossible. We consider two subcases.

Case IIA: The dictator in g’ is an individual j € {4, ..., N}. Assume without loss of generality
that j = 4. In this subcase, when 1 and 2 have the same preferences, the outcome under f is
3’s first-ranked alternative but when 1 and 3 agree, the outcome is 4’s first-ranked alternative.
Consider an N person profile P where P, = P, = P;. Let a be the first-ranked alternative of
this ordering. Let the first-ranked alternative in P, be b which is distinct from a. Since 1 and 2’s
orderings coincide, f(P) must be individual 3’s first-ranked alternative, which is a. On the other
hand, since 1 and 3’s orderings coincide, f(P) must be individual 4’s first ranked alternative,
which is b. We have a contradiction.
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Case 1IB: The dictator in g’ is individual 2. Let P be an N person profile where P; = P;
and aP,bPicPix for all x # a, b, c. Also let bPaP,cP,x for all x # a, b, ¢ and let P, agree
with P; for all x # a, b, c. Since 1 and 3 have the same ordering in P, f(P) = b. Let P; be
the ordering obtained by switching b and ¢ in Ps. Since P; and P} agree on the top and the
top three elements, Property M implies that f(P;, P_3) € {b, c}. Suppose that this outcome is c.
Then observe that Property M implies that f(P;, Py, Pj, ..., Py) = c. But since 1 and 2’s or-
derings coincide, the outcome at this profile should be 3’s first-ranked alternative a. Therefore
f(P;, P_3) = b. Now let P; be the ordering obtained by switching a and c in P}. Property M im-
plies that f(P;, Py, Ps, ..., Py) = b. A further application of Property M for individual 2 allows
us to conclude that f(Py, Py, P, ..., Py) € {a, b}. But 1 and 2 have the same ordering at this pro-
file so that the outcome here must be 3’s first-ranked alternative, which is ¢. We have obtained a
contradiction.

This concludes Step 4 and the proof of the Theorem. Q.E.D.
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