1 Assignment 2 (Choice Under Uncertainty)

- 1. Verify the examples E1-E7 in the notes of preferences over lotteries if they satisfy the continuity and the independence axioms of expected utility theory.
- 2. One way to construct preferences over lotteries with monetary outcomes is by evaluating each lottery F by its expected value E_F and variance, v_F .
 - Show that $u(F) = E_F \frac{1}{4}v_F$ is not consistent with the assumptions of expected utility theorem. For this consider the mixture of each of the lotteries [1] and $0.5[0] \oplus 0.5[4]$ with $0.5[0] \oplus 0.5[2]$.
 - Show that $u(F) = E_F (E_F)^2 v_F$ is consistent with the assumptions of expected utility theorem (i.e., a Bernouli utility function).
- 3. Show that if a preference relation \succeq over L(Z) satisfies independence and continuity, then one of the best lotteries in L(Z) is a degenerate lottery and one of the worst lotteries in L(Z) is a degenerate lottery.
- 4. In the "Demand for insurance" problem, consider the scenarios when the insurance is not actuarially fair. In particular, describe the level of insurance (with respect to D) if $q > \pi$ and $q < \pi$.
- 5. Show that for any two Bernouli utility functions u_1 and u_2 , the following two statements are equivalent.
 - (a) $r_A(x, u_2) \ge r_A(x, u_1)$ for all x.
 - (b) $c(F, u_2) \le c(F, u_1)$ for all *F*.