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Abstract
I suggest a unifying new approach to moral hazard. Once local incentive

compatibility (L-IC) is satis�ed, the problem of verifying global incentive com-

patibility (G-IC) is shown to be isomorphic to the well-understood problem of

comparing two classes of distribution functions. In the one-signal case, the suf-

�cient conditions for the validity of the �rst-order approach (FOA) provided by

Rogerson and Jewitt are related to �rst and second order stochastic dominance,

respectively. New conditions relying on other stochastic orders are presented.

Conlon�s multi-signal justi�cations can be related to particular multivariate ex-

tensions of the usual stochastic orders. However, there are several ways in which

these orders can be extended into higher dimensions. New multi-signal condi-

tions that rely on the more tractable orthant orders are thus provided. When

the standard FOA is invalid it may be possible to construct a valid �modi�ed�

FOA. The modi�ed FOA correctly solves Mirrlees�famous counterexample.
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1 Introduction

The principal-agent model of moral hazard is among the core models of microeconomic

theory and central to the economics of information. The problem is conceptually

simple; a principal must design a contract to induce the agent to take the desired

action. From the agent�s point of view the intended action must be made preferable

to all other actions. Thus, a multitude of incentive compatibility constraints must be

satis�ed. Unfortunately, it is generally di¢ cult to determine which constraints bind

and to make robust predictions about the structure of optimal contracts.

In response, much of the literature has focused on environments where the only

binding constraint is the �local� incentive compatibility constraint (L-IC). In such

cases, ensuring the agent has no incentive to deviate marginally from the intended

action guarantees global incentive compatibility (G-IC), i.e. larger deviations can be

ruled out too. Indeed, the classic �rst-order approach (FOA) simply uses the agent�s

�rst-order condition to summarize G-IC. The optimal contract is then easily derived.

The FOA has a long history, dating back to Holmström (1979) and Mirrlees (1976,

1999). Rogerson (1985) and Jewitt (1988) have provided su¢ cient conditions under

which the FOA is valid. However, although there are similarities in the structure of

their proofs, the techniques they use are quite di¤erent. Moreover, despite criticizing

the stringency of his assumptions, most textbooks on the topic prove Rogerson�s

result, but, as Conlon (2009a) observes, none even state Jewitt�s. In short, Jewitt�s

result may be underappreciated and there is little in the current literature to unify

the two results. Similarly, Conlon (2009a) uses two di¤erent approaches to obtain his

generalizations of Rogerson�s and Jewitt�s conditions to multi-signal environments.1,2

With these observations in mind, the primary objective of this paper is to propose

an accessible and unifying approach to the moral hazard problem. From this method-

ological contribution �ows two distinct sets of insights that enable previous results to

be extended in several di¤erent directions. First, it provides a uni�ed methodology

to understand Rogerson�s, Jewitt�s, and Conlon�s classic results on the validity of the

1An earlier paper by Sinclair-Desgagné (1994) also extended Rogerson�s conditions to the multi-
signal model. However, Conlon (2009a) relaxes Sinclair-Desgagné�s assumptions. Jewitt (1988) also
o¤ered two di¤erent multi-signal justi�cations of the FOA. Conlon further generalized one of these.

2Ke (2012a) proposes a �xed-point method for justifying the FOA. Araujo and Moreira (2001)
propose a general Lagrangian approach to solve moral hazard problems when the FOA is not valid.
See also Ke (2012b).
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FOA.3 There is a common thread to these results. Once this is identi�ed, it becomes

a straightforward matter to provide new justi�cations of the FOA. Secondly, it is also

possible to obtain insights into environments where the FOA is not valid.

The approach relies on �translating�the problem of verifying global incentive com-

patibility into a problem that is familiar to, and well-understood by, any economist.

In particular, I will show that checking G-IC (once L-IC is satis�ed) is isomorphic to

the problem of comparing two classes of risky prospects, or two classes of distribution

functions. Given this equivalence, many of the results follow by simply calling upon

well-known results from the literature on stochastic dominance. The remainder of

this introduction outlines the main results.

Any contract translates into a distribution of wages (where the distribution is

determined in part by the agent�s action). For brevity, I will refer to a contract as

monotonic if the agent�s utility is nondecreasing in the outcome or state. A contract is

concave if the agent�s utility is concave in the state. With this terminology, Rogerson�s

(1985) and Jewitt�s (1988) proofs can be decomposed into two concise parts. In

Rogerson�s case, the �rst part is to identify conditions under which any monotonic and

L-IC contract is also G-IC. The second part is then to identify additional conditions

under which the candidate contract is in fact monotonic. In Jewitt�s case, contracts

are both monotonic and concave.

The two �rst columns in the top row of Table 1 summarize the conclusions in

step 1 of Rogerson and Jewitt, respectively. For future reference, the third column

identi�es a natural extension. In comparison, the second row summarizes the notions

of �rst, second, and third order stochastic dominance (FOSD, SOSD, and TOSD,

respectively) between two lotteries, G and H.4 Note that Jewitt weakens Rogerson�s

assumption on the distribution function, but in exchange has to strengthen the as-

sumptions imposed on the shape of the contract. This trade-o¤ is remarkably similar

to the one encountered when FOSD and SOSD are compared. This is of course no

3Jewitt�s (1988) original proof is made complicated by the fact that it relies on results in an
unpublished working paper. The full proof is published in Conlon (2009b). In the existing liter-
ature, Conlon (2009a) comes closest to methodologically unifying Rogerson�s and Jewitt�s results.
Speci�cally, Conlon (2009a, footnote 7) observes that Rogerson�s proof relies on integration by parts,
and that a second round of integration by part can be used to prove Jewitt�s result. He does not
ask, for instance, what can be obtained from further rounds of integration by parts. As mentioned,
Conlon�s (2009a) multi-signal results rely on two di¤erent approaches.

4See Hadar and Russell (1969), Rothschild and Stiglitz (1970), Whitmore (1970), and Menezes
et al (1980). For textbooks on stochastic orders, see Müller and Stoyan (2002) and Shaked and
Shantikumar (2007).
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coincide, and much can be gained from exploring the relationship between the two

rows in the table. As the third column reveals, once the pattern is identi�ed it is easy

to develop a third set of conditions to validate the FOA.5 Indeed, in�nitely many

extensions to higher order stochastic dominance are possible. Moreover, by appealing

to related stochastic orders (the increasing convex orders), it is possible to obtain

another in�nite sequence of justi�cations of the FOA in which contracts are convex.

[TABLE 1 ABOUT HERE (SEE THE LAST PAGES)]

Conlon (2009a) generalizes Rogerson�s and Jewitt�s conditions to the multi-signal

model. Both Jewitt and Conlon encounter obstacles in the multi-signal model. For

instance, it is not trivial to check Conlon�s conditions. These di¢ culties can be

explained by the direction in which Jewitt and Conlon seek to extend the results into

higher dimensions. However, it turns out that there are several ways in which FOSD

and SOSD can be extended from one dimension to many dimensions. Some are more

tractable than others. This simple insight immediately leads to a number of new

multivariate justi�cations of the FOA. Central to these new results are the so-called

orthant orders.6 There are a number of advantages to these new justi�cations. For

instance, they are simpler to check. Moreover, one of the new justi�cations handles

the important special case in which signals are independent particularly well.

Conlon emphasizes that his so-called CISP condition need not hold if signals are

independent and each signal separately satis�es Rogerson�s convexity assumption.

Indeed, CISP must fail if there are su¢ ciently many i.i.d. signals. Conlon explains

this failure with the observation that �with many signals, the principal tends to

become very well informed about the agent�s action and, even in the one-signal case,

[Rogerson�s condition] must fail when the signal becomes very accurate�. While the

logic is compelling, it turns out that one of the new justi�cation of the FOA proposed

in this paper in fact applies to any situation with independent signals, as long as each

signal separately complies with Rogerson�s assumption. Interestingly, the implication

is that the FOA may not be valid with a single very accurate signal, but that it may

be valid with a multitude of inaccurate independent signals, even though the latter

in combination provide very precise information.

5To make the second step in the proof work, assumptions on the agent�s utility function and on
the likelihood ratio are also needed. There is an appealing pattern in those assumptions as well.

6Jewitt presents a second multi-signal justi�cation for settings with two independent signals.
This justi�cation is in fact based on the lower orthant order, and is thus further generalized here.
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It should be stressed that the new multivariate justi�cations should be seen as

complements to Conlon�s justi�cations. There are three natural ways in which FOSD

can be extended from one to many signals. CISP essentially boils down to one such

extension. As the preceding paragraph may suggest, the other two extensions impose

weaker conditions on the distribution function. On the other hand, di¤erent assump-

tions on the likelihood ratio and the utility function must be made in each of the

three multivariate extensions to Rogerson�s conditions.7 Similar observations apply

to Conlon�s generalization of Jewitt�s conditions, which is based on one of the three

possible multivariate extension of SOSD. This is discussed further in Section 5.

The second contribution of the paper is to examine environments in which the

FOA is not necessarily valid. In general, some actions may not even be implementable.

For implementable actions, L-IC may or may not be su¢ cient for G-IC. However, I

characterize a set of actions for which L-IC is guaranteed to be su¢ cient for G-IC.

I then identify a model where L-IC is su¢ cient for G-IC for any implementable

action. Here, the FOA can be applied on the �feasible set� of implementable ac-

tions, which is easily identi�ed. This method of analysis is valid whenever Grossman

and Hart�s (1983) spanning condition is satis�ed. Although this simple model was

proposed three decades ago, no complete analysis has been o¤ered until now.

As a special case, the modi�ed FOA is valid in textbook settings with two states

(but a continuum of actions). The method also easily solves Mirrlees�(1999) original

counterexample, the purpose of which was to demonstrate how and why the stan-

dard FOA may fail. Indeed, a conceptually much simpler counterexample can be

constructed using the insights of this part of the paper.

A natural extension of the spanning condition is brie�y considered. This gener-

alization encompasses a setting with three states, for example. Here, L-IC may not

be su¢ cient for G-IC. Nevertheless, it turns out to be possible to identify a small

set of su¢ cient �non-local� incentive compatibility constraints. In one special case,

any L-IC contract is G-IC if and only if the agent has no incentive to deviate to the

largest or the smallest action level. From an analytical point of view, one advantage

of the model is that it is rather simple. It may therefore �nd future use as a tractable

testbed for situations in which the FOA is not valid.

7John Conlon (private communication) has suggested that CISP and the new conditions pre-
sented in this paper be thought of as representing di¤erent regions of the frontier of conditions that
justify the FOA. This observation leads to the question of whether these conditions can be combined
to derive even more justi�cations for the FOA. This question is left for future research.
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2 Model and preliminaries

A risk averse agent takes a costly action that is not veri�able to others. The set

of possible actions is some closed and bounded interval, [a; a]. The agent�s action

determines the joint distribution of n � 1 veri�able signals, denoted x = (x1; :::; xn).
If the action is a, the cumulative distribution function is F (xja), where it is assumed
that the domain, X = �ni=1 [xi; xi], is convex, compact and independent of a. De�ne
x = (x1; :::; xn) and x = (x1; :::; xn).

8 It is assumed that F (xja) has no mass points
and is continuously di¤erentiable in x and a to the requisite degree, with f(xja)
denoting the density for �xed a. Assume that f(xja) is strictly positive. Let F (xja)
denote the survival function, i.e. the probability that the vector of signals is greater

than x. Generally, F (xja) 6= 1� F (xja) when there are two or more signals.
The agent faces a contract that, to him, is �xed. He receives wage w(x) if the

outcome is x, in which case utility is v(w(x)) � a.9 The agent�s expected utility

(assuming it exists) given action a is then

EU(a) =

Z
v(w(x))f(xja)dx� a: (1)

Evidently, costs are assumed to be linear in the action. For instance, think of the

agent�s action, a, as being his choice of what cost of e¤ort to incur. The linearity is

convenient since it implies that only the �rst term in (1) has curvature, which sim-

pli�es the search for necessary and su¢ cient conditions (which is pursued in Section

6). Incidentally, Rogerson (1985) chose this parameterization too, although he only

pursued su¢ cient conditions. Conlon (2009a, footnote 3) also observes that curvature

in the cost function can be important, and thus chooses the same parameterization.

The agent�s utility function v(w) is strictly increasing and di¤erentiable to the

requisite degree. Moreover, the agent is strictly risk averse, or v00(�) < 0. The domain
of the utility function is some interval which may or may not be the entire real line.

Finally, utility is unbounded below and/or above. The latter assumption is invoked

only in Sections 6 and 7.

8The assumption that X is a hyperrectangle is for simplicity. If it is not a hyperrectangle, then
let �ni=1 [xi; xi] be the smallest hyperrectangle for which X � �ni=1 [xi; xi]. In the one-signal case,
the support is simply denoted [x; x].

9Additive separability is important. While it is a standard assumption in the literature, there
are exceptions. Alvi (1997) and Fagart and Fluet (2012) provide conditions that justify the FOA
without additive separability.
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2.1 Incentive compatibility

If the principal wishes to induce action a� 2 [a; a], this action must provide the agent
with higher expected utility than any other action, or

EU(a�) � EU(a) for all a 2 [a; a] ; (G-ICa�)

in which case the contract w(x) is said to be globally incentive compatible. Put

di¤erently, given the agent signs the contract in the �rst place, G-ICa� ensures that

a� is an optimal action. The participation constraint is ignored, for now. If a� 2 (a; a),
a minimum requirement is that EU(a) attains a stationary point at a�, orZ

v(w(x))fa(xja)dx� 1 = 0: (L-ICa�)

Of course, the stationary point may in principle be a local minimum or a saddle-

point. Nevertheless, I will refer to the condition EU 0(a�) = 0 as the local incentive

compatibility condition.10 Thus, any contract that satis�es EU 0(a�) = 0 will be

termed L-ICa� and any contract that satis�es EU(a�) � EU(a) for all a 2 [a; a] is
G-ICa�. The implementation of a and a is discussed in Section 4.

3 From local to global incentive compatibility

In this section I develop an alternative approach to the moral hazard problem. The

intention is to provide a framework that not only conceptually uni�es most existing

results but which can also be used to guide the search for further generalizations.

3.1 An auxiliary problem

To develop the new approach, an auxiliary problem is introduced. Consider a� 2 (a; a)
�xed. Think of this as the action the principal seeks to implement.

10Note that I restrict attention to contracts that give the agent bounded utility. In principle,
if v is unbounded above, any action could be implemented by specifying a contract that provides
unbounded utility to the agent. Hence, contracts are assumed to yield bounded utility and to be
integrable. Note that any monotonic contract must be bounded since X is compact.
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Next, �x x and think of a as a variable. Let

fL(xja; a�) = f(xja�) + (a� a�)fa(xja�)

and

FL(xja; a�) = F (xja�) + (a� a�)Fa(xja�)

be the tangent lines to f(xja) and F (xja), respectively, at a = a�.
Now switch the roles of x and a. Holding a (and a�) �xed, consider the func-

tion FL(xja; a�). Note that FL(xja; a�) is not necessarily monotonic in x, nor is it
necessarily bounded between 0 and 1. Nevertheless, the following thought experi-

ment is proposed. Think of fL(xja; a�) and FL(xja; a�) as (admittedly odd) density
and distribution functions, respectively. It is easy to see that FL can be obtained

by integrating fL over x. Now consider an arti�cial problem where the agent faces

distribution function FL(xja; a�) rather than F (xja).
In defence of these unusual �distributions�, note, for now, that FL does in fact

have the key properties that FL(xja; a�) = 0 and FL(xja; a�) = 1. This claim follows

from the fact that Fa(xja) = Fa(xja) = 0. Now, recall that the standard proof of the
equivalence between the two de�nitions of univariate FOSD in Table 1 relies only on

G(x) = H(x) = 0, G(x) = H(x) = 1, and the relative magnitudes of G and H, but

not on monotonicity nor on the fact that proper distribution functions are bounded

between 0 and 1. See also the discussion following Proposition 1, below.

�Expected utility�in the auxiliary problem is simply

EUL(aja�) =
Z
v(w(x))fL(xja; a�)dx� a; (2)

or

EUL(aja�) = EU(a�) + (a� a�)
�Z

v(w(x))fa(xja�)dx� 1
�
: (3)

Evidently, the last term disappears if L-ICa� is satis�ed, in which case EUL(aja�) =
EU(a�) for all a. Stated di¤erently, L-ICa� on its own places a lot of structure on

the contract, which can now be utilized. In particular, it follows from (3) that once

L-ICa� is satis�ed, G-ICa� can equivalently be expressed as the requirement that

EUL(aja�) � EU(a) for all a 2 [a; a]
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or Z
v(w(x))fL(xja; a�)dx �

Z
v(w(x))f(xja)dx for all a 2 [a; a] . (4)

In essence, the continuum of incentive compatibility constraints in the original prob-

lem has been replaced with a continuum of comparisons of risky prospects. For

instance, if v(w(x)) is monotonic, it is fruitful to ask whether FL �rst order sto-

chastically dominates F . The point is that such comparisons are commonplace in

economics, and that a large literature may now be accessed to inform the analysis.

Proposition 1 records this conclusion.

Proposition 1 Fix a� 2 (a; a). Any L-ICa� contract is G-ICa� if and only if (4)
holds.11

Note that (4) is satis�ed if and only ifZ
v(w(x))

�
�+ "fL(xja; a�)

�
dx �

Z
v(w(x)) [�+ "f(xja)] dx for all a 2 [a; a] (5)

and all " > 0 and all �. It is trivial to select � and " > 0 in such a manner that both

bracketed terms are proper densities, i.e. they are strictly positive and integrate to

one.12 The equivalence of (4) and (5) implies that even though fL is not a proper

density, stochastic dominance results can still be invoked. Thus, I will frequently

abuse terminology and say that fL dominates f in some stochastic order.

3.2 An illustration

Consider the one-signal case. If F (xja) is convex in a, then its tangent line, FL(xja; a�),
lies everywhere below the function itself. Thus, FL(�ja; a�) �rst order stochastically
dominates F (�ja) for all a. Consequently, any L-ICa� contract that is monotonic must
necessarily be G-ICa�. Moreover, the argument holds regardless of a�. Thus, if it can

be established that the FOA candidate contract is monotonic then the FOA is itself

valid. Figure 1 visualizes the auxiliary problem and the approach suggested here.

[FIGURE 1 ABOUT HERE (SEE THE LAST PAGES)]

11Proposition 1 can be generalized to allow for a non-linear cost function, c(a). If c(a) is convex,
then L-ICa� and (4) are su¢ cient for G-ICa� , for all a� 2 (a; a). More generally, (4) is su¢ cient for
G-ICa� if a� is on the convex hull of c(a). If a� is not on the convex hull of c(a) then (4) is necessary.

12Since
R
fa(xja)dx = 0, both f(xja) and fL(xja; a�) integrate to one.
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For convenience, the following easy lemma notes necessary and su¢ cient condi-

tions for FL to ith order stochastically dominate F , i = 1; 2; 3; regardless of (a; a�).

Obviously, the characterization can be extended to higher stochastic orders.

Lemma 1 (Ordering the real and auxiliary distributions) Assume there is a
single signal. Then, FL(�ja; a�) �rst order stochastically dominates F (�ja) for all
a 2 [a; a] and all a� 2 [a; a] if and only if

Faa(xja) � 0 for all x 2 [x; x] and all a 2 [a; a] :

Secondly, FL(�ja; a�) second order stochastically dominates F (�ja) for all a 2 [a; a]
and all a� 2 [a; a] if and only ifZ x

x

Faa(yja)dy � 0 for all x 2 [x; x] and all a 2 [a; a] :

Finally, FL(�ja; a�) third order stochastically dominates F (�ja) for all a 2 [a; a] and
all a� 2 [a; a] if and only ifZ x

x

Z z

x

F (yja)dydz � 0 for all x 2 [x; x] and all a 2 [a; a] ,

and
Z x

x

Faa(yja)dy � 0 for all a 2 [a; a] :

Proof. The �rst part follows from the fact that a function is convex if and only if it

lies everywhere above its tangent line. For the second part,
R x
x
F (yja)dy is likewise

everywhere above its tangent line (as a function of a) if and only if it is convex, orR x
x
Faa(yja)dy � 0. Now, the tangent line to

R x
x
F (yja)dy at a = a� isZ x

x

F (yja�)dy + (a� a�)
Z x

x

Fa(yja�)dy =
Z x

x

FL(yja; a�)dy:

It follows that
R x
x
Faa(yja)dy � 0 for all x 2 [x; x] and all a 2 [a; a] is necessary and

su¢ cient for
R x
x
FL(yja; a�)dy �

R x
x
F (yja)dy for all x; a; and a�. Of course, for �xed

(a; a�), the latter condition coincides with the de�nition that FL(�ja; a�) second order
stochastically dominates F (�ja). The proof for i = 3 is analogous.
Many results of the type presented in Lemma 1 are utilized in the analysis. Since

the proofs are trivial and in any event analogous to the proof of Lemma 1, I will for
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the most part omit the formal proofs.

Of course, Rogerson�s (1985) assumption is exactly that Faa(xja) � 0. His proof
of the validity of the FOA is based on the observation that, in the one-signal case,

integration by parts yields

EU(a) = v(w(x))�
Z x

x

F (xja)dv(w(x))� a; (6)

and it follows that EU(a) is concave when the contract is monotonic (i.e., when

dv(w(x)) � 0). The condition
R x
x
Faa(yja)dy � 0 is Jewitt�s (1988) assumption

(2.10a).13 Conlon (2009a) points out that a second round of integration by parts

can be used to prove concavity in Jewitt�s model.

In fact, all the new justi�cations of the FOA that will be presented in Sections 4

and 5 can be shown to imply concavity. However, proving concavity in some cases

requires repeated (and remarkably tedious) application of integration by parts. The

method of proof I pursue is di¤erent and substantially less labor-intensive; the strat-

egy is simply to invoke various stochastic orders. Indeed, the new results were dis-

covered precisely by searching for usable stochastic orders, but it would be possible

to rewrite the proofs in a more conventional manner by proving concavity directly.

Incidentally, note that Lemma 1 signi�es that not only are Rogerson�s and Jewitt�s

conditions su¢ cient, they are in fact the weakest conditions that can be imposed to

ensure that L-IC implies G-IC for all a when the only characteristics of the contracts

that are exploited are monotonicity or monotonicity and concavity. Thus, their results

cannot be strengthened without imposing more structure on the contract (Section 6

contains a formal proof). In other words, the one-way implications (+) in the �rst
row of Table 1 can be converted into two-way implications (m), thereby cementing
the analogy between the two rows.

Sections 6 and 7 examine environments where L-ICa� does not imply G-ICa� for

all a�, or where the agent�s expected utility is not necessarily concave in a. In such

cases, the FOA may be invalid.

13Jewitt also imposes another assumption, (2.10b), but this assumption is redundant; see Conlon
(2009a, 2009b). Assumptions (2.11) and (2.12) are used in the other step of his proof (see below).
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4 Justifying the �rst-order approach: One signal

Thus far, focus has been on interior a�, where L-IC is necessary for utility maximiza-

tion. However, boundary actions must be considered too, and so this section starts

by clearing that technicality.

Thus, consider the corners, a and a. With Rogerson�s convexity assumption,

EU 0(a) = 0 (or L-ICa) is su¢ cient for G-ICa among monotonic contracts. Indeed,

if EU 0(a) � 0, it follows from (3) that EUL(aja) = EU(a) � EUL(aja) for all
a 2 [a; a]. Then, G-ICa follows if EUL(aja) � EU(a). However, as long as the FOA
contract is monotonic, (4) proves this is the case. Hence, at a, any monotonic contract

that satis�es EU 0(a) � 0 is G-ICa. Similarly, any monotonic contract that satis�es

EU 0(a) � 0 is G-ICa (a constant-wage contract is a special case).
Hence, given Rogerson�s assumption, it is meaningful to replace the global incen-

tive compatibility constraint with the condition that

EU 0(a�)

8><>:
� 0 if a� = a

= 0 if a� 2 (a; a)
� 0 if a� = a

: (7)

A more general conclusion can be obtained. Speci�cally, if enough structure is im-

posed on F to ensure that L-ICa� implies G-ICa� for any interior a� �among whatever

subset of contracts is being considered (e.g. monotonic or monotonic and concave con-

tracts) �then that structure also implies that actions at the corners are easily handled

too. One version of the FOA is then to replace G-ICa� with L-ICa�, solve the prin-

cipal�s problem, and then compare the solution to the optimal implementation of a

and a using EU 0(a) � 0 and EU 0(a) � 0, respectively. For expositional simplicity, I
will assume the second best action is in the interior, but this assumption is evidently

innocent and easily checked. Rogerson (1985) makes a similar assumption.

Returning to the main task at hand, justifying the FOA, recall the proof strategy.

In the �rst step, su¢ cient conditions are given for L-ICa to imply G-ICa among a

subset of contracts, for any a. In the second step, su¢ cient conditions are derived to

ensure the FOA solution belongs to the relevant subset of contracts. Lemma 1 reveals

the conditions required to invoke FOSD, SOSD, and TOSD, respectively. It remains

to match these conditions with another set of assumptions that guarantees that the

contract takes a form such that these stochastic orders are useful.

11



To this end, recall the following equivalent de�nitions of these stochastic orders.

Assuming di¤erentiability, the distribution G ith order stochastically dominates dis-

tribution H if the former is preferred to the latter for all utility functions u(x) with

the property that the �rst i derivatives of �u(�x) are positive. I will refer to such
functions as i-antitone. This terminology is inspired by a multivariate concept; see

Section 5. Note that the derivatives of u(x) alternates in sign, i.e. (�1)s�1u(s) � 0

for all s = 1; 2; :::; i, where u(s) denotes the sth derivative. Using di¤erence operators,

it is also possibly to extend the de�nition to utility functions that are not necessarily

di¤erentiable; see e.g. Müller and Stoyan (2002, Section 1.6). These stochastic orders

are sometimes referred to as the i-increasing concave (i-icv) orders. That is, 1-icv, 2-

icv, and 3-icv are just di¤erent names for FOSD, SOSD, and TOSD, respectively. For

future reference, a related set of orders, the i-increasing convex orders (i-icx), apply

to situations in which the �rst i derivatives of u(x) are all positive. Such functions

will be said to be i-monotone. The next step is to make sure that the endogenous

function v(w(x)) is either i-antitone or i-monotone.

As in Jewitt (1988), assume the principal is risk neutral. Let B(a) denote the

expected gross bene�t to the principal if the agent�s action is a. In many applications,

B(a) is simply the expected value of x. Apart from incentive compatibility, the only

other constraint is a participation constraint. Let u denote the agent�s reservation

utility. It will be assumed the constraint-set is non-empty, i.e. that there exists a

contract that satis�es both the participation constraint and L-IC for some a.

The FOA relies on L-IC being su¢ cient for G-IC. If this is the case, the principal�s

problem can be written as follows:

max
w;a

B(a)�
Z x

x

w(x)f(xja)dx

st:

Z x

x

v(w(x))f(xja)dx� a � uZ x

x

v(w(x))fa(xja)dx� 1 = 0:

Assume the likelihood-ratio

l(xja) = fa(xja)
f(xja)

12



is bounded below. As in Rogerson and Jewitt, assume that the monotone likelihood

ratio property (MLRP) is satis�ed, or lx(xja) � 0. This assumption implies Fa(xja) �
0, i.e. higher actions make low signals less likely. Finally, assume, in this section and

the next, that it is optimal to o¤er a wage w(x) in state x that is in the interior of

the domain of v(�). For a �xed utility function, this assumption is typically satis�ed
if the agent�s reservation utility is high enough.14 In this case, w(x) is characterized

by a �rst order condition which can be written

1

v0(w(x))
= �+ �l(xja�); (8)

where � > 0 is the multiplier of the participation constraint and � � 0 the multiplier
of the local incentive compatibility constraint.15 If a� = a, a �at wage is optimal

(� = 0). However, if a� > a then � > 0, in which case the MLRP implies a monotonic

wage schedule. Since v(w(x)) is nondecreasing, FOSD can be invoked.

Jewitt (1988) imposes more substantial joint conditions on the utility function

and likelihood ratio. To aid the analysis, Jewitt de�nes the function

!(z) = v(v0�1(1=z)); z > 0:16

Note that !0(z) > 0 if and only if v00(w) < 0, which has already been assumed. Jewitt

adds the assumption that !00(z) � 0 and lxx(xja) � 0. From (8),

v(w(x)) = ! (�+ �l(xja�)) :

Hence, Jewitt�s assumptions imply that whenever (8) is satis�ed, v(w(x)) is increasing

and concave, or 2-antitone. SOSD can now be invoked. As the next lemma shows,

it turns out that the pattern can be continued. Conditions are imposed on the inner

function l(xja) and the outer function !(z) to guarantee that the composite function
v(w(x)) = ! (�+ �l(xja�)) has desirable properties

14See e.g. Jewitt et al (2008), and in particular Gutiérrez (2012) for a detailed discussion. As
can be seen from (8), below, this also explains why l(xja) must be bounded.

15One of the contributions in Rogerson (1985) and Jewitt (1988) is to establish that � � 0. In
fact, Jewitt�s (1988) paper appears to be cited more often for this result (and its very elegant proof)
than for his conditions justifying the FOA. As in Conlon (2009a), I omit the proof here. Rogerson
(1985) allows the principal to be risk averse. It is considerable harder to allow a risk averse principal
in Jewitt�s framework; see Conlon (2009a).

16To clarify, v0�1(�) refers to the inverse of v0(�).
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Lemma 2 (i) ! (�+ �l(xja)) is i-monotone in x if ! is i-monotone and l(xja) is
i-monotone in x. (ii) ! (�+ �l(xja)) is i-antitone in x if ! is i-antitone and l(xja)
is i-antitone in x.

Proof. Repeated di¤erentiation yields the result.
Thus, if lxxx(xja) � 0 and !000(z) � 0 are added to Jewitt�s assumptions, then

v(w(x)) is 3-antitone and TOSD can be invoked.

Table 2 summarizes the main conclusions thus far. The �rst row identi�es su¢ cient

conditions for L-ICa (or rather (7)) to imply G-ICa among contracts that are 1-

antitone, 2-antitone, and 3-antitone, respectively, for all a. The second row identi�es

su¢ cient conditions for the FOA candidate solution in (8) to be such a contract. The

validity of the FOA follows by imposing both sets of assumptions.

[TABLE 2 ABOUT HERE (SEE THE LAST PAGES)]

Proposition 2 Assume the second best action is in (a; a). Assume the joint condi-
tions in one of the columns of Table 2 are satis�ed. Then, the FOA is valid.

Obviously, Table 2 and Proposition 2 can be extended to stochastic dominance of

higher order (4-icv, 5-icv, etc.). In fact, there is a well-de�ned limit to the sequence

of higher order stochastic dominance, namely the Laplace transform order. See e.g.

Müller and Stoyan (2002).

Evidently, the assumptions in the �rst row of Table 2 become weaker as one moves

rightward from one column to the next. As for the second row, consider the following

possible utility functions:

v1(w) = 1� e��w, v2(w) = lnw, v3(w) =
1

�
w�,

where � > 0 and � < 1, with � 6= 0. The domain of the �rst function is (�1;1)
while the domain of the latter two is (0;1) (or convex subsets thereof). Of course,
the �rst utility function exhibits constant absolute risk aversion, while the other two

exhibits constant relative risk aversion. For these functions, !(z) can be shown to be

!1(z) = 1�
1

�z
, !2(z) = ln z, and !3(z) =

1

�
(z)

�
1��

respectively. Thus, the �rst two functions are i-antitone for any i � 1. The third

function satis�es !03(z) > 0, !003(z) � 0 if and only if � � 0:5, i.e. if the agent
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is su¢ ciently risk averse. However, when � � 0:5, !3 is i-antitone for any i � 1.

Thus, in these examples, the assumptions on !(z) in the third column of Table 1 are

not any stronger than those in the second column. Hence, the main strengthening

from Jewitt�s conditions to the new conditions in the third column is in the added

requirement that lxxx(xja) � 0. Incidentally, all Jewitt�s (1988, page 1183) examples
have the feature that l(xja) is i-antitone for any i � 1.
However, extensions in other directions beckon. Except for Rogerson�s conditions,

the conditions mentioned above assume that the composite function ! (�+ �l(xja))
is increasing and concave. Now consider the possibility that it is convex. Note that

the outer function ! may be convex even if v is concave. The i-icx orders, de�ned

above, are relevant for such cases. Note that the utility function v3(w) mentioned

above leads to an i-monotone !(z) function if and only if � 2 [ i�1
i
; 1).

For distribution functionsG andH, an equivalent de�nition of 1-icx is thatG(x) �
H(x) for all x 2 [x; x]. An equivalent de�nition for 2-icx is thatZ x

x

G(z)dz �
Z x

x

H(z)dz for all x 2 [x; x] ;

and so on for higher increasing-convex orders. The orders 1-icx, 2-icx, and 3-icx are

the counterparts to FOSD, SOSD, and TOSD, respectively, for risk loving agents.17

Note that 1-icx in fact coincides with FOSD (or 1-icv), meaning that Rogerson�s con-

ditions can also be seen as the starting point to the sequence of conditions developed

next. The following proposition, and its proof, is analogous to Proposition 2. It can

of course also be extended to higher icx orders.18

Proposition 3 Assume the second best action is in (a; a). Assume the joint condi-
tions in one of the columns of Table 3 are satis�ed. Then, the FOA is valid.

[TABLE 3 ABOUT HERE (SEE THE LAST PAGES)]

17Note that the random variable X dominates the random variable Y in the s-icx order if and
only if �Y dominates �X in the s-icv order.

18Jewitt o¤ers a supremely convincing argument for his concavity assumption on
R x
x
F (zja)dz in

the special case where the signal x is production. Proposition 3 thus covers other cases.
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5 Multi-signal justi�cations of the FOA

Jewitt�s (1988) Theorem 2 and Theorem 3 were the �rst attempts at providing multi-

signal justi�cations for the FOA. These results assume there are exactly two signals,

and that they are independent. Moreover, ! is assumed to be concave. Sinclair-

Desgagné (1994) generalized Rogerson�s conditions to the case where there are multi-

ple (not necessarily independent) signals. Finally, Conlon (2009a) further generalized

Rogerson�s conditions and o¤ered an extension to Jewitt�s Theorem 3, which he refers

to as �Jewitt�s (1988) main set of multisignal conditions�.19

Here, I will verify that Conlon�s results can be understood as appealing to multi-

signal versions of FOSD and SOSD, respectively. Indeed, once the isomorphism in

Section 3 has been established, it invites the search for other useful multivariate

stochastic orders. Thus, Jewitt�s Theorem 2 can be resurrected and extended once

the proper stochastic order, which turns out to be the lower orthant order, has been

identi�ed. Another related order, the upper orthant order, leads to complementary

results. By appealing to higher orthant orders, it turns out to be possible to o¤er

generalizations that are close in spirit to Jewitt�s Theorem 3 as well.

5.1 Multivariate FOSD and related stochastic orders

Müller and Stoyan (2002) make the following very useful observation about extending

the common stochastic orders from a univariate setting to a multivariate environment.

Speci�cally, comparing two distribution functions, G andH, there are three equivalent

de�nitions of FOSD in the univariate setting, namely: (i) G is preferred to H for all

non-decreasing utility function, (ii) G(x) � H(x) for all x, and (iii) G(x) � H(x)

for all x. The point is that none of these de�nitions are equivalent when there are

multiple signals. Consequently, there are three plausible ways of extending FOSD,

which leads to the following de�nitions:

1. G �rst order stochastically dominates H if G is preferred to H for all non-

decreasing utility functions.

2. G dominates H in the lower orthant order if G(x) � H(x) for all x.

19The results in Jewitt (1988), Sinclair-Desgagné (1994), and Conlon (2009) all rely on proving
that the agent�s expected payo¤ is concave in his action. Ke (2012a) takes an alternative approach
to justifying the FOA. See Section 6.
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3. G dominates H in the upper orthant order if G(x) � H(x) for all x.

Using Conlon�s (2009a) notation and terminology, let E be an increasing set. A

set is increasing if x 2 E and y � x implies y 2 E. It is well-known that an equivalent
de�nition of FOSD is that G has more probability mass in all increasing sets than H

does; see Müller and Stoyan (2002, Theorem 3.3.4). Thus, FOSD is stronger than the

orthant orders. However, all three orders can be used to derive separate multi-signal

justi�cations of the FOA.

Returning to the principal-agent model at hand, let

P (x 2 Eja) =
Z
x2E

f(yja)dy

denote the probability that the vector of signals is in the increasing set E, given action

a. Let

PL(x 2 Eja; a�) = P (x 2 Eja�) + (a� a�)Pa(x 2 Eja�)

denote the counterpart in the auxiliary problem. Now, Conlon (2009a) proposes a con-

cave increasing-set probability (CISP) condition, speci�cally that Paa(x 2 Eja) � 0

for all increasing sets and all a 2 [a; a]. Evidently, the CISP condition implies that
PL(x 2 Eja; a�) � P (x 2 Eja) for all all a 2 [a; a]. In other words, FL(xja; a�) �rst
order stochastically dominates F (xja). Hence, expected payo¤ in the auxiliary prob-
lem is greater than in the original problem as long as the FOA contract is monotonic,

as continues to be the case as long as the (multivariate) MLRP holds. This explains

Conlon�s (2009a, Proposition 4) extension of Rogerson�s conditions.

Conlon (2009a) devotes considerable e¤ort to examining CISP and deriving su¢ -

cient conditions for its applicability. However, CISP can be weakened, even without

moving to conditions that can be used to invoke SOSD. In particular, recall that the

orthant orders are weaker than FOSD. They also have the desirable property that

equivalent statements of these orders can be given in term of the class of utility func-

tions for which one distribution is preferred to another. Speci�cally, it can be shown

that G dominates H in the upper orthant order if and only if G is preferred to H for

all �-monotone utility functions (Müller and Stoyan (2002, Theorem 3.3.15)). If the

utility function u(x) is n times di¤erentiable, then it is �-monotone if and only if

@k1+:::+knu(x)

@xk11 :::@x
kn
n

� 0

17



for all ki 2 f0; 1g, i = 1; :::; n, with k1 + ::: + kn � 1. In words, all the mixed

partial derivatives must be non-negative. See Müller and Stoyan (2002) for a formal

de�nition, in term of di¤erence operators, that allows u(x) to be non-di¤erentiable.

Similarly, G dominates H in the lower orthant order if and only if G is preferred to

H for all utility functions with the property that u(�x) is �-antitone, i.e. �u(�x)
is �-monotone, or

@k1+:::+kn [�u(�x)]
@xk11 :::@x

kn
n

� 0

for all ki 2 f0; 1g, i = 1; :::; n, with k1+:::+kn � 1. Thus, the cross-partial derivatives
alternate in sign as more cross-partials are added. Note that the relationship between

the lower orthant order and the upper orthant order is similar to the relationship

between the i-icv order and the i-icx order in the univariate case.

As in the one-signal case, the FOA implies that v(w(x)) = !(�+�l(xja)). Jewitt
(1988) and Conlon (2009a) observe that the multipliers remain positive in the multi-

signal model. The next Lemma summarizes some pertinent observations about the

composite function. The proof is straightforward and is thus omitted.

Lemma 3 (i) !(�+ �l(xja)) is �-monotone in x if l(xja) is �-monotone in x and
! is n-monotone. (ii) !(�+ �l(xja)) is �-antitone in x if l(xja) is �-antitone in x
and ! is n-antitone.

Lemma 3 provides conditions under which the FOA contract belongs to one of the

classes of functions that are useful when one of the orthant orders apply. However, it

remains to impose conditions on the distribution function such that the orthant orders

can indeed be invoked. To this end, note that if Faa(xja) � 0 then FL(xja; a�) dom-
inates F (xja) in the lower orthant order. Likewise, if F aa(xja) � 0 then FL(xja; a�)
dominates F (xja) in the upper orthant order. These conditions coincide in the one-
signal case, where they collapse to Rogerson�s condition. Finally, Conlon�s (2009a)

CISP condition implies both F aa(xja) � 0 and Faa(xja) � 0. New justi�cations of

the FOA are now possible.

Proposition 4 Assume the second best action is in (a; a). Then, the FOA is valid
if either:

1. F aa(xja) � 0 for all x and all a, l(xja) is �-monotone in x for all a, and ! is
n-monotone, or
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2. Faa(xja) � 0 for all x and all a, l(xja) is �-antitone in x for all a, and ! is
n-antitone.

Proof. For the �rst part, F aa(xja) � 0 implies that FL(xja; a�) dominates F (xja) in
the upper orthant order. Hence, expected payo¤ in the auxiliary problem is higher

than in the original problem as long as utility is �-monotone. The remaining condi-

tions ensure this is the case, since they allow Lemma 3 to be invoked. The proof of

the second part of the proposition is analogous.

Note the rather pleasing similarities between the conditions on ! and l(xja), and
their pattern, in the univariate case (Propositions 2 and 3) and the multivariate case

(Proposition 4). Speci�cally, the conditions that must be added as another signal

becomes available are similar to the conditions that must be added in the univariate

case when the stochastic order is weakened by one degree (see also Corollary 1, below).

Conlon (2009a) makes the point that if the n signals are independent and each

satis�es Rogerson�s conditions, then the joint distribution function may nevertheless

fail the CISP condition. In this sense, the CISP condition is a strong assumption. In

contrast, the lower orthant order is more amenable to such extensions.

Corollary 1 Assume there are n � 2 independent signals, with distribution functions
F i(xija) and likelihood ratio li(xija), i = 1; 2; :::; n. Assume the second best action is
in (a; a). Then, the FOA is valid if

1. Each signal satis�es Rogerson�s condition; F iaa(xija) � 0 and lix(xija) � 0 for

all i = 1; 2; :::; n, and

2. ! is n-antitone.

Proof. The MLRP implies that F i is decreasing in a. Since F i is also convex, it
follows that the product F (xja) = �F i(xija) is also convex in a. When signals are
independent, l(xja) = �li(xija). Hence, l(xja) is �-antitone. The second part of
Proposition 4 can now be invoked.

Jewitt (1988, Theorem 2) reports a special case of this corollary, with n = 2. In

this case, the second condition requires ! to be increasing and concave, which is of

course precisely Jewitt�s one-signal condition. At �rst sight, Jewitt�s result may seem

peculiar because it combines Rogerson�s and Jewitt�s one-signal conditions. Indeed,

Conlon (2009a) does not devote much attention to this result. However, he does
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supply the following generalization (with a proof in Conlon (2009b)), while attributing

it to Jewitt.

Assume there are two signals, and that the likelihood ratio is increasing and

submodular in the two signals. Then, Conlon (2009b) proves the FOA is valid if

Faa(xja) � 0 (which he calls the lower quadrant convexity condition (LQCC)). Sub-
modularity means that the cross-partial derivative is non-positive. Thus, with n = 2,

l(xja) is �-antitone. In other words, this result is a special case of Proposition 4.
However, Conlon (2009a) concludes that �it is not clear how to extend this beyond the

two-signal case.�The resolution to the conundrum comes from the observation that

the submodular order and the lower orthant order coincide in the bivariate case. As

Proposition 4 demonstrates, the latter is well suited for extensions to many signals.

Before proceeding to Jewitt�s and Conlon�s other results, it is worthwhile to com-

ment on one aspect of the previous results. All the stochastic orders invoked in this

paper are so-called integral stochastic orders, meaning that they can be expressed as

follows: G dominates H if G is preferred to H for all utility functions in some class U .
For an introduction to integral stochastic orders, see Müller and Stoyan (2002). The

set U is referred to as a generator of the stochastic order. For example, one generator
for FOSD is the set of all increasing functions. Importantly, the integral stochastic

orders invoked until now have well-de�ned �small� generators. In the case of uni-

variate FOSD, this is the set of nondecreasing step-functions, which can be thought

of as being at the �corner�of the set of increasing functions because any increasing

function can be approximated by a combination of step-functions. The existence of

a small generator is crucial in being able to obtain equivalent characterizations of an

integral stochastic order. For instance, step-functions are used to prove the equiva-

lence between the two de�nitions of univariate FOSD in Table 1. Unfortunately, not

all integral stochastic orders have small generators. In particular, this problem arises

when multi-variate SOSD is considered.

5.2 Multivariate SOSD and related stochastic orders

Among the ingredients in Jewitt�s (1988, Theorem 3) second set of conditions and

Conlon�s (2009a, Proposition 2) extension thereof, are the assumptions that l(xja) is
increasing and concave in x and that ! is increasing and concave. These assumptions

imply that v(w(x)) is increasing and concave in x. Naturally, this points in the
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direction of SOSD.

However, to close the proof, Jewitt and Conlon add conditions that on the surface

appear di¤erent in nature from those in all previous results. In particular, they utilize

the state-space formulation of the principal-agent model and assume that for each

realization of the state, #, each signal xi(a; #), is concave in a. The joint assumptions

then ensure that the agent�s problem is concave in a.

Conlon (2009a, p. 258) observes that �it is not immediately obvious how to

express the condition, that x (a; #) is concave in a, using the Mirrlees notation [where

everything is expressed in terms of F (xja)].� It is in fact impossible to do so. As
Müller and Stoyan (2002, p. 98) succinctly put it, �there is no hope of �nding a

�small�generator�for SOSD, and thus it is not possible to express SOSD with a set

of conditions directly on F (xja).20 Conlon (2009b) explains the di¢ culties in the

context of the principal-agent model.

There are, however, other stochastic orders that not only have a familiar �avor

but that are also better suited for the Mirrlees formulation. Consider the following

orders, de�ned in Shaked and Shantikumar (2007):

1. G dominates H in the lower orthant-concave order ifZ x1

x1

���
Z xn

xn

G(y1; :::; yn)dyn ���dy1 �
Z x1

x1

���
Z xn

xn

H(y1; :::; yn)dyn ���dy1 for all x.

2. G dominates H in the upper orthant-convex order ifZ x1

x1

���
Z xn

xn

G(y1; :::; yn)dyn ���dy1 �
Z x1

x1

���
Z xn

xn

H(y1; :::; yn)dyn ���dy1 for all x.

Denuit and Mes�oui (2010) examine these and related stochastic orders. It can be

shown that if G dominates H in the upper orthant-convex order then G is preferred

to H for any utility function for which

@k1+:::+knu(x)

@xk11 :::@x
kn
n

� 0

20Another way to �nish Jewitt�s and Conlon�s proofs would be to replace their assumption on
x (a; #) with the (somewhat facetious) assumption that (4) holds true for all increasing and concave
functions v(w(�)) and all pairs (a; a�), but that is hardly satisfying either.
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for all ki 2 f0; 1; 2g, i = 1; :::; n, with k1+ :::+kn � 1. Similarly, if G dominates H in

the lower orthant-concave order then G is preferred to H for any utility function for

which �u(�x) has the above property. In the univariate case, these orders obviously
reduce to 2-icx and SOSD, respectively. The following proposition then follows from

the usual logic.

Proposition 5 Assume the second best action is in (a; a). Then, the FOA is valid
if either:

1.
R
y�x F aa(yja)dy � 0 for all x and all a, ! is 2n-monotone, and

@k1+:::+knl(xja)
@xk11 :::@x

kn
n

� 0

for all a and for all ki 2 f0; 1; 2g, i = 1; :::; n, with k1 + :::+ kn � 1, or

2.
R
y�x Faa(yja)dy � 0 for all x and all a, ! is 2n-antitone, and

@k1+:::+kn (�l(�xja))
@xk11 :::@x

kn
n

� 0

for all a and for all ki 2 f0; 1; 2g, i = 1; :::; n, with k1 + :::+ kn � 1.

Jewitt�s one-signal conditions imply the univariate function v(w(x)) has a negative

second derivative. There are several ways in which this property can be extended

into higher dimensions; requiring multivariate concavity is but one of them. Conlon�s

aim was precisely to include concavity in the su¢ cient conditions, but the Mirrlees

formulation of the model was not up to the task. Thus, if the goal is su¢ cient

conditions in Mirrlees notation then the most fruitful concept of �curvature�in the

multi-signal model is not concavity. �Small� generators aside, to understand this

result note that among the stochastic orders invoked in this paper, all but multivariate

SOSD can be de�ned in terms only of the sign of certain derivatives. For multivariate

SOSD, however, conditions must also be imposed upon the relative magnitude of

various second derivatives; multivariate concavity is a messier concept. This is a

signi�cant di¤erence, which on its own explains the di¤erence in tractability.

Proposition 5 thus illustrates the price of escaping Conlon�s conundrum. To

recover su¢ cient conditions in the Mirrless notation, Conlon�s implicit assumption
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about the relative magnitude of second derivatives must be replaced by conditions on

the sign of higher-order derivatives.

A counterpart to Corollary 1 is also possible for the lower orthant-concave order.

The proof is analogous to the proof of Corollary 1 and is thus omitted.

Corollary 2 Assume there are n � 2 independent signals, with distribution functions
F i(xija) and likelihood ratio li(xija), i = 1; 2; :::; n. Assume the second best action is
in (a; a). Then, the FOA is valid if

1. Each signal satis�es Jewitt�s one-signal condition;
R x
x
F (yja)dy � 0; lix(xija) �

0, and lixx(xija) � 0 for all i = 1; 2; :::; n, and

2. ! is 2n-antitone.

Together, Corollary 1 and Corollary 2 o¤er an argument in favor of multi-signal

conditions based on the orthant orders, like Propositions 4 and 5 in the current

paper, over conditions based on the more demanding multivariate notions of FOSD

and SOSD, like Jewitt�s Theorem 3 or Conlon�s (2009a) propositions. In practice, the

orthant orders may also be easier to check. The second part of the corollaries captures

the other side of the trade-o¤, namely that more conditions must be imposed on the

underlying utility functions. However, the discussion following Proposition 2 reveals

that this may be a small price to pay for a multi-signal extension.

On the other hand, Conlon (2009a) advocates for the state-space formulation,

in large part because of the stringency of Rogerson�s conditions in the Mirrlees for-

mulation. As explained above, any justi�cation that seeks to build on concavity of

the agent�s utility in the vector of signals (i.e., multivariate SOSD) must necessarily

be phrased in the state-space model. The results in this section suggest that both

formulations are indispensable and clari�es the way in which they are complementary.

Though it is not pursued here, there seems to be no conceptual obstacle to ex-

tending the result to higher multivariate stochastic orders, e.g. to various versions of

multivariate TOSD.

6 Su¢ cient local conditions

As Mirrlees (1999) pointed out early on, the FOA is not always valid. The remainder

of the paper studies such environments. For brevity, I focus on the one-signal case.
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In general, the FOA may identify a contract and a target action for which L-IC is

not su¢ cient for G-IC. However, in the current section I identify a subset of actions

for which L-IC is in fact su¢ cient for G-IC, even when e.g. Rogerson�s or Jewitt�s

global conditions on the primitives are violated. In the next section, I present a more

speci�c model in which the FOA can be modi�ed to identify the optimal contract.

As in the beginning of Section 3, �x x vary a. Let FC(xja) denote the convex hull
of F (xja), when a is thought of as the variable.21 Note that Rogerson�s assumption
that F (xja) is convex in a for all x is in fact equivalent to assuming that F (xja) =
FC(xja) for all x and all a, i.e. F always coincides with its convex hull.
Next, �x some a� 2 (a; a) that the principal would like to induce. Assume that

F (xja) coincides with its convex hull (again as a function of a) at a� for all x, or
F (xja�) = FC(xja�) for all x. This local condition is evidently weaker than Rogerson�s
global condition. In this case, FL(�ja; a�) �rst order stochastically dominates F (�ja) for
all a; this is a �local�version of Lemma 1, with a� held �xed.22 Figure 2 illustrates.

It now follows that any monotonic and L-ICa� contract is G-ICa�. Thus, a local

counterpart to Rogerson�s condition has been identi�ed; when attempting to induce

a� with a L-ICa� contract, what matters is whether F (xja) coincides with its convex
hull at a�. Consequently, if the MLRP is satis�ed and F (xja�) = FC(xja�) for all x,
then the optimal contract that implements a� is described by (8).

[FIGURE 2 ABOUT HERE (SEE THE LAST PAGES)]

For completeness, the following lemma states a stronger version of the above

observation. Under the additional mild assumption that Fa(xja) < 0 for all x 2 (x; x),
all monotonic and L-ICa� contracts are G-ICa� if and only if F (xja) coincides with
its convex hull at a� for all x. The lemma is illustrated in Figure 2. The signi�cance

of this result is that Rogerson�s global convexity assumption is in fact the weakest

assumption which ensures that monotonicity and L-IC is su¢ cient for G-IC for all a.

Lemma 4 Assume there is a single signal and that Fa(xja) < 0 for all x 2 (x; x)
and all a. Fix a� 2 (a; a). Then, all monotonic and L-ICa� contracts are G-ICa� if
and only if F (xja) coincides with its convex hull at a� for all x.

21Recall that the convex hull of a function g(a) is the highest convex function that is always
below g(a); see Rockafellar (1970).

22Holding x �xed, FL(xja; a�) is the tangent line to F (xja) through a�. Since by assumption
F (xja�) = FC(xja�) and a� 2 (a; a), FL(xja; a�) is also the tangent line to FC(xja) through a�. Since
FC(xja) is convex, it follows that FL(xja; a�) � FC(xja). Finally, by de�nition, FC(xja) � F (xja).
It follows that FL(xja; a�) � F (xja) for all x and all a, as claimed.
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Proof. The �if�part was proven in the text. For the other direction, assume there
is some x such that F (xja) does not coincide with its convex hull at a�. Note that
such an x must necessarily be in (x; x). It su¢ ces to �nd some monotonic and L-

ICa� contract that is not G-ICa�. Consider a step contract that delivers utility v0 if

the outcome is worse than x, and utility v1 otherwise. The agent�s expected utility

is EU(a) = v1 + (v0 � v1)F (xja) � a with EU 0(a�) = (v0 � v1)Fa(xja�) � 1. Since
Fa(xja�) < 0 and utility is assumed to be continuous and unbounded above and/or
below, there exists a pair (v0; v1) that satis�es L-ICa� and monotonicity (v1 > v0).

However, because F (xja) does not coincide with its convex hull at a� there is an
alternative action that yields higher payo¤ for the agent.

It is of course possible to obtain similar local versions of the other results in this

paper that can be characterized using the Mirrlees formulation. For example, a local

version of Jewitt�s condition requires that the antiderivative of F (xja) coincides with
its convex hull at a�.

In an ambitious recent paper, Ke (2012a) notes that even when L-IC is not suf-

�cient for G-IC for all actions, the FOA may nevertheless still identify the optimal

contract. For instance, this occurs if the solution a� happens to have the property that

F (xja) coincides with its convex hull at a�. It may also occur if L-ICa� is generally not
su¢ cient for G-ICa�, but just happens to be su¢ cient with the speci�c contract iden-

ti�ed by the FOA. Thus, Ke (2012a) proposes a clever �xed-point method designed to

identify conditions under which the FOA produces the correct solution. Think of the

principal as �targeting�some action, a�, by constructing the appropriate FOA con-

tract as described in (8). The agent responds to this by taking a utility-maximizing

action, a0, which may be di¤erent from the targeted action. However, if a0 and a�

coincide then a� is implementable with a FOA contract. The �rst question is then

whether there exists a target action a� �a �xed-point �where a0 coincides with a�.

The second question is whether the optimal action according to the FOA is among

these �xed-points. Note that it is immaterial whether actions the principal would not

want to induce can or cannot be implemented with a FOA contract.

To illustrate Ke�s (2012a) results, consider the case where there are n independent

signals, as in Corollaries 1 and 2 of the current paper. It is a corollary of Ke�s

Proposition 2 that the FOA is valid if !00(�) � 0, MLRP holds, and

@li(xija)
@a

� 0 and @l
i
x(xija)
@a

� 0:
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Compared to Corollaries 1 and 2, Ke can thus dispense with Rogerson�s and Jewitt�s

assumptions on the distribution function. In exchange, he has to impose conditions

on how the likelihood ratio depends on a. Of course, he also requires !(�) to be only
2-antitone, but as argued earlier there does not seem to be too much loss in assuming

in addition that !(�) is n-antitone or 2n-antitone, as in Corollaries 1 and 2.
Ke�s (2012a) approach does not necessarily imply that the agent�s utility is con-

cave in his action. However, it does rely on the speci�c form taken by a FOA contract,

described in (8). This, in turn, assumes that the only constraints are the participa-

tion constraint and the incentive compatibility constraints. In contrast, Rogerson�s

convexity condition validates the FOA whenever the contract is monotonic. As long

as this is satis�ed, any L-IC contract is G-IC, even if more types of constraints are in

play, such as a binding minimum wage, a non-bankruptcy condition, monotonicity of

the principal�s rewards, and so on. Likewise, Lemma 4, above, requires monotonicity.

As highlighted by Innes (1990), this can in many cases be justi�ed for exogenous rea-

sons. For instance, if the agent could sabotage the outcome before it is observed by the

principal, then any contract in e¤ect becomes monotonic. Given this monotonicity,

however, Lemma 4 identi�es a �robust�set of actions where the incentive compati-

bility problem is fundamentally the same (and described by L-IC only) regardless of

what kind of additional constraints are added to the problem. Moreover, the condi-

tions in Lemma 4 does not rule out that the agent�s payo¤ is non-concave.23 Note also

that the isomorphism in Section 3 in no way requires the contract to take a speci�c

form such as e.g. (8).

7 A modi�ed FOA

In this section, I consider a more specialized environment in which F (xja) is described
by

F (xja) =
kX
i=1

pi(a)Gi(x) +

 
1�

kX
i=1

pi(a)

!
H(x); (9)

23Building on the example in Figure 2, imagine that for all x 2 (x; x), a0 is the smallest interior
action for which F (xja) = FC(xja). Then, any monotonic and L-ICa0 contract must make the agent
indi¤erent between a and a0, while any other action is strictly worse. A related result is presented
in Section 7.2.
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or

F (xja) =
kX
i=1

pi(a) (Gi(x)�H(x)) +H(x);

where Gi(�) and H(�) are non-identical distribution functions with support [x; x] and
where pi(a) � 0 for all i and all a, with

Pk
i=1 pi(a) � 1 for all a. Assume that pi is

continuously di¤erentiable for all i and all a. In the special case where Gi and H are

degenerate, the model describes a situation with a �nite number (k+1) of outcomes.

The FOA is not generally valid in this model. However, the structure in (9) can

in some cases be exploited to construct a modi�ed and valid FOA.

The special case in which k = 1 has a long history (see the next subsection).

Nevertheless, the �rst complete analysis of this environment is presented here. The

main insight is that the FOA is easily modi�ed. There are two steps. First, the set of

implementable actions is characterized, which happens to be straightforward. Second,

it turns out that L-IC is in fact su¢ cient for G-IC on the set of implementable actions.

The resulting modi�ed FOA simpli�es some classic examples in the literature. These

include a counterexample due to Mirrlees in which he demonstrates how the FOA

may fail. I develop a simpler and much more easily interpretable counterexample.

To the best of my knowledge, cases with k > 1 have not been analyzed before.24

When k = 2, it is possible to characterize a small set of non-local incentive com-

patibility constraints that may come into play, representing those actions that are

the most tempting deviations. Once this set has been characterized, modifying the

FOA becomes a simple matter. Finally, when only monotonic contracts are feasible,

I identify conditions for arbitrary k under which the only relevant non-local incentive

compatibility constraint is that associated with the very lowest action, a.

As a preliminary step, note that if a� 2 (a; a) and L-ICa� is satis�ed, then

EUL(aja�)� EU(a) =
kX
i=1

[pi(a
�) + (a� a�)p0i(a�)� pi(a)]Ci; (10)

where

Ci =

Z
v(w(x))d (Gi(x)�H(x)) : (11)

Obviously, Ci is endogenously determined. Note that the ith bracketed terms in (10)

is the di¤erence between the tangent line to pi(a) through a� and pi(a) itself. This is

24I would like to thank John Conlon for suggesting that I examine the k > 1 case too.
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positive for all a if and only if a� is on the concave hull of pi.25

7.1 The spanning condition (k = 1)

Assume �rst that k = 1. For notational simplicity, the subscript on G1, p1, and C1
will be dropped, such that F (xja) is simply written as

F (xja) = p(a)G(x) + (1� p(a))H(x); (12)

where p(a) 2 [0; 1] for all a 2 [a; a] and G and H are non-identical distribution

functions with support [x; x]. While this model is certainly too specialized to capture

all principal-agent relationships, it should be stressed that it does have a compelling

interpretation. For instance, p(a) could be the proportion of time the parts-supplier

(the agent) spends using the new and advanced technology G rather than the less

reliable but more user-friendly old technology, H. Given such interpretations of the

model, the most meaningful economic assumption is that p(a) is monotonic. Thus,

as is common in the literature, assume that p0(a) > 0 for all a 2 (a; a]. The case
where p(a) is non-monotonic is not that much more di¢ cult. It is discussed brie�y

later. The assumption that there is a single signal is for notational simplicity, but the

analysis does not rely on this assumption.

Distributions of this form have been studied extensively. Grossman and Hart

(1983) say that the spanning condition is satis�ed if F (xja) can be written as in
(12). Since (12) is linear in p, Hart and Holmström (1987) refer to (12) as the Linear

Distribution Function Condition (LDFC). The signi�cance of the model and its place

in the literature is discussed in detail after the formal analysis.

Typically, additional assumptions are imposed on the curvature of p(a) as well as

on the relationship between G and H. For instance, Sinclair-Desgagné (1994, 2009)

points out that the FOA is valid if p(a) is concave and g(x)
h(x)

is nondecreasing, where

g and h are the densities of G and H, respectively. The latter assumption implies

the MLRP, while the former ensures concavity of the agent�s objective function when

he faces a monotonic contract. The second assumption also implies that G �rst

order stochastically dominates H. Without assumptions on p(a), Grossman and Hart

(1983) prove that if g(x)
h(x)

is nondecreasing then any optimal contract must feature

25The concave hull is the lowest concave function that is always above pi(a).
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monotonic wages.26 Ke (2012a, Proposition 7) shows that the FOA is valid if p(a) is

concave, even without the MLRP.

Here, I impose no such conditions on (12). For instance, p(a) may be concave

only locally, or not at all, and G and H may cross, as would be the case if H is a

mean-preserving spread over G. Indeed, to determine whether L-ICa� is su¢ cient for

G-ICa�, G and H need not be continuous, though this is of course required for the

optimal contract to subsequently take the form in (8). No restrictions are placed on

the shape of the contract either (apart from bounded utility).

As in the �rst part of the paper, the crucial step is to explore the link between

L-IC and G-IC. Using the notation in (11), L-ICa� is

p0(a�)C � 1 = 0 (13)

whenever a� 2 (a; a). Since p0(a�) > 0, C must take the strictly positive value 1
p0(a�)

in order to satisfy (13). Thus, (10) becomes

EUL(aja�)� EU(a) = p(a�) + (a� a�) p0(a�)� p(a)
p0(a�)

: (14)

Let ACp denote the set of actions in (a; a) for which p(a) coincides with its concave

hull.27 By de�nition, a� 2 ACp if and only if (14) is non-negative for any a.

Proposition 6 Assume that p0(a) > 0 for all a 2 (a; a]. Then, there exists a G-ICa�
contract (that yields bounded utility) if and only if a� 2 ACp [ fa; ag.

Proof. Assume a� 2 (a; a) and a� =2 ACp . If there is a G-ICa� contract, then that
contract must necessarily be L-ICa�, and so (14) applies. However, since a� =2 ACp ,
there is some a 2 (a; a) for which (14) is strictly negative, which contradicts G-ICa�.
For the other direction, assume a� 2 ACp . Since G and H are distinct, there is

some x 2 (x; x) for which G(x) 6= H(x), or Fa(xja�) 6= 0. Now, as in the proof

26In their discrete model, Grossman and Hart (1983) allow multiple incentive compatibility con-
straints to bind. I will show, in the continuous model, that if a can be implemented then all but the
local incentive compatibility constraint are redundant.

27To compare the model in this section with the more general model in Section 6, note that in the
present model Fa(xja) = p0(a)(G(x) �H(x)). Thus, in order to have Fa(xja) < 0 for all x 2 (x; x)
(as required by MLRP) would necessitate that G �rst order stochastically dominates H. In this
case, however, p0(a) has the opposite sign of Fa. This explains why the concave hull of p(a) is used
here, while the convex hull of F (xja) is used in Section 6.
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of Lemma 4, construct a step contract that yields utility v0 if the outcome is worse

than x, and utility v1 otherwise. As before, v0 and v1 can be chosen to satisfy L-ICa�

(contrary to Lemma 4, however, it is possible that v0 > v1). Since a� 2 ACp , (14) is
everywhere non-negative. Hence, the contract is G-ICa�.

Now assume a� 2 fa; ag. By modifying the steps that led to (14), it is easy to see
that a step contract that makes EU 0(a) su¢ ciently small or EU 0(a) su¢ ciently large

is G-ICa or G-ICa, respectively.

Thus, the spanning condition allows a succinct formulation of the �feasible set�of

implementable actions.28 Moreover, it should be clear from the proof of Proposition

6 that L-ICa� is in fact necessary and su¢ cient for G-ICa�, for any a� 2 ACp .

Proposition 7 Assume that p0(a) > 0 for all a 2 (a; a]. If a� 2 ACp then any L-ICa�
contract is G-ICa�.

Proof. Given p0(a) > 0, (14) is everywhere positive if a� 2 ACp .
As a consequence of Propositions 6 and 7, a modi�ed FOA suggests itself. In the

�rst step, the feasible set is identi�ed, ACp [ fa; ag. The feasible set is closed (but
not necessarily convex). In the second step, the FOA is applied to this set (i.e. with

the constraint that a 2 ACp [ fa; ag). In a third step, the solution is compared to the
payo¤ from optimally implementing a and a. The superior contract is then chosen.

To �nd the optimal contract that implements a or a, it turns out that the con-

tinuum of incentive compatibility constraints can again be summarized by one lone

condition. For instance, consider implementing a. Let ac = inf ACp if A
C
p is non-

empty and let ac = a otherwise. First, EU 0(a) � 0 is necessary for G-ICa. However,
if a = ac, then EU 0(a) � 0 is also su¢ cient for G-ICa, as proven below.
Consider next the possibility that a < ac. Then, G-ICa obviously necessitates

that EU(a) � EU(ac), such that there is no incentive to pick ac over a. However,

it turns out that EU(a) � EU(ac) is in fact su¢ cient for G-ICa. In particular,

EU(a) � EU(ac) implies EU 0(a) � 0 when a < ac. To implement a, the relevant

counterpart to ac is ac = supACp when A
C
p is non-empty and a

c = a otherwise.

Proposition 8 Assume that p0(a) > 0 for all a 2 (a; a]. Then, it is possible to

implement the boundary actions, as follows:

28Hermalin and Katz (1991) use tools from convex analysis to characterize the set of imple-
mentable actions in a model with a �nite set of actions and a �nite set of outcomes. Note that their
analysis does not reveal when L-IC is su¢ cient for G-IC.
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1. If ac = a then EU 0(a) � 0 is necessary and su¢ cient for G-ICa. If ac > a then
EU(a) � EU(ac) is necessary and su¢ cient for G-ICa.

2. If ac = a then EU 0(a) � 0 is necessary and su¢ cient for G-ICa. If ac < a then
EU(a) � EU(ac) is necessary and su¢ cient for G-ICa.

Proof. Necessity is obvious. For su¢ ciency in the �rst part of the proposition,

consider �rst the �no-gap�case, ac = a. Here, the slope of p(a) coincides with the

slope of its concave hull at a. As in the proof of Proposition 6, a modi�cation of

(14) then establishes that EU 0(a) � 0 is su¢ cient for G-ICa. However, this is not

necessarily true in the �gap�case, where ac > a. Note that

EU(a)� EU(a) = (a� a)
�
1� p(a)� p(a)

a� a C

�
;

where C is de�ned in (11). Hence, EU(a) � EU(ac) implies that the term in brackets
must be non-negative when a = ac. If C is negative, then the term in brackets is

positive for all a, or EU(a) � EU(a) for all a. That is, the contract is G-ICa. If

C is positive, then the term in brackets is minimized at a = ac. This follows by

de�nition of the concave hull, since the line from (a; p(a)) to (ac; p(ac)) is steeper

than the line from (a; p(a)) to any other point on p(�). Hence, if EU(a) � EU(ac)

then EU(a) � EU(a) for all a 2 [a; a], thus implying G-ICa. The proof of the second
part of the proposition is analogous.

The assumption that p(a) is monotonic seems justi�ed on economic grounds. How-

ever, it is possible to allow p(a) to be non-monotonic. First, note that the argument

following (14) remains valid if p0(a�) > 0 even if p0(a��) < 0 for some a�� 6= a�.

That is, a� can be implemented, and L-ICa� is su¢ cient, if and only if a� is on the

concave hull of p(a�). By similar reasoning, a�� 2 (a; a) can be implemented, and
L-ICa�� is su¢ cient, if and only if a�� is on the convex hull of p(a��).29 Thus, the

set of implementable interior actions can be obtained by piecing together the sets

of implementable actions with p0(�) > 0 and p0(�) < 0, respectively. Of course, if

a� 2 (a; a) and p0(a�) = 0 then no L-ICa� contract exist (with bounded utility), as

can be seen from (13). Similarly, if p(a�) = p(a0), then a� cannot be implemented if

a0 < a� because it would be cheaper for the agent to pick a0 rather than a�.30 Note
29This is easily seen by multiplying both numerator and denominator in (14) by �1.
30Consequently, once p(a) is allowed to be non-monotonic, it is no longer necessarily the case that

a can be implemented.
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that such actions can be on neither the concave hull nor the convex hull of p(a) when

p0(a�) 6= 0.
The rest of this subsection is devoted to demonstrating the signi�cance of the

spanning condition as well as illustrating some uses of the preceding characterization.

First, it is useful to recognize that the textbook case in which there are two

outcomes (but a continuum of actions) is in fact a special case of (12). Speci�cally,

this model corresponds to assuming that G and H are degenerate distributions, with

all mass concentrated at opposite ends of the support. Hence, Propositions 6 �8

make it possible to reexamine some important examples in the literature.

Example 1 (Araujo and Moreira (2001)): Araujo and Moreira (2001) propose

a general Lagrangian approach to the moral hazard problem that applies when the

FOA is not valid. Their leading example is the following. There are two states,

where state 1 is the bad state and state 2 is the good state. The agent picks an

e¤ort level, e, from [e; e] � [0; 1]. With e¤ort e, the probability of the good state

is q(e) = e3. The cost of e¤ort is c(e) = e2. To reparameterize the model, let

a � c(e) = e2 and p(a) = q(c�1(a)) = a
3
2 , a 2 [a; a] = [e2; e2]. Note that p(a) is

increasing and convex. Thus, ACp is empty. In other words, no interior action can

be implemented. Moreover, the boundary actions can be implemented, and the only

relevant incentive compatibility constraint is that the desired action be preferable to

the action on the opposite end of the support. Consequently, this example essentially

reduces to the textbook example with two outcomes and two actions, a and a, and

is therefore trivial to solve once a participation constraint is added. In contrast, to

use their general approach to solve the example, Araujo and Moreira (2001) (having

added assumptions on v(w) and on the principal�s payo¤) construct an algorithm in

Mathematica and use this to solve 20 non-linear systems of equations. As expected,

they �nd the optimal action is at a corner. While their method is obviously powerful,

using it on their leading example is overkill (not to mention labor intensive) and

obscures the intuition. Ke (2012b) proposes another method to solve this problem.

Though his method is simpler than that used by Araujo andMoreira (2001), it remains

more complicated than the method suggested above. N

Mirrlees (1999) o¤ers a famous example to illustrate how the FOA may fail. In

their textbook, Bolton and Dewatripont (2005, p. 148) remark that: �This example

is admittedly abstract, but this is the only one to our knowledge that addresses
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the technical issue.�Next, I will show that Mirrlees�(1999) example can be analyzed

using the techniques presented earlier in this section. In particular, the modi�ed FOA

correctly solves the problem. Thereafter, in the hope it will have some pedagogical

value, I will provide a more straightforward example of how the FOA may fail. Again,

the modi�ed FOA allows the correct solution to be obtained.

Example 2 (Mirrlees (1999)): Consider an agent with payo¤ function

U(w; z) = we�(z+1)
2

�
�
�e�(z�1)

2
�
:

It may be helpful to think of this example as a special environment with two out-

comes, where, for some reason, the wage in one state is exogenously �xed at 0. The

principal controls the �bonus�w (which may be positive or negative) if the other state

materializes. The agent�s action is z 2 R. Think of e�(z+1)2 roughly as the proba-
bility of the state in which a bonus is paid out, and think of �e�(z�1)2 as the cost
function. This example �ts rather well with the model in (12). In particular, with the

spanning condition and only two states, the agent�s expected utility is separable in

the action and the di¤erence between utility in the two states (the bonus). Next, let

a = �e�(z�1)2, and note that a 2 [�1; 0). Think of the agent as having a two-stage
problem. First, he has to decide which cost level, a, to incur, and, second, whether

to incur this cost with a z that is above or below 1 (since z� = 1�
p
� ln (�a) and

z+ = 1 +
p
� ln (�a) both yield the same a). Depending on whether z < 1 or z > 1,

expected utility can be written as V �(w; a) = wp�(a)� a or V +(w; a) = wp+(a)� a,
respectively, where

p�(a) = e
�
�
2�
p
� ln(�a)

�2
; and p+(a) = e�

�
2+
p
� ln(�a)

�2
; a 2 [�1; 0):

Clearly, p�(a) > p+(a). Hence, V �(w; a) > V +(w; a) if and only if w is strictly posi-

tive. It is now possible to split the problem into two entirely conventional problems.

In one, the principal is constrained to w � 0 and the agent�s payo¤ function is e¤ec-
tively V +(w; a). In the other, the constraint is w � 0 and the agent�s payo¤ function
is V �(w; a).

For the �rst problem, it can be shown that p+(a) is decreasing. Hence, negative

wages are indeed necessary for L-IC. Moreover, p+(a) is convex and so coincides with

its convex hull. It follows from the discussion following Proposition 8 that any interior
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action can be implemented and that the FOA is valid.

The second problem is more interesting. Here, p�(a) is increasing on [�1;�e�4),
and decreasing on (�e�4; 0). Since only non-negative wages can be used, there is
no permissible contract that satis�es L-IC for any a � �e�4 � �0:0183. On

the remaining support, p�(a) coincides with its concave hull if and only if a 2
[�1;�0:9982][ [�0:0217;�e�4). By Propositions 6 and 7, the modi�ed FOA is valid
on this set (and actions in (�0:9982;�0:0217) cannot be implemented).
Next, Mirrlees speci�es an objective function for the principal. There is no par-

ticipation constraint. The principal seeks to maximize �(z�1)2� (w � 2)2 or, equiv-
alently, ln (�a)� (w � 2)2. The agent�s �rst order condition yields w = 1=p�0(a) and
w = 1=p+0(a), respectively. Substituting this into the principal�s objective function

and plotting the resulting functions reveals that positive bonuses are superior to neg-

ative bonuses and that the solution is at a corner of the feasible set, speci�cally at

w = 1 and a = �0:9982 (or z� = 0:957). This of course coincides with the solution
Mirrlees found, but not with the solution one would obtain from the standard FOA

(which yields a = �0:988 97 or z� = 0:895, as demonstrated by Mirrlees). N

Example 3 (Simplified counterexample): There are two outcomes. Let v1 be

the agent�s utility (from wages) if the outcome is bad and v2 be his utility if the

outcome is good. The outcomes are worth x1 and x2 to the principal, respectively.

The probability of the good outcome is p(a), with p0(a) > 0. The participation

constraint and L-IC constraint yield the system

v1 + p(a)(v2 � v1)� a = u

p0(a)(v2 � v1)� 1 = 0

with solution

v1 = u+ a�
p(a)

p0(a)
, v2 = u+ a+

1� p(a)
p0(a)

:

If L-IC is su¢ cient, the risk-neutral principal�s expected payo¤ is

�(a) = (1� p(a))(x1 � v�1(v1))� p(a)(x2 � v�1(v2)):

Assume p(a) = a + 1
2
(a2 � a3), a 2 [0; a], a 2 (1

2
; 1]. Note that if a = 0 then

v1 = v2 = u + a, so in this special case, with p(0) = 0, �(0) also describes the
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optimal way of implementing the lowest action.31 Here, p(a) is convex when a < 1
3

and concave when a > 1
3
. However, the relevant set is ACp , which is A

C
p = [1

2
; a).

Thus, the set of implementable actions is f0g [ [1
2
; a], with ac = 1

2
> a and ac = a.

Assume u = 2, v(w) =
p
w and x1 = 5, x2 = 9:4. Figure 3 plots �(a) when a = 2

3
.

There are two stationary points. The �rst, at a� = 0:114, minimizes the principal�s

payo¤ and is not even implementable because the agent�s payo¤ is convex whenever

a < 1
3
. The second stationary point, at a�� = 0:464, is the global maximum of �(a).

However, a�� is not implementable either. Though the agent�s payo¤ is locally concave

at a��, it is pro�table for the agent to deviate to a = 0. One way to see this is that

v2 > v1 > 2 = u whenever a (futile) attempt is made at implementing an action in�
0; 1

2

�
; the agent can then guarantee himself payo¤ v1 > u by selecting a instead. In

other words, while there is a L-ICa�� contract there exists no G-ICa�� contract. The

nearest action for which there is a G-IC contract is a = 1
2
. Indeed, recalling that the

feasible set is f0g [ [1
2
; a], it is clear from Figure 3 that the optimal action to induce

is a = 1
2
(with v1 = 2, v2 = 26

9
). N

[FIGURE 3 ABOUT HERE (SEE THE LAST PAGES)]

The spanning condition has often been implicitly imposed in papers with a contin-

uum of actions. Perhaps the most signi�cant example of this is in LiCalzi and Spaeter

(2003) who provide two classes of distributions for which Rogerson�s conditions are

satis�ed. Thus, this paper is customarily cited in papers that rely on the FOA. The

�rst family of distributions is

F (xja) = x+ �(x)
(a); x 2 [0; 1]:

Obviously, conditions must be imposed on � (�) and 
(�) to ensure that F (xja) is a
proper distribution function. LiCalzi and Spaeter (2003) identify additional assump-

tions on both � (�) and 
(�) which ensure Faa(xja) � 0 and the MLRP. Note, however,
that these distribution functions are separable in x and a. Thus, although it seems

to not have been observed before, it should be clear that F (xja) could be stated as

31In general, the cost of implementing a given action is discontinuous at a. The highest action,
a = a, can be implemented with any contract for which EU 0(a) � 0. However, it is easy to see that
any contract with EU 0(a) > 0 cannot be optimal. The reason is that such a contract unnecessarily
imposes more risk on the agent (v2 � v1 is larger).

35



in (12). Hence, the modi�ed FOA is always valid in this family of distributions, even

without LiCalzi and Spaeter�s (2003) additional assumptions.32

Example 1 in Jewitt et al (2008) uses the Farlie-Gumbel-Morgenstern copula,

f(xja) = 1 + 1
2
(1� 2x)(1� 2a);

where x; a 2 [0; 1]. This distribution is also separable in x and a and thus can be
written as in (12). Finally, example 1 in Kadan and Swinkels (2012) can be written

as

F (xja) = p(a)x+ (1� p(a))
�
x+ x2 � x3

�
;

where p(a) = 2a2 � a3, a 2 [2
3
; 1], and x 2 [0; 1].

7.2 Beyond the spanning condition (k � 2)

The spanning condition leads to the striking conclusion that the optimal way to

induce any implementable action is by o¤ering a contract that takes the form in (8).

In other words, the shape of the contract is determined solely by L-IC; the role of

G-IC is only to determine whether the action is implementable in the �rst place.

In general, however, G-IC may also change the shape of the optimal contract. The

model in (9) can be used to illustrate this property when k > 1.

Fix some action a� that the principal seeks to implement. Let ICa;a� denote the

non-local incentive compatibility constraint that action a� be no worse than action a

for the agent, or

EU(a�) � EU(a) (ICa;a�)

for some a 6= a�. Of course, G-ICa� is satis�ed if and only if ICa;a� is satis�ed for

all a 6= a�. When the FOA is valid, these constraints can be ignored since they

are implied by L-ICa�. When the FOA is not valid, however, the optimal contract

will often (the case with k = 1 notwithstanding) be shaped by whichever non-local

incentive compatibility constraints are binding.

For the case where k = 2, I will in the following characterize a small subset of non-

local incentive compatibility constraints that, together with L-ICa�, are su¢ cient for

G-ICa�. Put di¤erently, the remaining non-local incentive compatibility constraints

32Ke (2011a, Proposition 9) prove that LiCalzi and Spaeter�s (2003) additional assumptions on
�(x) are not necessary for the validity of the FOA.
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are redundant. Intuitively, the relevant constraints represent those actions that are

the most tempting deviations for the agent. Once these constraints have been iden-

ti�ed it is trivial to derive the optimal contract that induces a�.

Thus, assume k = 2. In this subsection, I will also assume that p1 and p2 are

twice continuously di¤erentiable. Fix some a� 2 (a; a). For brevity, de�ne pLi (aja�) =
pi(a

�) + (a� a�)p0i(a�), i = 1; 2. Then, (10) can be written

EUL(aja�)� EU(a) =
�
pL1 (aja�)� p1(a)

�
C1 +

�
pL2 (aja�)� p2(a)

�
C2: (15)

For now, assume further that p001(a) 6= 0 for all a 2 [a; a], i.e. p1 is either strictly
concave or strictly convex. Given that the previous literature on the spanning condi-

tion (k = 1) typically assumes p(a) is (weakly) concave, this seems like a reasonable

starting point. Thus, pL1 (aja�)� p1(a) 6= 0 for all a 6= a� and so

EUL(aja�)� EU(a) =
�
pL1 (aja�)� p1(a)

��
C1 +

pL2 (aja�)� p2(a)
pL1 (aja�)� p1(a)

C2

�
(16)

whenever a 6= a�. The second term is continuous; by L�Hôpital�s rule, the ratio takes

on the value p002 (a
�)

p001 (a
�) at a = a

�. Let

m(a�) 2 argmin
a

pL2 (aja�)� p2(a)
pL1 (aja�)� p1(a)

; (17)

M(a�) 2 argmax
a

pL2 (aja�)� p2(a)
pL1 (aja�)� p1(a)

: (18)

By assumption, the �rst term in (16) has constant sign. Thus, (16) is positive at all

a 6= a� if and only if it is positive at a = m(a�) and at a = M(a�). All the other

non-local incentive compatibility constraints are redundant. Note that no conditions

on the contract, such as monotonicity, has been imposed.

Proposition 9 Assume k = 2 and p001(a) 6= 0 for all a 2 [a; a]. Then, L-ICa�,

ICm(a�);a�, and ICM(a�);a� are necessary and su¢ cient for G-ICa� for any a� 2 (a; a).

The FOA can now be modi�ed; the maximization problem in Section 3 must be

appended with two additional constraints, namely ICm(a�);a� and ICM(a�);a�. In fact, it

can be shown that as long as p001(a) 6= 0 for all a 2 [a; a], the ratio in (16) is monotonic
(increasing or decreasing) if p

00
2 (a)

p001 (a)
is monotonic. The proof is omitted, but is available
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on request. In this case, L-ICa�, ICa;a�, and ICa;a� are necessary and su¢ cient for

G-ICa� for all a� 2 (a; a). That is, the agent must be prevented only from deviating

to the highest and lowest action.

Corollary 3 Assume k = 2, p001(a) 6= 0, and that
p002 (a)
p001 (a)

is monotonic for all a 2 [a; a].
Then, L-ICa�, ICa;a�, and ICa;a� are necessary and su¢ cient for G-ICa� for any a� 2
(a; a).

Next, a procedure is outlined that can be applied when the assumption in Propo-

sition 9 is not satis�ed. Fix some a� 2 (a; a). Then, break the problem into smaller

parts by partitioning [a; a] into three disjoint subsets. The intention is to ensure

that the agent has no incentive to deviate to any of these sets. One set, A+, con-

sists of all actions for which
�
pL1 (aja�)� p1(a)

�
> 0. In the second set, A�, actions

satisfy
�
pL1 (aja�)� p1(a)

�
< 0. Any member of the �nal set of actions, A0, satis-

�es
�
pL1 (aja�)� p1(a)

�
= 0. Starting with the latter set, assume for simplicity that�

pL2 (aja�)� p2(a)
�
has a constant sign on A0. Then, (15) reveals that if ICba;a� is

satis�ed for one arbitrary member ba of A0 (with ba 6= a�), then ICa;a� is satis�ed for
all other members of A0 as well.33 Consider now the set A+. Extending the previous

analysis, derive the arg inf and the argmax of the ratio in (17) and (18) on the closure

of A+. If there is no incentive to deviate to any of these actions, then there is no

incentive to deviate to any other action in A+.34 A similar exercise can be applied to

set A�. In summary, G-ICa� is ensured if L-ICa� is satis�ed and there is no incentive

to deviate to any a 2 A0 or to the arg inf or the argmax of the ratio in (16) on the
closures of A+ and A�.

Assuming F has a di¤erentiable density and that the only other constraint on the

problem is the participation constraint, Ke (2012b) has recently demonstrated that

the optimal contract �regardless of the validity of the FOA �can be described by

1

v0(w(x))
= �+ �l(xja�) + 


�
1� f(xjba)

f(xja�)

�
; (19)

where 
 � 0 is a multiplier to a non-local incentive compatibility constraint. If 
 > 0,
then the agent is indi¤erent between ba and a�, meaning that this non-local incentive

33If
�
pL2 (aja�)� p2(a)

�
does not have a constant sign on A0, then G-ICa� necessitates C2 = 0,

which in turn implies that G-ICa� can be satis�ed only if either A+ or A� is empty. The constraint
that C2 =

R
v(w(x)) (g2(x)� h(x)) dx = 0 can be added to the principals maximization problem.

34Since these actions are in the closure of A+, they may in fact belong to A0.
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compatibility constraint is binding. However, Ke (2012b) does not pin-point ba. If the
assumptions in Proposition 9 are satis�ed, then ba is either m(a�) or M(a�).
Next, consider the general case in which k � 1. Here, I will impose more structure

on the problem. First, assume that the contract must be monotonic (increasing)

for some exogenous reason, as in Innes (1990). There may be actions that can be

implemented with a non-monotonic contract, but not with a monotonic contract. Due

to the constraint on the feasible contracts, such actions can be ignored.

Second, assume that G1 �rst order stochastically dominates G2, which in turn

�rst order stochastically dominates G3, and so on, with H being dominated by

G1; G2:::; Gk. One interpretation is that technologies with lower subscripts are more

productive, and that it would be bene�cial to the principal if more weight is shifted

onto these technologies. In the following, I will use the term ordered technology

to refer to this assumption. By (11), any ordered technology implies that any

monotonic contract translates into non-negative Ci�s that can themselves be ordered,

or C1 � C2 � ::: � Ck � 0.
To proceed, note that (10) can be rewritten as

EUL(aja�)� EU(a) =
"

kX
i=1

pi(a
�)Ci + (a� a�)

kX
i=1

p0i(a
�)Ci

#
�

kX
i=1

pi(a)Ci, (20)

where the �rst term is the tangent line to the (endogenously determined) functionP
pi(a)Ci. This leads to the third assumption, namely that the function

P
pi(a)Ki

is �rst convex (on a possibly empty interval) and then concave (on a possibly empty

interval) for all (K1; K2; :::; Kk) with the property that K1 � K2 � ::: � Kk � 0.35 I
will use the term S-shaped technology to refer to this assumption. Incidentally, F (xja)
can be written as

F (xja) = �
kX
i=1

pi(a) (H(x)�Gi(x)) +H(x);

where H(x)�G1(x) � H(x)�G2(x) � ::: � H(x)�Gk(x) � 0 due to the assumption
that the technology is ordered. Thus, the joint assumption that the technology is both

ordered and S-shaped means that F (xja) has a reverse S-shape as a function of a.
In his conclusion, Conlon (2009a) notes that a very accurate signal will be described

35This assumption is satis�ed if e.g. p000i (a) � 0 for all a and all i.
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by a distribution function which has this property for at least some x. Finally, the

S-shaped technology can also be thought of as a generalization of the environment in

Example 3. In that example, the non-local IC constraint with �bite�was ICa;a�.

Lemma 5 Fix a� 2 (a; a). Assume the technology is ordered and S-shaped. Then,
any monotonic contract is G-ICa� if and only if L-ICa� and ICa;a� are satis�ed.

Proof. L-ICa� and ICa;a� are obviously necessary for G-ICa�. For su¢ ciency, assume
that the contract is monotonic and that L-ICa� and ICa;a� are satis�ed. Since the

contract is monotonic and the technology is ordered, C1 � C2 � ::: � Ck � 0.

Thus, the second assumption on the technology can be invoked. By L-ICa�, G-ICa�

is satis�ed if and only if (20) is always non-negative, or, stated di¤erently, if a� is on

the concave hull of
P
pi(a)Ci. However, since

P
pi(a)Ci is S-shaped, a� is on the

concave hull of
P
pi(a)Ci if and only if this function�s tangent line through a� lies

above the function itself at a. In other words, (20) is non-negative for all a if and

only if it is non-negative at a. Thus, ICa;a� is su¢ cient.

The lemma implies that for all the actions that can be implemented with a

monotonic contract, L-ICa� and ICa;a� are su¢ cient. It is thus tempting to mod-

ify the FOA by simply adding the constraint ICa;a�, which would yield a contract of

the form in (19). However, it must then be veri�ed that this candidate is monotonic.

Indeed, Grossman and Hart (1983, Example 1) demonstrate that optimal contracts

need not be monotonic when more than one incentive compatibility constraint binds,

even if MLRP holds. In fact, it was this observation that lead them to the spanning

condition in the �rst place.

8 Conclusion

In this paper, a new approach to the moral hazard problem has been suggested. The

approach is based on reformulating the problem in terms familiar to any economist.

In particular, standard results from the theory of choice under uncertainty can be

invoked to prove new and old results.

The new approach permits a uni�ed proof of Rogerson�s (1985) and Jewitt�s (1988)

one-signal justi�cations of the FOA. Indeed, the insights gained from reformulating

the problem makes it possible to derive other su¢ cient conditions. Similarly, in the

multi-signal model, the justi�cations provided by Jewitt (1988) and Conlon (2009a)
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can be explained with a common methodology. It is important to note that there

are several di¤erent ways in which one-signal results can be extended into higher

dimensions. The orthant orders form the basis of some tractable alternatives. One

distinct advantage of the justi�cations based on the lower orthant order and the lower

orthant-concave order is that they are robust to the inclusion of more independent

signals.

The second part of the paper focused on environments in which the FOA is not

generally valid. Local versions of Rogerson�s and Jewitt�s conditions were presented,

thereby allowing subsets of actions for which L-IC implies G-IC to be identi�ed. Next,

a more speci�c model was considered. Though the spanning condition looks simple

and dates back to Grossman and Hart (1983), the �rst full characterization of its

solution is given here. Mirrlees� (1999) famous counterexample can also be solved

using the techniques presented here. A simpler counterexample was also presented.

When the spanning condition is relaxed, it turns out to be sometimes possible to

identify the critical non-local incentive compatibility constraints. Determining these

relevant non-local constraints seems to be a necessary �rst step to characterizing

optimal contracts when the FOA is not valid. A more systematic analysis of this

issue is left for future research.
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Rogerson Jewitt Third set of conditions

Faa(xja) � 0, 8x; a
R x
x
Faa(yja)dy � 0, 8x; a

R x
x

R z
x
Faa(yja)dydz � 0, 8x; a

and
R x
x
Faa(yja)dy � 0, 8a

+ + +
Any nondecreasing and Any nondecreasing, concave, Any nondecreasing, concave,
L-IC contract is G-IC and L-IC contract is G-IC positively skewed, and L-IC

contract is G-IC

FOSD SOSD TOSD

G(x) � H(x), 8x
R x
x
G(y)dy �

R x
x
H(y)dy, 8x

R x
x

R z
x
G(y)dydz �

R x
x

R z
x
H(y)dydz, 8x

and
R x
x
G(y)dy �

R x
x
H(y)dy

m m m
EG [u(x)] � EH [u(x)] EG [u(x)] � EH [u(x)] EG [u(x)] � EH [u(x)]

for any nondecreasing u(x) for any nondecreasing and for any nondecreasing, concave,
concave u(x) and positively skewed u(x).

Table 1: Rogerson, Jewitt and stochastic dominance.

Note: F (�ja) is the distribution over outcomes given action a. In the third column, a positively
skewed utility function, u(x), is one for which u0(x) is non-negative, decreasing, and convex.

Rogerson Jewitt Third set of conditions

Faa(xja) � 0, 8x; a.
R x
x
Faa(yja)dy � 0, 8x; a.

R x
x

R z
x
Faa(yja)dydz � 0, 8x; a

and
R x
x
Faa(yja)dy � 0, 8a.

!0(z) > 0 !0(z) > 0, !00(z) � 0 !0(z) > 0, !00(z) � 0, !000(z) � 0
lx(xja) � 0 lx(xja) � 0, lxx(xja) � 0 lx(xja) � 0, lxx(xja) � 0, lxxx(xja) � 0

Table 2: Justifying the �rst order approach, Part I.

Rogerson (1-icx) 2-icx 3-icx

F aa(xja) � 0, 8x; a.
R x
x
F aa(yja)dy � 0, 8x; a.

R x
x

R x
z
F aa(yja)dydz � 0, 8x; a

and
R x
x
F aa(yja)dy � 0, 8a.

!0(z) > 0 !0(z) > 0, !00(z) � 0 !0(z) > 0, !00(z) � 0, !000(z) � 0
lx(xja) � 0 lx(xja) � 0, lxx(xja) � 0 lx(xja) � 0, lxx(xja) � 0, lxxx(xja) � 0

Table 3: Justifying the �rst order approach, Part II.
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Figure 1: A new approach to moral hazard.

Note: Step 1: Fix a�. For each x, construct the tangent line to F (xja) at a� (moving
horizontally). Step 2: For each a 6= a�, like a0, move vertically to trace out the cdf in
the auxiliary and real problems. Here, FL FOSD F (FL lies always below F ). Thus,

any monotonic and L-ICa� contract yields EU(a�) = EUL(a�ja�) = EUL(a0ja�) �
EU(a0). Step 3: To validate the FOA, the conclusion in step 2 must hold regardless

of a�.



F(x|a)

aa'

Figure 2: Comparing F (xja), FL(xja; a0), and FC(xja).

Note: FC(xja) coincides with the dashed line (FL(xja; a0)) to the left of a0, and with
the solid curve (F (xja)) to the right of a0. If a� � a0 then F (xja) � FL(xja; a�) for all
a. If this holds for all x, then any monotonic and L-ICa� contract is G-ICa�. If a� < a0

then there are small a for which FL(xja; a�) > F (xja). Then, when Fa(xja) < 0, there
are monotonic and L-ICa� contracts that are not G-ICa� (Lemma 4).
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Figure 3: Simpli�ed counterexample.


