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1 General Equilibrium

Based on various parts of Chapters 15,16,17 of MWG.

This section covers a fundamental topic in microeconomics - the general equilibrium.

The basic idea and objectives of a general equilibrium model is quite simple. The economy

consists of agents who are either consumers or producers. The simplest economy, that is

called a pure exchange economy, consists of only consumers. For illustration, we talk about

the pure exchange economy. There are various types of commodities. Commodities may be

something like, vegetables, milk, leisure, money, shares of a company etc. In a pure exchange

economy, commodities are already produced. But they are endowed to the consumers.

The main objective is to reallocate such endowments. Why should we reallocate? The

initial endowment may be very bad. For instance, a consumer who does not like any com-

modity have all of it, but another consumer who desperately needs it may not have it. So,

redistribution improves welfare. The market is a mechanism for redistribution. Its objective

is to improve, from a welfare standpoint, the allocation of consumers.

If redistribution is the only objective, then one idea will be that the planner takes away

all initial endowment and then redistribute to achieve welfare gains. This is certainly a good

idea but not always practical. There are some commodities that may not be feasible to

redistribute, for instance, leisure.

The central idea behind market is prices. Because commodities are of different type, it

is unclear how different types of commodities will be exchanged. Prices act as converters of

different commodities. It brings all commodities to the same unit. Once prices are defined,

because of their endowment, each consumer gets a budget or wealth level. Using this wealth,

they trade commodities. The idea of a market equilibrium is that the exchanges should

happen such that each consumer must be maximizing its utility at the new allocation given

the prices.

This does not say anything about welfare improvements. Remarkably, such market equi-

librium will alway lead to welfare optimal points. Further, any welfare optimal point can be

achieved using a market equilibrium. This forms the basis of general equilibrium that we

will discuss.

Although this seems very interesting, it hinges on various assumptions. First, the prices

are assumed to be given. Without full knowledge of preferences of consumers, it is impossible

to come up with the correct prices. Secondly, consumers are assumed to be price-takers, i.e.,

they are assumed to maximize utility subject to their budget constraint.
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1.1 A Simple Exchange Economy

We start by considering a very simple model of exchange. There are two agents denoted by

N := {1, 2} and two commodities M = {a, b}. A commodity is a perfectly divisible good.

In the pure exchange economy, commodities are already produced and there is no scope

for further production. The commodities are already produced are endowed to agents. In

particular, we will denote the endowment of agent i ∈ N of commodity ℓ ∈ M as ω0(i, ℓ).

Denote the total amount of commodity of each commodity ℓ ∈ M as

ω̄(ℓ) := ω0(1, ℓ) + ω0(2, ℓ).

An exchange reallocates the commodities amongst the agents. The objective of such a

reallocation is to improve the utilities of the agents. In particular, the endowments can be

very bad for the agents - an agent who does not like commodity a may be endowed with it

but the other agent, who likes commodity a may have no endowment of it.

To evaluate such benefits from exchange, we need to consider preferences of agents.

Preferences will be defined for every agent over all possible bundles of commodities. A

commodity bundle (x(a), x(b)) specifies the quantities of commodities a and b respectively

for an agent. Of course, to be feasible, it must satisfy 0 ≤ x(a) ≤ ω̄(a) and 0 ≤ x(b) ≤ ω̄(b).

Hence, a preference relation of agent i ∈ N will be a complete and transitive binary relation

over the set [0, ω̄(a)] × [0, ω̄(b)]. We will denote the preference relation of agent i as �i.

We will assume some technical conditions on �i. In particular, we will assume that �i is

assumed to be strictly convex, continuous, and strongly monotone. 1

Now, we describe the process by which exchanges take place. Here comes the role of a

“market” or a “Walrasian auctioneer”. Precisely, a price is announced for each commodity -

(p(a), p(b)). Based on these prices, both the agents decide how much to sell and buy. We

would be interested if there are prices such that “markets clear”.

When prices (p(a), p(b)) are announced, agent i ∈ N , gets a budget of p(a)ω0(i, a) +

p(b)ω0(i, b). This budget comes to him because of his endowment. If he sold his endowment

at these prices, then this is the money/utility he can raise. Now, if he decides to get to a

new allocation (x(i, a), x(i, b)), then he will have to spend, p(a)x(i, a) + p(b)x(i, b). So, the

budget constraint for agent i ∈ N is given by

p(a)x(i, a) + p(b)x(i, b) ≤ p(a)ω0(i, a) + p(b)ω0(i, b).

We will denote the budget set of agent i at price vector p ≡ (p(a), p(b)) as

Bi(p) := {(x(i, a), x(i, b)) ∈ [0, ω̄(a)]×[0, ω̄(b)] : p(a)x(i, a)+p(b)x(i, b) ≤ p(a)ω0(i, a)+p(b)ω0(i, b)}.

1 Essentially, these assumptions make the indifference curve well behaved.
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Notice that it is not possible for an agent to realize his utility on a consumption bundle

and then pay for it. In particular, payments (based on market prices) need to be made

before consumption. Hence, budget constraint must hold. If an agent is allowed to make

payments after its consumption, then the agent will have greater flexibility in the amount of

each commodity it can consume.

1.2 The Edgeworth Box

The Edgeworth box is a simple tool to understand the concept of equilibrium in the two

agent and two commodity economy. It is shown in Figure 1. We describe various features of

it.

Budget Line

Agent 2’s origin

Budget set of agent 1

Budget set of
agent 2

Indifference
curves of agent 1

Indifference curves
of agent 2

w(2,a)

w(2,b)

w(1,b)

w(1,a) w^0(1,a)

w^0(1,b)
w^0(2,b)

w^0(2,a)

Agent 1’s origin

Figure 1: The Edgeworth Box

• The Edgeworth box contains two origins - north-east corner is agent 2’s origin and

south-west corner is agent 1’s origin. The amount of commodity a of agent 1 is thus

shown in the bottom horizontal axis and the amount of commodity b of agent 2 is

shown in the left vertical axis. Similarly, the amount of commodity a of agent 2 is thus

shown in the top horizontal axis and the amount of commodity b of agent 2 is shown

in the right vertical axis. Any point in the Edgeworth box is thus a feasible bundle of

commodities for both the agents. The initial endowment is shown by a small circle in

Figure 1.

• The indifference curves for both the agents are shown in Figure 1. By our assumption,
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they are convex, continuous, and strongly monotone. Hence, for each agent, as we go

away from his origin, he strictly prefers those commodity bundles.

• The budget set of each agent is described by a line (for a given price vector) in the

Edgeworth box. We call this line the budget line. The budget line is described by the

equation

p(a)x(1, a) + p(b)x(1, b) = p(a)ω0(1, a) + p(b)ω0(1, b).

All the points in the Edgeworth box that lie below this line is the budget set of agent

1. But the budget set of agent 2 is given by

p(a)x(2, a) + p(b)x(2, b) ≤ p(a)ω0(2, a) + p(b)ω0(2, b).

But this can be rewritten as follows due to feasibility:

p(a)[ω̄(a)− x(1, a)] + p(b)[ω̄(b)− x(1, b)] ≤ p(a)[ω̄(a)−ω0(1, a)] + p(b)[ω̄(b)−ω0(1, b)].

Simplifying, we get

p(a)x(1, a) + p(b)x(1, b) ≥ p(a)ω0(1, a) + p(b)ω0(1, b).

Hence, the budget set of agent 2 lies above the budget line. Further, the budget

line always passes through the initial endowment point. Hence, given a price vector

(p(a), p(b)), the budget line corresponding to this price vector is the unique line passing

through the initial endowment having a slope of −p(a)
p(b)

. Note that one budget line may

correspond to all price vectors having the same slope. Hence, given a price vector, we

can push the indifference curves upwards for agent 1 till it meets the budget line that

gets his maximum level of utility. Similarly, for agent 2, we can push it downwards till

it meets the budget line that gets his maximum level of utility. Further, we can always

scale the price of one commodity to one, and the negative of the slope of the budget

line determines the price of the other commodity.

We now investigate the characteristics of the new allocation if each agent maximizes his

utility inside his budget set. We consider the price vector or budget line given in Figure 1 and

let each consumer choose a bundle that maximizes his utility. In that case, each consumer

must pick a point on the budget line using an indifference curve whose tangent is the budget

line. Figure 2 illustrates this.

Notice that the optimal point of agent 1 requires agent 1 to consume more of commodity b

than his endowment and less of commodity a. For agent 2, his consumption must increase in

commodity b but decrease in commodity a. As a result, there is excess demand of commodity

b and excess supply of commodity a.

5



w(2,b)

Agent 2’s origin
w(2,a)

w(1,b)

w^0(1,a)

w^0(1,b)
w^0(2,b)

w^0(2,a)

Agent 1’s origin

Budget Line

w(1,a)

Figure 2: Demand and Supply in the Edgeworth Box

Definition 1 A Walrsian (or competitive) equilibrium for an Edgeworth box economy is

a price vector p∗ and an allocation x∗ ≡ ((x∗(1, a), x∗(1, b)), (x∗(2, a), x∗(2, b))) in the Edge-

worth box such that for all i ∈ {1, 2}, we have

(x∗(i, a), x∗(i, b)) �i (x(i, a), x(i, b)) ∀ (x(i, a), x(i, b)) ∈ Bi(p
∗).

Figure 3 shows a Walrasian equilibrium in the Edgeworth box. Notice how the two indif-

ference curves meet at a common point with the budget line at the competitive equilibrium

point. This ensures that there is no excess demand or supply when agents maximize their

utility inside their budget sets. A unique feature of the Walrasian equilibrium is that if a

price vector (p∗(a), p∗(b)) is a Walrsian equilibrium then so is (αp∗(a), αp∗(b)) for any α > 0

- this is because it will induce the same budget line. Though Figure 3 depicts a Walrasian

equilibrium in the interior of the Edgeworth box, it is possible to have a Walrasian equilib-

rium on the boundary of the Edgeworth box, in which case, the indifference curves may not

be meeting at a unique point.

1.2.1 An Example

We consider an Edgeworth box economy (two agents and two commodities) where the utility

function of each agent i ∈ {1, 2} is given by

ui(x(i, a), x(i, b)) := [x(i, a)]α[x(i, b)]1−α.
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Budget Line

Agent 2’s origin
w(2,a)

w(1,b)

w^0(1,a)

w^0(1,b)
w^0(2,b)

w^0(2,a)

Agent 1’s origin

w(1,a)

w(2,b)

Figure 3: Walrasian Equilibrium in the Edgeworth Box

Further, the initial endowments are given as follows:

ω0(1, a) = 1, ω0(1, b) = 2; ω0(2, a) = 2, ω0(2, b) = 1.

At any price p ≡ (p(a), p(b)), the budget line for agent 1 is given by

p(a)x(1, a) + p(b)x(1, b) = p(a) + 2p(b).

Using this we get

x(1, b) = [1 − x(1, a)]
p(a)

p(b)
+ 2.

Let p(a)
p(b)

= β. Substituting in u1, we get

u1(x(1, a), x(1, b)) = [x(1, a)]α[(1 − x(1, a))β + 2]1−α.

For maximum, we get the first order condition as

α[x(1, a)]α−1[(1 − x(1, a))β + 2]1−α = (1 − α)β[x(1, a)]α[(1 − x(1, a))β + 2]−α.

Simplifying, we get
α

1 − α
= β

x(1, a)

(1 − x(1, a))β + 2
.

Then, we can simplify the above expression to get

x(1, a) =
α

β
(2 + β).
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Similarly, for agent 2, we have

p(a)x(2, a) + p(b)x(2, b) = 2p(a) + p(b).

Hence, we get

x(2, b) = [2 − x(2, a)]β + 1.

Substituting this in u2, we get

u2(x(2, a), x(2, b)) = [x(2, a)]α[(2 − x(2, a))β + 1]1−α.

For maximum, we get the first order condition as

α[x(2, a)]α−1[(2 − x(2, a))β + 1]1−α = β(1 − α)[x(2, a)]α[(2 − x(2, a))β + 1]−α.

Simplifying, we get
α

1 − α
= β

x(2, a)

(2 − x(2, a))β + 1
.

This gives us

x(2, a) =
α

β
(1 + 2β).

Now, using the fact that x(1, a) + x(2, a) = 3, we get that α3(1 + β) = 3β. This implies

that β = α
1−α

. So, any price with p(a)
p(b)

= α
1−α

is a Walrasian equilibrium price. The allocation

is given by x(1, a) = α
β
(2 + β) = 2 − α and x(2, a) = 3 − x(1, a) = 1 + α. Similarly,

x(1, b) = 2 + (1 − x(1, a))β = 2 − α and x(2, b) = 1 + α.

1.2.2 Non-existence of Walrasian Equilibria

It may so happen that a Walrasian equilibrium fails to exist. Consider a situation where

the endowment lies at the boundary. For instance, agent 1 has all the commodity b and

agent 2 has all the commodity a. Agent 2 only desires commodity a. Agent 1 strictly prefers

receiving commodity a. In particular, the indifference curve of agent 2 has a slope of infinity

at the end endowment point.

This is shown in Figure 4. Notice that the endowment point is the north-east corner of

the Edgeworth box. So, the budget lines consist of all lines passing through this corner point.

The indifference curves of agent 2 consist of all vertical lines in the Edgeworth box. The

indifference curves of agent 1 is shown in Figure 4. The only budget line that is tangent to

both the indifference curves is the y-axis of agent 1. This implies that p(a)
p(b)

is infinity, which

is not possible.
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w^0(1,b)

Agent 2’s origin
w(2,a)

w(1,b)

Agent 1’s origin

w(1,a)

w(2,b)

Indifference curves of agent 2

Indifference curves of agent 1

w^0(2,a)

Figure 4: Non-existence of Walrasian Equilibrium in the Edgeworth Box

1.2.3 Pareto Optimality

We will be concerned with the Pareto optimality of Walrasian equilibrium outcome. An

outcome is Pareto optimal if there is no alternative feasible outcome in the Edgeworth box

that makes every individual at least as well of as the original outcome and at least one agent

strictly better off than the original outcome.

Definition 2 An allocation x ≡ ((x(1, a), x(1, b)), (x(2, a), x(2, b)) in the Edgeworth box is

Pareto optimal if there is no other allocation x′ ≡ ((x′(1, a), x′(1, b)), (x′(2, a), x′(2, b)) such

that x′
i �i xi for all i ∈ N and x′

i ≻i xi for some i ∈ N .

The reason we will be interested in Pareto optimal points is because the initial endowment

may not be Pareto optimal. For instance consider the economy in the Edgeworth box of

Figure 5. The initial endowment is not Pareto optimal because if we choose any point in the

dashed region shown, both the agents become strictly better off. This is one of the reasons

we would like to redistribute the endowments from a welfare improving point of view.

It is easy to see that if indifference curves of two agents meet at a unique point, then

moving away from that point will necessarily make one agent worse off. Hence, such a point

must be Pareto optimal. Since a Walrasian equilibrium consists of such a point on the budget

line, it is clear that the outcome of every Walrasian equilibrium is Pareto optimal. This is

called the first fundamental theorem of welfare economics.

Interestingly, a (partial) converse of this statement is true. Under additional convexity

assumption and the fact that the planner can undertake transfers between agents, every
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Pareto improving set

Agent 2’s origin
w(2,a)

w(1,b)

w^0(1,a)

w^0(1,b)
w^0(2,b)

w^0(2,a)

Agent 1’s origin

w(1,a)

w(2,b)

Figure 5: Pareto improvement from the initial endowment

Pareto optimal outcome can be achieved by some Walrasian equilibrium. This is known as

the second fundamental theorem of welfare economics.

1.3 The One-Producer One-Consumer Economy

We now move away from the pure exchange economy and study equilibrium in a setting

where there is a producer or a firm and a consumer. There are two commodities in the

economy - commodity 1 is a leisure commodity and the other is a consumption good.

The consumer has continuous, convex, and strongly monotone preferences � defined over

his leisure x1 and the consumption good x2. The firm uses the leisure of the consumer to

produce the consumption good using a strictly concave production function f . Firm takes

price as given and tries to maximize its profit. If it uses z amount of labor (leisure of

consumer) with price (wage) w and market price of consumption good is p, then the net

profit is

pf(z) − wz.

Since f is strictly concave, this will have a unique solution. We denote the level of leisure

at the optimum as z(p, w) and the denote q(p, w) := f(z(p, w)) and π(p, w) := pq(p, w) −

wz(p, w).

The consumer is assumed to own the firm. So, whatever profit π(p, w) is derived by

maximizing the firm utility is consumed by the consumer. Consumer also derives utility

from the wage it receives. Suppose the consumer has a total supply of L̄ units of leisure

10



and is left with x1 after spending the rest on the firm, then it gets a wage of w(L̄ − x1).

The consumer buys the commodity produced by the firm. Suppose it buys x2 units, then it

spends px2. So, the budget constraint of the consumer is given by

px2 ≤ w(L̄ − x1) + π(p, w).

The consumer maximizes its utility by using a utility function u(x1, x2) that represents the

preference ordering � under the budget constraint. Given (p, w) denote the value of the x1

at the maximum as x1(p, w) and that of x2 as x2(p, w).

A Walrasian equilibrium requires that if (p, w) is a Walrasian equilibrium prices than

x1(p, w) = L̄− z(p, w) and x2(p, w) = q(p, w). Note that the two indifference curves have to

touch each other and we need to find (p, w) that draws a tangent to both these indifference

curves.

1.4 A Formal Treatment of Exchange Economy

There will be two types of agents in the economy - consumers and firms. The set of consumers

is denoted by I = {1, . . . , I}. There are L commodities, and the set of commodities is denoted

by L itself. Each consumer i has a consumption set, denoted by Xi ⊆ R
L and a (complete

and transitive) preference relation �i on Xi.

The set of firms is denoted by J = {1, . . . , J} and each firm j ∈ J is characterized by a

production set or technology set Yj ⊆ R
L. We assume that Yj is closed and non-empty for

each firm j.

The initial endowments of commodities are given by ω̄ ∈ R
L, where ω̄k indicates the

aggregate endowment of commodity k ∈ L. Consumer i is endowed with a vector ωi ∈ R
L

of commodities. Hence, for any k ∈ L, ω̄k =
∑

i∈N ωik.

An economy is a pure exchange economy if there are no firms and consumers are just

redistributing their endowments.

Definition 3 An allocation (x, y) = (x1, . . . , xI , y1, . . . , yJ) is a specification of a consump-

tion vector xi ∈ Xi for each consumer i ∈ I and a production vector yj ∈ Yj for each firm

j ∈ J . An allocation (x, y) is feasible if
∑

i∈I xil = ω̄l +
∑

j∈J ylj for every commodity l ∈ L.

We denote by A the set of all feasible allocations.

Definition 4 A feasible allocation (x, y) is Pareto optimal if there is no other allocation

(x′, y′) ∈ A such that x′
i �i xi for all i ∈ I and x′

i ≻i xi for some i ∈ I.
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Note that an outcome which gives all endowments to one agent is Pareto optimal. Hence,

Pareto optimality does not seek any fairness of allocation.

We will assume that consumers own firms. In particular, θij ∈ [0, 1] indicates the owner-

ship or share of consumer i of firm j. Formally, consumer i is endowed with a vector ωi ∈ R
L

of commodities and a share θij ∈ [0, 1] of firm j. Thus
∑

i∈I θij = 1 for each j ∈ J and
∑

i∈I ωil = ω̄l. Such an economy will be referred to as a private ownership economy.

Definition 5 An allocation (x∗, y∗) and a price vector p ≡ (p1, . . . , pL) constitute a Wal-

rasian equilibrium if

1. for every j ∈ J ,
∑

l∈L plylj ≤
∑

l∈L ply
∗
lj for all yj ∈ Yj,

2. for every i ∈ I, x∗
i is maximal with respect to �i in the budget set

{xi ∈ Xi :
∑

l∈L

plxil ≤
∑

l∈L

plωil +
∑

j∈J

θij

∑

l∈L

ply
∗
lj},

3.
∑

i∈N x∗
il = ω̄l +

∑

j∈J y∗
lj for all l ∈ L.

The three conditions say the following. The first condition says that firms maximize

profit given the prices. The second condition says that consumers maximize utility subject

to their budget constraint. The final condition says that the market must clear.

Another general way of defining budget constraint is to be able to define the wealth

level of consumers. Now, the wealth levels are determined by initial endowment and shares

of firms. But if the planner had power to redistribute wealth using transfers, then that

will allow greater flexibility to achieve an equilibrium. We call such equilibrium a price

equilibrium with transfers.

Definition 6 An allocation (x∗, y∗) and a price vector p = (p1, . . . , pL) are a price equilib-

rium with transfers if there is an assignment of wealth levels (w1, . . . , wI) with
∑

i∈N wi =
∑

l∈L plω̄l +
∑

j∈J

∑

l∈L ply
∗
lj such that

1. for every j ∈ J ,
∑

l∈L plylj ≤
∑

l∈L ply
∗
lj for all yj ∈ Yj,

2. for every i ∈ I, x∗
i is maximal with respect to �i in the budget set

{xi ∈ Xi :
∑

l∈L

plxil ≤ wi},

3.
∑

i∈N x∗
il = ω̄l +

∑

j∈J y∗
lj for all l ∈ L.

Notice that a Walrasian equilibrium is a price equilibrium with transfers where the wealth

level of consumer i is determined as wi =
∑

l∈L plωil +
∑

j∈J θij

∑

l∈L plylj at price vector p.

Effectively, what it does is that it shifts the budget line to any desired location.
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1.4.1 The First and Second Fundamental Theorems of Welfare Economics

The first fundamental theorem specifies the exact conditions required to ensure that every

price equilibrium with transfers, and hence, Walrasian equilibrium, is Pareto optimal. We

need a mild technical condition on preferences.

Definition 7 The preference relation �i on Xi is locally nonsatiated if for every xi ∈ Xi

and every ǫ > 0, there is an x′
i ∈ Xi such that ||x′

i − xi|| ≤ ǫ and x′
i ≻i xi.

Note that if �i is continous and Xi is compact, then �i will have a maximum point, and can-

not be locally nonsatiated. Hence, any closed Xi with a continuous �i must be unbounded.

Theorem 1 Suppose preferences are locally nonsatiated. If (x∗, y∗, p) is a price equilibrium

with transfers, then the allocation (x∗, y∗) is Pareto optimal.

Proof : Suppose that (x∗, y∗, p) is a price equilibrium with transfers. Assume for contradic-

tion that there is an allocation (x, y) such that xi �i x∗
i for all i ∈ I and xi ≻i x∗

i for some

i ∈ I. Consider any xi �i x∗
i . If

∑

l∈L plxil < wi, then we can choose x′′
i arbitrarily close to

xi such that
∑

l∈L plx
′′
il < wi and by non-satiation x′′

i ≻i xi � x∗
i . But this will contradict

maximality of x∗
i . Hence,

∑

l∈L plxil ≥ wi. Further, if xi ≻i x∗
i , by maximality of x∗

i , xi

cannot be in the budget set, i.e.,
∑

l∈L plxil > wi.

Hence, we must have
∑

l∈L plxil ≥ wi for all i ∈ I and
∑

l∈L plxil > wi for some i ∈ I.

Hence,
∑

i∈I

∑

l∈L

plxil >
∑

i∈I

wi =
∑

l∈L

plω̄l +
∑

j∈J

∑

l∈L

ply
∗
lj.

Using the fact that, for every j ∈ J ,
∑

l∈L plylj ≤
∑

l∈L ply
∗
lj, we get

∑

l∈L

plω̄l +
∑

j∈J

∑

l∈L

ply
∗
lj ≥

∑

l∈L

plω̄l +
∑

j∈J

∑

l∈L

plylj.

Hence, we get that
∑

i∈I

∑

l∈L

plxil >
∑

l∈L

plω̄l +
∑

j∈J

∑

l∈L

plylj.

But note that x1, . . . , xI is feasible, i.e.,
∑

i∈I xil = ω̄l +
∑

j∈J ylj for each l ∈ L. Hence,
∑

l∈L

∑

i∈I plxil =
∑

l∈L plω̄l +
∑

l∈L pl

∑

j∈J ylj. This is a contradiction. �

Intuitively, the proof establishes that if there is some allocation that dominates an equi-

librium outcome then its cost must be high enough to make it infeasible because of nonsa-

tiation. The theorem may fail if local nonsatiation does not hold. Figure 6 shows a band of

regions where consumer 1 is indifferent. It shown a point of Walrasian equilibrium. But any
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Not a Pareto

Agent 2’s origin
w(2,a)

w(1,b)

Agent 1’s origin

w(1,a)

w(2,b)

optimal point

Budget Line

w^0(1,a)

w^0(2,a)

w^0(2,b)
w^0(1,b)

indifferent here

Consumer 1 is 

Figure 6: Failure of first fundamental theorem of welfare economics

point inside the band of indifferent of consumer 1 makes consumer 2 better off. Hence, the

equilibrium point is not Pareto optimal.

One can replace local nonsatiation by other assumptions on preferences. For instance, if

Xi is non-empty and convex and ≻i is strictly convex for all i ∈ I, there will be a unique

“satiation” point and preferences will be locally nonsatiated everywhere else. In that case,

the Theorem 1 continues to hold (check this).

The second welfare theorem is more subtle and requires additional technical conditions.

Theorem 2 Suppose Xi is convex and �i is convex and locally nosatiated for every i ∈ I

and Yj is convex for every j ∈ J . Then, if (x∗, y∗) is Pareto optimal, there exists a price

vector p such that (x∗, y∗, p) is a price equilibrium with transfers.

The proof is more involved using separating hyperplane arguments and is skipped. The

second welfare theorem assures us that using Walrasian equilibrium, we can ensure any Pareto

optimal allocation. However, it assumes that the prices can be discovered and consumers

and firms are price-takers. Also, notice the amount of information required to know the set

of Pareto optimal allocations and the supporting prices. Further, it requires distribution of

wealth levels.

We give an intuitive idea using the pure exchange economy of an Edgeworth box to

illustrate why the proof works. Figure 7 shows an Edgeworth economy with a Walrasian

equilibrium point. It then shows another Pareto optimal point that is not a Walrasian

equilibrium (since the budget line passing through it will not be tangent to the indifference

curves). Hence, the idea behind the second welfare theorem is to shift the budget line.
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optimal point

Agent 2’s origin
w(2,a)

w(1,b)

w^0(1,a)

w^0(1,b)
w^0(2,b)

w^0(2,a)

Agent 1’s origin

w(1,a)

w(2,b)

Budget Line

Budget line
shifted

An equivalent
endowment shift

A Pareto

Figure 7: Illustration of second fundamental theorem of welfare economics

One way to do that is to redistribute the endowments. But that is not always feasible.

For instance, a commodity may be something like leisure, which cannot be redistributed.

Further, if commodity can be redistributed, then trivially, we can directly go to the Pareto

optimal point. So, we undertake wealth transfers. By shifting the budget line by adding and

subtracting transfers of equal amount, we achieve the desired shift. Now, the new budget

line, which is parallel to the old budget line must pass through the desired Pareto optimal

point. This is the idea behind the proof.

1.4.2 Comments on Existence Results

We will now comment on the issue of existence of Walrasian equilibrium. The issue is more

technical. However, under reasonable assumption on preferences Walrasian equilibrium can

be guaranteed to exist. In the pure exchange economy, for instance, if the endowments

are positive and every consumer has continuous, strictly convex, and strongly monotone

preferences, then a Walrasian equilibrium exists. In general, one can describe the existence

problem to finding a feasible solution to a system of inequalities (or equivalently finding a

fixed point).

1.5 Pareto Optimality and Social Welfare Optima

We now discuss the relationship between the Pareto optimality and maximization of a social

welfare function. Given a familty ui(·) of continuous utility functions representing preferences
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�i of the consumers, we define the term utility possibility set as

U := {(u1, . . . , uI) ∈ R
I : there is a feasible allocation (x, y) such that ui ≤ ui(xi) ∀ i ∈ I}.

Notice that by definition of Pareto optimality, the utility values of a Pareto optimal allocation

must belong to the boundary of the utility possibility set. In particular, the Pareto frontier,

UP, is defined as follows.

UP := {(u1, . . . , uI) ∈ U : there is no (u′
1, . . . , u

′
I) ∈ U such that u′

i ≥ ui ∀ i ∈ I, u′
i > ui for some i ∈ I}.

The following lemma is intuitive.

Lemma 1 A feasible allocation (x, y) = (x1, . . . , xI , y1, . . . , yJ) is a Pareto optimal if and

only if (u1(x1), . . . , uI(xI)) ∈ UP .

Proof : Suppose (x, y) is Pareto optimal. Then, by definition, (u1(x1), . . . , uI(xI)) ∈ U .

Since (x, y) is Pareto optimal, there is no feasible allocation (x′, y′) such that ui(x
′
i) ≥ ui(xi)

for all i ∈ I and ui(x
′
i) > ui(xi) for some i ∈ I. Hence, there is no utility possibility vector

(u′
1, . . . , u

′
I) such that u′

i ≥ ui(xi) for all i ∈ I and u′
i > ui(xi) for some i ∈ I. Hence,

(u1(x1), . . . , uI(xI)) ∈ UP .

For the converse, if (u1(x1), . . . , uI(xI)) ∈ UP and (x, y) is not Pareto optimal, then we

can find a feasible allocation (x′, y′) such that ui(x
′
i) ≥ ui(xi) for all i ∈ I and ui(x

′
i) > ui(xi)

for some i ∈ I. This contradicts the fact (u1(x1), . . . , uI(xI)) ∈ UP . �

We will require the utility possibility sets to be convex. This can be ensured by assuming

that Xi and Yjs are all convex and utility functions are concave.

Suppose now the distributional principles can be summarized in a social welfare func-

tion W (u1, . . . , uI) assiging social utility values to the various possible utility vectors. A

particular linear form of social welfare function is the weighted utilitarian social welfare

function. Define,

W (u1, . . . , uI) :=
∑

i∈I

λiui,

for some weights λ1, . . . , λI ≥ 0. In vector form, we write this as W (u) = λ · u. A weighted

utilitarian social welfare function measures social welfare by solving

max
u∈U

W (u).

We show that Pareto optimilaity is somewhat equivalent to weighted utilitarianism.

Lemma 2 If (u∗
1, . . . , u

∗
I) is a solution to weighted utilitarianism social welfare function with

λi > 0 for all i ∈ I, then u∗ ∈ UP (a Pareto optimal point). Further, if U is convex, then

for any ū ∈ UP , there are weights λ1, . . . , λI ≥ 0, not all equal to zero, such that λ · ū ≥ λ ·u

for all u ∈ U .
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Proof : If (u∗
1, . . . , u

∗
I) is a solution to weighted utilitarianism social welfare function with

λi > 0 for all i ∈ I and u∗ /∈ UP , then there will be some u ∈ U such that ui ≥ u∗
i for

all i ∈ I and ui > u∗
i for some i ∈ I. But then,

∑

i∈I λiui >
∑

i∈I λiu
∗
i since λi ≥ 0 for all

i ∈ I with strict inequality holding for at least one i. Hence, it will violate social welfare

optimality of u∗.

For the other direction, if ū ∈ UP , then ū is on the boundary of U . Since U is convex,

by the supporting hyperplane theorem, there there are weights λ1, . . . , λI , not all equal to

zero, such that λ · ū ≥ λ · u for all u ∈ U . Also, each λi ≥ 0, since otherwise we can choose

u ∈ U with ui < 0 but arbitrarily small so that λ · u > λ · ū, a contradiction. �

1.6 Discussions

We conclude by discussing some practical limitations of these results. First, this theory

assumes that consumers are price-takers. In other words, planner is able to enforce the

prices needed to support a price equilibrium. Second, it is very difficult to implement the

second welfare theorem. This is because it not only requires all the information to compute

the allocation, but also the supporting prices and transfers. Such information is extremely

unlikely to be available. Finally, even if the authority has all the information, enforcing

wealth transfers is a difficult task. Because of these informational and enforciablity issues,

these fundamental results remain a benchmark result.

2 Choice Under Uncertainty

Based on Chapters 8 and 9 of Rubinstein’s book and Chapters 6 of MWG.

In the traditional choice theory, an agent chooses over some set of outcomes. Usually, an

agent chooses a certain action that leads to a particular outcome. The distinction between

action and outcome is not necessary if each action leads to a deterministic outcome. However,

in many scenarios, an action leads to a stochastic outcome. The choice of an action is thus a

choice of a lottery, where each deterministic outcome is a prize. A rational agent must now

have preferences over such lotteries.

2.1 Lotteries

Let Z be a set of finite outcomes (prizes/consequences). We denote the cardinality of Z as

n. A lottery is a probability measure (distribution) over Z. In other words, a lottery p,
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assigns to each outcome z ∈ Z a real number in p(z) ∈ [0, 1] such that
∑

z∈Z p(z) = 1. For

every z ∈ Z, p(z) is the (objective) probability of outcome z or getting the prize z.

The degenerate lottery where a particular outcome z ∈ Z gets probability 1 will be

denoted by [z], i.e., [z](z) = 1. We will denote the space of all lotteries by L(Z). We will

also be interested in mixtures of two lotteries. Let p and q be two lotteries in L(Z). If we

pick any α ∈ [0, 1], then the lottery produced by taking lottery p with probability α and

lottery q with probability (1− α) will be denoted by αp⊕ (1− α)q. This lottery assigns the

following probability to any outcome z ∈ Z:

αp(z) + (1 − α)q(z).

Similarly, we can talk about mixing many lotteries. In particular, let p1, . . . , pk be k lotteries

and choose α1, . . . , αk ∈ [0, 1] such that
∑k

j=1 αj = 1. Then, the lottery

α1p
1 ⊕ α2p

2 ⊕ . . . ⊕ αkp
k

is called a compound lottery.

Compound lotteries can be viewed as a two-stage decision making process. Consider a

compound lottery αp⊕ (1− α)q. We can view this as, first randomizing with α and (1− α)

about which lottery to choose, and then choosing one of the outcomes using the chosen

lottery.

The space of lotteries L(Z) can be identified by a simplex, where the corner points

correspond to the degenerate lotteries where all the probability is on one of the outcomes.

In R
n, L(Z) can be described by the set {x ∈ R

n
+ :

∑

i∈N xi = 1}. Hence, L(Z) lies in a

lower dimensional set. We are interested in preferences over L(Z) that are consistent with

some decision making where a choice is made from lotteries.

Figure 8 shows how L(Z) can be represented by a simplex if n = 3. It also shows the

idea of a compound lottery. It is clear that the set of lotteries form a convex set, and hence,

a compound lottery is just a convex combination of some lotteries.

2.2 Preference over Lotteries

We will like to define preferences over lotteries that satisfy some fundamental properties.

This preference must be such that it must explain some choice behavior. There are many

plausible ways to define preferences over lotteries. We give some examples. To understand

the examples better, consider Z = {z1, z2, z3} and two lotteries p and q. Suppose

p ≡ 0.5[z1] ⊕ 0.1[z2] ⊕ 0.4[z3]

q ≡ 0.2[z1] ⊕ 0.35[z2] ⊕ 0.45[z3].
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\alpha p + (1−\alpha)q

z_1

z_2
z_3

p

q

Figure 8: Simplex and compound lotteries

p q

z1 0.5 0.2

z2 0.1 0.35

z3 0.4 0.45

Table 1: Two Lotteries

We can always represent such lotteries as column vectors. Table 1 shows p and q in this

format.

E1 Most Likelihood. The decision maker (DM) weakly prefers lottery p to q if and

only if maxz∈Z p(z) ≥ maxz∈Z q(z). In Table 1, we see that maxz∈Z p(z) = 0.5 >

maxz∈Z q(z) = 0.45. Hence, p ≻ q.

E2 Size of Positive Support. The DM weakly prefers lottery p to q if and only if the

number of outcomes with positive probability is at least as large in p as in q. In Table

1, all the outcomes have positive probability. So, p ∼ q.

E3 Good Outcomes. The DM partitions Z into good outcomes G and bad outcomes

B. It weakly prefers lottery p to q if and only if
∑

z∈G p(z) ≥
∑

z∈G q(z). It compares

the total probability of good outcomes. In Table 1, suppose that G = {z1, z2}. Then,

we see that
∑

z∈G p(z) = 0.6 and
∑

z∈G q(z) = 0.55. So, p ≻ q.

E4 Worst Case. The DM assigns a utility function to the set of outcomes - u : Z → R.

It then weakly prefers lottery p to q if and only if minz:p(z)>0 u(z) ≥ minz:q(z)>0 u(z).

So, it compares the worst outcome having positive probability. Suppose, in Table 1,

we assign a utility function u(z1) = 1, u(z2) = 0.5, u(z3) = 0. Then minz:p(z)>0 u(z) =

0 = minz:q(z)>0 u(z). Hence, p ∼ q.
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E5 Most Likely Comparison. The DM has a preference relation ≻ over the outcomes

Z. Given two lotteries, p and q, it considers the highest probability outcomes (breaking

ties in some way) in both of them. It then prefers one lottery over another if the highest

probability outcome in one is better than the other according to ≻. In Table 1, suppose

that z3 ≻ z2 ≻ z1. Now, the highest probability outcome in p is z1 and that in q is z3.

Since z3 ≻ z1, we conclude that q ≻ p.

E6 Lexicographic Preferences. The DM orders the outcomes Z as z1, z2, . . . , zn.

For any pair of lotteries p and q, it first considers p(z1) and q(z1), and decides p weakly

better than q if and only if p(z1) ≥ q(z1). If they are the same, it compares p(z2) and

q(z2), and so on. In Table 1, suppose that the lexicographic preference is z2 better

than z1 better than z3. Then, p(z2) < q(z2). Hence, q ≻ p.

E7 Expected Utility. The DM assigns a utility function u : Z → R to outcomes. For

any pair of lotteries p and q it weakly prefers p over q if and only if
∑

z∈Z U(z)p(z) ≥
∑

z∈Z u(z)q(z). Suppose, in Table 1, we assign a utility function u(z1) = 1, u(z2) =

0, u(z3) = 0.5. Then, the expected utility from p is 0.7 and that from q is 0.425. So,

p ≻ q.

There are infinitely many rich class of interesting preferences that can be defined. For

instance, we can combine these examples to form even more interesting class of preferences.

This motivates us to first define a class of properties that we would like as desirable in

preferences. These will help us pin down a particular class of preferences. This is the usual

philosophy in the axiomatic analysis.

2.3 Expected Utility Theorem

In this section, we formally introduce two appealing properties that any choice over lotter-

ies must satisfy and show that the only preference consistent with these properties is the

expected utility preferences.

We will denote a typical preference relation over L(Z) as �. We will assume that this

relation is complete and transitive. We will denote the symmetric part of � as ∼ (to denote

indifference) and the anti-symmetric part as ≻. We now impose two properties (axioms) on

�.

The first axiom that we impose is continuity.

Definition 8 The preference relation � on L(Z) is continuous if for any p, q, r ∈ L(Z)

with p � q � r, we have α ∈ [0, 1] such that

αp ⊕ (1 − α)r ∼ q.
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The continuity is similar to the continuity of preference relations usually assumed 2. It says

that if there are two lotteries p and r such that p � r, then for any lottery q between p and

r in � we can find a compound lottery of p and r that is similar to q.

Another way to interpret the continuity axiom is that if we have a lottery p and we go

towards a worse lottery r along the line joining p and r, then there will come a point where

we will be equivalent to q, where q is a lottery between p and r.

The lexicographic preferences do not satisfy continuity. To see this, suppose there are

three outcomes - (z1)“good car trip”, (z2) “staying at home”, and (z3): “death in a car trip”.

Further, suppose that the degenerate lotteries have a ranking [z1] ≻ [z2] ≻ [z3]. According

to continuity, there is some mixture of [z1] and [z3] that will be indifferent to [z2]. In other

words, there exists α ∈ [0, 1] such that

α[z1] ⊕ (1 − α)[z3] ∼ [z2].

But if the agent has lexicographic preference (with z1 preferred to z2 preferred to z3), then

he will always strictly prefer any mixture of [z1] and [z3] to the degenerate lottery [z2].

The next axiom we impose is independence.

Definition 9 The preference relation � on L(Z) satisfies independence if for any p, q, r ∈

L(Z) and α ∈ [0, 1] we have

p � q if and only if αp ⊕ (1 − α)r � αq ⊕ (1 − α)r.

The independence axiom is an extremely important and strong axiom. It says that if we mix

two lotteries with a third one, the ranking of the resulting compound lotteries just depends

on the ranking of the original two lotteries, i.e., it is independent of which lottery it is mixed

with.

To understand it a bit better, consider three lotteries p, q, r and assume that p � q. The

DM is given two compound lotteries. A coin is tossed, if it is heads, then p is chosen and r

is chosen otherwise. This lottery is 1
2
p ⊕ 1

2
r. Another lottery is, if the coin comes up heads,

then q is chosen and r is chosen otherwise. So, this lottery is 1
2
q ⊕ 1

2
r.

Observe that conditional on heads, the DM likes 1
2
p ⊕ 1

2
r as much as 1

2
q ⊕ 1

2
r. Also,

conditional on tails, the DM is indifferent between 1
2
p ⊕ 1

2
r and 1

2
q ⊕ 1

2
r. The independence

axiom says that unconditionally, the DM should like 1
2
p ⊕ 1

2
r as much as 1

2
q ⊕ 1

2
r.

Note that such an axiom is traditional (deterministic) choice theory has no counterpart.

For instance, it may be too strong to say that if the DM likes good a to good b, then it

should also like the bundle {a, c} to {b, c}. The difference between the deterministic and

2 Different authors define continuity differently, but they are almost the same, and we can use Debreu’s

theorem to conclude that a continuous utility representation is possible.

21



stochastic case is that in the deterministic case, the bundle is actually consumed, whereas in

the stochastic case, the realization is consumed.

Theorem 3 A complete and transitive binary relation � on L(Z) satisfies continuity and

independence if and only if it has an expected utility form, i.e., there exists a map u : Z → R

such that p � q if and only if
∑

z∈Z u(z)p(z) ≥
∑

z∈Z u(z)q(z).

Proof : The expected utility form satisfies these two axioms is easy to check (and left as an

exercise). We do the other direction. Suppose � is a complete and transitive binary relation

on L(Z) satisfying continuity and independence. We do the proof in various steps.

Step 1. We now do an important step. Pick any 1 ≥ α > β ≥ 0 and any p ≻ q. We show

that

αp ⊕ (1 − α)q ≻ βp ⊕ (1 − β)q.

To see this, notice that if α = 1, then this is equivalent to showing p = βp ⊕ (1 − β)p ≻

βp ⊕ (1 − β)q, which is true due to independence. Similarly, if β = 0, the claim is true due

to independence. We assume that 1 > α > β > 0. Then,

αp ⊕ (1 − α)q =
β

α

[

αp ⊕ (1 − α)q
]

⊕ (1 −
β

α
)
[

αp ⊕ (1 − α)q
]

(Applying independence twice)

≻
β

α

[

αp ⊕ (1 − α)q
]

⊕ (1 −
β

α
)
[

αq ⊕ (1 − α)q
]

=
β

α

[

αp ⊕ (1 − α)q
]

⊕ (1 −
β

α
)q

= βp ⊕ (1 − β)q.

Step 2. Now, since � satisfies continuity, we know that it has a continuous utility represen-

tation, and since L(Z) is compact, there exists a maximal and a minimal point of this utility

function (and, hence, of �). Let p̄ and p be the best and the worst lottery according to �.

If p̄ ∼ p, then the result follows immediately since all the lotteries are equivalent, and we

can choose a constant map u : Z → [0, 1]. So, assume p̄ ≻ p. Then, for any p, by continuity,

there exists αp ∈ [0, 1] such that αpp̄⊕ (1−αp)p ∼ p. By our previous step, this αp is unique.

Step 3. Next, we show that U(p) = αp represents the preference relation �. To show this,

we pick p, q ∈ L(Z). We know that p � q if and only if αpp̄⊕ (1− αp)p � αqp̄⊕ (1− αq)p if

and only αp ≥ αq (because of Step 1). Hence, the claim follows.
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Step 4. Next, we show that U is linear, i.e., for any β ∈ [0, 1] and p, q ∈ L(Z), we have

U(βp ⊕ (1 − β)q) = βU(p) + (1 − β)U(q) = βαp + (1 − β)αq. First, note that, by definition

p ∼ αp(p)p̄ ⊕ (1 − αp)p and q ∼ αq q̄ ⊕ (1 − αq)q. Applying independence twice, we get

βp ⊕ (1 − β)q ∼ β
[

αpp̄ ⊕ (1 − αp)p
]

⊕ (1 − β)q

∼ β
[

αpp̄ ⊕ (1 − αp)p
]

⊕ (1 − β)
[

αqp̄ ⊕ (1 − αq)p
]

.

But algebraically, the last lottery is equivalent to

[

βαp + (1 − β)αq

]

p̄ ⊕
[

1 − βαp − (1 − β)αq

]

p.

By definition, the utility representation of this lottery is βαp + (1 − β)αq. Hence, U(βp ⊕

(1 − β)q) = βU(p) + (1 − β)U(q).

Step 5. Finally, we show that if U is linear, then it is in expected utility form. To see

this, note that any lottery p is a convex combination of degenerate lotteries [z1], [z2], . . . , [zn].

Hence, we can write

p ∼ p(z1)[z1] ⊕ . . . ⊕ p(zn)[zn].

By linearity, U(p) =
∑

z∈Z p(z)U([z]). Now, we can define the map u(z) = U([z]) for all z ∈

Z to see that p � q if and only if U(p) ≥ U(q) if and only if
∑

z∈Z p(z)u(z) ≥
∑

z∈Z q(z)u(z).

Hence, it is in expected utility form. �

Intuitively, the proof establishes that the indifference curves of the preference relation �

is linear. To see this, if p ∼ q, then, by independence p ∼ αp ⊕ (1 − α)q ∼ q. The crux of

the argument is in establishing this formally.

The expected utility form is also known as the von-Neumann-Morgenstern (vN-M) ex-

pected utility representation. The natural question is whether the expected utility repre-

sentation is unique. The next result establishes that it is unique upto a positive affine

transformation.

Proposition 1 Suppose U is an expected utility representation of � over L(Z). Then, Ũ

is another expected utility representation of � over L(Z) if and only if there exists β > 0

and γ such that Ũ(p) = βU(p) + γ.

Proof : If U represents � over L(Z), then clearly Ũ(p) = βU(p) + γ for all p ∈ L(Z)

represents � if β > 0. For the other direction, let p̄ and p be the best and worst lotteries

according to U . If p̄ ∼ p, then we can choose β = Ũ(p)
U(p)

for any p ∈ L(Z) and γ = 0, and we
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will be done. So, assume that p̄ ≻ p. Now, define,

β :=
Ũ(p̄) − Ũ(p)

U(p̄) − U(p)

γ := Ũ(p̄) − βU(p̄).

Note that since U(p̄) > U(p) and Ũ(p̄) > Ũ(p), we have β > 0. Further, note that Ũ(p̄) =

βU(p̄) + γ and Ũ(p) = βU(p) + γ.

Now, by continuity, for every p ∈ L(Z), there is a αp such that p ∼ αpp̄ ⊕ (1 − αp)p. By

linearity of expected utility form,

Ũ(p) = αpŨ(p̄) + (1 − αp)Ũ(p)

= αp(βU(p̄) + γ) + (1 − αp)(βU(p) + γ)

= β(αpU(p̄)) + (1 − αp)U(p)) + γ

= βU(p) + γ.

This establishes the claim. �

The consequence of Proposition 1 is the following. Consider any U that is an expected

utility representation of �. Let u : Z → R be the corresponding map that gives the U

representation. Now, we define ū(z) = u(z) − minz′∈Z u(z′) for all z ∈ Z. Note that

minz∈Z ū(z) = 0. Then, we define ũ(z) = 1
maxz′∈Z ū(z′)

ū(z) for all z ∈ Z. Notice that

minz∈Z ũ(z) = 0 and maxz∈Z ũ(z) = 1. Now, define Ũ(p) =
∑

z∈Z p(z)ũ(z) for all p ∈

L(Z). By Proposition 1, since U represents �, Ũ also represents �. As a result, there is a

utility representation where the utility of the highest degenerate lottery is 1 and the lowest

degenerate lottery is zero.

2.4 Drawbacks of Expected Utility Theory

Expected utility theorem is probably the most fundamental result in microeconomic theory.

It has its own shortcomings - the independence axiom is too strong in many contexts. We

present below some instances where the theorem fails to explain the choice behavior. A

nice feature of expected utility theory is that majority of axiomatic choice behavior can be

experimentally tested. Below, we document some well known experiments that have shown

inconsistency with the axioms of expected utility theory.

1. Allais Paradox. Consider two (compound) lotteries:

p1 := 0.25[3] ⊕ 0.75[0], p2 := 0.2[4] ⊕ 0.8[0].
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and two more compound lotteries:

q1 := 1[3], q2 := 0.8[4] ⊕ 0.2[0].

Note that p1 = 0.25q1 ⊕ 0.75[0] and p2 = 0.25q2 ⊕ 0.75[0]. By independence, p1 ≻ p2 if

and only if q1 ≻ q2.

However, in experiments, majority of subjects preference is p2 ≻ p1 but a larger ma-

jority show preference as q1 ≻ q2.

2. Machina’s Paradox. Suppose there are three outcomes Z = {z1 ≡ go to Rome, z2 ≡

watch a good movie about Rome, z3 ≡ stay at home and do nothing}. The degener-

ate lotteries have the preference [z1] ≻ [z2] ≻ [z3]. Due to independence, the lottery

0.001[z2] ⊕ 0.999[z1] ≻ 0.001[z3] ⊕ 0.999[z1].

However, majority of subjects in experiments prefer 0.001[z3]⊕0.999[z1] over 0.001[z2]⊕

0.999[z1]. Here, the outcomes z1 and z2 are related in a way. Doing z2 gives you

disappointment that you did not do z1. As a result, subjects may be showing such

preferences consistent with disappointment aversion.

3. Fairness. Suppose a parent had two child: D and S. He has a gift to give. He is

indifferent about giving it to either of the child. This is equivalent to saying that the

degenerate lotteries are indifferent [D] ∼ [S]. What does independence say? Indepen-

dence says that if we pick any α ∈ [0, 1],

α[D] ⊕ (1 − α)[S] ∼ [D] ∼ [S].

In other words, for any α, β ∈ [0, 1], we have

α[D] ⊕ (1 − α)[S] ∼ β[D] ⊕ (1 − β)[S].

This is counter intuitive since most individuals have a preference for fairness. They

will prefer 1
2
[D] ⊕ 1

2
[S] to any other mixture of [D] and [S].

2.5 Lotteries with Monetary Outcomes

We now turn our focus to lotteries that have monetary outcomes. The primary reason we

need a special analysis for this is that monetary outcomes come with an predefined ordering

- more money is good. A customary model in this set up assumes that the set of monetary

outcomes is infinite (or an interval). For simplicity, we will assume that the outcome is any

real number, i.e., the whole of R is the set of outcomes. A lottery over R is expressed by

a cumulative distribution function F : R → [0, 1]. So, for any x ∈ R, F (x) denotes the
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probability that a monetary payoff less than or equal to x is realized. Although, we assume

the set of outcomes to be R, it need not be, and we can handle finite set of outcomes easily

in our analysis.

We will be interested in lotteries over non-negative amounts of money, and will denote

it as L. In particular, the set of outcomes will be assumed to be [a,∞), where a is a non-

negative number. As before, we assume that the DM has a complete and transitive preference

relation � over L. If we use expected utility theory 3, then this will require the existence of

a utility map u : [a,∞) → R such that the utility of any lottery F is given by

U(F ) =

∫

u(x)dF (x).

The utility map u is often referred to as the Bernouli utility function.

In the context of monetary outcomes, two assumptions about the nature of Bernouli

utility function makes sense: (1) non-decreasing (2) continuous. We will make these two

assumptions throughout. Hence, we will be interested in comparing money lotteries using

expected utility form via Bernouli utility functions that are non-decreasing and continuous.

Sometimes the assumption that u is bounded is made. To see why this may be required,

consider the following classic paradox.

St. Petersburg-Menger Paradox. Suppose we have a Bernouli utility function u that

is unbounded in the sense that for every integer m there is an amount of money xm with

u(xm) > 2m. Now, consider the following lottery. A fair coin is tossed repeatedly till tail

comes up. If this happens in the m-th toss, monetary payoff is xm. Since the probability of

this outcome is 1
2m , the expected utility of this lottery is >

∑∞
m=1 2m 1

2m = ∞. This means

that an individual will play this lottery at any cost - an absurd conclusion.

Though we do not make use of the unboundedness assumption, we will find other ways

to handle such paradoxes.

2.6 Risk Aversion

We now turn to address an important concept in expected utility theory - risk aversion.

Definition 10 A DM is risk averse if for any lottery F , the degenerate lottery that yields

the amount
∫

xdF (x) with certainty (expected value of the lottery) is at least as good as the

lottery F itself.

3Since the set of outcomes need not be finite, we need one extra technical axiom besides continuity and

independence, to pin down the expected utility preferences.
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A DM is risk neutral if for any lottery F , he is indifferent between the degenerate lottery

that yields the amount
∫

xdF (x) with certainty (expected value of the lottery) and the lottery

F itself.

A DM is strictly risk averse if for any lottery F , the degenerate lottery that yields

the amount
∫

xdF (x) with certainty (expected value of the lottery) is strictly preferred to the

lottery F itself.

If preferences admit an expected utility form with Bernouli utility function u, risk aversion

is equivalent to requiring that for any F ,

∫

u(x)dF (x) ≤ u(

∫

xdF (x)).

This inequality is known as the Jensen’s inequality, and is the definition of a concave function.

Hence, risk aversion in the expected utility form is equivalent to requiring concavity of the

Bernouli utility function. Risk neutrality is equivalent to a linear Bernouli utility function

and strict risk aversion is equivalent to a strictly concave utility function.

Figure 9 shows a concave Bernouli utility function. It shows that the marginal utility

of money reduces as money increases. Hence, an individual does not want to take risks at

higher outcomes. For risk neutral DM, the concave curve in Figure 9 must turn linear.

0.5(u(1)+u(2))

1 2 3

u(1)

u(2)

u(3)

Figure 9: Concavity and Risk Aversion

We now define two more notions to measure risk aversion.

Definition 11 Given a Bernouli utility function u, the certainty equivalent is the amount

of money for which the DM is indifferent between the lottery F and the certain amount

c(F, u), i.e.,

u(c(F, u)) =

∫

u(x)dF (x).
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Figure 10 describes the idea of certainty equivalent. A DM is risk averse if and only if

c(F, u) ≤
∫

xdF (x) for all F . To see this, notice that since u is non-decreasing c(F, u) ≤
∫

xdF (x) if and only if u(c(F, u)) ≤ u(
∫

xdF (x)) which in turn is equivalent to saying that
∫

u(x)dF (x) ≤ u(
∫

xdF (x)).

c(F,u)1 2 3

u(1)

u(2)

u(3)

0.5(u(1)+u(2))

Figure 10: Certainty Equivalent

The next definition is based on the idea of small local changes from a given monetary

payoff.

Definition 12 Given a Bernouli utility function u, a monetary outcome x, and a positive

number ǫ, the probability premium π(x, ǫ, u) is defined as the excess in winning proba-

bility over fair odds that makes the DM indifferent between x and a gamble between the two

outcomes (x + ǫ) and (x − ǫ), i.e.,

u(x) = (
1

2
+ π(x, ǫ, u))u(x + ǫ) + (

1

2
− π(x, ǫ, u))u(x − ǫ).

Figure 11 shows how probability premium can be computed.

x+2e\pi(x,e,u)

x

u(x)

u(x+e)

u(x−e)

x+ex−e

Figure 11: Probability Premium

We now state a basic theorem on risk aversion.
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Theorem 4 Suppose a DM is an expected utility maximizer with a non-decreasing and con-

tinuous Bernouli utility function. Then, the following properties are equivalent.

1. The DM is risk averse.

2. u is concave.

3. c(F, u) ≤
∫

xdF (x) for all F .

4. π(x, ǫ, u) ≥ 0 for all x, ǫ.

Proof : We have already established equivalence of (1),(2), and (3). To see the equivalence

between (1) and (4), we note that concavity is equivalent to requiring u(x) ≥ 1
2
(u(x + ǫ) +

u(x− ǫ)) for all x and all ǫ > 0. But then, if π(x, ǫ, u) ≥ 0 for some x and for all ǫ > 0, then

u(x) = (1
2

+ π(x, ǫ, u))u(x + ǫ) + (1
2
− π(x, ǫ, u))u(x− ǫ) ≥ 1

2
(u(x + ǫ) + u(x− ǫ)), where the

last inequality followed from concavity of u. In the other direction, if π(x, ǫ, u) < 0, then

u(x) = (1
2

+ π(x, ǫ, u))u(x + ǫ) + (1
2
− π(x, ǫ, u))u(x − ǫ) < 1

2
(u(x + ǫ) + u(x − ǫ)), violating

concavity of u. Hence, π(x, ǫ, u) ≥ 0. �

2.7 Application: Demand for Insurance

Consider a strictly risk averse DM who has an initial wealth of w but who runs a risk of a

loss of D dollars. The probability of loss is π. It is possible for the DM to buy insurance.

One unit of insurance costs q dollars and pays 1 dollar if the loss occurs. Thus, if x units of

insurance is bought, the individual’s wealth level goes down to w − xq if there is no loss but

goes to a level of w − xq − D + x if the loss occurs. Hence, the expected level of wealth of

DM is

(1 − π)(w − xq) + π(w − xq − D + x) = w − xq + π(x − D).

The DM has a strictly concave utility function u (since he is strictly risk averse). Hence,

his utility from x units of insurance is

U(x) = (1 − π)u(w − xq) + πu(w − xq − D + x).

To maximize his utility, we take the first order conditions (necessary and sufficient for opti-

mality since u is strictly concave). This gives,

U ′(x) = −q(1 − π)u′(w − xq) + π(1 − q)u′(w − xq − D + x) = 0.

This gives,
u′(w − xq)

u′(w − xq − D + x)
=

π(1 − q)

(1 − π)q
.
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An insurance is actuarially fair if its cost q is equal to the probability of loss π. If

insurance is actuarially fair, then u′(w − xq) = u′(w − xq − D + x). Since u is strictly

concave, D = x. This means that if the insurance is actuarially fair, then the DM insures

himself completely. Hence, his expected level of wealth becomes w − πD.

This is intuitive since if π = q, then the DM has an expected wealth level of w − πD for

any level of x. Since setting x = D allows him to reach w−πD irrespective of loss or no loss

(i.e., with certainty), he prefers this strictly over any other level of x since he is strictly risk

averse. Hence, x = D is an optimal level of insurance.

2.8 Measurement of Risk

Having defined risk aversion, we will like to evaluate different decision makers on the level of

their risk aversion. A central question is how to measure risk. One commonly used measure

is the following.

Definition 13 Given a twice-differentiable Bernouli utility function u for money, the Arrow-

Pratt coefficient of absolute risk aversion at x is defined as

rA(x, u) =
−u′′(x)

u′(x)
.

The intuition behind the Arrow-Pratt measure is the following. We know that risk

neutrality is equivalent to linearity of u - so, u′′(x) = 0 for all x. Then, risk aversion must

be related to the curvature of u. To see this clearly, consider two Bernouli utility functions

u1 and u2 such that they have the same utility and marginal utility at the mean x of a

distribution F with u1 sitting above u2. As a result, the certainty equivalent c(F, u2) is less

than c(F, u1). So, risk aversion is related to the curvature. One way to capture curvature is

the second derivative u′′, but it will treat two curves, say x2 + 2x and x2 + 1000x the same

way. Hence, an easy fix is to take the ratio of second and first derivatives with signs modified

to make it positive. It turns out this is a plausible way of defining risk aversion.

Note that by definition of rA, we can integrate twice, and write u as a function of rA up

to two constants. The following example illustrates this.

Suppose u(x) = −e−ax for a > 0. Then, u′(x) = ae−ax and u′′(x) = −a2e−ax. So,

rA(x, u) = a - a constant. Conversely, if rA(x, u) = a a constant, we can integrate twice to

derive u(x) = −αe−ax + β for some α > 0 and β. In other words, constant absolute risk

aversion is equivalent to utility functions of this form.

Now, we formally show that various forms of measuring risk aversion across utility func-

tions are equivalent.
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Proposition 2 Consider two Bernouli utility function u1 and u2 that are increasing and

concave. The following are equivalent.

1. rA(x, u2) ≥ rA(x, u1) for all x.

2. there exists an increasing concave function φ such that u2(x) = φ(u1(x)) for all x (u2

is a concave transformation of u1 - so more curved than u1).

Proof : Note that we always have u2(x) = φ(u1(x)) for some increasing function φ (try

showing this). Differentiating, we get

u′
2(x) = φ′(u1(x))u′

1(x)

and

u′′
2(x) = φ′(u1(x))u′′

1(x) + φ′′(u1(x))(u′
1(x))2 = u′

2(x)
u′′

1(x)

u′
1(x)

+ φ′′(u1(x))(u′
1(x))2.

Hence, rA(x, u2) = rA(x, u1) − φ′′(u1(x))
(u′

1
(x))2

u′

2
(x)

. This can be rewritten as

rA(x, u2) = rA(x, u1) −
φ′′(u1(x))

φ′(u1(x))
u′

1(x).

Hence, rA(x, u2) ≥ rA(x, u1) if and only if φ′′(u1(x)) ≤ 0, i.e., concavity of φ. �

Typically, the more-risk-averse relation is a partial ordering. It may happen that rA(x, u2) >

rA(x, u1) for some x but rA(x′, u2) < rA(x′, u1) for some x′ 6= x.

2.9 Comparison of Payoff Distributions

In this section, we explore ways to compare two (monetary) payoff distributions. We assume

that payoffs lie in [0,∞) - this is not necessary and can be relaxed. Of course, evaluation

of two payoff distributions depend on the DM itself, i.e., the Bernouli utility function used

by the decision maker. One may seek a comparison that holds irrespective of the utility

function.

We will only consider payoff distributions F where F (0) = 0 and F (x) = 1 for some

(large enough) x, and denote that large enough value of x as b.

Definition 14 The distribution F first order stochastically dominates the distribution

G if for every non-decreasing u : [0,∞) → R, we have

∫

u(x)dF (x) ≥

∫

u(x)dG(x).
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Another idea will be to compare F and G based on the probability of payoffs. We can

say that F is better than G if the probability of a return of x or more is weakly greater in

F than in G. As it turns out, these two ways of comparing two payoff distributions in terms

of returns is equivalent.

Theorem 5 The distribution of payoffs F first order stochastically dominates the distribu-

tion of payoffs G if and only if F (x) ≤ G(x) for all x.

Proof : Suppose F first order stochastically dominates G. Fix x ∈ [0,∞). Consider the

non-decreasing function u such that u(x′) = 0 for all x′ < x and u(x′) = 1 for all x′ ≥ x.

By definition
∫

u(x′)dF (x′) =
∫ ∞

x
dF (x′) = −F (x) ≥

∫

u(x′)dG(x′) =
∫ ∞

x
dG(x′) = −G(x).

Hence, F (x) ≤ G(x).

For the reverse direction, assume that F (x) ≤ G(x) for all x. Now, define H(x) =

F (x) − G(x) for all x. Note that H(0) = H(b) = 0. Now, note that H(x) ≤ 0 for all x and

for any differentiable 4 non-decreasing function u : [0,∞) → R,

∫

u(x)dF (x) −

∫

u(x)dG(x) =

∫ b

0

u(x)dH(x)

= [u(x)H(x)]b0 −

∫ b

0

u′(x)H(x)dx

= −

∫

u′(x)H(x)dx

≥ 0,

where the second equality follows from integration by parts, the third equality follows from

the fact that H(0) = H(b) = 0, and the last inequality follows from the fact that u is non-

decreasing and H(x) ≤ 0 for all x. �

The discrete analogue of this can also be shown. Suppose the set of outcomes is X =

{x1, . . . , xk} with x1 < x2 < . . . < xk. We will denote the probability of outcome xj as

f(xj) and the cumulative probability as F (xj) =
∑j

i=1 f(xi). If F first order stochastically

dominates G, then as in the continuous case, we can choose, for any xj ∈ X, u(xi) = 0 for

all xi ≤ xj and u(xi) = 1 for all xi > xj . Hence,

∑

xi∈X

u(xi)f(xi) =
∑

xi:xi>xj

f(xi) = 1 − F (xj) ≥
∑

xi∈X

u(xi)g(xi) = 1 − G(xj).

This gives F (xj) ≤ G(xj).

4The restriction to differentiable functions is without loss of generality since non-decreasing functions are

differentiable almost everywhere.
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For the converse, pick any vNM utility function u that is non-decreasing and assume that

F (xj) ≤ G(xj) for all xj ∈ X. Then

k
∑

j=1

u(xj)f(xj) =
[

u(x1) − u(x2)
]

F (x1) +
[

u(x2) − u(x3)]F (x2) + . . . + u(xk)F (xk)

≥
[

u(x1) − u(x2)
]

G(x1) +
[

u(x2) − u(x3)]G(x2) + . . . + u(xk)G(xk)

=
k

∑

j=1

u(xj)f(xj),

where for the first inequality we used the fact that F (xk) = G(xk) = 1 and F (xj) ≤ G(xj)

for all xj ∈ X.

An illustration of this fact can also be done as follows. Suppose we have two distributions

F and G such that F (x) ≤ G(x) for all x. Assume F and G are continuous and strictly

increasing. Then, suppose x is distributed according to G. Define y(x) = F−1(G(x)). Note

that for any x, F (y(x)) = G(x) ≥ F (x) implies that y(x) ≥ x (since F is strictly increasing).

Now, we can consider the lottery induced by y(x). We first argue that y(x) is distributed

with cdf F . To see this, note that Prob(y(x) ≤ ȳ) = Prob(x ≤ y−1(ȳ)) = G(y−1(ȳ)) = F (ȳ).

But then,
∫

u(y(x))dF (y(x)) =
∫

u(y(x))dG(x) ≥
∫

u(x)dG(x), where the first equality

follows from definition of y(x) and the second inequality follows from the fact that y(x) ≥ x

and u is non-decreasing.

Notice that if F first order stochastically dominates G, then
∫

xdF (x) ≥
∫

xdG(x). To

see this, note that u(x) = x for all x is an increasing function. Hence, by Theorem 5, we get

the desired result.

Hence, if F first order stochastically dominates G, then the average return in F is weakly

greater than that in G. However, the converse of this statement is not true. We can easily

construct two distributions F and G with the same mean but neither first order stochastically

dominating the other (think of an example).

Figure 12 describes first order stochastic dominance. Here, F dominates G since F is

uniformly below G - implying that the probability of a return of x or more is weakly greater

in F than in G.

2.10 Second order stochastic dominance

First order stochastic dominance compares payoff distributions by comparing their expected

returns. We now seek a comparison based on riskiness. To be able to do so, we compare two

lotteries F and G with the same mean based on their riskiness. To remind, riskiness is the

measure of the spread/dispersion of a lottery.
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Figure 12: F first order stochastically dominates G

We will say F and G have the same mean if
∫

xdF (x) =
∫

xdG(x). For two lotteries F

and G with the same mean, we say G is riskier than F if every risk averse DM prefers F to

G.

Definition 15 For any two distributions F and G with the same mean, F second order

stochastically dominates G if for every concave function u : R+ → R, we have

∫

u(x)dF (x) ≥

∫

u(x)dG(x).

Another way to think of such lotteries is the following. Suppose we have x distributed

according to F . Now, after x is realized, we play another lottery whose mean is zero but its

realization z is distributed according to some distribution Hx(z). Denote the distribution of

x + z as G. Note that F and G have the same mean. When lottery G can be obtained from

F in this manner, then we will say that G is a mean-preserving spread of F .

Definition 16 For any two lotteries F and G, G is a mean preserving spread of F if

there exists random variables x distributed according to F , y distributed according to G and

z|x with mean zero with y = x + z.

Intuitively, G increases the risk without disturbing the mean. Hence, a risk averse DM must

prefer F to G. This is formalized in the following result.

Theorem 6 Consider two payoff distributions F and G with the same mean. Then, the

following are equivalent.
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1. F second order stochastically dominates G.

2. G is a mean preserving spread of F .

3.
∫ x

0
G(t)dt ≥

∫ x

0
F (t)dt for all x.

Proof : 1 ⇔ 3. To see this, we first assume that F (0) = G(0) = 0 and F (b) = G(b) = 1 for

some b. Then, using integration by parts, and using the fact
∫

xdF (x) =
∫

xdG(x), we get
∫

xdF (x) =

∫ b

0

xdF (x) = 1 −

∫ b

0

F (x)dx

=

∫

xdG(x)

= 1 −

∫ b

0

G(x)dx.

Hence,
∫ b

0
F (x)dx =

∫ b

0
G(x)dx. Now, define the function I(x) =

∫ x

0
(F (t) − G(t))dt for all

x. Note that I(0) = 0 and I(b) = 0. Now, integrating by parts twice, we get
∫

u(x)dF (x) −

∫

u(x)dG(x) =

∫

u′′(x)I(x)dx.

Now, since u′′(x) ≤ 0, the last expression is greater than or equal to zero if I(x) ≤ 0 every-

where. For the converse, assume for contradiction, I(x) > 0 for some x. We can choose, u

such that u′′(x′) = −1 for x′ in the neighborhood of x and u′′(x′) = 0 otherwise. We see that
∫

u′′(x)I(x) < 0. Hence,
∫

u(x)dF (x) <
∫

u(x)dG(x), a contradiction to the fact F second

order stochastically dominates G.

We only do 2 ⇒ 1 - the implication 1 ⇒ 2 is more complicated and left out. Suppose

y is distributed according to G, but y is summation of x and z, where x is distributed

according to F and z|x is distributed according to Hx(z) with mean zero. We note that
∫

u(y)dG(y) =
∫ ( ∫

u(x + z)dHx(z)
)

dF (x) ≤
∫

u(
∫

(x + z)dHx(z))dF (x) =
∫

u(x)dF (x),

where the inequality is Jensen’s inequality for concave u. �

Figure 13 explains the idea of second order stochastic dominance. Note that the area of

region A and region B is the same in Figure 13. The lotteries F and G have the same mean,

but note that third condition of Theorem 6 holds. Hence, F second order stochastically

dominates G.

Again, the counterpart of Theorem 6 is true if there is a finite set of outcomes. The

counterpart of concavity in the discrete setting is non-increasing marginal utility. Formally,

suppose the set of outcomes is X = {x1, . . . , xk} and x1 < . . . < xk. Then u satisfies non-

increasing marginal utility if for all i < j, we have u(xi+1) − u(xi) ≥ u(xj+1) − u(xj). With

this condition, one can again adapt the proof of Theorem 6 to work.
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Figure 13: F second order stochastically dominates G

3 Games of Incomplete Information: Auctions

Based on initial chapters of Vijay Krishna’s “Auction Theory” book.

We will study games of incomplete information via auctions. We will restrict attention

to single object auctions with independent private values.

3.1 The Model

There is an indivisible good for sale. A set of buyers, denoted by N = {1, . . . , n}, are

interested in buying the good. The value of each buyer is drawn independently from an

interval [0, w] using a probability distribution. Denote by f the probability distibution

(density function) and F the cummulative distribution function of every buyer (identically

distributed values).

Buyers realize their own values, and it is private information (private values model).

Buyers are risk neutral, and they maximize their expected payoff. Buyers do not have any

budget constraints. The realized value of bidder j ∈ N is denoted as xj whereas the random

variable corresponding to bidder j ∈ N is denoted as Xj . We examine two important

auctions:

1. The first price auction is an auction where buyers submit their bids, the highest

bidder wins and pays his bid amount to the seller.
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2. The second price auction or the Vickrey auction is an auction where buyers

submit their bids, the highest bidder wins and pays the second highest bid amount.

Each auction format defines a game where the strategy of every bidder is the bid amount.

3.2 The Vickrey Auction

Suppose each buyer j ∈ N bids an amount bj . Then the highest buyer wins the object.

We assume that in case of a tie for the highest bid, each bidder gets the good with equal

probability. We denote the probability of winning at a profile of bids b ≡ (b1, . . . , bn) as φj(b)

for each buyer j ∈ N . Note that φj(b) = 1 if bj > maxk 6=j bk and φj(b) = 0 if bj < maxk 6=j bk.

Then the payoff of buyer j ∈ N with value xj is given by

πj(b) = φj(b)
[

xj − max
k 6=j

bk

]

Theorem 7 A weakly dominant strategy in the second-price auction (Vickrey auction) is to

bid your true value.

Proof : Suppose agent i has value vi and bid a profile b̂−i. Let the highest bid among agents

other than agent i be b̂j . We consider two cases: (1) agent i wins the object with probability

1 if he bids true value (i.e., bi = vi) and (2) agent i does not win the object with probability

1 if he submits true value.

In case (1), his net utility is vi − b̂j by telling the truth. If he bids another value bi his

net utility becomes φi(bi, b̂−i)[vi− b̂j ] ≤ φi(vi, b̂−i)[vi− b̂j ], where the inequality followed from

the fact that φi(vi, b̂j) = 1 ≥ φi(bi, b̂−i). So, telling the truth is a weakly dominant strategy.

In case (2), his net utility is zero. If he bids another value and still does not win the

object with probability one, then his net utility remains zero. Note that since he is not

winning the object with probability 1 by bidding true value, vi ≤ b̂j . If he reports another

value and wins the object with probability 1, then his bid must greater than b̂j . Hence, the

second highest reported value is b̂j . But vi ≤ b̂j implies that his net utility is non-positive.

So, truth-telling is a weakly dominant strategy. �

3.2.1 Payment in the Vickrey Auction

Consider any arbitary bidder, say 1. Let the random variable of the highest value of the

remaining n − 1 bidders be Y1 (it is the random variable of maximum of n − 1 random

variables). Let G be the cummulative distribution function of Y1. Notice that for all y,
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G(y) = F (y)n−1. Also, if bidder 1 has true value x1, then his probability of winning in the

Vickrey auction is G(x1). If he wins, his expected payment is E(Y1|Y1 < x1).

Hence, the expected payment of a bidder in the Vickrey auction when a bidder has true

value x is

πII(x) = G(x)E(Y1|Y1 < x)

= G(x)

∫ x

0
yg(y)dy

G(x)

=

∫ x

0

yg(y)dy.

3.3 The First-Price Auction

Like in the Vickrey auction, the highest buyer wins the object in the first-price auction too.

We assume that in case of a tie for the highest bid, each bidder gets the good with equal

probability. We denote the probability of winning at a profile of bids b ≡ (b1, . . . , bn) as φj(b)

for each buyer j ∈ N . Note that φj(b) = 1 if bj > maxk 6=j bk and φj(b) = 0 if bj < maxk 6=j bk.

Given a profile of bids b ≡ (b1, . . . , bn) of bidders, the payoff to bidder j with value xj is

given by

πj(b) = φj(b)
[

xj − bj

]

3.3.1 Symmetric Equilibrium

Unlike the Vickrey auction, the first-price auction has no weakly dominant strategy (verify).

Hence, we adopt a weaker solution concept called the Bayesian equilibrium. In fact, we

will restrict ourselves to equilibria where bidders use the same bidding function which are

technically well behaved.

In particular, for any bidder j ∈ N , let βj : [0, w] → R+ be his bidding function. The

focus in our study will be symmetric equilibria, where every bidder uses the same bidding

function. So, we will denote the bidding function by simply β : [0, w] → R+. We assume

β(·) to be strictly increasing and differentiable.

The concept of Bayesian equilibrium says that if every bidder except bidder i follows β(·)

strategy, then the expected payoff maximizing strategy for bidder i must be β(x) when his

value is x. Note that if bidder i with value x bids β(x), and since everyone else is using

β(·) strategy, increasingness of β ensures that probability of winning for bidder i is equal to

probability that x is the highest value, which in turn is equal to G(x). Thus, we can define

the notion of symmetric (Bayesian) equilibrium in this case as follows.
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Definition 17 A bidding strategy profile β : [0, w] → R+ for all i ∈ N is a symmetric

equilibrium if for every bidder i and every x ∈ [0, w]

G(x)(x − β(x)) ≥ Probability of winning by bidding b(x − b) ∀ b ∈ R+,

where the probability of winning is calculated by assuming bidders other than bidder i is

following β(·) strategy.

Remember that due to symmetry, G(x) indicates the probability of winning in the auction

when the bidder bids β(x), and (x − β(x)) is the resulting payoff.

A symmetric equilibrium is actually a symmetric Bayes-Nash equilibrium.

Theorem 8 A symmetric equilibrium in a first-price auction is given by

βI(x) = E[Y1|Y1 < x],

where Y1 is the highest of n − 1 independently drawn values.

Proof : Suppose every bidder except bidder 1 follow the suggested strategy. Let bidder 1

bid b. Notice that b ≤ β(w) since by bidding equal to β(w) he will win for sure and get a

higher payoff than bidding > β(w). Hence, bid amount of a bidder will lie between 0 and

β(w), and hence, there exists a z = β−1(b). Then the expected payoff from bidding β(z) = b

when his true value is x is

π(b, x) = G(z)
[

x − β(z)
]

= G(z)x − G(z)E[Y1|Y1 < z]

= G(z)x −

∫ z

0

yg(y)dy

= G(z)x − zG(z) +

∫ z

0

G(y)dy

= G(z)
[

x − z
]

+

∫ z

0

G(y)dy,

where, we have integrated by parts in the fourth equality 5. Hence, we can write

π(β(x), x) − π(β(z), x) = G(z)(z − x) −

∫ z

x

G(y)dy ≥ 0.

Notice that the previous inequality holds whether z ≤ x or z ≥ x. Hence, bidding according

to β(·) is a symmetric equilibrium. �

5To remind, integration by parts
∫

h1(y)h′

2
(y)dy = h1(y)h2(y) −

∫

h′

1
(y)h2(y)dy.
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We now prove that this is the unique symmetric equilibrium in the first-price auction.

Note that a trivial symmetric equilibrium is also β(x) = 0 for all x. But this is not increasing

(strictly), which we have assumed here. Now, consider any bidder, say 1. Assume that he

realizes a true value x, and wants to determine his optimal bid value b using a symmetric

bidding function β. We assume β is an increasing function.

Notice that when a bidder realizes a value zero, by bidding a positive amount, he makes

a loss. So, β(0) = 0. Bidder 1 wins whenever his bid b > maxi6=1 β(Xi), equivalently

b > β(maxi6=1 Xi) = β(Y1) (since β(·) is increasing). This is again equivalent to saying

Y1 < β−1(b) (since β(·) is increasing, an inverse exists). Hence, his expected payoff is

G(β−1(b))(x − b).

A necessary condition for maximum is the first order condition, which is obtained by differ-

entiating with respect to b.

g(β−1(b))

β ′(β−1(b))
(x − b) − G(β−1(b)),

where we used g = G′ is the density function of Y1 and β(β−1(b)) = b. At the equilibrium,

b = β(x), this should equal to zero, which reduces the above equation to

G(x)β ′(x) + g(x)β(x) = xg(x)

⇔
d

dx
(G(x)β(x)) = xg(x).

Integrating both sides, and using β(0) = 0, we get

β(x) =
1

G(x)

∫ x

0

yg(y)dy = E[Y1|Y1 < x].

Hence, this is the unique symmtric equilibrium in the first-price auction.

The equilibrium bid in the first-price auction can be rewritten as

βI(x) = x −

∫ x

0

G(y)

G(x)
dy.

This amount is less than x. From the proof of the Theorem 8, it can be seen that if a bidder

with value x bids β(z′) with z′ > z, then his loss in payoff is the shaded area above the G(·)

curve in Figure 14. On the other hand, if he bids β(z′′) with z′′ < z, then his loss in payoff

is the shaded area below the G(·) curve in Figure 14.

Hence, the expected payment in the first price auction for a bidder with value x can be

written as

πI(x) = G(x)β(x) = G(x)E(Y1|Y1 < x) =

∫ x

0

yg(y)dy = πII(x).
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Figure 14: Loss in first-price auction by deviating from equilibrium

It is instructive to look at some examples. Suppose values are distributed uniformly in

[0, 1]. So, F (x) = x and G(x) = xn−1. So, β(x) = x − 1
xn−1

∫ x

0
yn−1dy = x − x

n
= n−1

n
x. So,

in equilibrium, every bidder bids a constant fraction of his value.

Let us consider the case of two bidders, and values distributed exponentially on [0,∞)

with mean 1
λ
. So, F (x) = 1 − exp(−λx) and for n = 2, G(x) = F (x). So, β(x) = E[Y1 :

Y1 < x] ≤ E[Y1] = E[X]. If λ = 2, this means that β(x) ≤ 0.5. This means that even if

the bidder has a very high value of 100000000, he will not bid more than 0.5 in equilibrium.

The intuition behind this is that if the bidder has very high value, then he has very low

probability of losing. So, it makes sense for him to bid low.

3.4 Revenue Equivalence

We establish that the expected revenue from both the auctions is the same. This is sometimes

termed as the revenue equivalence theorem.

Theorem 9 Suppose bidders have private values with independent and identical distribu-

tions. Then any symmetric and increasing equilibrium of first-price and second-price auction

yields the same expected revenue to the seller.
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Proof : The exact value of ex ante expected payment of the seller in the first-price auction

can also be computed. This is equal to

E(πI(x)) = n

∫ w

0

πI(x)f(x)dx = n

∫ w

0

(

∫ x

0

yg(y)dy
)

f(x)dx

= n

∫ w

0

(

∫ w

y

f(x)dx)yg(y)dy

= n

∫ w

0

(

1 − F (y)
)

yg(y)dy

=

∫ w

0

n(n − 1)(1 − F (y))F (y)n−2yf(y)dy

= E(second highest value).

The last equality can be explained as follows. Let us consider the random variable of the

second highest number of n randomly drawn numbers using F , and denote its cumulative

density function as F (2). Let us find the value F (2)(y). The probability that the second

highest value is less than or equal to y can be broken into two disjoint events: (a) probability

that all the values are less than y - which is F (y)n, and (b) probability that exactly n − 1

values are less than y - which nF (y)n−1(1 − F (y)). So, we can write

F (2)(y) = F (y)n + nF (y)n−1(1 − F (y)) = nF (y)n−1 − (n − 1)F (y)n.

This gives,

f (2)(y) = n(n − 1)F (y)n−2f(y) − n(n − 1)F (y)n−1f(y) = n(n − 1)F (y)n−2f(y)(1 − F (y)).

Since the expected second highest value is
∫ w

0

yf (2)(y)dy =

∫ w

0

n(n − 1)(1 − F (y))F (y)n−2yf(y)dy,

which is exactly the expression we have. Hence, the total expected payment in the first-price

auction is the expected second highest value of a bidder, which is also the total expected

payment in the second-price auction. �

The expected payment of a buyer with value x in the first-price auction or second-price

auction can be written as

πI(x) = πII(x) =

∫ x

0

yg(y)dy = xG(x) −

∫ x

0

G(y)dy

= expected value − expected profit.

Since xG(x) is the expected value to a buyer with value x, the expected profit for him is
∫ x

0
G(y)dy. This is shown graphically in Figure 15.
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Figure 15: Expected profit and payment in the first-price or second-price auction

3.4.1 Uniform Distribution

For uniform distribution in interval [0, w], F (x) = x
w

and f(x) = 1
w
. This gives G(x) = xn−1

wn−1 .

Hence, bid of a bidder with value x in first-price auction is

βI(x) = x −

∫ x

0

yn−1

xn−1
dy = x −

x

n
=

n − 1

n
x.

The revenue in the first price and second-price auction is

n(n − 1)

∫ w

0

(1 −
x

w
)(

x

w
)n−2x

1

w
dx =

n(n − 1)

wn

∫ w

0

(w − x)xn−1dx =
n − 1

n + 1
w.

4 The Principal-Agent Problem

In this section, we look at the problem where there is information asymmetry between the

agents. This information asymmetry does not exist between the agents at the time of signing

the contract, but surfaces subsequent to the signing of the contract. For example, though the

firm may know the productivity of the worker, it may not be able to observe the effort put in

by the worker after he is hired. Similarly, the worker will know more about the opportunities

available to the firm than the owner of the firm itself.

The objective of this section is to anticipate such informational asymmetry and eliminate

the problems by appropriate contracts. Such problems typically arise in situations where one

agent hires another “agent” to take actions on his behalf. The hired agent is called the agent

and the employer is called the “principal”, and hence the name the principal-agent problem.

The principal agent problem can be classified into two classes:

1. Hidden Action - Moral Hazard Problem. The moral hazard problem is illus-

trated by the fact that the owner of the firm is unable to observe the effort level of the

worker.
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2. Hidden Information - Monopolistic Screening Problem. The monopolistic

screening problem is illustrated by the fact that a hired manager has more information

about the opportunities of the firm than then owner of the firm himself.

We give some examples to illustrate the wide applicability of the principal-agent problem.

1. The owner and the manager. The owner of a firm hires a manager who gets to

know more about the opportunities to the firm. Further, the effort level of the manager

is unobservable to the owner of the firm.

2. The insurance company and the insured individual. The insurance company

cannot observe how much precaution is taken by the insured individual.

3. The manufacturers and the distributors. The distributor observes the market

condition better than the manufacturer.

4. The banks and the borrowers. The bank may not observe how the funds were

used by the borrowers.

Here, we will take the firm as the principal and the manager as the agent.

5 Moral Hazard

Based on Chapter 14 of MWG

A firm hires a manager for a project. The profit from the project is observable, and

is denoted by π. The project’s success depends on the action chosen by the manager. We

denote the action of the manager as e, and the set of all possible actions as E. In this section,

we treat e to be one dimensional, and hence, E ⊆ R. However, one can easily adapt the

analysis to deal with multidimensional action sets (various dimensions can be, for example,

how hard the manager works, how much time he spends in consumer interaction etc.). We

refer to any e ∈ E as the effort choice or effort level of the manager.

If the manager’s action is unobservable, then it should not be deducible from the profit

of the project. Hence, we assume that although the profits from the project is influenced by

effort level of the manager, it is not entirely dependent on it. In particular, we assume that

the profit from the project to lie in [L, H ] and there is a conditional density function f(π|e)

such that f(π|e) > 0 for all π ∈ [L, H ] and for all e ∈ E.

For simplicity, we assume that E = {el, eh}, where el < eh. Here, eh is a higher effort

level of the manager and leads to higher profits than effort level el. Of course, the manager

likes to put lower effort level than higher effort level.
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More specifically, we assume that conditional distribution f(π|eh) first-order stochasti-

cally dominates the conditional distribution f(π|el), i.e., the distribution functions F (π|el)

and F (π|eh) satisfy F (π|eh) ≤ F (π|el) for all π ∈ [L, H ], with strict inequality holding on

some open set of [L, H ]. An implication of this is that the level of expected profits when the

manager chooses eh is higher than that from el. So,

∫

πf(π|eh)dπ >

∫

πf(π|el)dπ.

The manager is an expected utility maximizer with a utility function over w and e. We

assume that

u(w, e) = v(w) − g(e),

where v(w) is the value of wage w and g(e) is the cost of effort level e. We assume that

uw(w, e) > 0 and uww(w, e) ≤ 0 at all (w, e), where subscripts denote partial derivatives, and

u(w, eh) < u(w, el). This implies that v′(w) > 0, v′′(w) ≤ 0, and g(eh) > g(el). Further, he

has a reservation utility of ū, i.e., if he does not accept the contract then he gets this level

of utility.

The owner of the firm is risk neutral. His payoff is the profit made from the project minus

the wage paid to the manager. If the manager rejects the contract, then the owner receives

zero payoff.

5.1 Observable Effort

We begin our analysis by looking at the optimal contract when the effort is observable. The

owner offers a contract, and the manager may accept or reject it.

Definition 18 A contract is a tuple (e, w), where e ∈ {eh, el} is the effort level and

w : [L, H ] → R+ is the wage schedule with respect to observed profits.

We assume throughout that the owner will make an offer that the manager will find

worthwhile to accept. Hence, the optimal contract is a contract which (a) maximizes the

expected utility of the owner and (b) gives at least the reservation value to the manager.

max
e,w(·)

∫ H

L

[π − w(π)]f(π|e)dπ

s.t.

∫ H

L

v(w(π))f(π|e)dπ − g(e) ≥ ū.
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The optimal contract problem is then easy to imagine in two stages. First, we fix an

effort level e, and find out the optimal wage schedule. Then, we choose among various effort

levels to maximize expected utility. We follow this approach.

Suppose we fix the effort level at e. Then, the objective function now simplifies to

max
w(·)

−

∫ H

L

w(π)f(π|e)dπ.

So, the objective is to minimize the expected wage of the firm. Note that the constraint

now is

∫ H

L

v(w(π))f(π|e)dπ ≥ g(e) + ū.

This constraint must bind at the optimum as the owner can reduce expected wage by

lowering the wage schedule a little bit if the constraint is not binding.

Now, if v is strictly increasing, then consider the constant wage

w∗
e := v−1(g(e) + ū).

The expected profit of the principal from this wage contract is

∫ H

L

πf(π|e)dπ − w∗
e .

We will show that this is optimal.

We consider two cases. First case is when the manager is risk averse, i.e., v is concave.

To see this, note that by Jensen’s inequality

v
(

∫ H

L

w(π)f(π|e)dπ
)

≥

∫ H

L

v(w(π))f(π|e)dπ ≥ g(e) + ū.

Hence,
∫ H

L
w(π)f(π|e)dπ ≥ w∗

e for any other wage contract at the effort level e.

If the manager is risk neutral, suppose that v(w) = w. Then, from the participation

constraint, we get
∫ H

L

w(π)f(π|e)dπ = g(e) + ū.

Hence, the optimal profit of the principal for any w contract will be

∫ H

L

πf(π|e)dπ − [g(e) + ū].

In particular, the constant contract w∗
e is also optimal for the principal and satisfies the

participation constraint of the agent.
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Now, consider the optimal choice of e. The owner must now maximize

∫ H

L

πf(π|e)dπ − v−1(g(e) + ū).

Whether eh or el will be optimal depends on the incremental increase in expected profit to

firm from el to eh and the disutility to the manager. This leads to the following theorem.

Theorem 10 In the principal-agent problem with observable managerial effort, an optimal

contract specifies that the manager chooses the effort e∗ that maximizes [
∫ H

L
πf(π|e)dπ −

v−1(g(e) + ū)] and pays the manager a fixed wage w∗
e = v−1(g(e) + ū). This is the unique

optimal contract if v′′(w) < 0 for all w.

5.2 Unobservable Effort

When the effort is observable, the optimal contract specifies an effort level to the manager

and insures him against risks associated with profit levels by providing a constant wage.

When the effort level is not observable, these two events are often in conflict - to make the

manager work hard involves relating his wage to profits, which is random. We first study

the case when the manager is risk neutral.

5.2.1 A Risk Neutral Manager

Suppose the manager is risk neutral and v(w) = w for all w. Hence, the optimal effort level

e∗ when effort level is observable solves

max
e∈{el,eh}

∫ H

L

πf(π|e)dπ − (g(e) + ū). (1)

The owner’s expected utility is this expression evaluated at e∗, and the manager receives

an expected utility equal to ū. We now show that when the effort is not observable same

expected utility levels can be achieved as in the full observable case.

Note here that here a contract is only a wage schedule w : [L, H ] → R+ since the effort

level is not observed any more.

Theorem 11 In the principal-agent model with unobservable managerial effort and a risk

neutral manager, an optimal contract generates the same effort choice and expected utilities

for the manager and the owner as when the effort is observable.

Remark. It is important to observe that unlike the observable case, the optimal contract

cannot be a constant wage contract. This is because, with a constant wage contract, a high
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effort level can never be sustained - the agent will always have incentive to choose the el

effort level because of lower cost. However, there exists a wage contract that generates the

same effort choice and expected utilities for the manager and the owner as when the effort

is observable.

Proof : We show that there is a contract that the owner can offer to the manager that

gives everyone the same level of utilities that everyone receives under full information. This

contract must therefore be optimal for the owner as the owner can never do better than

his utility with full observable effort level. To see this, note that this non-observable effort

contract is always a feasible contract when the effort is not observable.

Suppose the owner offers a wage schedule of the form w(π) = π − α for all π ∈ [L, H ],

where α is some constant 6. This contract can be thought of “selling the project to the

manager”, in the sense that the manager runs the firm, keeps all the profit except α, which

he returns to the owner. So, α is like the sale price of the project. Let us see what the

manager’s optimal response to this contract. If the manager accepts this contract, he will

choose an effort level which maximizes his expected utility, given by

∫ H

L

w(π)f(π|e)dπ − g(e) =

∫ H

L

πf(π|e)dπ − α − g(e).

Comparing with Equation 1, we see that e∗ maximizes this expression. Thus, this contract

induces the same level of effort as with full observable effort. The manager is willing to

accept this contract if it gives him his reservation utility:

∫ H

L

πf(π|e∗)dπ − α − g(e∗) ≥ ū.

Let α∗ be the level of α at which the above inequality binds (in an optimal contract, this

constraint will bind). Hence,

α∗ =

∫ H

L

πf(π|e∗)dπ − g(e∗) − ū.

Since α∗ is the expected utility of the owner, and this expression is the same as the optimal

value of expression in Equation 1, we get the desired result. �

5.2.2 A Risk Averse Manager

When the manager is strictly risk averse, then the optimal contract gets complicated. Now,

incentives for high effort can be provided by exposing the manager to some risks of profits.

6Note here that this contract is not the same contract that we had in the observable effort case.
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We now characterize the optimal contract. We do so in two steps. In the first step, we

characterize the optimal wage scheme for a given effort level that the owner might want the

manager to select. Next, we consider which effort level is optimal for the owner.

The optimal wage for implementing a given effort level e minimizes the owner’s expected

wage. There are two constraints : (1) participation constraint - the manager must get his

reservation utility from this contract, and (2) incentive compatibility constraint - the given

effort level must maximize the manager’s expected utility over all possible effort levels.

min
w(π)

∫ H

L

w(π)f(π|e)dπ

s.t.
∫ H

L

v(w(π))f(π|e)dπ − g(e) ≥ ū

∫ H

L

v(w(π))f(π|e)dπ − g(e) ≥

∫ H

L

v(w(π))f(π|e′)dπ − g(e′) ∀ e′ ∈ {el, eh}.

A wage schedule w implements an effort level e if it solves the above optimization prob-

lem at e. First, we ask the question if there is a wage schedule to implement each of the

effort levels.

Implementing el: If the owner wants to implement el, he can do so by giving a fixed wage:

wel
= v−1(ū + g(el)). Note that the wage here is independent of profit. Hence, it is optimal

for the manager to select the effort level which is the lowest level. Secondly, the utility from

this wage is exactly ū. Hence, participation constraint also holds. The total expected wage

from this contrast is wel
, which is the same expected wage in the case when the effort is

observable. Since the owner cannot do better than the full observable effort case (formally,

the feasible set is larger with full observable effort since with non-observability, we also have

the incentive compatibility constraints), this is indeed the optimal contract.

Implementing eh: If the owner decides to implement eh, then the wage schedule must solve

min
w(π)

∫ H

L

w(π)f(π|eh)dπ

s.t.
∫ H

L

v(w(π))f(π|eh)dπ − g(eh) ≥ ū

∫ H

L

v(w(π))f(π|eh)dπ − g(eh) ≥

∫ H

L

v(w(π))f(π|el)dπ − g(el).
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Letting γ ≥ 0 and µ ≥ 0 denote the Lagranger multipliers for the first and the second

constraints respectively. Taking KKT first order conditions, we get that for all π, we must

satisfy

−f(π|eh) + γv′(w(π))f(π|eh) + µv′(w(π))[f(π|eh) − f(π|el)] = 0.

Equivalently,

1

v′(w(π))
= γ + µ

[

1 −
f(π|el)

f(π|eh)

]

. (2)

Lemma 3 In any solution to the above optimization problem, γ > 0 and µ > 0 (i.e., both

constraints must bind).

Proof : If µ = 0, then, we see that 1
v′(w(π))

= γ for all π. But since v is strictly concave, this

implies that the optimal solution is a fixed wage schedule for every profit realization. But we

know that this will lead the manager to choose el, and not eh. Hence, incentive compatibility

will be violated. Hence, µ > 0.

Assume for contradiction γ = 0. Because F (π|eh) stochastically dominates F (π|el), for

some open set X ⊂ {L, H}, we have f(π|el)
f(π|eh)

> 1 at all π ∈ X. But if γ = 0, this implies that

v′(w(π)) ≤ 0 for all π ∈ X (since µ > 0). This is impossible since the manager is risk averse.

Hence, γ = 0. �

Given Lemma 3, we can get useful insights into the implementation of eh. First both the

incentives and participation constraints must bind at optimality. Consider the fixed wage

payment ŵ such that 1
v′(ŵ)

= γ. According to condition in Equation 2, we get two cases.

w(π) > ŵ if
f(π|el)

f(π|eh)
< 1 (3)

w(π) < ŵ if
f(π|el)

f(π|eh)
> 1. (4)

So, the optimal wage pays more than ŵ for outcomes that are statistically relatively more

likely to occur under eh than under el and pays less than ŵ for outcomes that statistically

less likely to occur under el than under eh. By structuring wages like this, the manager is

provided incentives to produce higher effort level.

The main point is that the optimal wage may not be monotonic with profits. For the

optimal wage to be monotonically increasing, the likelihood ratio f(π|el)
f(π|eh)

must be decreasing

in π: as π increases, the likelihood of getting profit level π if effort is eh relative to the
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likelihood of getting profit level π if effort is el must increase. To see this, take π > π̂. If

w(π) ≥ w(π̂), then, because of concave v(·), we must have v′(w(π)) ≤ v′(w(π̂)). Hence,

γ + µ
[

1 −
f(π|el)

f(π|eh)

]

≥ γ + µ
[

1 −
f(π̂|el)

f(π̂|eh)

]

.

This implies that

f(π̂|el)

f(π̂|eh)
≥

f(π|el)

f(π|eh)
.

This property is called the monotone likelihood ratio property, and is not implied

by first-order stochastic dominance.

The optimal contract is therefore not simple. Finally, the expected wage paid by the

owner must be strictly greater than the fixed wage payment in the observable case (w∗
eh

=

v−1(ū + g(eh))). Intuitively, the manager has to be insured against risk in profit levels and

this insurance is higher for high effort levels. To see this, first

∫ H

L

v(w(π))f(π|eh)dπ = E[v(w(π))|eh] = ū + g(eh) = v(w∗
eh

).

Using the fact that v′′(·) < 0 and Jensen’s inequality, we get that

v(w∗
eh

) = E[v(w(π))|eh]) < v(E[w(π)|eh]).

Since v is increasing, we get that w∗
eh

< E[w(π)|eh].

Optimal Contract: Table 2 summarizes our findings in this section. From the preceding

analysis, we can say that the expected wage for implementing el remains the same but the

expected wage to implement eh goes up. Hence, unobservable level of efforts may lead to

inefficient levels of effort. If el was optimal when effort was observable, it will still be optimal

when it is unobservable. If eh was optimal when effort was observable, it may be optimal to

implement eh using an incentive scheme that faces the manager with risk or the risk-bearing

costs may be high enough such that the owner finds it optimal to implement el. In either

case, the the welfare to the owner is lower in the case with non-observable effort level.

6 Adverse Selection

Based on Chapter 13 of MWG.

In general competitive equilibrium theory, it is assumed that the characteristics of the

commodities are observable to the firms and consumers. The objective of this section is to
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Cases Expected Wage Owner’s Expected Payoff

Observable effort g(e∗) + ū maxe∈{el,eh}

∫ H

L
πf(π|e)dπ − [g(e) + ū]

Risk neutral manager

Unobservable effort g(e∗) + ū maxe∈{el,eh}

∫ H

L
πf(π|e)dπ − [g(e) + ū]

Risk neutral manager

Observable effort v−1(g(e∗) + ū) maxe∈{el,eh}

∫ H

L
πf(π|e)dπ − v−1(g(e) + ū)

Risk averse manager

Unobservable effort (el) v−1(g(el) + ū)
∫ H

L
πf(π|el)dπ − v−1(g(el) + ū)

Risk averse manager

Unobservable effort (eh) > v−1(g(eh) + ū) <
∫ H

L
πf(π|eh)dπ − v−1(g(eh) + ū)

Risk averse manager

Table 2: Payoffs in various cases of the moral hazard problem

relax this complete markets assumption. In practice, there are many scenarios where the

information is asymmetrically distributed in a market. We give some examples to illustrate

this.

1. When a firm hires a worker (a University hires a doctoral student etc.), the firm may

know less than the worker about his innate ability.

2. When an insurance firm offers a health insurance to an individual, the individual knows

about his health and exercising habits more than the firm.

3. In the used-car market, the seller of a car may have more information about the car

than the buyer.

A number of questions immediately arise in such settings.

1. How do we characterize market equilibria in markets with asymmetric information?

2. What are the properties of these equilibria?

3. Are there possibilities for market to intervene and improve welfare?

6.1 Competitive Equilibrium with Informational Asymmetries

We introduce the following model, similar to Akerlof’s “market for lemons” model. There

are two types of agents in the markets.
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• Firms: There are many identical firms that can hire workers. Each produces the

same output using identical constant returns to scale technology in which labor is

the only input. Each firm is risk neutral, seeks to maximize its profit, and acts as a

price-taker. For simplicity, assume that price of every firm’s output is 1.

• Workers: There are N workers. Workers differ in the number of units of output they

can produce if hired by a firm. This is called the type of a worker, and is denoted

by θ ∈ R+. Further, the set of all possible types lies in an interval Θ = [θ, θ̄], where

0 ≤ θ < θ̄ < ∞. The proportion of workers with type θ or less is given by the

distribution function F (θ), which is assumed to be non-degenerate (i.e., F (θ) < 1 for

all θ < θ̄).

Each worker wants to maximize the amount he earns (wage) from labor. Define the

home production function of each worker as r : Θ → R. If a worker of type θ decides

to stay home, he earns r(θ) (unit price of 1 for simplicity). So, r(θ) is the opportunity

cost of worker of type θ of accepting employment. Hence, a worker accepts employment

in a firm if and only if his wage is at least r(θ).

In a competitive market, each type of worker is a commodity. So, in competitive equi-

librium, there is an equilibrium wage w∗(θ) for worker of type θ. Given the competitive and

constant returns to scale nature of firms, a competitive equilibrium is to have w∗(θ) = θ for

all θ ∈ Θ, and the set of workers who accept employment is given by {θ : r(θ) ≤ θ}.

We verify that such a competitive equilibrium is Pareto efficient. This follows from the

first welfare theorem, but can be verified directly. Recall that Pareto optimality maximizes

the aggregate surplus. Here the surplus is revenue generated by workers’ labor. A type θ

worker gets a revenue of θ if he gets employed and gets r(θ) from home production. For all

θ ∈ Θ, let x(θ) ∈ {0, 1} be a binary variable denoting if the worker is employed (value 1) or

not (value zero). So, the aggregate surplus can be maximized by maximizing the following

expression (expected total revenue).

∫ θ̄

θ

N [θx(θ) + r(θ)(1 − x(θ))]dF (θ).

Clearly, this is maximized by setting x(θ) = 1 for all θ ≥ r(θ) and setting x(θ) = 0 for all

θ < r(θ). Hence, in any Pareto optimal allocation the set of workers that are employed by

firms must be {θ : θ ≥ r(θ)}. Thus, even though there may be many competitive equilibria,

they only differ in their wages and the allocation (set of workers chosen) remain the same in

all of them.
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6.2 Unobservable Types of Workers

We now develop a definition of competitive equilibrium, when workers’ type is not observable.

Since workers’ type is not observable, the wage offered to all the workers must be the same

- say w. So, the set of types workers who will get employment at this wage is given by

Θ(w) = {θ : r(θ) ≤ w}.

Now, we need to determine the demand function. Since the type of the worker is not

observable, the demand is purely driven by the expectation of the firm of the type of the

accepted worker. If the average type of workers who accept employment is µ and the wage

is w, its demand for labor is zero if µ < w; it is any non-negative number if µ = w; and it is

infinity if µ > w.

So, if workers of type Θ∗ accept employment, then firm’s belief about the average type

of these workers must be correctly reflected in equilibrium. Hence, we must have µ = E[θ :

θ ∈ Θ∗]. This way, demand for labor can equal supply if and only if w = E[θ : θ ∈ Θ∗]. Note

however, that the expectation is not well defined if Θ∗ = ∅. We ignore this case and focus

on equilibria where trade takes place.

Definition 19 In the competitive labor market model with unobservable worker types, a

competitive equilibrium is a wage w∗ and a set Θ∗ of worker types who accept employment

such that

Θ∗ = {θ : r(θ) ≤ w∗}

w∗ = E[θ : θ ∈ Θ∗] if Θ∗ 6= ∅.

This involves rational expectations on the part of the firm, i.e., a firm must correctly

anticipate the average type of workers accepting employment.

This type of competitive equilibrium will fail to be Pareto optimal. We first consider a

simple setting where r(θ) = r for all θ ∈ Θ and F (r) ∈ (0, 1). The Pareto optimal allocation

is that workers with type θ ≥ r accept employment and those with type θ < r not accepting

employment.

Now, consider the competitive equilibrium. If r(θ) = r, the set of workers who accept

employment at a given wage w is given by Θ(w) = Θ if r ≤ w and Θ(w) = ∅ if r > w. In

either case, E[θ : θ ∈ Θ(w)] will either be below r or above r. In the first case, no worker

is hired and in the latter case, all the workers are hired. So, either everyone gets to work or

nobody gets to work. But Pareto optimality always requires some workers to stay at home

and some workers choosing to work.
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6.3 Adverse Selection Problem

If r(·) is no longer a constant, then this may exaggerate to a phenomenon known as ad-

verse selection. Adverse selection is said to occur when an informed individual’s trading

decision depends on her unobservable characteristics in a manner that adversely affects the

uninformed agents in the market. In the labor market context, adverse selection arises only

relatively less capable workers accept a firm’s employment offer at any given wage.

From our illustration in last section, it seems that adverse selection may happen if there

are some workers who should be employed and some who should not be. As, we illustrate

now, a market may collapse when everyone should be working. Suppose r(θ) ≤ θ for all

θ and r(·) is a strictly increasing function. The first assumption implies that at a Pareto

optimal allocation, every worker must be employed in some firm. The second assumption

implies that workers who are more productive at firm are also more productive at home. It

is this assumption that drives adverse selection: at a given wage w, since the payoff to a

more capable worker is greater at home, he prefers staying at home whereas the less capable

worker joins the firm.

By the equilibrium condition the equilibrium wage can be determined by the following

equation:

w∗ = E[θ : r(θ) ≤ w∗].

Figure 16 illustrates adverse selection. We have assumed θ = 1 and θ̄ = 4. The left graph

depicts E[θ : r(θ) ≤ w] as a function of w and the right graph depicts r(θ) as a function

of θ. Focus on the left graph. Note that E[θ : r(θ) ≤ r(θ)] = θ and E[θ : r(θ) ≤ w] for

any w ≥ r(θ̄) is E[θ]. The equilibrium wage w∗ is obtained from this graph. Taking the

corresponding point in the right graph, we obtain the cut-off for the worker to be employed,

and see that a large portion of workers may be unemployed, even though Pareto efficiency

requires that everyone must be employed.

We now give an example to illustrate the collapse of the market. Let Θ = [0, 2] and

r(θ) = αθ for all θ ∈ [0, 2], for some α < 1. Suppose θ is distributed uniformly in [0, 2].

Then, E[θ : αθ ≤ w] = w
2α

. So, the equilibrium wage is w∗ = 0 and only workers of type

0 accept employment but nobody else. However, in a Pareto optimal allocation, everyone

should be employed since θ ≥ r(θ).

The competitive equilibrium need not not be unique. This is because of the fact that

the curve E[θ : r(θ) ≤ w] may have any shape. However, in each equilibrium, the firms

must earn zero profit. However, wages in each equilibrium is different, implying that these

equilibria can be Pareto ranked - firms prefer higher wage equilibria. The low wage Pareto

dominated equilibria exist because of coordination failure. Firms expect worker type to be
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Figure 16: Adverse Selction

low and offer low wage, and as a result low type workers only get selected. If firms knew

that good type workers can be attracted by offering high wage rates then they would have

done so.

6.4 Game Theoretic Analysis of Adverse Selection

In this section, we ask the question if the type of competitive equilibria achieved in the

adverse selection model can be viewed as an outcome of a richer model in which firms engage

in strategic wage offerings.

The situation with multiple equilibria may signal some concerns in this regard. Consider

the situation in Figure 17. For example, if firms were strategic, then they can increase payoff

at w∗
2 equilibrium by making a slightly larger wage offer.

We now analyze a simple 2-stage game. For simplicity, let there be two firms, say 1 and

2. The functions F (·) and r(·) are common knowledge. The game proceeds as follows:

• Stage 1: Firms announce their wages w1 and w2.

• Stage 2: Each worker decides either (a) to stay at home or (b) to join firm 1 or (c)

to join firm 2 (if a worker is indifferent about joining either firm, then it joins each of

them with probability 1
2
).

The following result characterizes the subgame perfect Nash equilibria (SPNEs) of this

game for the adverse selection model when r(·) is strictly increasing with r(θ) ≤ θ for all
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θ ∈ Θ and F (·) has an associated continuous density function f(·) with f(θ) > 0 for all

θ ∈ Θ.

Theorem 12 Let W ∗ denote the set of competitive equilibrium wages for the adverse selec-

tion model, and let w∗ = max{w : w ∈ W ∗}. Suppose r(·) is strictly increasing with r(θ) ≤ θ

for all θ ∈ Θ and E[θ : r(θ) ≤ w] is continuous in all w.

1. If w∗ > r(θ) and there is an ǫ > 0 such that E[θ : r(θ) ≤ w′] > w′ for all w′ ∈

(w′− ǫ, w∗), then there is a unique pure strategy SPNE of the two-stage game theoretic

model. In this SPNE, each employed worker receives a wage of w∗, and workers with

types in the set Θ(w∗) = {θ : r(θ) ≤ w∗} accept employment in the firms.

2. If w∗ = r(θ), there are multiple pure strategy SPNEs. However, in every pure strategy

SPNE each agent’s payoff exactly equals her payoff in the highest-wage competitive

equilibrium.

Proof : Note that in any SPNE, a worker of type θ must accept an employment offer if and

only if it is at least r(θ) and he must accept the firm’s offer which is the highest above r(θ)

(breaking ties symmetrically). Also, note that the point w∗ is well-defined. This is because,

for w ≥ r(θ̄), E[θ : r(θ) ≤ w] = E[θ]. By continuity of E[θ : r(θ) ≤ w] with respect to w, we

conclude that w∗ is well-defined.

Now, we need to determine the equilibrium behavior of the firm. We consider two possi-

ble cases.
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Case 1: Suppose w∗ > r(θ). We derive a firm’s equilibrium behavior in several steps.

Step 1: We first show that the wage offered by both firms must be the same and both firms

must be hiring in any SPNE. To this end, note that if both firms are not attracting any

worker (i.e, max(w1, w2) < r(θ)) then any firm can make positive payoff by offering an wage

w∗ − ǫ for some ǫ > 0 since E[θ : r(θ) ≤ (w∗ − ǫ)] − (w∗ − ǫ) > 0 and since w∗ > r(θ). If

one of the firms, say firm 1, is offering wage w1 and not attracting any worker and w2 is a

wage where firm 2 is attracting workers, then there are two subcases: (a) firm 2 is making

zero payoff - in this case it can deviate to w∗ − ǫ and make positive payoff, and (b) firm 2

is making positive payoff - in this case firm 1 can deviate to this wage and enjoy positive

payoff. So, in any SPNE, both firms must be hiring workers. Then, if wages offered by both

firms are different, then all workers will choose the firm with the higher wage. Hence, it

cannot be a SPNE that both firms offer different wages.

Step 2: Next, we show that in any SPNE, both firms must earn exactly zero. To see this,

suppose there is an SPNE in which a total of M workers are hired at a wage w. Let the

aggregate earning of both firms be

Π = M(E[θ : r(θ) ≤ w] − w).

Assume for contradiction Π > 0, which implies that M > 0. This further implies that

w ≥ r(θ). In this case, the weakly less profitable firm, say firm 1, must be earning no more

than Π
2
. But firm 1 can earn profits of at least M(E[θ : r(θ) ≤ (w + α)] − (w + α)) by

increasing the wage to (w + α) for α > 0. Since E[θ : r(θ) ≤ w] is continuous in w, we

can choose α small enough such that this profit is made arbitrarily close to Π. Thus, firm 1

will be better off deviating. So, in any SPNE the wage w chosen by firms must belong to W ∗.

Step 3: We conclude by arguing that in any SPNE the wage chosen must be w∗. If both

firms offer wage w∗, then no firm has an incentive to offer a lower wage since he will not

be able to attract any workers. Also, if a firm offers any higher wage he gets a payoff of

E[θ : r(θ) ≤ w]−w, where w > w∗. But note that E[θ : r(θ) ≤ θ̄] = E[θ], which is assumed to

be finite. Since w∗ is the maximum point in W ∗, the sign of the expression E[θ : r(θ) ≤ w]−w

is the same for all w > w∗. If this sign is positive then the curve E[θ : r(θ) ≤ w] cannot

cross the 45 degree line for all values of w > w∗. This is a contradiction to the fact that the

slope of the curve is zero after w ≥ θ̄.

Finally, suppose there is some w 6= w∗ which is a SPNE. By our assumption, w ∈ W ∗.

Hence, w < w∗. In that case, one of the firms is better of by choosing a wage arbitrarily

close to w∗ and making strictly positive payoff. This gives us the desired contradiction.

58



This completes the argument for Case 1.

Case 2: Suppose w∗ = r(θ). As argued previously, any wage offer w > w∗ gives a firm

negative payoff since E[θ : r(θ) ≤ w] − w < 0 for all w > w∗. Further a firm earns exactly

zero by announcing any wage w ≤ w∗. So any wage pair (w1, w2) such that max(w1, w2) ≤ w∗

is a SPNE. In every such SPNE, every worker of type θ earns r(θ) and firms earn zero. �

A key difference between the game theoretic model and the competitive equilibrium model

is the information that firms require to have. In the competitive equilibrium model, firms only

need to know the average productivity of employed workers. However, the game theoretic

model they need to know the underlying market mechanism, in particular the relationship

between wage offered and quality of employed workers. The game theoretic model tells us

that if such sophistication is possible for the firms, then the coordination problem that can

arise in the competitive equilibrium model may disappear.

7 Matching

Matching is a very important of aspect of markets. In its very raw form, matching partitions

the markets into two sides - students and colleges, new students and hostel rooms, men and

women, firms and employees, agents and objects, patients and kidneys etc. The kind of

matching markets that we discuss involves no monetary transfers. One side of the market

needs to be matched with the other side of the market. In its simplest model, this matching

is one to one, i.e., each member of a side of the market is matched to a unique member of

the other side of the market.

Matching models are differentiated by preferences agents have. In some models, only

agents on one side of the market have preferences over the other side of the market. For

instance, in allocating objects to agents, each agent has a preference over objects, but objects

do not have any preference over agents. These matching models are called one-sided matching

models. On the other hand, in many matching models, agents on each side of the market

have preferences over the side of the market. These are called two-sided matching models.

Examples include matching students to colleges, matching kidneys to patients, matching

different units of a firm to its employees etc. These models are popularly known as the

marriage market model.
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7.1 One Sided Matching - Object Allocation Mechanisms

In this section, we look at an important model where transfers or prices are not involved.

There is a finite set of objects M = {a1, . . . , am} and a finite set of agents N = {1, . . . , n}.

We assume that m ≥ n. The objects can be houses, jobs, projects, positions, candidates or

students etc. Each agent has a linear order over the set of objects, i.e., a complete, transitive,

and anti-symmetric binary relation. In this model, this ordering represents the preference

of agents, and is the private information of agents. The preference ordering of agent i will

be denoted as ≻i. A profile of preferences will be denoted as ≻≡ (≻1, . . . ,≻n). The set of

all preference orderings over M will be denoted as M. The top element amongst a set of

objects S ⊆ M according to ordering ≻i is denoted as ≻i (1, S), and the k-th ranked object

by ≻i (k, S).

The main departure of this model is that agents do not have direct preference over

alternatives. We need to extract their preference over alternatives from their preference over

objects. What are the alternatives? An alternative is a feasible matching, i.e., an injective

mapping from N to M . The set of alternatives will be denoted as A, and this is the set of

all injective mappings from N to M . For a given alternative a ∈ A, if a(i) = j ∈ M , then

we say that agent i is assigned object j (in a).

A mechanism f is a mapping f : Mn → A. A fundamental property that we will be

interested in is strategy-proofness. Strategy-proofness requires that if agents preferences

are private information, then the best strategy for each agent in the mechanism is to take

actions that are consistent with their true preferences (irrespective of what strategy other

agents are choosing). We now define a fixed priority (serial dictatorship) mechanism. A

priority is a bijective mapping σ : N → N , i.e., an ordering over the set of agents. The fixed

priority mechanism is defined inductively. Fix a preference profile ≻. We now construct an

alternative a as follows:

a(σ(1)) =≻σ(1) (1, N)

a(σ(2)) =≻σ(2) (1, N \ {a(σ(1))})

a(σ(3)) =≻σ(3) (1, N \ {a(σ(1)), a(σ(2))})

. . . . . .

a(σ(i)) =≻σ(i) (1, N \ {a(σ(1)), . . . , a(σ(i − 1))}

. . . . . .

a(σ(n)) =≻σ(n) (1, N \ {a(σ(1)), . . . , a(σ(n − 1))}.

Now, the fixed priority mechanism assigns fσ(≻) = a.

Let us consider an example. We start with an example. The ordering over houses
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{a1, a2, . . . , a6} of agents {1, 2, . . . , 6} is shown in Table 3. Fix a priority σ as follows:

≻1 ≻2 ≻3 ≻4 ≻5 ≻6

a3 a3 a1 a2 a2 a1

a1 a2 a4 a1 a1 a3

a2 a1 a3 a5 a6 a2

a4 a5 a2 a4 a4 a4

a5 a4 a6 a3 a5 a6

a6 a6 a5 a6 a3 a5

Table 3: An example for housing model

σ(i) = i for all i ∈ N . According to this priority, the fixed priority mechanism will let

agent 1 choose his best object first, which is a3. Next, agent 2 chooses his best object

among remaining objects, which is a2. Next, agent 3 gets his best object among remaining

objects {a1, a4, a5, a6}, which is a1. Next, agent 4 gets his object among remaining objects

{a4, a5, a6}, which is a5. Next, agent 5 gets his best object among remaining objects {a4, a6},

which is a6. So, agent 6 gets a4.

Note that a fixed priority mechanism is a generalization of dictatorship. We show below

(quite obvious) that a fixed priority mechanism is strategy-proof. Moreover, it is efficient in

the following sense.

Definition 20 A mechanism f is efficient (in the house allocation model) if for all prefer-

ence profiles ≻ and all matchings a, if there exists another matching a′ 6= a such that either

a′(i) ≻i a(i) or a′(i) = a(i) for all i ∈ N , then f(≻) 6= a.

Proposition 3 Every fixed priority mechanism is strategy-proof and efficient.

Proof : Fix a priority σ, and consider fσ- the associated fixed priority mechanism. The

strategy of any agent i is any ordering over M . Suppose agent i wants to deviate. When

agent i is truthful, let M−i be the set of objects allocated to agents who have higher priority

than i (agent j has higher priority than agent i if and only if σ(j) < σ(i)). So, by being

truthful, agent i get ≻i (1, M \ M−i). When agent i deviates, any agent j who has a higher

priority than agent i continues to get the same object that he was getting when agent i was

truthful. So, agent i gets an object in M \ M−i. Hence, deviation cannot be better.

To show efficiency, assume for contradiction that fσ is not efficient. Consider a profile ≻

such that f(≻) = a. Let a′ be another matching satisfying a′(i) ≻i a(i) or a′(i) = a(i) for

all i ∈ N . Then, consider the first agent j in the priority σ such that a′(j) ≻j a(j). Since

agents before j in priority σ got the objects of matching a′, object a′(j) was still available

to agent j. This is a contradiction since agent j chose a(j) with a′(j) ≻j a(j). �
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Note that every fixed priority mechanism fσ is a dictatorship. In the fixed priority

mechanism fσ corresponding to priority σ, agent σ(1) gives his top house, and hence, his

top alternative. So, σ(1) is a dictator in fσ. As we have already seen, not every dictatorship

is strategy-proof when indifference is allowed in preference orderings. However, Proposition

3 shows that fixed priority mechanism is strategy-proof in the housing allocation model.

One can construct mechanisms which are strategy-proof but not a fixed priority mecha-

nism in this model. We show this by an example. Let N = {1, 2, 3} and M = {a1, a2, a3}.

The mechanism we consider is f , and is almost a fixed priority mechanism. Fix a priority σ

as follows: σ(i) = i for all i ∈ N . Another priority is σ′: σ′(1) = 2, σ′(2) = 1, σ′(3) = 3. The

mechanism f generates the same outcome as fσ whenever ≻2 (1, M) 6= a1. If ≻2 (1, M) = a1,

then it generates the same outcome as fσ′

. To see that this is strategy-proof, it is clear that

agents 1 and 3 cannot manipulate since they cannot change the priority. Agent 2 can change

the priority. But, can he manipulate? If his top ranked house is a1, he gets it, and he

cannot manipulate. If his top ranked house is ∈ {a2, a3}, then he cannot manipulate without

changing the priority. If he does change the priority, then he gets a1. But being truthful,

either he gets his top ranked house or second ranked house. So, he gets a house which is

either a1 or some house which he likes more than a1. Hence, he cannot manipulate.

7.1.1 Top Trading Cycle Mechanism with Fixed Endowments

The top trading cycle mechanism (TTC) with fixed endowment is a class of general mecha-

nisms which are strategy-proof, and has some nice properties. We will study them in detail

here.

We assume here m = n for simplicity. In the next subsection, we show how to relax this

assumption. To explain the mechanism, we start with the example in Table 3. In the first step

of the TTC mechanism, agents are endowed with a house each. Suppose the fixed endowment

for this example is a∗: a∗(1) = a1, a
∗(2) = a3, a

∗(3) = a2, a
∗(4) = a4, a

∗(5) = a5, a
∗(6) = a6.

The TTC mechanism goes in steps. In each step, a set of houses are assigned to a set

of agents, and they are excluded from the subsequent steps of the mechanism. Hence, the

mechanism maintains a set of “remaining agents” and a set of “remaining houses” in each

step.

At every step, a directed graph is constructed. The set of nodes in this directed graph is

the same as the set of remaining agents. Initially, the set of remaining agents is N . Then,

there is a directed edge from agent i to agent j if and only if agent j is endowed with agent i’s

top ranked house amongst the remaining houses (initially, all houses are remaining houses).

Formally, if H ⊆ M is the set of remaining houses in any step, then the directed graph in this

iteration has an edge from agent i to agent j (i can be j also) if and only if ≻i (1, H) = a∗(i).
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Note that such a graph will have exactly one outgoing edge from every node (though possibly

many incoming edges to a node). Further, there may be an edge from a node to itself (this

will be treated as cycle, and called a loop). It is clear that such a graph will always have a

cycle.

Figure 18 shows the directed graph for the first step of the example in Table 3. The only

cycle in this graph is a loop involving agent 2. So, agent 2 gets his endowment, which is house

a3. Agent 2 is eliminated from the graph, and house a3 is eliminated from the problem. Now,

the graph for the next step is constructed. Now, every agent points to his top ranked house

amongst houses remaining (which is the houses except house a3). This graph is shown in

Figure 19. Here, the only cycle is a loop involving agent 1. So, agent 1 gets his endowment

a1. Agent 1 and house a1 is eliminated from the problem. Next, the graph for the next

step is constructed, which is shown in Figure 20. There is a cycle involving agents 3 and 4.

So, agent 3 gets the endowment of agent 4 (a4) and agent 4 gets the endowment of agent

3 (a2). These agents and houses are eliminated from the problem, and the next graph is

constructed as shown in Figure 21. This graph has a loop involving agent 6. So, agent 6

gets his endowment a6, and the only remaining house a5 goes to agent 5.

1

2

3

4

5

6

Figure 18: Cycle in Step 1 of the TTC mechanism

We now formally describe the TTC mechanism. Fix an endowment of agents a∗. The

mechanism maintains the remaining set of houses Mk and remaining set of agent Nk in every

Step k of the mechanism.

• Step 1: Set M1 = M and N1 = N . Construct a directed graph G1 with nodes N1.

There is a directed edge from node (agent) i ∈ N1 to agent j ∈ N1 if and only if

≻i (1, M1) = a∗(j).
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1

3

4

5

6

Figure 19: Cycle in Step 2 of the TTC mechanism

3

4

5

6

Figure 20: Cycle in Step 3 of the TTC mechanism

5

6

Figure 21: Cycle in Step 4 of the TTC mechanism

Allocate houses along every cycle of graph G1. Formally, if (i1, i2, . . . , ip, i1) is a cycle

in G1 then set a(i1) = a∗(i2), a(i2) = a∗(i3), . . . , a(ip−1) = a∗(ip), a(ip) = a∗(i1). Let

N̂1 be the set of agents allocated in such cycles in G1, and M̂1 be the set of houses

assigned in a to N1.
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Set N2 = N1 \ N̂1 and M2 = M1 \ M̂1.

• Step k: Construct a directed graph Gk with nodes Nk. There is a directed edge from

node (agent) i ∈ Nk to agent j ∈ Nk if and only if ≻i (1, Mk) = a∗(j).

Allocate houses along every cycle of graph Gk. Formally, if (i1, i2, . . . , ip, i1) is a cycle

in Gk then set a(i1) = a∗(i2), a(i2) = a∗(i3), . . . , a(ip−1) = a∗(ip), a(ip) = a∗(i1). Let

N̂k be the set of agents allocated in such cycles in Gk, and M̂k be the set of houses

assigned in a to Nk.

Set Nk+1 = Nk \ N̂k and Mk+1 = Mk \ M̂k. If Nk+1 is empty, stop, and a is the final

matching chosen. Else, repeat.

Proposition 4 TTC with fixed endowment mechanism is strategy-proof and efficient.

Proof : Consider agent i who wants to deviate. Suppose agent i is getting assigned in Step

k of the TTC mechanism if he is truthful. Given the preferences of the other agents, suppose

agent i reports a preference ordering different from his true preference ordering. Let Hk−1 be

the set of houses assigned in Steps 1 through k−1 when agent i is truthful. If the deviation of

agent i results in no change of his strategy (pointing to the most preferred remaining house)

before Step k, then the allocation of houses in Hk−1 will not change due to his deviation.

As a result agent i will get an object from M \ Hk−1. Since agent i gets his most preferred

object from M \Hk−1 if he is truthful, this is not a successful manipulation. Hence, we focus

on the case where the deviation of agent i result in a change of his strategy before Step k.

Suppose r < k is the first step in the TTC mechanism where the underlying allocation

in that step changes due to this deviation. Notice that the only change in graph Gr in cases

where agent i is truthful and where he is deviating is the outgoing edge of agent i. Consider

the case when agent i is truthful. In that case since agent i is not allocated in Step r,

he is not involved in any cycle in Gr. But there may be sequence of nodes of the nature

(i1, i2, . . . , ip, i), where i1 has no incoming edge, but edges exist from i1 to i2, and i2 to i3,

and so on. Call such sequence of nodes i-paths. Let Pi be the set of all nodes in all the

i-paths - Pi includes i also.

Figure 22 gives an illustration. Here, Pi = {i1, i2, i3, i5, i6, i}.

Note that if agent i’s deviation does not lead agent i to point to an agent in Pi, then the

allocations in Step r is unchanged because of his deviation. This follows from the fact that

the only way i can change allocation in Step r is by creating a new cycle involving himself

- he cannot break cycles which does not involve him. As a result, the only way to change

the allocation in Step r is to deviate by pointing to an agent in Pi. In that case, a subset

of agents in Pi which includes i, call them Cr, will form a cycle, and get assigned in Step

r. We argue that agents in Cr must be unassigned (i.e., part of the “remaining agents”) in
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i6

i1 i2 i3 i i4

i5

Figure 22: i-Paths in a Step

Step k when agent i is truthful. To see this, consider any agent i1 ∈ Pi. By definition, there

is a path from i1 to i - say, (i1, i2, . . . , ip, i). Since house of i is available till Step k, ip will

continue to point to i. Hence, the house of ip is available till Step k. As a result, ip−1 will

continue to point to ip till Step k, and so on. Hence, the path (i1, i2, . . . , ip, i) will continue to

exist in Step k. This shows that agent in Cr are unassigned in Step k. Hence, the allocation

achieved by agent i by his deviation in Step r can also achieved by deviating in Step k. But,

we know that if he deviates in Step k, then it is not a successful manipulation. So, the only

possibility is that he deviates by pointing to an agent not in Pi, in which case he does not

alter the allocation in Step r. As a result, the cycles in subsequent rounds also do not change

due to deviations.

Hence, all the agents who were assigned in Steps 1 through (k − 1) still get assigned the

same houses. By definition, agent k gets his top ranked object amongst M \ Hk−1 if he is

truthful. By deviating he will get an object in M \Hk−1. Hence, deviation cannot be better.

Now, we prove efficiency. Let a be a matching produced by the TTC mechanism for

preference profile ≻. Assume for contradiction that this matching is not efficient, i.e., there

exists a different matching a′ such that a′(i) ≻i a(i) or a′(i) = a(i) for all i ∈ N . Consider

the first step of the TTC mechanism where some agent i gets a(i) 6= a′(i). Since all the

agents get the same object in a and a′ before this step, object a′(i) is available in this step,

and since a′(i) ≻i a(i), agent i cannot have an edge from i to the “owner” of a(i) in this step.

This means that agent i cannot be assigned to a(i). This gives a contradiction. �

Note that a TTC mechanism need not be a dictatorship. To see this, suppose there are

three agents and three houses. Fix an endowment a∗ as a∗(i) = ai for all i ∈ {1, 2, 3}. Let

us examine the TTC mechanism corresponding to a∗. Consider the profile (≻1,≻2,≻3) such

that ≻i (1, N) = a1 for all i ∈ {1, 2, 3}, i.e., every agent has object a1 as his top ranked

object. Clearly, only agent 1 gets one of this top ranked alternatives (matchings) in this

profile according to this TTC mechanism. Now, consider the profile (≻′
1,≻

′
2,≻

′
3) such that

≻′
i (1, N) = a2 for all i ∈ {1, 2, 3}, i.e., every agent has object a2 as his top ranked object.

66



Then, only agent 2 gets one of his top ranked alternatives (matchings) according to this TTC

mechanism. Hence, this TTC mechanism is not a dictatorship.

7.1.2 Generalized TTC Mechanisms

In this section, we generalize the TTC mechanisms in a natural way so that one extreme

covers the TTC mechanism we discussed and the other extreme covers the fixed priority

mechanism. We can now handle the case where the number of objects is not equal to the

number of agents. We now define fixed priority TTC (FPTTC) mechanisms. In a

FPTTC mechanism, each house aj is endowed with a priority σj : N → N over agents. This

generates a profile of priorities σ ≡ (σ1, . . . , σn).

The FPTTC mechanism then goes in stages, with each stage executing a TTC mechanism

but the endowments in each stage changing with the fixed priority profile σ.

We first illustrate the idea with the example in Table 4.

≻1 ≻2 ≻3 ≻4

a3 a2 a2 a1

a2 a3 a4 a4

a1 a4 a3 a3

a4 a1 a1 a2

Table 4: An example for housing model

Consider two priorities σ1 and σ2, where σ1(i) = i for all i ∈ N and σ2 is defined as

σ2(1) = 2, σ2(2) = 1, σ2(3) = 4, σ2(4) = 3. Suppose houses a1 and a2 are assigned priority σ1

but houses a3 and a4 are assigned priority σ2.

In stage 1, the endowments are derived from the priorities of houses. Since houses a1 and

a2 have agent 1 as top in their priority σ1, agent 1 is endowed with these houses. Similarly,

agent 2 is endowed houses a3 and a4 by priority σ2. Now, the TTC phase of stage 1 begins.

By the preferences of agents, each agent points to agent 1, except agent 1, who points to

agent 2 (agent 2 is endowed house a3, which is agent 1’s top ranked house). So, trade takes

place between agents 1 and 2. This is shown in Figure 23 - the endowments of agents are

shown in square brackets. The edges also reflect which object it is pointing to.

In the next stage, only agents 3 and 4 remain. Also, only houses a1 and a4 remain. We

look at the priority of σ1 of house a1. Of the remaining agents, agent 3 is the top. Then,

for priority σ2 of house a4, the top agent among remaining agent is agent 4. So, the new

endowment is agent 3 gets a1 and agent 4 gets a4. We run the TTC phase now. Agent 3

points to agent 4 and agent 4 points to agent 3. So, they trade, and the FPTTC mechanism
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[a3,a4]1 2

3

4

[a1,a2]

Figure 23: Cycle in stage 1 of the FPTTC mechanism

gives the following matching ā: ā(1) = a3, ā(2) = a2, ā(3) = a4, ā(3) = a1. This is shown in

Figure 24.

[a1]

3 4 [a4]

Figure 24: Cycle in stage 2 of the FPTTC mechanism

If all the houses have the same fixed priority, then we recover the fixed priority mechanism.

To see this, notice that because of identical priority of houses, all the houses are endowed

to the same agent in every stage of the FPTTC mechanism. As a result, at stage i, the ith

agent in the priority gets his top-ranked house. Hence, we recover the fixed priority (serial

dictatorship) mechanism.

On the other extreme, if all the houses have priorities such that the top ranked agents in

the priorities are distinct (i.e., for any two houses aj , ak with priorities σj and σk, we have

σj(1) 6= σk(1)), then the endowments of the agents do not change over stages if the number of

houses is equal to the number of agents. If there are more houses than number of agents, the

endowment of each agent increases (in terms of set inclusion) across stages. So, we recover

the traditional TTC mechanism for the case of equal number of agents and houses.

The following proposition can now be proved using steps similar to Proposition 4.

Proposition 5 The FPTTC mechanism is strategy-proof and efficient.
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7.2 Stable House Allocation with Existing Tenants

We consider a variant of the house allocation problem. In this model, each agent already

has a house that he owns - if an agent i owns house j then he is called the tenant of j.

Immediately, one sees that the TTC mechanism can be applied in this setting with initial

endowment given by the house-tenant relationship. This is, as we have shown, strategy-proof

and efficient (Proposition 4).

We address another concern here, that of stability. In this model, agents own resources

that are allocated. So, it is natural to impose some sort of stability condition on the mech-

anism. Otherwise, a group of agents can break away and trade their houses amongst them-

selves.

Consider the example in Table 3. Let the existing tenants of the houses be given by

matching a∗: a∗(1) = a1, a
∗(2) = a3, a

∗(3) = a2, a
∗(4) = a4, a

∗(5) = a5, a
∗(6) = a6. Consider

a matching a as follows: a(i) = ai for all i ∈ N . Now consider the coalition of agents {3, 4}.

In the matching a, we have a(3) = a3 and a(4) = a4. But agents 3 and 4 can reallocate the

houses they own among themselves in a manner to get a better matching for themselves.

In particular, agent 3 can get a4 (house owned by agent 4) and agent 4 can get a2 (house

owned by agent 3. Note that a4 ≻3 a3 and a2 ≻4 a4. Hence, both the agents are better

off trading among themselves. So, they can potentially block matching a. We formalize this

idea of blocking below.

Let a∗ denote the matching reflecting the initial endowment of agents. We will use the

notation aS for every S ⊆ N , to denote a matching of agents in S to the houses owned by

agents in S. Whenever we write a matching a without any superscript we mean a matching

of all agents. Formally, a coalition (group of agents) S ⊆ N can block a matching a at a

preference profile ≻ if there exists a matching aS such that aS(i) ≻i a(i) or aS(i) = a(i) for

all i ∈ S with aS(j) ≻j a(j) for some j ∈ S. A matching a is in the core at a preference

profile ≻ if no coalition of agents can block a at ≻. A mechanism f is stable if for all

preference profile ≻, f(≻) is in the core at preference profile ≻. Note that stability implies

efficiency - efficiency requires that the grand coalition cannot block.

We will now analyze if the TTC mechanism is stable. Note that when we say a TTC

mechanism, we mean the TTC mechanism where the initial endowment is the endowment

given by the house-tenant relationship.

Proposition 6 The TTC mechanism is stable. Moreover, there is a unique core matching

for every preference profile.

Proof : Assume for contradiction that the TTC mechanism is not stable. Then, there exists

a preference profile ≻, where the matching a produced by the TTC mechanism at ≻ is not
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in the core. Let coalition S block this matching a at ≻. This means there exists another

matching aS such that aS(i) ≻i a(i) or aS(i) = a(i) for all i ∈ S, with equality not holding

for all i ∈ S. Let T = {i ∈ S : aS(i) ≻i a(i)}. Assume for contradiction T = ∅.

To remind notation, we denote N̂k to be the set of agents allocated houses in Step k

of the TTC mechanism, and M̂k be the set of these houses. Clearly, agents in S ∩ N̂1 are

getting their respective top ranked houses. So, (S ∩ N̂1) ⊆ (S \ T ). Define Sk = S ∩ N̂k for

each stage k of the TTC mechanism. We now complete the proof using induction. Suppose

(S1 ∪ . . . ∪ Sk−1) ⊆ (S \ T ) for some stage k. We show that Sk ⊆ (S \ T ). Now, agents in

S∩N̂k are getting their respective top ranked houses amongst houses in M \(M̂1∪ . . .∪M̂k).

Given that agents in (S1 ∪ . . . ∪ Sk−1) get the same set of houses in aS and a, any agent in

Sk cannot be getting a better house in aS than his house in a. Hence, again Sk ⊆ (S \ T ).

By induction, S ⊆ (S \ T ) or T = ∅, which is a contradiction.

Finally, we show that the core matching returned by the TTC mechanism is the unique

one. Suppose the core matching returned by the TTC mechanism is a, and let a′ be another

core matching for preference profile ≻. Note that (a) in every Step k of the TTC mechanism

agents in N̂k get allocated to houses owned by agents in N̂k, and (b) agents in N̂1 get their

top ranked houses. Hence, if a(i) 6= a′(i) for any i ∈ N̂1, then agents in N1 will block a′. So,

a(i) = a′(i) for all i ∈ N̂1.

Now, we use induction. Suppose, a(i) = a′(i) for all i ∈ N̂1 ∪ . . . ∪ N̂k−1. We will

argue that a(i) = a′(i) for all i ∈ N̂k. Agents in N̂k get their highest ranked house from

M \ M̂1 ∪ . . .∪ M̂k−1. So, given that agents in N̂1 ∪ . . .∪ N̂k−1 get the same houses in a and

a′, if some agent i ∈ N̂k get different houses in a and a′, then it must be a(i) ≻i a′(i). This

means, agents in N̂k will block a′. This contradicts the fact that a′ is a core matching.

This shows that a = a′, a contradiction. �

The TTC mechanism with existing tenants has another nice property. Call a mechanism

f individually rational if at every profile ≻, the matching f(≻) ≡ a satisfies a(i) ≻i a∗(i)

or a(i) = a∗(i) for all i ∈ N , where a∗ is the matching given by the initial endowment or

existing tenants.

Clearly, the TTC mechanism is individually rational. To see this, consider a profile ≻

and let f(≻) = a. Note that the TTC mechanism has this property that if the house owned

by an agent i is matched in Step k, then agent i is matched to a house in Step k too. If

a(i) 6= a∗(i) for some i, then agent i must be part of a trading cycle where he is pointing to

a house better than a∗(i). Hence, a(i) ≻i a∗(i).

This also follows from the fact that the TTC mechanism is stable and stability implies

individual rationality - individual rationality means no coalition of single agent can block.

In the model of house allocation with existing tenants, the TTC mechanism satisfies three
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compelling properties along with stability - it is strategy-proof, efficient, and individually

rational. Remarkably, these three properties characterize the TTC mechanism in the existing

tenant model. We skip the proof.

Theorem 13 A mechanism is strategy-proof, efficient, and individually rational if and only

if it is the TTC mechanism.

Note that the serial dictatorship with a fixed priority is strategy-proof and efficient but

not individually rational. The “status-quo mechanism”where everyone is assigned the houses

they own is strategy-proof and individually rational but not efficient. So, the properties of

individual rationality and efficiency are crucial for the characterization of Theorem 13.

7.3 Two-Sided Matching - The Marriage Market Model

Let M be a set of men and W be a set of women. For simplicity, we will assume that

|M | = |W | - but this is not required to derive the results. Every man m ∈ M has a strict

preference ordering ≻m over the set of women W . So, for x, y ∈ W , x ≻m y will imply that

m ranks x over y. A matching is a bijective mapping µ : M → W , i.e., every man is assigned

to a unique woman. If µ is a matching, then µ(m) denotes the woman matched to man m

and µ−1(w) denotes the man matched to woman w. This model is often called the “marriage

market” model or “two-sided matching” model. We first discuss the stability aspects of this

model, and then discuss the strategic aspects.

7.3.1 Stable Matchings in Marriage Market

As in the house allocation model with existing tenants, the resources to be allocated to agents

in the marriage market model are owned by agents themselves. Hence, stability becomes an

important criteria for designing any mechanism.

We consider an example with three men and three women. Let M = {m1, m2, m3} and

W = {w1, w2, w3}. Their preferences are shown in Table 5.

≻m1
≻m2

≻m3
≻w1

≻w2
≻w3

w2 w1 w1 m1 m3 m1

w1 w3 w2 m3 m1 m3

w3 w2 w3 m2 m2 m2

Table 5: Preference orderings of men and women

Consider the following matching µ: µ(m1) = w1, µ(m2) = w2, µ(m3) = w3. This matching

is unstable in the following sense. The pair (m1, µ(m2) = w2) will block this matching (ex
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post) since m1 likes w2 over µ(m1) = w1 and w2 likes m1 over µ−1(w2) = m2. So, (m1, w2)

will break away, and form a new pair. This motivates the following definition of stability.

Definition 21 A matching µ is unstable at preference profile (≻) if there exists m, m′ ∈

M such that (a) µ(m′) ≻m µ(m) and (b) m ≻µ(m′) m′. The pair (m, µ(m′)) is called a

blocking pair of µ at (≻). If a matching µ has no blocking pairs at a preference profile ≻,

then it is called a stable matching at ≻.

The following matching µ′ is a stable matching at ≻: µ′(m1) = w1, µ
′(m2) = w3, µ

′(m3) =

w2 for the example in Table 5. The question is: Does a stable matching always exist? The

answer to this question is remarkably yes, as we will show next.

7.3.2 Deferred Acceptance Algorithm

In this section, we show that a stable matching always exists in the marriage market model.

The fact that a stable matching always exists is proved by constructing an algorithm to find

such a matching (this algorithm is due to David Gale and Lloyd Shapley, and also called

the Gale-Shapley algorithm). There are two versions of this algorithm. In one version men

propose to women and women either accept or reject the proposal. In another version, women

propose to men and men either accept or reject the proposal. We describe the men-proposal

version.

• S1. First, every man proposes to his top ranked woman.

• S2. Then, every woman who has at least one proposal keeps (tentatively) the top man

amongst these proposals and rejects the rest.

• S3. Then, every man who was rejected in the last round, proposes to the top woman

amongst those women who have not rejected him in earlier rounds.

• S4. Then, every woman who has at least two proposals, including any proposal ten-

tatively kept from earlier rounds, keeps (tentatively) the top man amongst these pro-

posals and rejects the rest. The process is then repeated from Step S3 till each woman

has a proposal, at which point, the tentative proposal accepted by a woman becomes

permanent.

Since each woman is allowed to keep only one proposal in every round, no woman will

be assigned to more than one man. Since a man can propose only one woman at a time, no

man will be assigned to more than one woman. Since the number of men and women are

the same, this algorithm will terminate at a matching. Also, the algorithm will terminate
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finitely since in every round, the set of women a man can propose does not increase, and

strictly decreases for at least one man.

We illustrate the algorithm for the example in Table 5. A proposal from m ∈ M to

w ∈ W will be denoted by m → w.

• In the first round, every man proposes to his best woman. So, m1 → w2, m2 →

w1, m3 → w1.

• Hence, w1 has two proposals: {m2, m3}. Since m3 ≻w1
m2, w1 rejects m2 and keeps

m3.

• Now, m2 is left to choose from {w2, w3}. Since w3 ≻m2
w2, m2 now proposes to w3.

• Now, every woman has exactly one proposal. So the algorithm stops with the matching

µm given by µm(m1) = w2, µm(m2) = w3, µm(m3) = w1.

It can be verified that µm is a stable matching. Also, note that µm is a different stable

matching than the stable matching µ′ which we discussed earlier. Hence, there can be more

than one stable matching.

One can also state a women proposing version of the deferred acceptance algorithm. Let

us run the women proposing version for the example in Table 5. As before, a proposal from

w ∈ W to m ∈ M will be denoted by w → m.

• In the first round, every woman proposes to her top man. So, w1 → m1, w2 → m3, w3 →

m1.

• So, m1 has two proposals: {w1, w3}. We note that w1 ≻m1
w3. Hence, m1 rejects w3

and keeps w1.

• Now, w3 is left to choose from {m2, m3}. Since m3 ≻w3
m2, w3 proposes to m3.

• This implies that m3 has two proposals: {w2, w3}. Since w2 ≻m3
w3, m3 rejects w3 and

keeps w2.

• Now, w3 is left to choose only m2. So, the algorithm terminates with the matching µw

given by µw(m1) = w1, µw(m2) = w3, µw(m3) = w2.

Note that µw is a stable matching and µm 6= µw.
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7.3.3 Stability and Optimality of Deferred Acceptance Algorithm

Theorem 14 At every preference profile, the Deferred Acceptance Algorithm terminates at

a stable matching for that profile.

Proof : Consider the Deferred Acceptance Algorithm where men propose (a similar proof

works if women propose) for a preference profile ≻. Let µ be the final matching of the

algorithm. Assume for contradiction that µ is not a stable matching. This implies that there

exists a pair m ∈ M and w ∈ W such that (m, w) is a blocking pair. By definition µ(m) 6= w

and w ≻m µ(m). This means that w rejected m earlier in the algorithm (else m would have

proposed to w at the end of the algorithm). But a woman rejects a man only if she gets

a better proposal, and her proposals improve in every round. This implies that w must be

assigned to a better man than m, i.e., µ−1(w) ≻w m. This contradicts the fact that (m, w)

is a blocking pair. �

The men-proposing and the women-proposing versions of the Deferred Acceptance Algo-

rithm may output different stable matchings. Is there a reason to prefer one of the stable

matchings over the other? Put differently, should we use the men-proposing version of the

algorithm or the women-proposing version?

To answer this question, we start with some notations. A matching µ is men-optimal

stable matching if µ is stable and for every other stable matching µ′ we have µ(m) ≻m µ′(m)

or µ(m) = µ′(m) for all man m ∈ M . Similarly, a matching µ is women-optimal stable

matching if µ is stable and for every other stable matching µ′ we have µ(w) ≻m µ′(w) or

µ(w) = µ′(w) for all woman w ∈ W .

Note that by definition, a men-optimal stable matching is unique - if there are two men

optimal stable matchings µ, µ′, then they must differ by at least one man’s match and this

man must be worse in one of the matchings. Similarly, there is a unique women-optimal

stable matching.

Theorem 15 The men-proposing version of the Deferred Acceptance Algorithm terminates

at the unique men-optimal stable matching and the women-proposing version of the Deferred

Acceptance Algorithm terminates at the unique women-optimal stable matching.

Proof : We do the proof for men-proposing version of the algorithm. The proof is similar

for the women-proposing version. Let µ̂ be the stable matching obtained at the end of the

men-proposing Deferred Acceptance Algorithm. Assume for contradiction that µ̂ is not men-

optimal. Then, there exists a stable matching µ such that for some m ∈ M , µ(m) ≻m µ̂(m).

Let M ′ = {m ∈ M : µ(m) ≻m µ̂(m)}. Hence, M ′ 6= ∅.
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Now, for every m ∈ M ′, since µ(m) ≻m µ̂(m), we know that m is rejected by µ(m) in

some round of the algorithm. Denote the round in which m ∈ M ′ is rejected by µ(m) by tm.

Choose m′ ∈ arg minm∈M ′ tm, i.e., choose a man m′ who is the first to be rejected by µ(m′)

among all men in M ′. Since µ(m′) rejects m′, she must have got a better proposal from some

other man m′′, i.e.,

m′′ ≻µ(m′) m′. (5)

Now, consider µ(m′) and µ(m′′). If m′′ /∈ M ′, then µ̂(m′′) = µ(m′′) or µ̂(m′′) ≻m′′ µ(m′′).

Since m′′ is eventually assigned to µ̂(m′′), it must be the last woman that m′′ must have

proposed in DAA. The fact that m′′ proposed to µ(m′) earlier means µ(m′) ≻m′′ µ̂(m′′).

Using, µ̂(m′′) = µ(m′′) or µ̂(m′′) ≻m′′ µ(m′′), we get

µ(m′) ≻m′′ µ(m′′).

If m′′ ∈ M ′, then, since tm′′ > tm′ , m′′ has not been rejected by µ(m′′) till round tm′ .

This means, again, m′′ proposed to µ(m′) before proposing to µ(m′′). Hence, as in the earlier

case, we get

µ(m′) ≻m′′ µ(m′′). (6)

By Equations 5 and 6, (m′′, µ(m′)) forms a blocking pair. Hence, µ is not stable. This is a

contradiction. �

The natural question is then whether there exists a stable matching that is optimal for

both men and women. The answer is no. The example in Table 5 has two stable matchings,

one is optimal for men but not for women and one is optimal for women but not for men.

7.3.4 Strategic Issues in Deferred Acceptance Algorithm

We next turn to strategic properties of the Deferred Acceptance Algorithm (DAA). We first

consider the men-proposing version. We define the notion of strategyproofness informally

here. The DAA is strategy-proof if reporting a non-truthful preference ordering does not

result in a better outcome for an agent for any reported preferences of other agents.

We first show that the men-proposing version of the Deferred Acceptance Algorithm is

not strategyproof for women (i.e., women can manipulate). Let us return to the example

in Table 5. We know if everyone is truthful, then the matching is: µ(m1) = w2, µ(m2) =

w3, µ(m3) = w1. We will show that w1 can get a better outcome by not being truthful. We

show the steps here.
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• In the first round, every man proposes to his best woman. So, m1 → w2, m2 →

w1, m3 → w1.

• Next, w2 only has one proposal (from m1) and she accepts it. But w1 has two proposals:

{m2, m3}. If she is truthful, she should accept m3. We will see what happens if she is

not truthful. So, she accepts m2.

• Now, m3 has two choices: {w2, w3}. He likes w2 over w3. So, he proposes to w2.

• Now, w2 has two proposals: {m1, m3}. Since she likes m3 over m1, she accepts m3.

• Now, m1 has a choice between w1 and w3. Since he likes w1 over w3, he proposes to

w1.

• Now, w1 has two proposal: {m1, m2}. Since she prefers m1 over m2 she accepts m1.

• So, m2 is only left with {w2, w3}. Since he likes w3 over w2 he proposes to w3, which

she accepts. So, the final matching µ̂ is given by µ̂(m1) = w1, µ̂(m2) = w3, µ̂(m3) = w2.

Hence, w1 gets m1 in µ̂ but was getting m3 earlier. The fact that m1 ≻w1
m3 shows that

not being truthful helps w1. However, the same result does not hold for men. Similarly, the

women-proposing DAA is not strategy-proof for men.

Theorem 16 The men-proposing version of the Deferred Acceptance Algorithm is strate-

gyproof for men. The women-proposing version of the Deferred Acceptance Algorithm is

strategyproof for women.

Proof : Suppose there is a profile π = (≻m1
, . . . ,≻mn

,≻w1
, . . . ,≻wn

) such that man m1 can

misreport his preference to be ≻∗, and obtain a better matching. Let this preference profile

be π′. Let µ be the stable matching obtained by the men-proposing deferred acceptance

algorithm when applied to π. Let ν be the stable matching obtained by the men-proposing

algorithm when applied to π′. We show that if ν(m1) ≻m1
µ(m1), then ν is not stable at π′,

which is a contradiction.

Let R = {m : ν(m) ≻m µ(m)}. Since m1 ∈ R, R is not empty. We show that {w :

ν−1(w) ∈ R} = {w : µ−1(w) ∈ R}. Take any ν−1(w) ∈ R, we will show that µ−1(w) ∈ R,

and this will establish the claim. If µ−1(w) = m1, then we are done by definition. Else, let

w = ν(m) and m′ = µ−1(w). Since w ≻m µ(m), stability of µ at π implies that m′ ≻w m.

Stability of ν at π′ implies that ν(m′) ≻m′ w. Therefore, m′ ∈ R. Let S = {w : ν−1(w) ∈

R} = {w : µ−1(w) ∈ R}.

By definition ν(m) ≻m µ(m) for any m ∈ R. By stability of µ, we then have µ−1(w) ≻w

ν−1(w) for all w ∈ S. Now, pick any w ∈ S. By definition, w ≻ν−1(w) µ(ν−1(w)). This
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implies that during the execution of the men-proposing deferred acceptance algorithm at

π, ν−1(w) ∈ R must have proposed to w which she had rejected. Let m ∈ R be the last

man in R to make a proposal during the execution of the men-proposing deferred acceptance

algorithm at π. Suppose this proposal is made to w = µ(m) ∈ S. As argued, w rejected

ν−1(w) earlier. This means that when m proposed to w, she had some proposal, say from

m′, which she rejected. By definition, m′ cannot be in R. This means that m′ 6= ν−1(w),

and hence, m′ ≻w ν−1(w). Since m′ /∈ R, µ(m′) ≻m′ ν(m′) or µ(m′) = ν(m′). Also, since

w rejects m′, w ≻m′ µ(m′). This shows that w ≻m′ ν(m′). This shows that (m′, w) form a

blocking pair for ν at π′. �

Does this mean that no mechanism can be both stable and be strategyproof to all agents?

The answer is yes.

Theorem 17 No mechanism which gives a stable matching can be strategy-proof for both

men and women.

However, one can trivially construct strategy-proof mechanisms for both men and women.

Consider a mechanism which ignores all men (or women) orderings. Then, it can run a fixed

priority mechanism for men (or women) or a TTC mechanism with fixed endowments for

men (or women) to get a strategy-proof mechanism.

7.3.5 Extensions with Quotas and Individual Rationality

The deferred acceptance algorithm can be suitably modified to handle some generalizations.

One such generalization is used in school choice problems. In a school choice problem, a set

of students (men) and a set of schools (women) have preference ordering over each other.

Each school has a quota, i.e., the maximum number of students it can take. In particular,

every school i has a quota of qi ≥ 1. Now, colleges need to have preferences over sets of

students. For this, we need to extend preferences over students to subsets of students. There

are many ways to do it. The standard restriction is responsive preferences: suppose S is a

set of students and s /∈ S but t ∈ S, then S \ {t} ∪ {s} is preferred to S if and only if s is

preferred to t. Usually, colleges do not like some students. This is modeled by allowing only

acceptable students preferences. In the preference relation, we put the ∅ symbol to reflect

this - i.e., any students who are worse than this are not acceptable. Again, a set of students

S is worse than S ∪ {s} if and only if s is acceptable.

Students, on the other hand, have a set of schools that are acceptable and another set

which is not acceptable, i.e., on top of the usual linear order over the set of schools, each

student also has a cut-off school, below which he prefers to not attend any school. The
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preferences of agents are handled by adding a dummy school 0, whose quota is the number

of students (so this school can admit possibly all students). An admission in the dummy

school indicates that the student is not assigned any school. Now, each student has a

preference ordering over the set of schools and the dummy school. All the schools below

dummy school are never preferred by the student.

The deferred acceptance algorithm can be modified in a straightforward way in these

settings. Each student proposes to its favorite remaining acceptable school. A proposal to

the dummy school is always accepted. Any other school k evaluates the set of proposals it

has, and accepts the top min(qk, number of proposals) acceptable proposals. The procedure

is repeated as was described earlier. One can extend the stability, student-optimal stability,

and strategy-proofness results of previous section to this setting in a straightforward way.

Another important property of a mechanism in such a set up is individual rationality.

Individual rationality says that no student should get a school lower than the dummy school.

It is clear that the deferred acceptance algorithm produces an individually rational matching.

7.4 Applications of Various Matching Models

The matching theory is one of those theories which have been applied extensively in practice.

We give some examples.

• Deferred Acceptance Algorithm. Deferred acceptance algorithm (DAA) has

been successfully used in assigning students to schools in New York City (high school)

and Boston (all public schools). It is also used in assigning medical interns (doctors) to

hospitals in US medicine schools. The US medical community has been at the forefront

of implementing DAA - it is used in residents matching, doctor assignments to jobs,

and many other markets.

• Versions of Serial Dictatorship. Some (random) version of serial dictatorship

(priority) mechanism is widely used in US Universities like Yale, Princeton, CMU, Har-

vard, Duke, Michigan to allocate graduate housing to graduate students. The version

that is used is called random serial dictatorship with squatting rights. In this version,

first existing tenants are given the option of entering the mechanism or going away

with their existing house. After everyone announces their willingness to participate in

the mechanism, an ordering of (participating) students is done uniformly at random.

Then, serial dictatorship is applied on this ordering.

• Kindney Exchange. The kidney exchange problem can be modeled as a house

allocation problem with existing tenants. In a kidney exchange problem, each patient
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(agent) can come with an incompatible donor agent (house which is endowed to him),

and there is a set of donor agents (vacant houses). Patients have preference over donors

(houses). A matching in this case is an assignment of patients to donors. There are two

major differences from the model of house allocation with existing tenants: (i) not all

houses have tenants (ii) number of houses is more than the number of agents. Variants

of top trading cycle algorithm has been proposed, and run in US hospital systems to

match kidney patients to donors.
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