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Econometrica, Vol. 47, No. 3 (May, 1979) 

A REPRESENTATION THEOREM FOR 
"PREFERENCE FOR FLEXIBILITY" 

BY DAVID M. KREPS1 

This paper concerns individual choice among "opportunity sets," from which the 
individual will later choose a single object. In particular, it concerns preference relations on 
opportunity sets which satisfy "preference for flexibility," a set is at least as good as all of its 
subsets, but which may not satisfy "revealed preference," the union of two sets may be 
strictly preferred to each one taken separately. A representation theorem is given which 
"rationalizes" such choice behavior as being as if the individual is "uncertain about future 
tastes." 

1. INTRODUCTION 

IN MANY PROBLEMS of individual choice, the choice is made in more than one 
stage. At early stages, the individual makes decisions which will constrain the 
choices that are feasible later. In effect, these early choices amount to choice of a 
subset of items from which subsequent choice will be made. This paper concerns 
choice among such opportunity sets, where the individual has a "desire for 
flexibility" which is "irrational" if the individual knows what his subsequent 
preferences will be. 

A simple example is that of making reservations at a restaurant. Imagine that 
the only way that restaurants vary is in the menu of meals which they will serve. 
The individual is assumed to know the menus at all restaurants that he might 
select. Eventually, the individual will choose a meal, but his initial choice is of a 
restaurant/menu from which he will later choose his meal. Let Z be the set of 
possible meals, with generic element z. Let X be the set of all conceivable menus, 
with generic element x. That is, X is the set of nonempty subsets of Z. Initial 
choice is the selection of one x from some subset of X (the set of available menus), 
and subsequent choice is the selection of one z from the x chosen. For simplicity, 
assume that Z is finite. 

The standard model of this situation posits a complete and transitive binary 
relation t on Z, which represents the individual's (weak) preferences over meals. 
Choice of a menu is induced from ? in the obvious fashion: Define 

(1.1) x ?x' iff for all z' e x' there exists z E x such that z z'. 

Choice of a menu then amounts to selecting a >-maximal element of the set of 
available menus. This relation - is complete and transitive and satisfies 

(1.2) x ?x' implies x L x u x', 

1 1 am very grateful for the helpful comments of Professors J. Demski, J. M. Harrison, C. Holloway, 
A. Tversky, and R. Wilson. This work was supported in part by National Science Foundation grant 
SOC77-07741 at the Institute for Mathematical Studies in the Social Sciences at Stanford University, 
and in part by a grant from the Atlantic Richfield Foundation to the Graduate School of Business, 
Stanford University. 

565 



566 DAVID M. KREPS 

where - is the indifference relation induced from >. In fact, (1.2) characterizes all 
preference relations on X which arise from some > on Z in the following sense: A 
binary relation ? on X is complete and transitive and satisfies (1.2) if and only if 
there exists some complete and transitive n on Z such that (1.1) holds. (The proof 
of this is left to the reader.) 

This paper considers preferences on X which do not satisfy (1.2), hence which 
cannot be "rationalized" as above by some t on Z. Of interest are preferences 
which exhibit a "desire for flexibility": 

(1.3) x-x' implies x ?x'. 

But, as opposed to preferences which satisfy (1.2), x u x' may be strictly preferred 
to both x and x'. Consider the menus/meals example. Suppose that the individual 
prefers a menu containing only steak to one containing only chicken. But he 
strictly prefers a menu with both steak and chicken to either of the first two, 
because it gives him greater flexibility. This sort of preference for flexibility is 
discussed by Koopmans [8]. (Note that Koopmans has a multiperiod setting, with 
consumption in each period. Thus the terminology in [8] is most directly compar- 
able with Section 4 of this paper.) Koopmans' Axiom 1 is roughly equivalent to the 
supposition here that choice today can be represented by a preference relation < 
and his Axiom 2 is (1.3). (Again, comparison with (4.2) instead of (1.3) is most 
natural.) 

Why should anyone desire such flexibility? The individual choosing a menu 
would likely make some statement about being uncertain about something or 
other. For some reason, he is unsure about what will be his mood on the evening in 
question. Perhaps he is unsure about what he will have had for dinner on the 
previous evening. Perhaps he cannot explain why he is uncertain about his future 
mood, but he claims to be unsure of it nonetheless. This rationalization for (1.3) is 
naturally termed "uncertainty about future tastes." (Cf. Koopmans [8, pp. 246, 
254].) It could be modeled as follows: 

Posit a random variable s (the state of the individual's tastes or mood), a 
subjective probability measure vr on the possible states, and a "state dependent 
cardinal utility function" U: Z x S -> R, such that if v: X -> R is defined by 

(1.4) v(x):= E iT(s) * [max U(z, s)], 
s ZEx 

then v represents preference on X. This sort of representation gives rise to 
preferences which satisfy (1.3), and allows models in which {steak, chicken} is 
strictly preferred to {steak} and to {chicken}: Take S = {S1, S2}. If tastes s1 are 
realized, the individual likes steak better than chicken-say, U(steak, si) = 1 and 
U(chicken, Si) = 0. If s2 occurs, he likes chicken better than steak: U(steak, S2) = 0 

and U(chicken, S2)= 1. He thinks that s1 is more likely than s2, say, Tr(s1) = .9. 
Then the menu {steak} has "expected utility" .9, and {chicken}, .1. But {steak, 
chicken} is best of all, having "expected utility" 1. 

The representation given in (1.4) has appeared in the literature, notably in the 
work of Goldman [2, 3]. (See also Henry [6] and Jones and Ostroy [7].) These 
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papers show that preference for flexibility as represented in (1.4) can, in certain 
circumstances, lead to interesting economic phenomena, such as "liquidity 
demand for money." 

The purpose of this paper is to provide the connection between preferences for 
opportunity sets that satisfy the qualitative axiom (1.3) and those that can be 
represented as in (1.4). If preferences can be represented as in (1.4), then they 
satisfy (1.3), but the converse fails. In particular, preferences represented as in 
(1.4) satisfy 

(1.5) x *x ujx' implies that for all x", x ux"-x ux'u x". 

This does not follow from (1.3). It is contended, however, that (1.5) is a reasonable 
axiom. If x - x u x', then the flexibility gained by adjoining x' to x is of no value. 
When then should adding x' to the larger x u x" be of any value? In any case, the 
conjunction of (1.3) and (1.5) is necessary and sufficient for a "rationalization" of 
> of the type in (1.4). 

THEOREM 1: IfZis finite, then a binary relation ? on Xis complete and transitive 
and satisfies (1.3) and (1.5) if and only if there exists a finite set S and a function 
U: Z x S-R such that 

(1.6) v (x) E [max U(z, s)] 
S Z<EX 

represents ?. 

Note that the probability measure Tr is suppressed here, as it obviously has no 
real significance. It will become apparent in the proof of this theorem that the 
"additive representation" in (1.6) also has limited significance-the represen- 
tation is basically ordinal in character, and an ordinal restatement will be given in 
the sequel. 

The approach taken in this paper is exclusively descriptive. Preferences over 
opportunity sets are taken as given, and the representation "explains" these 
preferences as being as if the individual were maximizing a "state dependent 
utility function of subsequent consumption." But there is no claim that the 
individual would acknowledge that the representation has any validity. He might 
be calculating exactly in the fashion of the representation, using "states" that to 
him are clearly identified sources of subjective uncertainty. However, a given 
preference relation can be represented in many ways, involving many different 
collections of "states." (Theorem 2 gives a characterization of collections of 
"states" for which the representation is possible; see Section 3.) There is no way to 
guarantee that the representation that is constructed in the proof of the theorem is 
the one that the individual is using. A normative approach to this problem would 
look quite different: If an individual expressed a desire for flexibility and 
approached me for advice, I would advise him (i) to try to assess what is the 
uncertainty that he perceives and (ii) to consider, if only to sharpen his assess- 
ments, how he would rank "opportunity sets contingent on the states" that he 
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perceives. (Moreover, part (ii) of this normative program would add substance to 
the additive nature of the representation.) The normative content of this paper is 
only that an individual who-wishes to obey (1.3) and (1.5) might find it helpful to 
seek a representation of his preferences as in (1.4), using (i) and (ii) above. 

Two connections with the literature should be noted. The phenomenon "pref- 
erence for flexibility" is natural when there is explicit uncertainty and sequential 
decision making-individuals will want to be able to adapt their actions to 
circumstances as the uncertainty concerning those circumstances resolves. 
Among the many papers which make this point are Hart [5], Marshak and Nelson 
[10], and Merkhofer [11]. The difference between those papers and the analysis 
here is that in those papers, the uncertainty is explicit. Here there is no explicit 
uncertainty. 

A different treatment of preference for opportunity sets appears in the lit- 
erature under the rubric "changing tastes." Representative papers are Strotz [13], 
Hammond [4], and Yaari [14]. (Stigler and Becker [12] give an alternative view of 
this phenomenon.) In these papers, changes in tastes are anticipated, and the 
individual attempts to constrain later choices so that eventual choice is as good as 
possible from the point of view of current tastes. In such situations flexibility is not 
desirable. Rather, a desire for inflexibility or precommitment characterizes the 
choice of opportunity sets. 

This paper is organized as follows. The key to the analysis and the represen- 
tation is a "domination relation" 3 defined by x 3 x' if x * x u x'. This relation is 
analyzed in Section 2. Section 3 contains the ordinal restatement of Theorem 1, 
the proof of Theorem 1, discussion concerning the "ordinal nature" of the 
representation, and a characterization of the possible "states" for a given pref- 
erence relation ?. In Section 4 the results of Section 3 are adapted to the context 
of a two period consumption-investment budgeting problem. Section 5 gives 
extensions of the results for infinite Z. 

2. THE DOMINATION RELATION 

Given is a complete and transitive binary relation > on X which satisfies (1.3) 
and (1.5). Define a binary relation on X by 

(2.1) x x' if x x ux'. 

This is a "domination" relation in the following sense: If x3- x', then the flexibility 
gained by adjoining x' to x is of no value. Looking ahead to the eventual 
representation, no matter what state ensues, there is something in x as good as 
everything in x'. (Of course, what this something is may depend on the state.) So x 
as a set dominates x'. 

Note that (1.5) can be rephrased in terms of ?: If x x' and x" O x, then x" ' x'. 
Further properties of , are compiled in the following lemma. 

LEMMA 1: If > is complete and transitive and satisfies (1.3) and (1.5), then 3 
defined by (2.1) satisfies: 
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(a) ? is reflexive and transitive. 
(b) x -D x' implies x - x'. 
(c) If x x' x", then x?x". 
(d) If x1?x22andx3 x4, thenx1ux3 x2ux4. 
(e) For every x there exists some set x' - x such that x ? x" if and only if x" c x'. 

PROOF: (a) Reflexivity is obvious. If x ? x' ? x", then x *x u x'?x' L x' u x". 
Applying (1.5) to x' x'u x" yields x u x'-x x u x'u x", thus x L x u x' : x u x' u 
x"?x u x"?x (the last two by (1.3)), and so x --- x u x". 

(b) Obvious by the definition of - and by (1.3). 
(c) Follows from (a) and (b). 
(d) x implies x1UX3 * X1 X2UX3, and X plies xlUx2UX3-: XlU 

x2ux3ux4. Thus x1ux3Lxl Ux2Ux3Ux4. 
(e) By (d), if x x1 and x x2, then x ? x1 U x2. So for x', take the union for all 

x" such that x?~ x". Since Z is finite, this is a finite union. Thus by induction 
x?x'. Apply (c) Q.E.D. 

Part (e) of the lemma is the key to the subsequent analysis. It says that for every 
set x there is some largest set x' which x dominates. In terms of the eventual 
representation, this is the set of all z such that no matter what state occurs, there is 
something in x as good as z. Let f: X -> X be the map which carries each x into 
"its" x'. Formally, let 

(2.2) f(x):= U x'. 
{x'EX:x ax'} 

Part (e) of the lemma establishes that 

(2.3) x" c f(x) if and only if x ? x". 

Note that x c f(x) and x f(x). Moreover: 

LEMMA 2: (a) For all x, f(f(x)) = f(x). (b) x x' if and only if f (x) Df(x'). 

PROOF: For (a), note that x f(x) - f(f(x)), so x - f(f(x)). Apply (2.3). For (b), 
x - x' if and only if x - f (x') (by transitivity of ) if and only if f(x) v f (x'). 

Q.E.D. 

3. THE REPRESENTATION THEOREM 

Theorem 1 can be "restated" in ordinal form as follows. 

THEOREM 1': If Zis finite, a binary relation ? on Xis complete and transitive and 
satisfies (1.3) and (1.5) if and only if there exist a finite set S, a function 
U: Z x S -> R, and a strictly increasing function u: Rs - R such that if w: X -> R s 
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is defined by 

(3.1) (w(x))(s):= max U(z, s), 
zEx 

then u o w (: X - R) represents ?. 

"Strictly increasing" means that if w and w' from Rs are such that w(s) - w'(s) 
for every s, with strict inequality for some s, then u (w) > u (w'). In Theorem 1, u is 
component addition. Otherwise the two statements are identical. Of course, it is 
certainly not evident that they are equivalent. 

PROOF: The "if" part of the theorem is left to the reader. Suppose t is complete 
and transitive and satisfies (1.3) and (1.5). Let v: X -> R be a numerical represen- 
tation of >. Define S:= {x E X: x = f(x)} and 

U(z, s) := | if z Ji s, 
0 fz e s. 

Then w defined by (3.1) is 

(w (x))(S) 1 if 
X\s$&0, 

0 if x (--S. 

The key observation is that for this w, 

(3.2) w(x) - w(x') if and only if x x'. 

For if x x', then x' f(x), so that (w(x))(f(x))=0<1 =(w(x'))(f(x)). While if 
x2>-x', then (w(x))(s) =0 implies x c s; thus f(x) sf(s) =s (Lemma 2(b)); thus 
x ' c s and (w (x'))(s) = 0. So w (x) - w (xW'). 

Now define u on w(X) by 

u(w(x)):= v(x). 

This is well defined: If w (x) = w (x'), then x > x' ? x so x * x' and v (x) = v (x'). 
Moreover, u is strictly increasing on w (X): If w (x) - w (x') with strict inequality 
for some s, then x x';x (by (3.2)) and v(x)>v(x'). 

Since w (X) is finite and S is finite, u can be extended to all of Rs in a strictly 
increasing fashion. (Alternatively, this can be deduced from the proof of Theorem 
1.) Q.E.D. 

The theorem and its proof can be explained as follows. Each state s is 
characterized by U(, s) and represents a possible "second period preference 
relation." Thus (w(x))(s) represents the "maximal second period utility obtain- 
able from the opportunity set x in state s." The theorem states that first period 
preference is weakly decomposable into the vector of these "maximal obtainable 
utilities." This, by itself, is without content. If all preference relations are admitted 
as states, then x -> w (x) is one-to-one which is sufficient to represent any complete 
and transitive binary relation. The content of the theorem comes from the 
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requirement that u is strictly increasing. That is, to be "consistent," preference for 
an opportunity set is required to be strictly increasing in the vector of "possible 
second period utilities" which make up the decomposition. This requirement rules 
out certain second period preference relations as "states." For example, if 
{chicken, steak} --{steak}, then in no state can chicken be strictly preferred to 
steak. In general, if x?x', then max,- U(z, s) max,z-' U(z, s) must hold for 
every s. Following the analysis of Section 2, a necessary and sufficient condition 
for this is that for every s and real number r, the set x ={z eZ: U(z, s) < r} 
satisfies f (x) = x. On the other hand, there must be "sufficiently many" states to 
achieve the representation: If x >- x', then there must exist some state s with 
max,=, U(z, s) >max,=, U(z, s). For given S and U, these two conditions are 
necessary and sufficient for there to exist a strictly increasing u that represents 
?. (See Theorem 2. Note that these two conditions are necessary and sufficient for 
(1.3) and (1.5).) In the proof of the theorem, such an S and U pair is produced. 
The first condition is met by construction, and the second holds since if x >- x', then 
x? f(x') and (w (x))(f(x')) = 1 >0 = (w(x'))(f(x')). 

While this S and U pair meet the conditions, there are other pairs which are 
adequate. This is of particular interest because the set S in the proof is quite large. 
For example, if condition (1.2) holds, so that a representation with singleton S is 
possible, the proof uses as many states as there are indifference classes of L. It may 
be desirable to economize on the number of states needed. One way to do this is 
the following. Let F:= {x e X: f(x) = x}. (This notation will be used throughout 
the sequel.) Let S be a collection of chains in F (ordered by set inclusion), with Z 
in each chain and with every x e F found in at least one chain in S. And (for v a 
numerical representation of >), let U(z, s):=min {v (x): z e x e s}. Such S and U 
admit a representation. Note that in cases where (1.2) holds, this can be used to 
obtain a representation with one state. 

This can be generalized to give a "uniqueness" result for the representation. 
Suppose that U and u give a representation. It is clear that if U' is such that for 
each s, U(-, s) and U'(, s) are ordinally equivalent, then there is some u' such 
that U' and u' give a representation. Otherwise, the "uniqueness" of the 
representation depends on the "possible second period preference relations" that 
make up the decomposition. 

THEOREM 2: Let ? be complete and transitive and satisfy (1.3) and (1.5). Then a 
representation of the form given in Theorem 1' is possible for given S and U if and 
only if (a) for each s e S, the set {x eX:x ={z eZ: U(z, s) < r} for r eR} forms a 
chain in F, and (b) every x e F can be written as nsE-S x (s), where x (s) is selected 
from the chain in F corresponding to s. 

The proof is quite simple and is left to the reader. Note that since this establishes 
necessary and sufficient conditions, it would be useful in a normative analysis: 
Suppose the individual has preferences which satisfy (1.3) and (1.5) and that he 
nominates a specific S and U. (That is, he identifies the set of "second period 
preference relations" that he deems possible.) Then the theorem can be used to 
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check whether his professed preferences are consistent with this S and U, in the 
sense that a representation of the former is possible using the latter. 

The additive representation is derived from the following lemma. 

LEMMA 3: Suppose Yis an arbitrary finite set endowed with two binary relations B 
and G such that: (a) B is complete and transitive. (b) G is reflexive. (c) If y G y' and 
y # y', then not y' B y. Then there exist negative numbers a (y) such that y' B y" if 
and only if X{y:yGy'} a(y)? X2{y:yGy"} a(y)- 

PROOF: By (a), B is a (weak) preference relation. Let B? denote the induced 
indifference relation and B* the induced strict preference relation. Also, let G* 
denote the relation given by y G* y' if y G y' and y $ y'. Then (c) can be rewritten 
y G* y' implies yB* y'. Writing w(y') for X{y:yGy'} a(y) and w*(y) for 
X{y:yG*y'} a(y), by definition w(y') = a (y') + w*(y'). 

The constants a (y) are defined "inductively." Begin with the B?-equivalence 
class of B-most preferred elements of Y, and set a(y') equal to any negative 
number for y' in this set. Now proceed "downward" through the B?-equivalence 
classes. Noting that w*(y') is fixed once a(y) has been defined for all y such that 
y B* y' is the key. This permits the selection of a (y') in the induction step such that 
a (y') + w*(y') is (i) equal across the B?-equivalence class and (ii) smaller than 
w (y) for any y such that y B * y'. Since there are finitely many elements of Y, there 
are finitely many B?-equivalence classes, and the induction procedure will give the 
representation. Q.E.D. 

PROOF OF THEOREM 1: The "if" part follows from Theorem 1'. Suppose that > 
is complete and transitive and satisfies (1.3) and (1.5). As in the proof of Theorem 
1', set S = F. Then (S, >, z), where - is set inclusion, satisfies (a), (b), and (c) of 
Lemma 3. (Here, ? plays the role of B, and D the role of G.) That (a) and (b) hold 
is immediate. And (c) follows from Lemma 2(a). So there exist a (s) as in Lemma 3. 
Define U:ZxS-SR by 

(3.3) U(z s)={0 if zes, 
a (s) if z G s. 

For x e X, 

(3.4) E max U(z,s)= E a(s)= E ea(s). 
seS zex {seS:s2X} {sGS:s=f(x)} 

Also, x x' if and only if f(x) -f(x') if and only if 

(3.5) E a (s) : E a (s). 
{ssS:s2f(x)} {s S:s2f(x')} 

Combining (3.4) and (3.5) gives the representation. Q.E.D. 

Note that the collection of states/second period preference relations used is 
identical with the collection used in the proof of Theorem 1'. Additive represen- 
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tations are possible for other collections of states. For example, let S be a set of 
chains in F such that every x E F is in at least one chain in S. For x E F, let n (x) 
denote the number of chains in S that contain x, and for {a (x); x E F} the constants 
in the proof of Theorem 1, let U(z, s):=:{xEszEx} a(x)/n(x). The reader can 
verify that S and U so defined compose an additive representation. 

It is not the case, however, that every collection of "second period preferences" 
which admits an ordinal representation also admits an additive representation. 
Examples are easy to construct where the "independence" assumption which is 
necessary for an additive representation (cf. Krantz, et al. [9, Ch. 6]) is violated. It 
is possible to obtain necessary and sufficient conditions for a collection of second 
period preferences to admit an additive representation, parallelling Theorem 2. 
But results obtained thus far are little more than conjunctions of Theorem 2 and 
general results on additive representation (e.g., [9, Ch. 9, Theorem 11). 

Note that in the construction of the additive representation, w (X) is a very 
sparse subset of Rs, having the cardinality of S. It is this sparseness which makes 
the construction possible. (Put negatively, in cases where an additive represen- 
tation is not possible, it would be because w (X) is insufficiently sparse in Rs for 
the S chosen.) The normative approach mentioned above might ameliorate this 
sparseness, thereby lending greater significance to the additive representation. 
For if the range of possible second period preferences has meaning to the 
individual, it might be possible to elicit preferences for "opportunity sets 
contingent on second period preferences," even if these do not represent real 
choice possibilities. 

4. TWO PERIOD CONSUMPTION-INVESTMENT BUDGETING 

In the previous sections, the object of study is preference over "opportunity 
sets," subsets of some primitive set. The story has been that the individual selects 
one such "opportunity set" today, from which he will choose tomorrow. But in 
many economic applications of two period choice, first period choice is over pairs 
of the form (immediate payoff, opportunity set for second period choice). The 
canonical example is two period, consumption-investment budgeting-today's 
choice determines not only the constraint on tommorrow's consumption decision, 
but also determines today's consumption. 

This is modelled as follows. There are finite sets Z1 and Z2, representing 
possible first and second period consumption bundles. The set of opportunity sets 
for second period choice is the set of all nonempty subsets of Z2, denoted X. And 
choice today is from a subset of Z1 x X. It is assumed that choice today can be 
represented by a complete and transitive binary relation ?. Interesting properties 
of this preference relation include: 

(4.1) For z1 fixed, if (z1, x) (z1, x'), then (z1, x) (z1, x u x'). 

(4.2) If x v x', then (z1, x) (z1, x') for every z1 e Z1. 

(4.3) For z1 fixed, if (z1, x) L (z1, x u x'), then for all x" E X, 

(zi X u X"t) Y-~ (zi X u XI u Y X" YtJ 
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These are analogous to (1.2), (1.3), and (1.5), respectively. Analogous to Theorem 
1 is the following. 

THEOREM 3: A binary relation ? on Z1 x X is complete and transitive and 
satisfies (4.2) and (4.3) if and only if there exist a finite set S and a function 
U:Z1XZ2x S -* R such that 

v(z1,x):=Y, max U(zi, Z2, s) 
SES Z2CEX 

represents ?. Moreover, (4. 1) holds if and only if the representation can be achieved 
with singleton S. 

The methods of Sections 2 and 3 easily adapt to this reformulation, so the proof is 
omitted. An ordinal version of Theorem 3, analogous to Theorem 1', and a result 
analogous to Theorem 2 are easily constructed. 

This suggests one direction for generalization of the results given here. 
Consider a more than two period problem. In the consumption-investment 
budgeting framework, this would concern choice behavior over immediate 
consumption, opportunity set pairs. But these opportunity sets are in turn 
composed of pairs of second period consumption bundles and third period 
opportunity sets, and so forth. In the framework of Sections 2 and 3, the object of 
study would be choice behavior from sets of subsets of sets of subsets of ... of sets 
of subsets of Z. (For example, in a three period restaurant problem, the objects of 
choice today are sets of menus from which a menu is selected tomorrow from 
which a meal is selected two days hence.) This turns out to be a nontrivial 
generalization, and it will be pursued in a subsequent paper. 

5. INFINITE Z 

When Z is infinite, a few complications arise. For an ordinal representation in 
the style of Theorem 1', two additional "continuity" conditions must be met. 

THEOREM 4: A binary relkation on X (for arbitrary Z) satisfies 
(a) > is complete and transitive; 
(b) > satisfies (1.3) and (1.5); 
(c) there is a countable order dense subset of X; and 
(d) if x : Xa for all a E A, A an arbitrary index set, then x : UacA Xa; 

if and only if there exist a set S, a function U: Z x S -> R, and a function u: R s- R 
such that if w: X -> R s is defined by 

(w(x))(s):= sup U(z, s), zex 

then 
(e) u is strictly increasing on w (X), and 
(f) u o w: X -> R represents ?. 

The additional conditions are (c) and (d). The necessity of (c) should be 
apparent, as the theorem produces a numerical representation of ? (cf. Fishburn 
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[1, Ch. 3, Theorem 3.1]). The necessity of (d) is illustrated by the following 
example. 

EXAMPLE 1: Let Z'={0, 1,.. .} and Z={ lw}uZ'. Define ? to have three 
indifference classes: (i) all subsets of Z which are finite subsets of Z'; (ii) all 
subsets of Z which contain cv and finitely many (possibly zero) elements of Z'; (iii) 
all subsets of Z which contain infinitely many elements of Z'. These indifference 
classes are ordered (iii) >- (ii) .- (i). It is easy to verify that (1.3) and (1.5) hold and 
that a finite order dense subset exists. But (d) of Theorem 2 is violated: {w} I {z} 
for every z e Z, yet {w} I Z. And no representation of the type given in the 
theorem is possible: {w} 3 {Z} for every z implies that U (w, s) 3 U(z, s) for all z 
and s (if a representation were possible), thus U(w, s) 3 supz-z U(z, s) and 
{}wIZ. 

Another point to be noted is that u need only be strictly increasing on w (X) and 
not on all of R S. This is natural. If S is uncountable, then there is no strictly 
increasing function from RS to R. Of course, if u is strictly increasing on w (X), 
then it can be extended to Rs to be increasing. 

The proof of Theorem 4 is almost identical with that of Theorem 1'. The fact 
that Z (hence X) was finite was used in two places in the proof of Theorem 1': In 
the proof of Theorem 1' itself, it was used to produce a numerical representation 
of ?. And it was used in deducing Lemma 1 (e) from Lemma 1 (d). For infinite Z, 
condition (c) is needed to produce the numerical representation. And condition 
(d) directly yields Lemma 1(e). Note also that the remarks following Theorem 1' 
and Theorem 2, when modified in the obvious fashion, apply to the case of infinite 
Z. 

One case of infinite Z which is of special interest is where Z is a compact subset 
of a Polish (complete, separable metric) space. Let Xc c X denote the set of 
closed nonempty subsets of Z, and for x E X, let xc denote the closure of x. The 
space Xc can be metrized by the standard Hausdorff metric, with respect to which 
it is a compact Polish space. Thus it is meaningful to speak of ? as being 
continuous when restricted to XC. 

COROLLARY: If Z is a compact subset of a Polish space, and ? is complete and 
transitive, satisfies (1.3) and (1.5), and is continuous on XC, then (c) and (d) of 
Theorem 4 hold, so a representation of the type given in Theorem 4 is possible. 
Moreover, for every x E X, x - x c. 

The proof is left to the reader. If Z is as in the Corollary and t is represented as in 
Theorem 4 with U(*, s) continuous for each s and u continuous (under pointwise 
convergence in w(X)), then ? is continuous on XC. The converse seems reason- 
able: If > is continuous on XC, then a representation with continuous U(*, s) and 
u is possible. But I am unable to supply a proof of the converse-U as constructed 
in the proof of the theorem will be lower semi-continuous only. 

For infinite Z, additive representations are not always possible when ordinal 
representations are. An example illustrates this. 
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EXAMPLE 2: Let Z be as in Example 1, and define ? as having three 
indifference classes: (i) the set {co}; (ii) any set containing exactly one element of Z' 
(plus, possibly, co); (iii) any set containing two or more elements of Z'. Of course, 
(iii) $- (ii) ;- (i). This relation satisfies the conditions of Theorem 4, so an ordinal 
representation is possible. But there is no representation of ? having the form 

v(x):=J sup U(z, s) (ds), 

where S is a measure space, v is a probability measure on S, and, for each x, 
supzEx U(z, s) is an integrable function of s. (The probability measure has been 
introduced to avoid the ambiguous supzEx U(z, ds).) Suppose such a represen- 
tation did exist. Then without loss of generality, assume that in this representation 
supzEz U(z, s) = 0 for every s (thus v(Z) = 0) and v({z}) = -1 for z E Z'. Since for 
z, z' E Z', z $ z', it is true that v ({z, z'}) must equal 0, it follows that i (Sz r- Sz ) = 
0, where Sz:= {s E S: u (z, s) <O}. Moreover, U(co, s) < U(z, s) for all z e Z', thus 

v({c})= J U(co, s) n-(ds)< U(z, s)v(ds)= -00, 
s ~~~z=O s 

contradicting the integrability assumption. It will not help to replace the 
integrability assumption with a quasi-integrability assumption-adjoin two more 
states to Z, one which is dominated by {co}, the other which dominates all of Z as 
presently constituted. Then no additive representation is possible, even allowing 
quasi-integrability. 

I am unable to provide positive results on when an additive representation is 
possible (short of inelegant restatements of [9, Ch. 9, Theorem 1]). But it is 
conjectured that an additive representation is always possible when Z is a 
compact Polish space and ? is continuous on XC. 

Stanford University 

Manuscript received March, 1978. 
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