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a b s t r a c t

A decision-maker exhibits preference for flexibility if he always prefers any set of alternatives to its
subsets, even when two of them contain the same best element. Desire for flexibility can be explained
as the consequence of the agent’s uncertainty along a two-stage process, where he must first preselect
a subset of alternatives from which to make a final choice later on. We investigate conditions on the
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rankings of subsets that are compatible with the following assumptions: (1) the agent is endowed with a
VN-M utility function on alternatives, (2) the agent attaches a subjective probability to the survival of each
subset of alternatives, and (3) the agent will make a best choice out of any set which becomes available,
and ranks sets ex-ante in terms of the expected utility of the best surviving alternatives within them.

© 2011 Elsevier B.V. All rights reserved.
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. Introduction

The idea that a decision-maker might prefer a set of opportuni-
ies to any of its subsets has a lot of appeal, and it admits different
oundations. Some authors justify this preference as the result of
n intrinsic desire for freedom; the same decision taken out of a
arger set would have a higher value to the decision-maker, which
ould not be explained through the consequences of the choice but
ecause of its circumstances (see, Sen, 1988, 1991; Pattanaik and
u, 1990). Another justification for a decision-maker to prefer any
et to its subsets appeals to the higher flexibility associated with a
arger choice set, in the presence of some form of uncertainty. Pref-
rence for flexibility has a long tradition (Hart, 1940; Koopmans,

964), and it did receive a deep and elegant axiomatic treatment

n Kreps (1979). There, the decision-maker faces uncertainty about
is own future preferences. In the present paper, we adopt a very

� Salvador Barberà gratefully acknowledges support from the Spanish Ministry
f Science and Innovation through grant “Consolidated Group-C” ECO2008-04756,
nd by the Generalitat de Catalunya, Departament d’Universitats, Recerca i Societat
e la Informació through the Distinció per a la Promoció de la Recerca Universitària,
rant SGR2009-0419.
∗ Corresponding author. Tel.: +34 935811814; fax: +34 935812012.

E-mail address: salvador.barbera@uab.es (S. Barberà).
1 Birgit Grodal passed away in the spring of 2004. We had been working on this
roject for years, and the present paper is essentially in the same form it was then,
ith very few changes. I am proud and touched by the possibility of publishing

t here, in her honor and Andreu’s, as they were both very close friends since the
eginning of their careers.
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imilar framework but we place the decision-maker’s uncertainty
n the availability of alternatives for choice.2

The framework in Kreps is as follows. An agent takes decisions
n two stages. In the first stage, he chooses a subset of alternatives;
n the second stage, he chooses one alternative out of the subset
e decided upon on the first. When making his choice of a set in
he first stage, the agent is uncertain about the preference relation
hich will govern his choice of a final alternative in the second

tage. Under this interpretation, it is natural to represent the agent’s
ncertainty on preferences by assuming that he is endowed with
distribution over Von Neumann-Morgenstern utility functions,

hat this uncertainty is resolved in the second period, and that he
hooses his utility maximizing alternative according to his second
eriod utility among those that are available after the first stage
hoice. Under this interpretation, sets of alternatives can be eval-
ated in terms of the expected utility of the second-stage choices
hey allow, and such calculations would lead, for any specific lot-
ery over VN-M utilities, to a ranking of sets. But not any ranking
f sets can be explained as the result of an expected utility calcula-
ion of this kind. Kreps provides necessary and sufficient conditions
or a total preordering over sets to be representable (we also say

ationalizable) in terms of the model above.

We consider the same time structure as Kreps, and we restrict
ttention for simplicity to total orders of sets; which we also call

2 For a survey of these and other approaches on how to rank sets of objects see
arberà and Bossert (2004).
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Proof. By the definition �B(D) =
∑

{E|E∩B=D}�(E). However, for
each E ∈ 2A such that E ∩ B = D there exists one and only one
D′ such that E ∩ C = D′ and D′ ∩ B = D. Hence,

∑
{E|E∩B=D}�(E) =
S. Barberà, B. Grodal / Journal of Mat

ankings. We propose an alternative source of uncertainty for the
ecision maker: he knows that his future preferences will be the
ame as the present ones, but he is uncertain about the availability
f the alternatives at the second stage. The decision maker must
till select a set in the first period, and an alternative from this set
n the second. But not all of the alternatives retained in the first
eriod may be available in the second, and then the agent is bound
o choose from the set of those alternatives that (1) were not dis-
arded at the first stage, and (2) are still available at the time of a
nal decision. To motivate this scenario, think of actions with an
nvironmental impact. Some alternatives may become definitely
mpossible after a first action is undertaken, while others may still
e open for future choice. Yet, additional events like a natural dis-
ster can narrow down the set of options for future choice even
urther. A similar though less dramatic example is that of a choice
f restaurant. Those meals which are never available in a given
estaurant are definitely discarded by the time one makes a reser-
ation there. But the final selection of dishes will be made upon
rrival at the restaurant, and then some items on the menu may
lso be unavailable at that time.

Under our interpretation, it is natural to assume that an agent
ill be endowed with some VN-M utility function, and also with a
robability distribution over subsets of alternatives, indicating the
ubjective probability that the agent attaches, for each subset, to
he event that the alternatives in this subset do survive, and the rest
f alternatives do not. Such an agent can then attach an expected
tility value to each subset of alternatives, viewed as his screening
hoice. He can compute the probability with which he will have
o choose from each of the subsets of his initial choice, and then
he expected utility of his best choices on these subsets. This will
nduce a ranking on sets of alternatives, that we term an expected
pportunity ranking. Again, while any VN-M utility function and
ny distribution of the survival probabilities for sets will give rise
o a ranking of sets, not all rankings will admit a rationalization of
his kind. Our purpose is to explore the restrictions on rankings of
ets which arise from different specifications of our basic model of
wo-stage choice with certain preferences and uncertain survival
robabilities for alternatives.

We first prove (Section 2) that a necessary and sufficient con-
ition for a ranking to be representable in terms of expected
pportunity is that any set should be strictly better than all of
ts subsets (the inclusion property). This is the same condition as
reps’ in our setting. Indeed, our first model can be treated as a
einterpretation of Kreps, but this reinterpretation is what allows
s to ask further relevant questions for research. Specifically, our
onstructive and simple proof of this first result shows that, in fact,
e cannot learn anything about the utilities underlying a given

anking of sets satisfying the inclusion property.
Because of the above, we turn to new questions which are spe-

ific to our interpretation and arise very naturally. Suppose that
ome further characteristics of the survival probabilities are known
priori and can be expressed as restrictions on the nature of their
istribution. Say that a ranking over sets is rationalizable as an x-
xpected opportunity ranking if and only if there exist a survival
robability distribution satisfying condition x, and a VN-M utility
unction generating the given ranking. One can then investigate,
or any restriction x on the class of admissible distributions, what
amilies of rankings of sets can still be rationalized. Moreover, one
an then also go deeper on the features of the utility functions that
re part of these rationalizations, and see whether something more
an be learned about them in the unrestricted case.
In the rest of the paper we concentrate on the rationalizabil-
ty of set rankings when the survival probabilities of alternatives
re independently distributed. By this assumption, we exclude the
ossibility that the decision-makers screening of a given set of F
tical Economics 47 (2011) 272–278 273

lternatives as his first period choice could have an influence on the
robabilities that each of the retained alternatives remains avail-
ble by the time of the final choice. Independence may be a natural
equirement or not, depending on the context. Take the example
f choice of restaurant, and consider the probability that fresh cod
s available in restaurants that have it in the menu. Independence

ill be a natural way to express that the availability of fresh cod
epends on the general conditions of the market, while it may be
ot be able to express the fact that restaurants with different menus
an try more or less hard to make it available to their clients, even
f they face the same market circumstances.

We find that the additional requirement of independence
ignificantly restricts the set of rankings which can be rational-
zed. Moreover, expected opportunity rankings with independent
urvival probabilities must be rationalized by means of utility func-
ions which are no longer arbitrary. In many cases, we can now
nfer some characteristics of the decision-maker’s preferences on
lternatives from his ranking of sets. We can offer a full character-
zation of the rankings which are rationalizable with independent
robabilities for the three alternative case (Section 5). The analysis
f these particular cases should give the reader a feeling for the
eneral type of restrictions that independent rationalizability does
mpose on set rankings, and a measure of the difficulties that lie
n the way of a general characterization that would apply to any
umber of alternatives.

. The model: a representation result

Let A be a finite set and � a total order on 2A. Recall that � is
total order iff it is complete, transitive and antisymmetric. Along

he paper, we may also refer colloquially to such total orders as
ankings. Let r( � , B) = # {C ∈ 2A | C � B} be the rank of B according to
. Clearly, r( � , B) = 0 iff B is �-maximal.3

Let L be the set of lotteries on 2A, i.e. � ∈L if � : 2A → R+ and

E ∈ 2A �(E) = 1. We interpret a lottery as an expression of the sur-
ival probabilities for sets, and l(E) stands for the probability that E
s exactly the set of alternatives that survive in the second period.

For each � ∈L and C, D ∈ 2A define the function �C : 2A → R
y �C (D) =

∑
{E ∈ 2A|E∩C=D}�(E). When the survival probabilities are

iven by �, and the agent has chosen the screening set C, then the
robability that an agent will be able to choose from set D is given
y �C(D).

Using the definition of �C( · ) we obtain:

emark 1. Let � ∈L and C, D ∈ 2A. Then �C : 2A → R satisfies:

. �C (·) ∈L;

. �C(D) = 0 if D�C;

. �C (∅) =
∑

D ∈ 2A\C �(D).

emark 2. Let � ∈L. Consider B, C ∈ 2A such that B ⊂ C and the
orresponding lotteries �B( · ) and �C( · ). Then for all D ∈ 2A

B(D) =
∑

{D′ |D′∩B=D}
�C (D′).
3 We use the following notation: Let E, F ∈ 2A . Then E ⊂ F if E is strictly contained in
, and E ⊆ F, if E is a subset of F. Moreover we shall use the convention that

∑
∅( ·)= 0.
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{D′ |D′∩B=D}
∑

{E|E∩C=D′}�(E) =
∑

{D′ |D′∩B=D}�C (D′), and the equality
btains. �

efinition 1. A utility function on A ∪{∅ } is a function u : A ∪
∅} → R such that u({∅ }) = 0.

Given a utility function u and a lottery � ∈L, we
efine the expected opportunity function V : 2A → R by
(C) =

∑
D ∈ 2A maxx ∈ D∪{∅}u(x)�C (D).

The function V(C) computes the expected utility for the agent
f he screens the set C. We assume that if D is the set of surviving
lternatives in C he will choose the best alternative in D. Yet, we
eep the alternative open, that should all the alternatives in D be
orse than {∅ }, then the no choice opportunity x ={∅ } is available

or him.
Hence, maxx∈D∪{∅}u(x) is the utility he obtains if the alternatives

n E ∈ 2A survive and E ∩ C = D.

efinition 2. The order � on 2A is an expected opportunity rank-
ng iff there exist a lottery � ∈Land a utility function u : A ∪ {∅} → R
uch that the corresponding expected opportunity function V :
A → R satisfies

� C ⇔ V(B) > V(C).

emark 3. Assume that the total order � on 2A is an expected
pportunity ranking with lottery � ∈L and utility function u. Then
(C) ≥ 0 for all C ∈ 2A. Moreover, for all x ∈ A, u(x) > 0 and there exists
∈ 2A such that x ∈ E and �(E) > 0.

roof. Clearly V(C) ≥ 0 since u({∅ }) = 0. Moreover V({∅ }) = 0.
ence, since � is a total order, V(E) > 0 if E /= ∅. Consequently,
({x}) = ∑

D ∈ 2A maxy ∈ D∪{∅}u(y)�{x}(D) = max(0, u(x))
∑

x ∈ E�(E) >
for all x, and the conclusion obtains. �

We now state the condition that characterizes total orders on
A which are expected opportunity rankings.

efinition 3. An order � on 2A satisfies the inclusion property iff
or all B, C ∈ 2A:

⊃ B ⇒ C � B.

heorem 1. Let A be a finite set and let � be a total order on 2A. Then
he order � is an expected opportunity ranking if and only if � satisfies
he inclusion property.

Before turning to the proof, let us go deeper into the connec-
ion between our model and Kreps (1979). There, the desire for
exibility is explained by uncertainty about the preference rela-
ion in the second stage. We shall now show that a representation
f the total order with the expected opportunity function V can
e interpreted within the framework of Kreps (1979) Assume that
(B) =

∑
D⊂Bmaxx∈D∪{∅}u(x)�B(D) represents �. We know from the

efinition of a utility function that u({∅ }) = 0 and from Remark 2

hat u(x) > 0 for all x ∈ A. Hence, V(B) =
∑
D ∈ 2A

maxx ∈ D∪{∅}u(x)�B(D) =
∑

D|D /=∅,D⊆B}
maxx ∈ Du(x)�B(D) =

∑
{E|B∩E /=∅}

maxx ∈ B∩Eu(x)�(E).

We shall now reinterpret the expected opportunity function V in
erms of uncertainty about the preferences in the second stage. Let
he set of states in the second stage be S = 2A and let � be the prob-
bility measure on S. Define the state contingent utility function
˜ : A × 2A → R by

˜(x, E) =
{

u(x) for x ∈ E
0 for x /∈ E

(1)

a
a
d
s
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Now, assume that the agent in each state E maximizes ũ( · , E).
he expected utility ranking of the subsets will then be the function
: 2A → R, where

(B) =
∑

E

maxx ∈ Bũ(x, E)�(E) =
∑

{E|B∩E /=∅}
maxx ∈ B∩Eũ(x, E)�(E)

∑
{E|B∩E /=∅}

maxx ∈ B∩Eu(x)�(E) =
∑

D /= 0 and D⊆B

∑
{E|B∩E=D}

maxx ∈ Du(x)�(E)

∑
D⊆B

maxx ∈ D∪{∅}u(x)�(D) = V(B)

Hence the expected opportunity function V can be reinterpreted
s a representation in terms of uncertainty of second stage prefer-
nces with the state space S = 2A and the state contingent utility
unction ũ.

An advantage of explaining desire for flexibility by opportuni-
ies of choice is that it is not based on an arbitrary construction of
he state space. Moreover as we shall see in the next section, an
nterpretation of flexibility based on expected opportunity gives
ise to additional interesting questions.

As a consequence of the above remarks, we can see our Theorem
as a restatement of Kreps’ results. Just notice that he finds con-

itions for the representability of complete and transitive binary
elations, while we restrict attention to those rankings of sets
hat are also antisymmetric. Then, in the absence of indifferences
etween sets, his conditions collapse to the one of set inclusion.

In spite of the above remark, we offer the reader a direct and
onstructive proof of Theorem 1, in our own setting.

roof. Assume that � is an expected opportunity ranking and
ssume that B ⊂ C. Then

V(C) =
∑
D′ ∈ 2A

maxx ∈ D′∪{∅}u(x)�C (D′) =
∑
D⊆B

∑
{D′ |D′∩B=D}

maxx ∈ D′∪{∅}u(x)�C (D′)

≥
∑
D⊆B

∑
{D′ |D′∩B=D}

maxx ∈ D∪{∅}u(x)�C (D′) =
∑
D⊆B

maxx ∈ D∪{∅}u(x)
∑

{D′ |D′∩B=D}

�C (D′)

=
∑
D⊆B

maxx ∈ D∪{∅}u(x)�B(D) = V(B)

here the next to last equality follows from Remark 2. Since we
now that V(C) /= V(B) we obtain that V(C) > V(B), and hence C � B.

We shall now show that any total order on 2A which satisfies the
nclusion property is an expected opportunity ranking. We do so by
onstructing a representation where the utility of all alternatives is
he same (say 1), and what determines the ranking of different sets
s just the choice of survival probabilities. In particular, a set will
e better than another if it induces a lower probability of having
o face the empty set as the only choice. Set u(x) = 1 for all x ∈ A
nd u({∅ }) = 0. Notice, that the expected opportunity function V
orresponding to u and � is given by V(E) = 1 · (1 − �E(∅ )) + 0 · �E(∅ ).
ence V represents � iff � satisfies E � F ⇔ �E(∅)< �F(∅ ). Thus, we

ave to construct � such that E � F ⇔
∑

{D⊆A\E}
�(D) ≤

∑
{D⊆A\F}

�(D).

To do that, take any order � on 2A and define the complement
∗ by

�∗F iff A \ E � A \ F.

e construct survival probabilities such that, if E � F, then the prob-

bility that the agent is left with the empty set in the second period
fter choosing E in the first is smaller than if he had chosen F. We
o so by ensuring that, in our construction, the probability that the
urviving alternatives are a subset of A \ E is smaller than that of
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Table 1
An example of construction in the proof of Theorem 1.

� �∗ s( · ) t( · ) Expected utility

xyzw ∅ s(∅)= 0 t(∅)= 0 1 = V(xyzw)
xyz w s(w) = 1 t(w) = 1 28/29 = V(xyz)
xyw z s(z) = 2 t(z) = 2 27/29 = V(xyw)
xzw y s(y) = 3 t(y) = 3 26/29 = V(xzw)
xy zw s(zw) = 4 t(zw) = 1 25/29 = V(xy)
xw yz s(yz) = 5 t(yz) = 0 24/29 = V(xw)
yzw x s(x) = 6 t(x) = 6 23/29 = V(yzw)
xz yw s(yw) = 7 t(yw) = 3 22/29 = V(xz)
x yzw s(yzw) = 10 t(yzw) = 0 19/29 = V(x)
yw xz s(xz) = 11 t(xz) = 3 18/29 = V(yw)
yz xw s(xw) = 12 t(xw) = 5 17/29 = V(yz)
zw xy s(xy) = 13 t(xy) = 4 16/29 = V(zw)
w xyz s(xyz) = 18 t(xyz) = 0 11/29 = V(w)
y xzw s(xzw) = 19 t(xzw) = 1 10/29 = V(y)
z xyw s(xyw) = 22 t(xyw) = 0 7/29 = V(z)
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∅ xyzw t(xyzw) = 29 t(xyzw) = 0 0 = V(∅ )
29 = T =

∑
t( · )

he surviving set being a subset of A \ F. We now define two func-
ions s, t : 2A → R recursively after the rank of the sets according
o �∗. The function s will calculate a value for each set which, once
ormalized, will give us the probability that the set or any of its sub-
ets is the survivor. The function t will calculate a value which, once
ormalized, will be the survival probability for the set in question
Table 1 below provides an example of our construction).

Since � satisfies the inclusion property r( � ∗, ∅)= 0. We define
(∅)= 0 and t(∅)= 0. Now let E ∈ 2A be the set with r( � ∗, E) = 1. Since
satisfies the inclusion property, there exists x ∈ A such that E = {x}.

et s(E) = r( � ∗, E) = 1 and let t(E) = s(E) −
∑

{F |E�∗F}s(F) = 1 − 0 = 1.

ow assume that s and t have been defined for all B ∈ 2A with r( � ∗,
) ≤ k, where k ≥ 1. Let D, E be such that r( � ∗, D) = k and r( � ∗,
) = k + 1. Notice that s and t are already defined for all sets B such
hat B ⊂ E, since � satisfies the inclusion property. We now define

(E) = max(s(D) + 1,
∑
B⊂E

t(B)) and

(E) = s(E) −
∑
B⊂E

t(B).

Since 2A is finite the functions s and t are now defined.
Clearly, the construction of s gives

(B) > s(C) ⇔ C � ∗B ⇔ A \ C � A \ B and hence
� B ⇔ s(A \ B) > s(A \ C).

Moreover the construction of s and t yields that for every B ∈ 2A:

(B) =
∑
C⊆B

t(C).

Now define the lottery � : 2A → R by �(B) = t(B)/T for all B ∈ 2A

here T = ∑
B ∈ 2A t(B). We shall show that � has the wanted prop-

rty, i.e. B � C ⇔ �C(∅)> �B(∅ ). By Remark 1 and the definition of �
e get

C (∅) =
∑

D ∈ 2A\C

�D(∅) =
∑

D ∈ 2A\C

t(D)
T

.

Thus, since s(B) =
∑

C⊆Bt(B) we obtain

s(A \ C)

C (∅) =

T
.

Since the construction of s yields B � C ⇔ s(A \ C) > s(A \ B) the
onclusion B � C ⇔ �C(∅)> �B(∅ ) obtains. �

b
w
d
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Notice that the proposed representation is only based on an
ppropriate choice of survival probabilities for sets, while the util-
ty of all alternatives is equal to one. Clearly, this representation is
ot unique. In fact, we can argue from its construction that one
annot infer anything about the agent’s preferences on alterna-
ives from knowledge of its ranking of sets. To see this, consider
ny complete preordering R on the elements in A. We can now find
utility function ũ : A ∪ {∅} → R and a lottery � such that the cor-

esponding opportunity function represents � and moreover ũ′s
estriction to A represents R. Indeed, let u and � be as in the proof of
heorem 1 and let v : A → R be any representation of R. Clearly, for
> 0 the function ũ : A ∪ {∅} → R defined by ũ(x) = u(x) + �v(x) for
∈ A and ũ({∅ }) = 0 shall also represents R, as u is constant. How-
ver, as � is antisymmetric then for sufficiently small �, � > 0, � can
lso be represented by the opportunity function corresponding to ũ
nd �.

. Independent survival probabilities

In Theorem 1 the lottery �( · ) was an arbitrary lottery on 2A. It is
atural to ask whether it is also possible to get a representation the-
rem where �(B) can be calculated by using independent survival
robabilities for each alternative in A.

efinition 4. Let � : A → [0, 1] be such that �(B) =
b ∈ B�̂(b)

∏
c/∈B(1 − �̂(c)) for all B ∈ 2A. We say that � is an

xpected opportunity ranking with independent survival proba-
ilities if there exists a utility function u and independent survival
robabilities �̂ such that the corresponding opportunity function
epresents �.

The following definition of reversals within a ranking � is cru-
ial in what follows: Given two sets E, F and a third set B with no
lements in common with any of in the first two, we say that B
everses E and F in � if the ranking of E and F is opposite to that of
∪ B and F ∪ B.

Reversals, whose formal definition follows, will be warning sig-
als that some rankings of sets are not representable, and will help
o impose conditions on the utilities and the probabilities to be used
n representations, when one exists.

efinition 5. An order � is said to have no reversals if for all E, F,
∈ 2A with B ∩ (E ∪ F) =∅: E � F implies E ∪ B � F ∪ B.

Let E, F ∈ 2A. A set B ∈ 2A with B ∩ (E ∪ F) =∅ reverses E � F if
∪ B � E ∪ B.

Lemma 1 expresses the first of a series of restrictions on rankings
hat are imposed by rationalizability with independent probabili-
ies. Specifically, it states a set B which reverses the sets E and F
annot consist of elements which all have larger utility than the
lements in E and F.

emma 1. Assume that the total order � on 2A is an expected oppor-
unity ranking which can be represented by �̂ and u. Consider any sets
, F, B ∈ 2A. Assume that E � F and that u(b) > u(x) for all b ∈ B and all
∈ E ∪ F. Then E ∪ B � F ∪ B.

roof. Since E � F and u(b) > u(x) for all b ∈ B and all x ∈ E ∪ F,
(E ∪ B) = V(B) +

∏
b ∈ B(1 − �̂(b))V(E) > V(B) +

∏
b ∈ B(1 −

ˆ(b))V(F) = V(B ∪ F). Hence E ∪ B � F ∪ B. �

orollary 1. If � is representable as an expected opportunity ranking
ith independent probabilities and x, y, z ∈ X are such that u(x) > u(y)

nd u(x) > u(z), then {x} cannot reverse the order of {y} and {z} in �.
Before we proceed to investigate further requirements imposed
y this type of representability, let us elaborate on the reasons
hy reversals can actually occur, by examining the expression that
etermines the expected opportunity value.
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To begin with, we characterize the orderings that do not present
eversals.

Consider an alternative x ∈ A and the corresponding set {x}.
dding an alternative z to {x}has two effects, that we call the utility
ain and the insurance gain. Indeed, we have that

({x, z}) − V({x}) = max{(u(z) − u(x))�̂(x)�̂(z), 0} + (1 − �̂(x))V({z}).
The first term is the utility gain, which is obtained when both

lternatives x, z survive. Clearly the utility gain is 0 iff u(x) > u(z) as
(x) > 0 and �(z) > 0 by Remark 3. The other term is the pure insur-
nce gain, which is obtained in the event where z survives but not
. This is positive iff �̂(x) < 1 since V({z}) > 0.

Next consider two alternatives x and y and add an alternative z
uch that u(x) > u(z) and u(y) > u(z) to both {x} and {y}.

Then in both cases there is only an insurance gain. If z reverses,
he insurance gain from adding z to {y} must be higher than the
nsurance gain from adding z to {x}. Therefore y is a more risky
lternative than x, i.e. �̂(x) > �̂(y).

emark 4. Let A be a finite set and let � be a total order on 2A.
hen � is an expected opportunity ranking with constant utility
unction u and independent survival probabilities iff � satisfies the
nclusion property and there are no reversals.

To see the force of Corollary 1 alone, consider the following proof
hat some rankings of sets satisfying the inclusion property cannot
e represented as expected opportunity rankings (a more complete
tatement of what rankings are representable will come later, but
sing additional lemmas that are not needed here).

emark 5 (The ranking).

x, y, z} � {y, z} � {x, z} � {x, y} � {x} � {y} � {z} � ∅.

annot be represented as an expected opportunity ranking with
ndependent probabilities.

Clearly, the ranking satisfies the inclusion property. Notice that
x} reverses {z} and {y}, {y} reverses {x} and {z}, and {z} reverses
x} and {y}. Therefore, neither {x}, nor {y}, nor {z} can have the
igher utility among these three alternatives. Hence, no utility

unction assigning different values to x, y and z can be chosen as
art of a representation of �. Since our ranking presents reversals,
hen Remark 4 completes the proof that no representation at all can
e found for this ranking with independent survival probabilities.

We now return to our study of restrictions imposed by repre-
entability with independent probabilities.

emma 2. Let the total order � on 2A be an expected opportunity
anking represented by �̂ and u. Assume that {x}� {y} and that {z}
everses {x}� {y}. Then u(y) > u(x) and u(y) > u(z). Moreover, �̂(x) >

ˆ(y).

roof. We have to prove that neither x nor z can be the highest in
tility. By Lemma 1, z cannot be highest in utility. Thus, assume that
is the highest in utility and hence that either u(x) > u(z) > u(y) or
(x) > u(y) > u(z). We show that both cases lead to a contradiction.

First assume that u(x) > u(z) > u(y). Then {z} cannot create a
eversal to {x}� {y} as

({xz}) = V({x}) + (1 − �̂(x))V ({z})) =

({x}) + V({z}) − �̂(x)�̂(z)u(z) ≥ V({x}) + V({z}) − �̂(x)�̂(z)u(x) =
({z}) + (1 − �̂(z))V({x}) ≥ V({z}) + (1 − �̂(z))V({y}) = V({yz}).
Next assume that u(x) > u(y) > u(z). First notice that if z

reates a reversal to {x}� {y} then as z is lowest in util-

T
b
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ty we have �̂(y) < �̂(x). Indeed, V({y}) + (1 − �̂(y))V({z}) =
({zy}) > V({xz}) = V({x}) + (1 − �̂(x))V({z}) and V({x}) > V({y})

mply �̂(y) < �̂(x). We now show that if �̂(y) < �̂(x) and
lso u(x) > u(y) > u(z) then z does not create a reversal and
ence we again have a contradiction. Indeed, we have
({xz}) = V({x}) + (1 − �̂(x))V({z}) = �̂(x)u(x) + (1 − �̂(x))V({z}) >

ˆ(x)u(y) + (1 − �̂(x))V({z}) > �̂(y)u(y) + (1 − �̂(y))V({z}) = V({yz});
here the last inequality follows from the facts that

(y) > u(z) ≥ V({z}) and �̂(y) < �̂(x). Thus z does not create a
eversal to {x}� {y}. We conclude that y is highest in utility and
he first part of the lemma obtains.

The second part follows trivially, as {x}� {y} and u(y) > u(x). �

Lemma 1 and Lemma 2 imply

orollary 2. Assume the total order � on 2A is an expected opportu-
ity ranking with independent survival probabilities. Then for all x, y,
∈ A, if {y} reverses {x}� {z} then {z} does not reverse {x}� {y} and
oes not reverse {y}� {x}.

roof. Assume that � can be represented by u and �̂ and that {y}
everses {x}� {z}. Then by Lemma 2, u(z) > u(x) and u(z) > u(y) and
emma 1 gives the conclusion. �

emma 3. Assume that � is an expected opportunity ranking with
tility function u and independent survival probabilities �̂. Let x, y ∈ A
atisfy u(z) > u(y) > u(x) for all z ∈ A \ {x, y}. Then

(i) the expected opportunity function V corresponding to u and �̂ only
depends on u(x) and �̂(x) through u(x)�̂(x),

(ii) there exists a representation of�as an expected opportunity rank-
ing with utility function ũ and independent lotteries �̂ such that
ũ(z) > ũ(x) = ũ(y) for all z ∈ A \ {x, y},

iii) there exists a representation of�as an expected opportunity rank-
ing with utility function ũ and independent lotteries �̂ such that
ũ(z) > ũ(x) > ũ(y) for all z ∈ A \ {x, y} and �̂(y) = 1.

roof. Let V be the representation using u and �̂. For all E ∈ 2A we
ave V(E) = V(E \ {x}) + (

∏
{z ∈ E\{x}}(1 − �̂(z)))V({x}). This proves (i).

(ii) follows from (i) as we simply adjust the probability and the
tility of x such that �̂(x)ũ(x) = V(x) and ũ(x) = ũ(y) and keep the
tility and the probability of all other elements as specified with u
nd �̂.

To prove (iii) we first use the representation from (ii) and make a
ufficiently small increase of the utility of x keeping the probability
f x, and the utility and probability of all alternatives z /= x. Then,
e use (i) and set the survival probability of �̂(y) = 1 and ũ(y) = V(y).

his can only lower the utility of y and (iii) obtains. �

Lemma 3 shows that if we have a representation of � as an
xpected opportunity ranking with independent utilities and we
now which two elements have the lowest utility, then we can find
epresentations where any of these two elements has the lowest
tility.

. The case n = 3

In this section we provide a full characterization of total orders
hich are representable as expected opportunity rankings with

ndependent survival probabilities when there are only three alter-
atives. To do that, we show that the necessary condition in
orollary 1 becomes also sufficient in that particular case.
heorem 2. Assume that # A = 3. Then the total order � on 2A can
e represented as an expected opportunity ranking with independent
urvival probabilities iff � satisfies:
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. the inclusion property, and

. for any labeling x, y, z of the three alternatives in A if {y} reverses
{x}� {z} then {z} does not reverse {x}� {y} and does not reverse
{y}� {x}.

The theorem states that in the case with # A = 3 the orderings
hich cannot be represented as expected opportunity ranking with

ndependent survival probabilities are exactly the ones where the
wo worst singletons in the ordering � create reversals. Indeed, let
= {x, y, z}. From now on, and without loss of generality, we assume

hat {x}� {y}� {z}. Also we shall for short use the terminology that,
.g. {y} reverses if {z, y}� {x, y}.

With this terminology the condition in Theorem 2 states that
he orderings which can not be represented with independent sur-
ival probabilities are the ones where {z} and {y} reverse or where
x} and {z} reverse. However, notice that if x and z reverse, that is
xz}� {xy} and {yz}� {xz}, then by transitivity of � also {yz}� {xy}
nd thus also y reverses. Hence the orderings which can not be
epresented with independent probabilities are the two orderings
here {y} and {z} both reverse.

roof. We already saw in Theorem 1 and Corollary 2 that the
onditions are necessary. We now prove that they are sufficient.
learly, we can always multiply all utilities with the same positive
onstant and hence we can use the normalization that V({x}) = 1 in
ur representations. First, if � has no reversals, Remark 4 implies
hat � can be represented using a constant utility function.

Now assume there is at least one reversal, for example {x}
everses {y}� {z}. The principles we shall use in the construc-
ion of the expected opportunity function are as follows. From
emma 2 we know that in any representation z has the highest
tility of the three alternatives x, y, z. Moreover, from Lemma 3
e know that if there is a representation then there is one where
has the lowest utility. Hence, we can restrict attention to util-

ty functions u, such that u(z) > u(y) > u(x). Lemma 3 also allows
s to choose �̂(x) = 1. Hence, we look at z as the risky alterna-
ive (with high utility and small survival probability) and at x, the
lternative which creates the reversal, as the safe alternative. We
hall in the construction let the survival probability of z be very
mall. Indeed, we first construct a representation Ṽ : 2A → R of

such that Ṽ(E) = Ṽ(E /∈ {z}) + Ṽ({z}) for all E ∈ 2A and where the
estriction of Ṽ to {E ∈ 2A | z /∈ E} is an expected opportunity ranking
ith independent survival probabilities. Clearly, if such Ṽ has been

btained we can find u(z) sufficiently large and �̂(z) sufficiently
mall with u(z)�̂(z) = Ṽ(z) such that the function V : 2A → Rwhere
(E) = Ṽ(E) if z /∈ E and V(E) = Ṽ({z}) + (1 − �(z))Ṽ(E \ {z}) if z ∈ E,
lso represents �. Obviously, V is an expected opportunity function
ith independent survival probabilities.

We now show that all rankings satisfying (1) and (2) and where
here are reversals can be represented by a function Ṽ as described
bove. First assume that only {x} reverses. Together with the inclu-
ion property, this identifies the two rankings:

x, y, z} � {x, z} � {x, y} � {y, z} � {x} � {y} � {z} � ∅

nd

x, y, z} � {x, z} � {x, y} � {x} � {y, z} � {y} � {z} � ∅.

We know that z is highest in utility and we assume that x is

owest. Let Ṽ({x}) = 1 and choose Ṽ({y}) such that Ṽ({x}) > Ṽ({y}) >
˜ ({x})/2. Now determine V̄({z}) by V̄({z}) + Ṽ({y}) = Ṽ({x}). Notice
hat Ṽ({y}) > V̄({z}). Moreover, choose �̂(y) as the uniquely defined

ˆ(y) ∈ ] 0, 1 [ such that Ṽ({x}) + V̄({z}) = Ṽ({y}) + (1 − �̂(y))Ṽ({x}).

o
o
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Now consider the first of the two rankings and let Ṽ({z}) =
¯ ({z}) + �, where � > 0. When is sufficiently small we obtain

˜ ({x}) + Ṽ({z}) > Ṽ({y}) + (1 − �̂({y}))Ṽ({x}) >

˜ ({y}) + Ṽ({z}) > Ṽ({x}) > Ṽ({y}) > Ṽ({z}).

Now let u(y) = Ṽ({y})/�̂(y), �̂(x) = 1, and u(x) = Ṽ({x}). As 0 <
˜ ({z}) = Ṽ({y}) − �̂(y)Ṽ({x}) by construction of �̂(y), we clearly have
hat u(y) > u(x). Hence we have constructed a representation Ṽ with
he wanted properties.

The second ranking can be represented exactly in the same way
y defining Ṽ({z}) = V̄({z}) − �.

Now we notice that since � is transitive there is no ranking
here only {y} reverses. There is however one ranking where only

z} reverses, namely the ranking:

x, y, z} � {x, y} � {y, z} � {x, z} � {x} � {y} � {z} � ∅.

We know that y is highest in utility and assume z is lowest. Let
˜ ({x}) = 1 and let V̄({y}) be such that V̄({x}) > Ṽ({y}) > Ṽ({x})/2.

ow choose Ṽ({z}) such that V̄({y}) + Ṽ({z}) > Ṽ({x}) and V̄({y}) >
˜ ({z}). Define the survival probability of the middle alternative x
y the uniquely defined �̂(x) ∈ ] 0, 1 [ such that Ṽ({y}) + Ṽ({z}) =

˜ ({x}) + (1 − �̂(x))Ṽ({z}). The function Ṽ now obtains by defining
˜ ({y}) = V̄({y}) + �, where � > 0 is sufficiently small and by letting
(x) = Ṽ(x)

�̂(x)
, �(z) = 1, and u(z) = Ṽ(z) as before.

Now we consider the rankings with two or three reversals.
ecause of part two in the theorem we know that if {z} reverses
hen {y} does not reverse, if {y} reverses then {z} does not reverse,
nd if {x} reverses then {z} does not reverse. Therefore the only
anking which is left is the ranking where {x} reverses {y}� {z}
nd {x} reverses {y}� {z} i.e. the ranking:

x, y, z} � {x, z} � {y, z} � {x, y} � {x} � {y} � {z} � ∅.

We know z that is highest in utility and by arbitrarily focusing on
he reversal by {x}we assume that x is lowest. Let Ṽ({x}) = 1. Choose
˜ ({y}) such that Ṽ({x}) > Ṽ({y}) > Ṽ({x})/2, and V̄({z}) such that
¯ ({z}) + Ṽ({y}) > Ṽ({x}) and Ṽ({y}) > Ṽ({z}). Moreover, let as before
he probability of the middle alternative y be the uniquely defined

ˆ(y) ∈ ] 0, 1 [ such that Ṽ({y}) + V̄({z}) = Ṽ({y}) + (1 − �̂(y))Ṽ({x}).
ow again define Ṽ({z}) = V̄({z}) + � for sufficiently small � > 0 and
e have the wanted function Ṽ . The representation of this ranking

ompletes the proof. �

. Conclusions

Preferences for flexibility are plausible in many decision con-
exts, while not necessarily in others. We have provided what
e think is an attractive justification of it in terms of uncertainty

ver the future availability of certain alternatives which are open
oday. We have investigated whether this interpretation allows us
o establish a link between set rankings (which can be interpreted
s being revealed through choices) and the underlying (and pre-
umably unobservable) preferences and probabilities attached to
ingle alternatives. This formulation does not impose much of a
estriction on the rankings of sets (only the inclusion condition),
nd does not imply any particular connection between the utility
f sets and the direct utility of single alternatives.

We have pursued the analysis of further questions suggested by

ur model for the case where one has information on the shapes
f utilities or on the probability distributions determining what
lternatives might be available in the future. We have illustrated
he potential of such additional analysis by proving that if we know
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hat the survival probabilities of different alternatives are indepen-
ent, then knowledge of the ranking of sets becomes informative
bout the underlying utilities and survival probabilities of single
lternatives.
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