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Abstract

We establish an equivalence between three criteria for comparing distribu-

tions of an ordinally measurable attribute taking finitely many values. The

first criterion is the possibility of going from one distribution to the other by

a finite sequence of increments and Hammond transfers. The latter transfers

are like the Pigou-Dalton ones, but without the requirement that the amount

transferred be fixed. The second criterion is the unanimity of all comparisons

of the distributions performed by a large class of additively separable social

evaluation functions. The third criterion is a new statistical test based on a

weighted recursion of the cumulative distribution.



1 Introduction

When can we say that one distribution of a cardinally meaningful attribute

among a group of agents is more equal than another? One of the great-

est achievements of the modern theory of inequality measurement is the

demonstration, made by Hardy, Littlewood, and Polya (1952) and popu-

larized among economists by Kolm (1969), Atkinson (1970), Dasgupta, Sen,

and Starrett (1973), Sen (1973) and Fields and Fei (1978), that the following

three answers to this question are equivalent :

1) When one distribution has been obtained from the other by a finite

sequence of Pigou-Dalton transfers.

2) When one distribution would be considered better than the other by

all utilitarian planners who assume that agents convert income into utility

by the same increasing and concave function.

3) When the Lorenz curve associated with one distribution lies nowhere

below, and at least somewhere above, that of the other.

The equivalence of these three answers is important because it ties to-

gether three a priori distinct aspects of inequality measurement. The first -

Pigou-Dalton transfer - is an elementary transformation of the distribution

that captures, in a crisp fashion, the nature of the equalization at stake.

The second aspect is the ethical principle underlying utilitarianism or, more

generally, additively separable social evaluation. The third aspect is the em-

pirically implementable criterion underlying Lorenz dominance.

The current paper addresses the very same question in the case where the

distributed attribute is ordinal in nature. Over the last twenty years, there

has been extensive use of data involving distributions of attributes such as

access to basic services, educational achievements, health outcomes, and self-

declared happiness, to mention just a few. When comparing distributions of

such attributes, it is not uncommon for researchers to disregard the ordinal

nature of the attribute and to treat it, just like income, as a variable that

can be "summed", or "transferred" across agents. Examples include Castelló-

Clement and Doménech (2002) and Castelló-Clement and Doménech (2008)

(discussing inequality indices on human capital) and Pradhan, Sahn, and
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Younger (2003) (decomposing Theil indices applied to the heights children

under 36 month interpreted as a measure of health). Yet, following the con-

tribution by Allison and Foster (2004), there has been a growing awareness of

the need to duly account for the ordinal nature of the numerical information

conveyed by the indicators. Examples of studies taking the ordinal nature

of the attribute into account when normatively appraising its distribution

include Abul-Naga and Yalcin (2008), Apouey (2007), Zheng (2008), Zheng

(2011) and Cowell and Flachaire (2017).

A difficulty raised by the normative evaluation of distributions of an or-

dinal attribute is that of defining an adequate notion of inequality reduction.

What does it mean for a distribution of an ordinal attribute to be "more

equal" than another? It is no use invoking the notion of Pigou-Dalton trans-

fer for answering that question. A Pigou-Dalton transfer is, in effect, the

operation by which an agent transfers a given quantity of the attribute to

another agent. This notion of "given quantity" is meaningless when applied

to an attribute measured in an ordinal fashion.

Some forty years ago, Peter J. Hammond (1976) proposed, in the con-

text of social choice theory, a "minimal equity principle" that is explicitly

concerned with distributions involving an ordinally measurable variable. Ac-

cording to Hammond’s principle, a change in the distribution that reduces

the gap between two agents endowed with different quantities of the ordinal

attribute is a good thing, whether or not the gain from the poor recipient is

equal to the loss from the rich giver. The purely ordinal nature of Hammond

transfers qualifies them, in our view, as highly plausible instances of clear

inequality reduction.

The main contribution of this paper is to identify a normative dominance

criterion and a statistically implementable criterion that are each equiva-

lent to the notion of equalization underlying Hammond transfer. It does so

in the specific but empirically important case where the ordinal attribute

can take only a finite number of different values. Our choice of this finite

case has specific implications for the Hammond equity principle because,

as is well known in social choice theory (see e.g. D’Aspremont and Gevers

(1977), D’Aspremont (1985), Hammond (1979) and Sen (1977)), when at-
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tribute quantities can vary continuously, the principle is closely related to the

lexicographic extension of the Maximin - or Leximin - ordering. Hammond

(1979) has even shown that any anonymous, Pareto-inclusive and transitive

ranking of all vectors in R that is strictly sensitive to Hammond transfers

must be the Leximin ordering. As shown in this paper, this tight connection

between the Leximin criterion and Hammond transfers becomes significantly

looser when attention is restricted to distributions of an attribute that can

take finitely many different values.

Concerning the class of normative principles in the spirit of answer 2)

above, we stick to the tradition of comparing distributions by means of an ad-

ditively separable social evaluation function. Each attribute quantity is thus

assigned a numerical value by some function, and distributions are compared

on the basis of the sum - taken over all agents - of these values. While this

normative approach can be considered utilitarian (if the value assigned to the

attribute is interpreted as "utility"), it does not need to be. One could also

interpret the function more generally as an advantage function reflecting the

value assigned to each agent’s attribute quantity by some "ethical observer".

If the attribute is considered to be good for the agent, the advantage function

can be assumed to be increasing with respect to the attribute. We show in

this paper that, in order for a ranking of distributions based on an additively

separable social evaluation function to be sensitive to Hammond transfers, it

is necessary and sufficient for the advantage function to satisfy a somewhat

strong concavity property. Specifically, any increase in the quantity of the

attribute obtained from some initial level must increase the advantage more

than any increase obtained at some higher level of the attribute, no matter

what the latter increase is. Because of this result, we consider the ranking of

distributions provided by the unanimity of all additively separable rankings

based on an advantage function that is strongly concave in this sense.

The empirical implementable criterion that we consider is, to the best of

our knowledge, a new one. Its construction is based on a curve that we call the

-curve, by reference to the Hammond principle of transfer to which it is, as

it turns out, closely related. The -curve is defined recursively as follows. It

starts by assigning to the smallest possible quantity of the ordinal attribute
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the fraction of the population that are endowed with this quantity. It then

proceeds recursively, for any quantity of the attribute strictly larger than this

smallest quantity, by adding together the relative frequency of the population

endowed with this quantity of the attribute and twice the value assigned by

the curve to the immediately preceding category. The criterion that we

propose, and that we call -dominance, is for the dominating distribution to

have an -curve nowhere above and somewhere below that of the dominated

one. As illustrated in the paper, the construction of these curves, and the

resulting implementation of the criterion, is extremely easy.

This paper provides some justification for the use of such an -curve.

It does so by proving that having a distribution that -dominates another

is equivalent to the possibility of going from the latter to the former by a

finite sequence of Hammond transfers and/or increments of the attribute.

The paper also shows that -dominance coincides with the unanimity of all

additively separable aggregations of advantage functions that are strongly

concave in the manner described above.

While these results justify comparing distributions of an ordinal attribute

on the basis of -dominance, they do not readily lead to a definition of

what it means for a distribution to be more equal than another. In effect,

-dominance combines both Hammond transfers and increments. While the

former transformation is a plausible candidate for a definition of an inequality

reduction in an ordinal setting, the latter is not. Is it possible to identify an

operational criterion that coincides with Hammond transfers only and that

could thus serve as an operational definition of pure inequality reduction in

an ordinal setting?

This point can be illustrated through a parallel with the classical cardinal

case. In the classical setting, it is well known that the Lorenz domination

of one distribution over another is equivalent, when the two distributions

have the same mean, to the possibility of going from the dominated to the

dominating distribution by a finite sequence of Pigou-Dalton transfers. If

there was a meaningful analogue - in the ordinal setting - to the requirement

that two distributions have the "same mean", one could consider paralleling

- for that analogue - the standard approach and identifying -dominance
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with Hammond transfers only. Unfortunately there is no such meaningful

analogue to the mean in the ordinal setting. However, there is another (less

well-known) approach in the theory of majorization (see e.g. Marshall, Olkin,

and Arnold (2011)) that can be followed to handle that issue. This theory (see

Marshall, Olkin, and Arnold (2011) (chapter 1, p. 13, equation (14)) makes it

clear that Lorenz dominance between two distributions of a cardinal attribute

with the same mean is no more than the intersection of two independent

majorization quasi-orderings that do not assume anything about the mean

of the attribute. The first one, called submajorization byMarshall, Olkin, and

Arnold (2011), defines a distribution of income  as better than a distribution

0 if, for any rank , the sum of the  highest incomes is weakly smaller in 

than in 0. The second criterion, called supermajorization by Marshall, Olkin,

and Arnold (2011), corresponds to the usual (generalized) Lorenz domination

criterion (see e.g. Shorrocks (1983)) according to which  is better than 0 if

the sum of the  lowest incomes is weakly larger in  than in 0 no matter

what  is.

In this paper, we parallel the route taken by Marshall, Olkin, and Arnold

(2011) by exploring a dual dominance criterion based on what we call the

-curve of a distribution. This curve is constructed just like the -curve,

except that it starts from "above" (that is from the highest ordinal category)

rather than from "below", and iteratively cumulates the (discrete) survival

function rather than the (discrete) cumulative function. We then establish

that this notion of -dominance coincides with the possibility of going from

the dominated to the dominating distribution by a finite sequence of either

Hammond transfers and/or decrements. Just as with the submajorization

and supermajorization criteria, the ranking of distributions generated by the

intersection of the dominance criteria  and  could plausibly constitute a

clear inequality reduction in an ordinal setting. Indeed, as established in this

paper, any finite sequence of Hammond transfers would be recorded as an

improvement by this intersection ranking. While we cannot - unfortunately

- supply a proof of the converse implication, we do have results that point

towards it.

One such result is the equivalence between, on the one hand, the intersec-
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tion of the and the-dominance criteria and, on the other, the intersection

of all rankings produced by additively separable social evaluation functions

that use a strongly concave - in the above sense - advantage function. Another

such result comes from our examination of the - and -dominance criteria

when the finite grid used to define the categories is refined. We show in effect

that there exists a level of grid refinement above which the -dominance

criterion coincides with the Leximin ranking of the two distributions. Sim-

ilarly, we show that there exists a level of grid refinement above which the

-domination criterion coincides with the (anti) Leximax ranking of those

two distributions. Note that these results are consistent with those obtained

in classical social choice theory. The Leximin criterion can be viewed as the

limit of the -criterion when the number of different categories of the at-

tribute becomes large. Similarly the anti-Leximax criterion can be viewed as

the limit of the -criterion when the number of different categories becomes

large. It follows that the intersection of the anti-Leximax and the Leximin

criteria is the limit of the intersection of the  and the -criteria when

the number of categories becomes large. In Gravel, Magdalou, and Moyes

(2017), we prove that a vector in R being ranked above another by both

the anti-Leximax and the Leximin criteria is equivalent to the possibility of

going from the dominated to the dominating vector by a finite sequence of

Hammond transfers. Taken together, these results strongly suggest that the

possibility of going from a distribution  to a distribution  by a finite se-

quence of Hammond transfers is closely related to the dominance of  by 

according to both the - and the -criterion.

The plan of the rest of the paper is as follows. The next section introduces

the notation, and presents the elementary transformations, the normative

criteria and the implementation criteria when the attribute can take finitely

many different values. The main results identifying the elementary transfor-

mations underlying the - and the -curves are stated and proved in the

third section. The fourth section compares the discrete setting and the clas-

sical social choice setting originally used for the Hammond equity principle

and examines the behavior of the- (and the -) criterion when the number

of categories is enlarged. The fifth section illustrates the usefulness of the
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criteria for comparing the distributions of self-reported health indicators in

regions of Switzerland examined in Abul-Naga and Yalcin (2008). The sixth

section concludes.

2 Three perspectives for comparing distribu-

tions of an ordinal attribute

2.1 Notation

We consider distributions of an ordinal attribute among a given number - 

say - of agents.1 We assume that there are  (with  ≥ 3) different values that
the attribute can take. These values, which can be interpreted as "categories"

(e.g. "being gravely ill", "being mildly ill", "being in perfect health"), are

indexed by . These categories are assumed to be ordered from the worst (e.g.

being gravely ill) to the best (e.g. being in perfect health). We let C = {1 }
denote the set of categories. The fact that the attribute is ordinal means that

the integers 1   assigned to the different categories have no significance

other than reflecting the ordering of the categories from worst to best. Hence,

any comparative statement made on two distributions in which the attribute

quantity is measured by the list of numbers 1   would be unaffected if this

list was replaced by the list (1)  () generated by any strictly increasing

real valued function  . We adopt throughout an anonymous perspective

according to which "the names of the agents do not matter". This enables

us to describe any distribution or society  as a particular list (1  

) of

 non-negative integers satisfying 1 + 2 +  +  = , where  denotes

the number of agents in society  who are in category  (for  = 1  ).

1As is standard in distributional analysis since at least Dalton (1920), distributions

of the attribute among a varying number of agents can be compared by means of the

principle of population replication (replicating a distribution any number of times is a

matter of social indifference).
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2.2 Elementary transformations

The definition of these transformations lies at the very heart of the problem

of comparing alternative distributions of an ordinally measured attribute.

These transformations are intended to capture in a crisp and concise fash-

ion intuitions about the meaning of "equalizing" or "gaining in efficiency"

(amongst others). In defining the transformations, it is important to ensure

that they use only ordinal properties of the attribute. In this paper, we

discuss three such transformations.

The first - increment - is hardly new. It captures the idea - somewhat

related to efficiency - that moving an individual from one category to a

better category is a good thing ceteris paribus. We actually formulate this

principle in the following minimalist fashion.

Definition 1 (Increment) We say that society  has been obtained from so-

ciety 0 by means of an increment, if there exist  ∈ {1      − 1} such
that:

 = 
0
  ∀  6=   + 1 ; (1)

 = 
0
 − 1 ; +1 = 

0
+1 + 1  (2)

In words, society  has been obtained from society 0 by an increment

if the move from 0 to  is the sole result of the move of one agent from a

category  to the immediately superior category  + 1.

For the second transformation, in a somewhat reverse fashion, we can

introduce the notion of a decrement as follows.

Definition 2 (Decrement) We say that society  has been obtained from

society 0 by means of a decrement if and only if society 0 has been obtained

from  by an increment in the sense of Definition 1.

The third elementary transformation considered is the one underlying

the equity principle put forward by Peter J. Hammond (1976) some forty

years ago. This principle, captured in the following definition, considers that

a reduction in someone’s endowment of the attribute compensated by an
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increase in the endowment of another person is a good thing if the loser

remains, after the reduction, better off than the winner.

Definition 3 (Hammond Transfer) We say that society  is obtained from

society 0 by means of a Hammond’ transfer, if there exist four categories

1 ≤    ≤    ≤  such that:

 = 
0
  ∀  6=     ; (3)

 = 
0
 − 1 ;  = 

0
 + 1 ; (4)

 = 
0
 + 1; 


 = 

0
 − 1  (5)

While a reduction in someone’s endowment that is compensated by an

increase in that of someone else may be viewed as the result of a "transfer"

of the attribute between the two, it should be noted that unlike standard

Pigou-Dalton transfers, this does not require the "quantity" given by to be

equal to that received by the recipient. Since comparing the gains and losses

of an ordinal attribute is meaningless, the Hammond transfer can be viewed

as the natural analogue in the ordinal setting of the Pigou-Dalton transfer.2

2.3 Normative evaluation

We assume that alternative societies are compared by some ethical observer

who uses an additively separable criterion. Such an ethical observer would

consider that society  is normatively better than society 0 if:

X
=1

 ≥
X

=1

0  (6)

holds for some list of  real numbers  (for  = 1  ). The numbers

(1  ) can, of course, be seen as numerical evaluations of the correspond-

2 Note that a Pigou-Dalton transfer is nothing else than a Hammond transfer for which

the indices ,   and  of Definition 3 satisfy the additional condition that −  =  − 

(a given - by  −  - quantity of the attribute is transferred). See Fishburn and Lavalle

(1995) or Chakravarty and Zoli (2012) for analysis of Pigou-Dalton transfers in a discrete

setting.
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ing categories, in which case they would be required to satisfy 1 ≤  ≤ .

These valuations may reflect subjective utility (if a utilitarian perspective is

adopted) or a non-welfarist interpretation of an agent’s falling into the dif-

ferent categories to which these numbers are assigned. If such a non-welfarist

perspective is adopted, the specific additive form of the numerical representa-

tion (6) of the social ordering can be axiomatically justified (see e.g. Gravel,

Marchant, and Sen (2011)).

The ordinal interpretation of the categories means that care should be

taken to avoid the normative evaluation exercise being unduly sensitive to

particular choices of numbers  (for  = 1  ). A standard means of

preventing this is to require unanimity of ranking of two societies as per (6)

over a wide class of such lists of  numbers.

2.4 Implementation criteria

Three implementation criteria are considered in this paper. The first criterion

- first order (stochastic) dominance - is standard. As is well known, it is based

on comparing the values taken by the cumulative distribution function  (; )

associated with every society  and every category  ∈ {1  } and defined
by:

 (; ) =

X
=1

  (7)

A society  would then be considered to dominate society 0 at the first order

if the inequality  (; ) ≤  (; 0) is observed for every category .

The second implementation criterion examined herein is based on the

following -curve, defined for any society  and any  ∈ {1  }, by:

(; ) =

X
=1

¡
2−

¢
   (8)

A few remarks can be made about this curve. First, it verifies:

(1; ) =  (1; ) (9)
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and:

(; ) =

−1X
=1

¡
2−−1

¢
 (; ) +  (; )  ∀ = 2 3      (10)

The different values of (·; ) are therefore nested. Moreover, for any  =

2 3     , we have:

(; ) = 2(− 1; ) +  (; )−  (− 1; ) = 2(− 1; ) +   (11)

Hence, by successive decomposition, we obtain, for all  = 2 3     :

(; ) =
¡
2
¢
(− ; ) +

−1X
=0

¡
2
¢ −


 ∀ = 1 2     − 1  (12)

In plain English, (; ) is a (specifically) weighted sum of the fractions of

the population in  that are in weakly worse categories than . The weight

assigned to the fraction of the population in category  (for   ) in that sum

is 2−. Hence the weights are (somewhat strongly) decreasing with respect

to the categories. A nice feature of the -curve - striking in formula (11)

- is its recursive construction, which is quite similar to that underlying the

cumulative distribution curve. The cumulative distribution  can indeed be

defined recursively by:

 (1; ) = 1 (13)

and, for  = 2  , by:

 (; ) =  (− 1; ) +  (14)

The recursion that defines  starts just in the same way as in (13) with:

(1; ) = 1

but with the iteration formula (14) replaced by:

(; ) = 2(− 1; ) + 
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The - curve gives rise to a natural notion of dominance: Society  -

dominates society 0 if and only if the inequality

(; ) ≤ (; 0) (15)

holds for every category . Observe that the definition of the -curve pro-

vided by (10) makes it clear that first-order dominance implies-dominance.

The last implementation criterion examined in this paper is somewhat

dual to -dominance. Its formal definition makes use of the complementary

cumulative distribution function - also known as the survival function - asso-

ciated with a society  denoted, for every category  ∈ {1  }, by  (; )

and defined by:

 (; ) = 1−  ( ) (16)

=

X
=+1

 for  = 1   − 1 and, (17)

= 0 for  =  (18)

Hence  (; ) is the fraction of the population in  that is in a strictly better

category than . For technical reasons, we find it useful to extend the domain

of the definition of  (; ) from {1  } to {0  } and to set  (0; ) = 1.
With this notation, the following -curve can be defined for any society 

and any  ∈ {1  } by:

(; ) =

−1X
=+1

¡
2−−1

¢
  for  = 1  − 2 (19)

and:

(; ) = 0 (20)

This curve is thus constructed under exactly the same recursive principle

as the -curve, but starting with the highest category, and iterating with

the complementary cumulative distribution function rather than with the
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standard cumulative one. The -curve therefore starts at category  − 1:

( − 1; ) =  ( − 1; ) =   (21)

and satisfies:

(; ) =

−1X
=+1

¡
2−−1

¢
 (; ) +  (; )  ∀ = 1 2      − 2 (22)

so that the different values of (·; ) are nested starting from above and

going below. Moreover, for any  = 1 2      − 2 we have:

(; ) = 2(+1; ) + (; )− (+1; ) = 2(+1; ) + +1  (23)

Hence, just as in expression (12) above, we obtain, by successive decomposi-

tion, for any  = 1   − 2:

(; ) =
¡
2
¢
( + ; ) +

X
=1

¡
2−1

¢ +


 ∀ = 1      −  − 1  (24)

This curve gives rise to the obvious corresponding notion of -dominance.

A society  -dominates society 0 if and only if the inequality

(; ) ≤ (; 0) (25)

holds for every category .

As illustrated in Section 5, the- and-curves are easy to use and draw.

As will also be seen in the next section, the two dominance criteria that they

generate serve as perfect diagnostic test of the possibility of moving from

the dominated to the dominating distribution by Hammond transfers and

increments (for -dominance) or decrements (for -dominance). Moreover,

the additional criterion provided by the intersection of - and -dominance

turns out to be tightly related to the notion of equalization contained in the

Hammond principle of transfers.

We end this section by pointing out the links between some of these
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notions of dominance. Specifically, we show that first-order dominance of a

society 0 by a society  entails the -dominance of society 0 by  and the

-dominance of society  by 0. The proof of this result is, like all proofs for

this paper, in the Appendix.

Proposition 1 Suppose  and 0 are two societies such that  (; ) ≤  (; 0)

for all categories  ∈ C. Then, (; ) ≤ (; 0) and (; 0) ≤ (; ) for

all  ∈ C.

3 Equivalence results

This section establishes a few theorems connecting, on the one hand, nor-

mative comparison of two societies as per Condition (6) over specific classes

of collections of numbers 1   and, on the other hand, specific imple-

mentable criteria as well as the possibility of going from the dominated to

the dominating distribution by appropriate elementary transformations.

We start with the notions of increment and decrement. Suppose that

we are comparing two societies on the basis of Inequality (6) for some list

1   of real numbers. What properties must these numbers satisfy for

such a comparison to always consider an increment (decrement) as a definite

social improvement? It should come as no surprise that the answer to this

question is that the  numbers must belong to the following sets:

A = {(1  ) ∈ R : 1 ≤  ≤ } (for increments)

and

A = {(1  ) ∈ R : 1 ≥  ≥ } (for decrements)

Set A (resp. A ) is the largest set of valuations of the  categories for

which the ranking of two societies as per Inequality (6) will consider an

increment (resp. a decrement) as a normative improvement. The following

two propositions establish this formally.

Proposition 2 For any two societies  and 0,  being obtained from 0 by

an increment as per Definition 1 implies Inequality (6) for all lists of real
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numbers (1  ) ∈ A if and only if A = A .

Proposition 3 For any two societies  and 0,  being obtained from 0 by

a decrement as per Definition 2 implies Inequality (6) for all lists of real

numbers (1  ) ∈ A if and only if A = A .

We now use these propositions to establish the following two theorems,

the proof of which makes use of the following technical decomposition result.

Lemma 1 For any society  and any conceivable collection of  numbers

(1  ) ∈ R, we have:

1



X
=1

  =  −
−1X
=1

 (; ) [+1 − ]  (26)

or equivalently:

1



X
=1

  = 1 +

−1X
=1

̄ (; ) [+1 − ]  (27)

Moreover, for all  = 2 3      − 1, we have:

1



X
=1

  =  −
−1X
=1

 (; ) [+1 − ] +

−1X
=

̄ (; ) [+1 − ]  (28)

The first theorem, which links increment to dominance as per Inequality

(6) for all lists of real numbers in A , and to first-order dominance, has been

known for quite a long time (see e.g. Lehmann (1955) or Quirk and Saposnik

(1962)). We nonetheless provide a proof of part of it for completeness and

for later use in the proof of the important Theorem 3 below.

Theorem 1 For any two societies  and 0, the following three statements

are equivalent:

(a)  is obtained from 0 by means of a finite sequence of increments,

(b) Inequality (6) holds for all (1  ) in A ,
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(c)  (; ) ≤  (; 0) for every category  in C.

The second theorem is dual to the previous one. It links decrements to

both normative dominance - as per Inequality (6) - for set A of valuations

of the  categories and (anti) first-order dominance. The formal statement of

this theorem - whose proof, similar to that of Theorem 1, is left to the reader

- is as follows.

Theorem 2 For any two societies  and 0, the following three statements

are equivalent:

(a)  is obtained from 0 by means of a finite sequence of decrements,

(b) Inequality (6) holds for all (1  ) in A ,

(c)  (; 0) ≤  (; ) for every category  in C.

We now turn to Hammond transfers. Paralleling what was established

before Propositions 2 and 3, we first seek the conditions on the numerical

valuations of the categories under which a normative comparison of two so-

cieties based on Inequality (6) would be sensitive to Hammond transfers (as

per Definition 3). It turns out that the conditions involve the following subset

H of R:

H = ©(1  ) ∈ R | ( − ) ≥ ( − ) for 1 ≤    ≤    ≤ 
ª
.

(29)

In words, H contains all lists of categories’ valuations that are "strongly con-
cave" with respect to these categories in the sense that the utility gain from

moving from one category to a better one is always larger when moving from

categories in the bottom part of the scale than when moving within the up-

per part of it. The following proposition establishes that set H of categories’

valuations is really the largest one for which the ranking of two societies

based on Inequality (6) would consider favorably the notion of equalization

underlying Hammond transfers.
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Proposition 4 For any two societies  and 0,  being obtained from 0 by

a Hammond transfer as per Definition 3 implies Inequality (6) for all lists of

real numbers (1  ) ∈ A if and only if A = H.

The intuition that set H captures a "strong concavity" property is, per-

haps, better seen through the following proposition, which establishes that

H contains all lists of categories’ valuations that are "single-peaked" in the

sense of admitting a largest value before which they are increasing (at a

strongly decreasing rate) and after which they are decreasing (at a strongly

increasing rate).

Proposition 5 A list (1  ) of real numbers belongs to H if and only

if there exists a  ∈ {1  } such that (+1 − ) ≥ ( − +1) for all  =

1 2     −1 (if any) and (0+1−0) ≤ (0−), for all 
0 =  +1     −1

(if any).

Two "peaks" among those identified in Proposition 5 are of particular

importance. One is when  =  so that numbers 1   are increasing (at

a strongly decreasing rate) with respect to the categories. In this case, the

elements of H are also in A , and we denote by A = H ∩A this set of

increasing and strongly concave valuations of the categories. We then have

the following immediate (and therefore unproved) corollary of Proposition 5

(applied to  = ).

Proposition 6 A list of  real numbers (1  ) belongs to A if and

only if it satisfies +1 −  ≥  − +1 for all  ∈ {1   − 1}.

The other extreme of the possible peaks identified in Proposition 5 corre-

sponds to the case where  = 1 so that numbers 1   are decreasing (at

a strongly increasing rate) with respect to the categories. In this case, the

elements of H are also in A , and we denote by A = H ∩ A this subset

of the set of all strongly concave valuations of the categories that are also

decreasing with respect to these categories. We then have the following also

immediate (and unproved) corollary of Proposition 5 (applied to  = 1).
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Proposition 7 A list of  real numbers (1  ) belongs to A if and

only if it satisfies +1 −  ≤  − 1 for all  ∈ {1   − 1}.
We now establish what we view as the most important result of this

paper: -dominance is the implementable test to determine whether one

distribution is obtained from another by a finite sequence of either Hammond

transfers or increments. The formal statement of this result is as follows.

Theorem 3 For any two societies  and 0, the following three statements

are equivalent:

(a)  is obtained from 0 by means of a finite sequence of Hammond transfers

and/or increments,

(b) Inequality (6) holds for all (1  ) in A,

(c) (; ) ≤ (; 0) for every category  in C.

Although a detailed proof of the equivalence of the three statements of

Theorem 3 is provided in the Appendix, the main arguments are worth pre-

senting here. The fact that Statement (a) implies Statement (b) is an im-

mediate consequence of Propositions 2 and 4. These propositions actually

imply that the ranking of two societies based on Inequality (6) is sensitive to

Hammond transfers (if the list of valuations (1  ) belongs to H) and
to increments (if (1  ) belongs to A ). The proof that Statement (b)

implies Statement (c) amounts to verifying that any list of  real numbers

(
1     


) defined, for any  ∈ {1  }, by:


 = −(2−) for  = 1   (30)


 = 0 for  = + 1   (31)

belongs to set A . Indeed, it is apparent from Expression (8) that verifying

the inequality:
X

=1



 ≥

X
=1

0 



for any list (
1     


) of real numbers defined as per (30) and (31) for any 

is equivalent to the -dominance of 0 by . Since Inequality (6) holds for all
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(1  ) in set A , it must hold in particular for those (

1     


) defined

as per (30) and (31) for any . The most difficult proof, that Statement (c) im-

plies Statement (a), is obtained by first noting that if  first-order dominates

0, then the possibility of going from 0 to  by a finite sequence of increments

is an immediate consequence of Theorem 1. The proof is then constructed

under the assumption that  -dominates 0, but that no first-order domi-

nance exists between the two societies. Hence there must be categories where

the two cumulative distribution functions associated with  and 0 "cross".

In that case, we show that a Hammond transfer "above" the first category

for which this crossing occurs can be made in such a way that the new so-

ciety thereby obtained remains -dominated by . We also show that this

Hammond transfer "brings to naught" at least one of the strict inequalities

that distinguish  (; ) from  (; 0). Hence if the final distribution  is not

reached after this first transfer, then the same procedure can be applied again

and again until  is reached. As the number of inequalities that distinguish

 ( ) from  ( 0) is finite, this proves the implication.

We now state a theorem that is the mirror image of Theorem 3, but

with increments replaced by decrements, set A by A and -dominance

by the -dominance. We omit the proof of this theorem because its logic

and construction follow those of Theorem 3.3

Theorem 4 For any two societies  and 0, the following three statements

are equivalent:

(a)  is obtained from 0 by means of a finite sequence of Hammond transfers

and/or decrements,

(b) Inequality (6) holds for all (1  ) in A,

(c) (; ) ≤ (; 0) for every category  in C.

Theorem 3 (resp. 4) shows that - (resp. -) dominance provides a

perfect diagnostic tool to determine the possibility of going from one society

to another by a finite sequence of Hammond transfers and/or increments

(resp. decrements). But what about the possibility of going from one society

to another by Hammond transfers only?

3The proof is however available upon request.
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It follows clearly from Theorems 3 and 4 that where this possibility exists,

the society from which these transfers originate is dominated by the society

to which these transfers lead by both - and - criteria. Unfortunately,

we do not have proof of the converse implication that the dominance of one

society by another by both the - and the - criteria entails the possibility

of going from the dominated to the dominating society by a finite sequence

of Hammond transfers only. However, we can prove that the domination of a

society 0 by a society  by both the - and the - criteria is equivalent to

requiring Inequality (6) to hold for all list  real numbers (1     ) in H.
The next theorem summarizes all the relations between Hammond transfers

and the relevant normative and implementable criteria that we are aware of.

The proof of this theorem makes some use of the following technical result

that extends one step further the decomposition (28) of Lemma 1.

Lemma 2 For any society , any conceivable collection of  numbers (1  ) ∈
R and any  = 2 3      − 1, we have:

1



X
=1

 =

−2X
=1

−(; )]
"
 −

−1X
=+1



#
−(− 1; ) −1
+(; ) 

+

−1X
=+1

(; )

"
 −

−1X
=



#
(32)

where  = +1 −  for every  = 1   − 1.

The proved theorem is the following.

Theorem 5 Consider any two societies  and 0 and the following three

statements:

(a)  is obtained from 0 by means of a finite sequence of Hammond transfers,

(b) Inequality (6) holds for all (1  ) in H,
(c) ( ) ≤ ( 0) and ( ) ≤ ( 0) for all categories  ∈ C.
Then, statement (a) implies statement (b) and statement (b) and (c) are

equivalent.
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4 Sensitivity of the criteria to the grid of cat-

egories

As recognized in classical social choice theory (see e.g. Hammond (1976),

Hammond (1976), Deschamps and Gevers (1978), D’Aspremont and Gev-

ers (1977) and Sen (1977)), Hammond transfers, when combined with the

"Pareto principle", are related to the lexicographic extension of the Maximin

(or Leximin) criterion for ranking various ordered lists of  numbers. For

example, Theorem 4.17 in Blackorby, Bossert, and Donaldson (2005) (ch. 4;

p. 123) states that the Leximin criterion is the only monotonically increasing

and anonymous ordering of R that is strictly sensitive to Hammond trans-

fers. In an analogous vein, Bosmans and Ooghe (2013) and Miyagishima

(2010) have shown that the Maximin criterion is the only continuous and

Pareto-consistent reflexive and transitive ranking of R that is weakly sensi-

tive to Hammond transfers. Since the -dominance criterion coincides, by

Theorem 3, with the possibility of going from the dominated to the domi-

nating society by a finite sequence of Hammond transfers and/or increments

- which are nothing more than anonymous Pareto improvements - it is of in-

terest to understand the connection between the -dominance criterion and

the Leximin one.

We start by defining the latter criterion in the current setting as follows.

Definition 4 Given two societies  and 0, we say that  dominates 0 ac-

cording to the Leximin criterion, which we write  % 0, if and only if there

exists  ∈ {1  } such that   0 and  = 0 for all integers  such that

1 ≤    (if any).

It is clear (and well known) that the Leximin criterion provides a complete

(and transitive) ranking of all lists of  real numbers. The following propo-

sition establishes that the criterion of -dominance is a strict subrelation of

%.

Proposition 8 Assume that   2. Then, for any two societies  and 0

for which ( ) ≤ ( 0) holds for all categories  ∈ C, we have  % 0.

However, the converse implication is false.
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A key difference between our framework and that of classical social choice

theory is, of course, the discrete nature of the former.

In order to connect the two frameworks, it is useful to examine the sen-

sitivity of the -dominance criterion to the level of refinement of the finite

grid over which it is defined. As it turns out, at a suitably high level of

grid refinement, the -dominance criterion becomes indistinguishable from

the Leximin ordering. There are obviously many ways to refine a given finite

grid. In this section, we consider the following notion of -refinement of grid

C = {1 2     }.

Definition 5 The -refinement of grid C = {1 2     } for  = 0 1  is
the set C() defined by:

C() = ©2 :  = 1 2     (2)ª (33)

or, equivalently,

C() =
½
1

2

2

2

3

2
    

(2) 

2

¾
 (34)

Notice that C(0) = C so that the initial grid corresponds to "zero" refine-
ment. The grid obviously becomes finer as  increases, and it is clear that

C() ⊂ C(+ 1) for all  = 0 . We also see that the finite set C() tends to
the interval ]0 ] as  tends to infinity.

For any society , and any real number  in the interval ]0 ], let us denote

by () the (possibly null) number of agents in  who belong to category .

Clearly () = 0 for all  ∈ {1  } and () =  for any  ∈ C. Using
these numbers () and applying the definition of the -curve provided by

Equation (8) to grid C() enables the -refinement of the -curve, denoted
, to be defined as follows (for any society ):

 (0; ) = 0

and:



µ


2
; 

¶
=
1



X
=1

¡
2−

¢

µ


2

¶
 ∀ = 1 2     (2)  (35)
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We obviously define the notion of −dominance of a society  over a society
0 on a −refined grid -referred to as-dominance - as the fact that a society

 has a -curve (as defined by (35)) nowhere above and somewhere below

that of a society 0. This definition produces a sequence of dominance quasi-

orderings indexed by  which, as it turns out, converges to the complete

ordering % when  becomes large enough.

The first notable effect of such a refinement of the grid is that it re-

duces the incompleteness of the quasi-ordering of societies induced by the

-dominance criterion. Specifically, the following proposition is proved in

the Appendix.

Proposition 9 For any two societies  and 0 and any  = 0 1 , if society

 -dominates society 0, then society  +1-dominates society 0.

Hence, refining the grid increases the discriminating power of the -

dominance criterion. The next theorem establishes that this increase even-

tually reaches a point where the -dominance criterion becomes complete

and equivalent to the Leximin ordering.

Theorem 6 For any two societies  and 0, the following two statements are

equivalent:

(a) There exists an integer  ∈ N+ such that society  -dominates society

0.

(b)  % 0.

We conclude this section by pointing out a similar relationship between

the -dominance criterion and the Lexicographic extension of the Minimax

criterion. The Minimax criterion compares alternative lists of  real numbers

on the basis of their maximal elements: the lower the maximal element, the

better the list. The lexicographic extension of the Minimax criterion - anti-

Leximax for short - extends the principle to the second maximal element,

and to the third and so on when the maximal, the second maximal and so on

of two lists are identical. While the Leximin and the Maximin criteria can be
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seen as ethically favoring the "worst off", the Minimax or the anti-Leximax

criteria disfavor the "best off".

The fact that -dominance converges to the anti-Leximax criterion and

-dominance converges to the Leximin one when the grid becomes suffi-

ciently fine has obvious, but important, implication for the criterion defined

in the preceding subsection as the intersection of the - and the - domi-

nance criteria. This intersection of - and - dominance must converge to

the intersection of the Leximin and the anti-Leximax criteria when the grid

becomes sufficiently fine. Now Gravel, Magdalou, and Moyes (2017) show

that the intersection of the Leximin and the anti-Leximax criteria is the

smallest transitive relation that is strictly sensitive to a Hammond transfer.

Taken together, these two results strike us as a compelling argument for the

use of the intersection of - and - dominance as a perfect test of the possi-

bility of going from one society to another by a finite sequence of Hammond

transfers.

5 Empirical Illustration

In this section, we use our criteria to compare the distributions of self-

reported health status in Switzerland that are evaluated in Abul-Naga and

Yalcin (2008) by means of inequality indices compatible with the incomplete

ranking proposed by Allison and Foster (2004). Recall that this latter rank-

ing applies to societies that have the same unique median category. For any

two such societies  and 0, Allison and Foster (2004) consider that the at-

tribute is (weakly) more equally distributed in society  than in society 0

if the inequality  (; ) ≤  (; 0) holds for every category  strictly below

the median and the converse inequality  (; ) ≥  (; 0) holds for all cat-

egories  weakly above the median. While our criteria are not restricted to

distributions with a unique common median, they can certainly be applied

to such distributions, as we now illustrate. The health status considered by

Abul-Naga and Yalcin (2008) lies in one of the five following categories: "very

bad" (1), "bad" (2),"so-so" (3), "good" (4) and "very good" (5). The frac-

tions  and the cumulated distribution  (; ) (for  = 1  5) are shown
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in the two following tables.

1 2 3 4 5

 = Leman 0.01 0.04 0.11 0.56 0.28

 = North-West 0.01 0.04 0.13 0.63 0.19

 = Central 0 0.02 0.11 0.63 0.24

 = Middle-Land 0.01 0.03 0.13 0.60 0.23

 = East 0 0.03 0.11 0.64 0.22

 = Ticino 0.01 0.05 0.11 0.70 0.13

 = Zurich 0 0.03 0.10 0.65 0.22

Table 1

 (1; )  (2; )  (3; )  (4; )  (5; )

Leman 0.01 0.05 0.16 0.72 1

North-West 0.01 0.05 0.18 0.81 1

Central 0 0.02 0.13 0.76 1

Middle-Land 0.01 0.04 0.17 0.77 1

East 0 0.03 0.14 0.78 1

Ticino 0.01 0.06 0.17 0.87 1

Zurich 0 0.03 0.13 0.78 1

Table 2

Using Formula (11) and (23), the values of (; ) and (; ) (for  = 1  5

) can then be calculated as follows.

(1; ) (2; ) (3; ) (4; ) (5; )

Leman 0.01 0.06 0.23 1.02 2.32

North-West 0.01 0.06 0.25 1.13 2.45

Central 0 0.02 0.15 0.93 2.10

Middle-Land 0.01 0.05 0.23 1.06 2.35

East 0 0.03 0.17 0.98 2.18

Ticino 0.01 0.07 0.25 1.20 2.53

Zurich 0 0.03 0.16 0.97 2.16

Table 3
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(0; ) (1; ) (2; ) (3; ) (4; ) (5; )

Leman 9.49 4.74 2.35 1.12 0.28 0

North-West 8.69 4.34 2.15 1.01 0.19 0

Central 9.36 4.68 2.33 1.11 0.24 0

Middle-Land 9.07 4.53 2.25. 1.06 0.23 0

East 9.14 4.57 2.27 1.08 0.22 0

Ticino 8.23 4.11 2.03 0.96 0.13 0

Zurich 9.18 4.59 2.28 1.09 0.22 0

Table 4

As is clear, all the seven regions have "good" as their common median

category. The - and - curves associated to the Léman and the Central

regions are depicted on Figure 1.

0

1

2

3

4

5

6

7

8

9

10

0 Very bad bad so-so good very good

Leman H

Central H

Leman

Central

Figure 1: - and - curves for the Leman and the Central region.

As can be seen, the Central region both - and -dominates the Leman

region. Hence, self-reported health status appears to be more equally distrib-

uted in the Central than in the Leman region. Observe that the same con-

clusion would obtain if one were using instead Allison and Foster (2004) cri-
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terion. The Hasse diagram showing the ranking of the seven regions by first-

order dominance, -dominance, and the intersection of- and-dominance

is provided in Figure 2. This figure shows that almost all regions of Switzer-

land can be compared by -dominance. The only two regions that can not

be compared are the Leman and the Middle land regions. As Figure 2 makes

clear, a significant fraction of the -rankings of the regions result from first-

order dominance. Yet there are five additional comparisons that are obtained

by adding Hammond transfers to increments. Among these five additional

rankings, three result from "pure equality" comparisons in the sense of being

obtained by the intersection of - and -dominance while the two others

(in red) necessitate the combination of increments and Hammond transfers.

The diagram reveals that self-reported health is more equally distributed in

either the Central, the Zurich or the East region than in the Leman region.

For illustrative purpose, Figure 3 shows the dominance diagram associated

with the Allison-Foster criterion. Observe that this criterion agrees with our

conclusion that self-reported health is more equally distributed in the Cen-

tral, the Zurich and the East region than in the Leman region. However,

Allison-Foster criterion considers in addition - and somewhat surprisingly -

that self-reported health is more equally distributed in the Zurich than in the

East region, despite the fact that the dominance of Zurich over East (recog-

nized by the -criterion) results from first-order dominance. Allison-Foster

criterion also agrees with-dominance that East is better than Middle-Land.

However, the Allison-Foster criterion can not compare the North-West and

the Ticino region while -dominance (but not first-order dominance) can.

The reader can similarly compare the almost complete ranking of the seven

regions provided by -dominance with the complete rankings of those same

regions produced by the ordinal inequality indices of Abul-Naga and Yalcin

(2008) (see e.g. their Table 4).

6 Conclusion

The paper has laid the groundwork for comparing distributions of an ordi-

nal attribute that takes finitely many values. The crux of our analysis is
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Ticino 
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   Zurich 

    East 

Léman Middle Land

North West 

1st‐order dominance 

H‐dominance alone

H‐ and  ‐dominance 

Figure 2: Hasse diagram of 1st order dominance, -dominance, and the

intersection of - and -dominance of the seven regions.

an easy-to-use criterion, called -dominance. This criterion can be viewed

as the analogue, for comparing distributions of an ordinally measurable at-

tribute, of the generalized Lorenz curve used for comparing distributions of

a cardinally measurable one. It is well known (see e.g. Shorrocks (1983))

that one distribution of a cardinally measurable attribute dominates another

for the generalized Lorenz criterion if and only if it is possible to go from

the dominated distribution to the dominating one by a finite sequence of in-

crements of the attribute and/or Pigou-Dalton transfers. The main result of

this paper - Theorem 3 - establishes an analogous result for the -dominance

criterion. We show that the latter criterion ranks two distributions of an at-

tribute in the same way as would going from the dominated to the dominating

distribution by a finite sequence of increments and/or Hammond transfers.

We also identified a dual -dominance criterion that ranks two distribu-

tions in the same way as would going from the dominated to the dominating

distribution by a finite sequence of decrements and/or Hammond transfers

of the attribute. We strongly suspect that the intersection of the - and

the - dominance criteria coincides with the possibility of going from the

dominated to the dominating distribution by a finite sequence of Hammond
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   East

Léman  Middle Land North West Ticino 

Figure 3: Hasse diagram of the ranking of the seven regions by the Allison-

Foster criterion.

transfers only. We were, however, unable to prove this equivalence in the

discrete framework considered, even though we succeeded in proving it indi-

rectly for a sufficiently fine level of refinement of the grid of values taken by

the attribute.

As illustrated with the data analyzed in Abul-Naga and Yalcin (2008),

we believe that the -dominance criterion, and the Hammond principle of

transfers that justifies it along with increments, is a useful tool for compar-

ing distributions of an attribute that cannot be meaningfully transferred à

la Pigou-Dalton. Not only is the -dominance criterion justified by clear

and meaningful elementary transformations, it also has the advantage of be-

ing applicable to a much wider class of situations than the widely discussed

criterion proposed by Allison and Foster (2004). The latter is limited to

distributions that have the same median, and is not associated with clear

and meaningful elementary transformations. Moreover, while we sought the

criteria and transfers principles discussed here mainly so as to apply them

to distributions of an ordinally measurable attribute, they can also be ap-

plied to a cardinally measurable attribute if the strong egalitarian flavour of

Hammond transfers is deemed appropriate for that purpose.

Among the many possible extensions of the approach developed in this

paper, three strike us as particularly important. First, it would be nice to

obtain a proof that the intersection of - and - dominance coincides with

the possibility of going from the dominated to the dominating distribution by

a finite sequence of Hammond transfers only in an arbitrary discrete setting.
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For the moment, this equivalence is only a conjecture that is shown to be true

only when the grid of values of the attribute is infinitely refined. Second, since

the-criterion is incomplete in the discrete setting, it would be interesting to

obtain simple inequality indices that are compatible with Hammond transfers

and, therefore, with the intersection of- and- dominance. We believe that

obtaining an axiomatic characterization of a family of such indices would not

be too difficult. A good starting point would be to consider indices that can

be written as per Expression (6) for some suitable choice of lists (1  )

of real numbers. A third extension, obviously more difficult, would be to

consider multi-dimensional attributes.

A Appendix: Proofs

A.1 Proposition 1

Let  and 0 be two societies such that  (; ) ≤  (; 0) holds for all  ∈
{1  }. It follows that:

 (1; ) ≤  (1; 0)

and:

 (1; ) +  (2; ) ≤  (1; 0) +  (2; 0),

2 (1; ) +  (2; ) +  (3; ) ≤ 2 (1; ) +  (2; ) +  (3; ),



−1X
=1

¡
2−−1

¢
 (; )+ (; ) ≤

−1X
=1

¡
2−−1

¢
 (; )+ (; ) ∀ = 2 3     

so that, thanks to Expressions (9) and (10), inequality (15 that defines-dominance

of 0 by  holds. To establish the -dominance of  by 0, it suffices to notice that

the requirement  (; ) ≤  (; 0) for all  ∈ {1  } can alternatively be writ-
ten (thanks to Expressions (16)-(18)) as :

 (; ) ≥  ( 0)

30



for all  ∈ {1   − 1}. This implies that:

 ( − 1; ) ≥  ( − 1; 0)

and:

 ( − 2; ) +  ( − 1; ) ≥  ( − 2; 0) +  ( − 1; 0),
 ( − 3; ) +  ( − 2; ) + 2 ( − 1; ) ≥  ( − 3; 0) +  ( − 2; 0) + 2 ( − 1; 0)



X
=+1

¡
2−−1

¢
 (; ) +  (; ) ≥

X
=+1

¡
2−−1

¢
 (; 0) +  (; 0)  ∀ ∈ C

so that, thanks to Expressions (21 and (22), (; 0) ≤ (; ) for all  ∈ C.

A.2 Propositions 2 and 3

For Proposition 2, let  be a society obtained from 0 by an increment. By Defin-

ition 1, there exists some  ∈ {1   − 1} such that:

 = 
0


for all  ∈ {1 } such that  6=   + 1,

 = 
0
 − 1

and,

+1 = 
0
 + 1.

Then Inequality (6) holds if and only if:

X
=1

 ≥
X

=1

0
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⇐⇒
+1 −  ≥ 0

by definition of an increment. As this inequality must hold for any  ∈ {1  −
1}, this completes the proof of Proposition 2.The argument for Proposition 3 is
similar (with Definition 1 replaced by Definition 2).

A.3 Lemma 1

Observe first that:

X
=1

  =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 1

+ 2 2

+ · · ·
+   

(36)

or, equivalently:

X
=1

  =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 1

+ 2 1 + 2 [2 − 1]

+ 3 1 + 3 [2 − 1] + 3 [3 − 2]

+ · · ·
+  1 +  [2 − 1] +  [3 − 2] +     [ − −1] 

(37)

hence:

X
=1

  =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

+ (− 1) [2 − 1]

+ [− (1 + 2)] [3 − 2]

+ · · ·
+

h
−P−1

=1 

i
[ − −1] 

(38)

from which one obtains:

1



X
=1

  = [1 + ( − 1)]−
−1X
=1

 (; )(+1 − ) (39)

=  −
−1X
=1

 (; )(+1 − ) (40)
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as required by Equation (26). Now, by reconsidering Equation (38) and recalling

that ̄ (; ) = 1 −  (; ) =
³
−P

=1 

´
 for every  = 1  , one

immediately obtains Equation (27). We must now establish Equation (28). For

this sake, one can notice that, for any  ∈ {2   − 1}, one has:

X
=1

  =

X
=1

  +

X
=+1

   (41)

If one successively decompose the two terms on the right hand of (41), one obtains

for the first one:

X
=1

  =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 1

+ 2 1 + 2 [2 − 1]

+ 3 1 + 3 [2 − 1] + 3 [3 − 2]

+ · · ·
+  1 +  [2 − 1] +  [3 − 2] +     [ − −1] 

One has therefore:

X
=1

  =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

³P

=1 

´
1

+
hP

=1  − 1

i
[2 − 1]

+
hP

=1  − (1 + 2)
i
[3 − 2]

+ · · ·
+

hP

=1  −
P−1

=1 

i
[ − −1] 

or equivalently:

1



X
=1

  =

Ã
1



X
=1



!
 −

−1X
=1

 (; ) [+1 − ]  (42)
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For the second term of (41), the successive decomposition yields:

X
=+1

  =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+1 +1

+ +2 +1 + +2 [+2 − +1]

+ +3 +1 + +3 [+2 − +1] + +3 [+3 − +2]

+ · · ·
+  +1 +  [+2 − +1] +  [+3 − +2] +     [ − −1] 

This can be written as:

X
=+1

  =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

³P

=+1 

´
+1

+
³P

=+2 

´
[+2 − +1]

+
³P

=+3 

´
[+3 − +2]

+ · · ·
+  [ − −1] 

or equivalently:

1



X
=+1

  =

Ã
1



X
=+1



!
+1 +

−1X
=+1

̄ (; ) [+1 − ]  (43)

By summing Equations (42) and (43), one concludes that:

1



X
=1

  =

Ã
1



X
=1



!
 +

Ã
1



X
=+1



!
+1

−
−1X
=1

 (; ) [+1 − ] +

−1X
=+1

̄ (; ) [+1 − ](44)

This equality can be further simplified, by observing that:Ã
1



X
=1



!
 +

Ã
1



X
=+1



!
+1 =

1



Ã
−

X
=+1



!
 +

Ã
1



X
=+1



!
+1

=  + (+1 − )̄ (; ) (45)

Equation (28) is then obtained from the reintroduction of (45) into (44).
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A.4 Theorem 1

The equivalence between Statements (a) and (c) of this theorem is well-known in

the literature. We therefore only prove the equivalence between Statements (b)

and (c). Using equation (26) of Lemma 1, one has:

1



"
X

=1

  −
X

=1

0 

#
=

−1X
=1

[ (; 0)−  (; )] [+1 − ]  (46)

Hence, if  (; 0) −  (; ) ≥ 0 for every  ∈ C and (1  ) ∈ A , thenP

=1   ≥
P

=1 
0
 . To establish the converse implication, define, for

every  ∈ {1   − 1}, the list of  numbers  = (
1     


) to be such

that 
 = 0 for  = 1      and 

 = 1 for  =  + 1     . We note that

 ∈ A for any  ∈ {1   − 1}. Since Inequality (6) holds for all lists of
numbers (1  ) ∈ A , one must therefore have, for any  = 1   − 1:

X
=1

 

 ≥

X
=1

0 



⇐⇒
X

=+1

 ≥
X

=+1

0

⇐⇒

−
X

=1

 ≥ −
X

=1

0

⇐⇒
X

=1

 ≤
X

=1

0

as required.
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A.5 Proposition 4

Suppose that society  has been obtained from society 0 by means of a Hammond

transfer as per Definition 3. This means that there are categories 1 ≤    ≤
   ≤  for which one has:

X
=1

  =

X
=1

 
0
 −  +  +  −   (47)

Hence if inequality (6) holds for  and 0, one must have
P

=1 

 −

P

=1 
0
  =

( − ) − ( − ) ≥ 0 for all categories 1 ≤    ≤    ≤ , which is

precisely the definition of the set AH.

A.6 Proposition 5

Assume that the list of numbers (1  ) belongs toAH and, therefore, satisfies
 −  ≥  −  for all 1 ≤    ≤    ≤ . This implies in particular

that +1 −  ≥  − +1 for any  ∈ {1 2      − 2}. Let  = min{ =
1   : +1− ≤ 0} (using the convention that +1 = ). Such a  clearly

exists under this convention, because  ∈ { = 1   : +1− ≤ 0}. If  = ,

then the fact that +1 −  ≥  − +1 holds for any  ∈ {1 2      − 2}
implies that +1 −  ≥  − +1 for all  = 1 2      − 1 and (trivially)
that 0+1 − 0 ≤ 0 −  holds for all 

0 ∈ {   − 1} = ∅. Notice that if
 = , then, one has +1 −  ≥  − +1  0 for any  ∈ {1 2      − 2}
(the alphas are increasing with respect to the categories). If  = 1, then the set

{ = 1 2     − 1} is empty so that one must simply verify that 0+1 − 0 ≤
0 − 1, for 

0 = 1   − 1. But this results immediately from the definition

of  (if 0 = 1) or from applying the requirement that  −  ≥  −  for all

1 ≤    ≤    ≤  to the particular case where  = 1,  =  = 0  1

and  = 0 + 1 (otherwise). Notice that if  = 1, then one has by definition that

0 ≥ 2 − 1 ≥  − −1 for every  = 3   so that the alphas are decreasing

with the categories. Assume now that  ∈ {2  − 1}. We must check first that
+1− ≥ −+1 for all  = 1 2     −1. The case where  = −1 is proved
by observing that, by definition of , one has  − −1  0 =  − . The case
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where   − 1 (if any) is proved by applying the statement  −  ≥  − 

for all 1 ≤    ≤    ≤  to the particular case where  =  ∈ {1  − 2}
 =  =  + 1 and  = . To check that the inequality 0+1 − 0 ≤ 0 − 

holds for all 0 ∈ {0   − 1}, simply observe that, for 0 = , the inequality is

obtained from the very definition of  and, for 0  , it results from applying the

fact that  −  ≥  −  for all 1 ≤    ≤    ≤  to the particular case

where  = ,  =  = 0 and  = 0 + 1

Conversely, consider any list of numbers (1  ) for which there exists a  ∈
{1  } such that:

+1 −  ≥  − +1 (48)

holds for all  ∈ {1 2     − 1} (if any) and:

0+1 − 0 ≤ 0 −  (49)

holds for all 0 ∈ {   − 1} (if any). Notice that applying inequality (48) to
 = − 1 implies that −−1 ≥ − = 0. Combining this recursively with

inequality (48) implies in turns that 2−1 ≥ 3−2 ≥  ≥ −−1 ≥ 0 so
that the list of numbers (1  ) is increasing from 1 up to . Similarly, applying

inequality (49) to 0 =  implies that +1 −  ≤  −  = 0. Combining this

recursively with inequality (49) satisfied for all 0 ∈ {  − 1} (if any) leads to
the conclusion that  − −1 ≤ −1 − −2 ≤  ≤ +1 −  ≤ 0 so that the
list of numbers (1  ) is decreasing from  up to . Consider then any four

integers , ,  and  satisfying 1 ≤    ≤    ≤ . Five cases need to be

distinguished:

(i)  ≥  ≥ 1, then one has:

 −  = ( − −1) + (−1 − −2) + + (+1 − )

≤ +1 −  (because the  are decreasing above )

≤  −  (by Inequality (49))

=  −  +  −  +  −  (for any integer   )

≤  −  (because the  are decreasing above )
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(ii)    ≤  ≤    ≤ . Then one has:

 −  = ( − −1) + (−1 − −2) + + (+1 − )

≤ +1 −  (because the  are decreasing above )

≤  −  (by Inequality (49))

=  −  +  −  +  −  (for any integer   )

≤  −  (because  −  ≤ 0 and  −  ≤ 0)

(iii)      ≤    ≤ . Then one has:

 −  = ( − −1) + (−1 − −2) + + (+1 − )

≤ +1 −  (because the  are decreasing above )

≤  −  (by Inequality (49))

≤ 0 (because the  are decreasing above )

≤  −  (because the  are increasing below )

(iv)    ≤    ≤  ≤ . Then one has:

 −  = ( − −1) + (−1 − −2) + + (+2 − +1) + (+1 − )

≥ +1 −  (because the  are increasing below )

≥  − +1 (by Inequality (48))

=  −  +  −  +  − +1 (for any  + 1 ≤    ≤ )

≥  −  (because  −  ≥ 0 and  − +1 ≥ 0)

(v)    ≤ . In this case, one has:

 −  = ( − −1) + (−1 − −2) + + (+2 − +1) + (+1 − )

≥ +1 −  (because the  are increasing below )

≥  − +1 (by Inequality (48))

=  −  +  −  +  − +1 (for any  + 1 ≤    ≤ )

≥  −  (because because the  are increasing below )
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Hence any list of  numbers (1  ) for which there exists a  ∈ {1  }
such that Inequalities (49) and (48) belongs to AH.

A.7 Theorem 3.

A.7.1 Statement (a) implies statement (b)

Suppose  has been obtained from 0 by means of an increment. It then follows

from Proposition 2 that Inequality (6) holds for all ordered lists of  real numbers

(1  ) in the set A . This inequality holds therefore in particular for all such

lists that belong to A ⊂ A . If, on the other hand,  has been obtained from 0

by means of a Hammond transfer, we know from Proposition 4 that Inequality (6)

holds for all ordered lists of  real numbers (1  ) in the setH and, therefore,

for all ordered list of  real numbers in the set A ⊂ H. The implication then
follows from any finite repetition of these two elementary implications.

A.7.2 Statement (b) implies statement (c)

Assume that the inequality

X
=1

  ≥
X
=1


0
  (50)

holds for all (1  ) ∈ AH. For any  ∈ {1  }, define the ordered list of 
numbers (

1     

) by:


 = −(2−) for  = 1  


 = 0 for  = + 1  

Let us first show that the ordered list (
1     


) of real numbers thus defined

belongs to A for every  ∈ {1  }. Thanks to Proposition 6, this amounts to
show that these real numbers satisfy


+1 − 

 ≥ 
 − 

+1 (51)
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for every  ∈ {1   − 1}. If  ≥ + 1, then one has:


+1 − 

 = 0− 0 ≥ 0− 0 = 
 − 

+1

so that that Inequality (51) holds for that case. If  = , then


+1 − 

 = 0 + 2
0 ≥ 0− 0 = 

 − 
+1

so that (51) holds also for that case. If finally   , then one has:


+1 − 

 = −2−−1 + 2−

= 2−−1

= 0− (−2−−1)
= 

 − 
+1

so that (51) holds for this case as well. Since the ordered list (
1     


) of real

numbers belongs to A for every  ∈ {1  }, Inequality (50) must hold for any
such ordered list of numbers. Hence, one has, for every  ∈ {1  } :

X
=1

 

 ≥

X
=1


0





⇐⇒
X

=1

2− ≤
X

=1

2−
0


which is nothing else than the condition for -dominance, as expressed by Equa-

tion (8).

A.7.3 Statement (c) implies statement (a)

Assume that (; ) ≤ (; 0) for all  = 1 2      − 1. We know from

Proposition 1 that  (; ) ≤  (; 0) for all  = 1 2      − 1 implies that
(; ) ≤ (; 0) for all  = 1 2      − 1. If it is the case that, for all

 = 1 2      − 1, one has both (; ) ≤ (; 0) and  (; ) ≤  (; 0),

we conclude from Theorem 1 that  can be obtained from 0 by means of a finite
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sequence of increments and the proof is done. In the following, we therefore assume

that (; ) ≤ (; 0) holds for all  = 1 2     −1 but that there exists some
 ∈ {1 2      − 1} for which one has  (; )−  (; 0)  0. Define then the

index  by:

 = min { |  (; )−  (; 0)  0} (52)

Given that index , one can also define the index  by:

 = min {   |  (; )−  (; 0) ≤ 0 ∀ ∈ [ ]}  (53)

Such a  exists because  (; ) −  (; 0) = 0. Notice that, by definition of ,

one has:

 ( − 1; )−  ( − 1; 0)  0 and  (; )−  (; 0) ≤ 0  (54)

Hence, one has (using the definition of  provided by (7)), that   
0
 . We now

establish that there exists some  ∈ {1 2     − 1} such that:

 (; )−  (; 0)  0 and  (; )−  ( 0) = 0 ∀    (55)

Indeed, since (; ) ≤ (; 0) for all  = 1 2      − 1, one has either:

(1; )  (1; 0)

⇐⇒ (thanks to expression (9))

 (1; )   (1; 0) (56)

or:

 (1; ) =  (1; 0) (57)

If Case (56) holds, then the existence of some  ∈ {1 2      − 1} for which
Expression (55) holds is established (with  = 1). If, on the other hand, Case (57)

holds, then, since (2; ) ≤ (2; 0) holds, we must have either:

(2; )  (2; 0)

41



⇐⇒ (thanks to expression (10))

2 (1; ) +  (2; )  2 (1; 0) +  (2; 0) (58)

or:

2 (1; ) +  (2; ) = 2 (1; 0) +  (2; 0) (59)

Again, if we are in case (58), we can conclude (since  (1; ) =  (1; 0)) that

 (2; )   (2; 0), which establishes the existence of some  ∈ {1 2     − 1}
for which Expression (55) holds (with  = 2 in that case). If we are in case

(59), we iterate in the same fashion using the definition of  provided by (10).

We notice that the index  for which (55) holds must be strictly smaller than

 because assuming otherwise will contradict, given the definition of  and the

(iterated as above) definition of , the fact that (; ) ≤ (; 0) holds for all

 = 1 2      − 1. We finally note that, because of the definition of  provided

by (7), the definition of the index  just provided entails that:

  
0
 (60)

and:

 = 
0


for all  = 1  −1. We now proceed by defining a new society - 1 say - obtained
from 0 by means of a Hammond transfer and such that (; ) ≤ (; 1) for

every  = 1   − 1. For this sake, we define the numbers 1 and 2 and  by:

1 = 
0
 −  ; 2 = [ ( − 1; )−  ( − 1; 0)] and  = min(1 2) (61)

We note that, by the very definition of the index , one has 1  0. We notice

also that, using (54) and the definition of the index , one has 0  2 ≤ 
0
 −  .

Define then the society 1 by:


1

 = 
0
  ∀  6=  + 1  ;


1

 = 
0
 −  ; 

1

+1 = 
0
+1 + 2 ; 

1

 = 
0
 −  ;

It is clear that 1 has been obtained from 0 by  Hammond transfers as per
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Definition 3 where the indices    and  of this definition are, here, , +1, +1

and  (respectively)). We observe that:

 ( 1) =  ( 0) (63)

for all  = 1  − 1. We also have that:

 ( 1) =  (− 1 0) + 
1

 

=  (− 1 0) + (0 − )

=  ( 0)−  (64)

 (+ 1 1) =  ( 1) + 
1

+1

=  ( 0)− + 
1

+1

=  ( 0)− + 
0
+1+ 2

=  (+ 1 0) +  (65)

Furthermore, for  = + 2   − 1, one has:

 ( 1) =  (+ 1 1) +

X
=+2


1

 

=  (+ 1 0) + +

X
=+2


1

 

=  (+ 1 0) + +

X
=+2


0
 

=  ( 0) +  (66)
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While finally, for  =   :

 ( 1) =  ( − 1 1) +
X
=


1

 

=  ( − 1 0) + +

X
=


1

 

=  ( − 1 0) + + 
0
 − +

X
=+1


0
 

=  ( 0) (67)

Let us verify that (; ) −(; 1) ≤ 0 for all  = 1 2      − 1. We know
already that (; )−( 0) ≤ 0 for all  = 1 2      − 1. We first observe
that, by the definition just given of 1, one has:

( 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( 0) for  = 1  − 1,
( 0)−  for  = ,

( 0) for  = + 1   − 1
( 0)− 2− for  =   .

(68)

The first line of (68) is indeed clear given Expression (63) and the definition of 

provided by (8).The second line of (68) results from (64) and the definition of 
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provided by (10). Consider now  = + 1. One has (using (10) again):

(+ 1 1) =

X
=1

¡
2−

¢
 (; 1) +  (+ 1; 1)

=

−1X
=1

¡
2−

¢
 (; 0) +  (; 0)− +  (+ 1; 1) (by (64))

=

−1X
=1

¡
2−

¢
 (; 0) +  (; 0)− +  (+ 1; 0) +  (by (65))

=

−1X
=1

¡
2−

¢
 (; 0) +  (; 0) +  (+ 1; 0)

=

X
=1

¡
2−

¢
 (; 0) +  (+ 1; 0) = (+ 1 0) (69)

Combined with (11) and the fact that 
1

 = 
0
 for all  = +2  −1, Equality

(69) establishes the third line of Expression (68). As for the last line of (68), we

start with  =  and we use (11) to write:

( 1) = 2( − 1; 1) + 
1

 

= 2( − 1; 0) + (0 − )

= ( 0)−  (70)

Iterating on this expression using (11) yields:

( + 1 1) = 2(; 1) + 
1

+1

= 2((; 0)− ) + 
0
+1

= ( + 1 0)− 2 (71)

and therefore, for any  ∈ {  }:

( 1) = ( 0)− 2−

as required by the last line of Expression (68). We now notice that Expression
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(68) entails that:

( )−( 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( )−( 0) for  = 1  − 1,
( )−( 0) +  for  = ,

( )−( 0) for  = + 1   − 1
( )−( 0) + 2− for  =   .

(72)

The fact that (; ) − ( 0) ≤ 0 holds for all  = 1 2      − 1 then
immediately entails that (; ) −(; 1) ≤ 0 for all  ∈ {1 2      − 1} ∪
{+ 1   − 1}. Consider now the case  = . Using (11), we know that:

(; )−( 0) = 2 ((− 1; )−(− 1; 0)) + ( − 
0
 ) (73)

By definition of , one has  (; )−  (; 0) = 0 for all   , so that the first

term in the right hand side of Equation (73) is 0. Recalling then from (61) that

1 = 
0
 −   0 and that  = min(1 2), it follows that:

 − 
0
 +  ≤ 0

By combining Equations (72) and (73), we conclude that:

( )−( 1) = ( )−( 0) +  =
 − 

0
 + 


≤ 0 (74)

Consider finally the case where  =       − 1. By using Equation (11) (and
recalling that 2 = [ ( − 1; )−  ( − 1; 0)]), one has:

(; )−(; 0) = 2((−1; )−(−1; 0))+ (; )− (; 0)−2  (75)

Combining (75) with the last line of (72), and remembering that  ≤ 2, one

obtains:

( )−( 1) = 2[((−1; )−(−1; 0)]+ (; )− (; 0)+(−2) ≤ 0
(76)

Finally, using successive applications of Equation (11), one obtains, for any  =
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 + 1      − 1:

(; )−(; 0) = 2−+1[( − 1; )−( − 1; 0)]

+

−1X
=

2−1−[ (; )−  (; 0)]

+ (; )−  (; 0)− 2−2
≤ 0

by assumption. Combined with the last line of (72) and the fact that  ≤ 2,

this completes the proof that (; ) − (; 1) ≤ 0 for all  = 1 2      −
1. Hence, we have found a society 1 obtained from society 0 by means of a

non-trivial Hammond transfers that is -dominated by . We now show that, in

moving from 0 to , one has "brought to naught" at least one of the differences

| (; )−  (; 0)| that distinguishes  from 0. That is to say, we establish the

existence of some  ∈ {1   − 1} for which one has:
¯̄
 (; )−  (; 1)

¯̄
= 0

and:

| (; )−  (; 0)|  0

This is easily seen from the fact that, in the construction of 1, one has either:

 = 1 = 
0
 −  (77)

or:

 = 2 = [ ( − 1; )−  ( − 1; 0)] (78)

If we are in the case (77), one has by definition of the index  and the function  :

 (; )−  (; 1) = 0

and:

 (; )−  (; 0)  0
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If on the other hand we are in case (78), then, we have (using (65)):

 ( − 1; )−  ( − 1; 1) =  ( − 1 )− [ ( − 1 0) + 2]

= 0

while, by definition of the index , one has:

 ( − 1 )−  ( − 1 0)  0

Now, if  = 1, then the proof is complete. If  is distinct from 1 but  first order

dominates 1, then we conclude that society  can be obtained from society 0 by

means of a finite sequence of one Hammond transfer and a collection of increments

(using Theorem 1). If  is distinct from 1 and  does not first order dominates

1, then we can find three categories   and  just as in the preceding step and

construct a new distribution - say 2 - that can be obtained from distribution 1 by

means of an (integer number of) Hammond transfers and that is-dominated by 

and so on. More generally, after a finite number -  say - of iterations, we will find a

distribution  obtained from 0 by means of  Hammond transfers such that  -

dominates . In that case, we will have either  =  or  first-order dominates .

Since there are finitely many differences of the kind | (; )−  (; 0)| to bring
to naught, the number  must be finite. This completes the proof.

A.8 Lemma 2

Using (26) in Lemma 1, we have, for any society :

1



X
=1

  =  −
−1X
=1

 (; ) [+1 − ]  (79)

or:

1



X
=1

  =  −
−1X
=1

 ( )   (80)

with  = +1 −  for every  = 1   − 1. Letting  =  −
P−1

=+1 

for all  = 1 2      − 2 and −1 = −1, we rewrite each term of the sum
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P−1
=1  ( )  in (80) as follows:

For  = 1:

 (1; )1 =  (1; )[1 −
−1X
=2

] +  (1; )2++  (1; )−1

=  (1; )[1 −
−1X
=2

] +  (1; )[2 −
−1X
=3

]

+2 (1; )3 ++ 2 (1; )−1

=  (1; )[1 −
−1X
=2

] +  (1; )[2 −
−1X
=3

]

+2 (1; )[3 −
−1X
=4

] +4  (1; )4+ 4 (1; )−1

= 

=  (1; )1+ (1; )2+2 (1; )3 (81)

+ 22 (1; )4++ 2
−3 (1; )−1

For  = 2

 (2; )2 =  (2; )[2 −
−1X
=3

]+ (2; )3++  (2; )−1

=  (2; )[2 −
−1X
=3

]+ (2; )[3 −
−1X
=4

]

+2 (2; )4++ 2 (2; )−1

=  (2; )[2 −
−1X
=3

] +  (2; )[3 −
−1X
=4

]

+2 (2; )[4 −
−1X
=5

] + 4 (2; )5+ 4 (2; )−1

= 

=  (2; )2+ (2; )3+2 (2; )4 (82)

+22 (2; )5++ 2
−4 (2; )−1
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More generally, one has  ( − 1 )−1 =  ( − 1; )−1 and, for all  =
1 2      − 2:

 (; ) =  (; ) +  (; )

−1X
=+1

¡
2−−1

¢
  (83)

Hence, one can write:

 (1;)1 =  (1;)1 +  (1;)2 + 2 (1;)3 + 22 (1;)4 +  + 2−4 (1;)−2 + 2
−3 (1;)−1

 (2;)2 =  (2;)2 +  (2;)3 + 2 (2;)4  + 2−5 (2;)−2 + 2
−4 (2;)−1

 (3;)3 =  (3;)3 +  (3;)4  + 2−6 (3;)−2 + 2
−5 (3;)−1

 (4;)4 =  (4;)4  + 2−7 (4;)−2 + 2
−6 (4;)−1        

 (−2;)−2 = +  (−2;)−2 +  (−2;)−1
 (−1;)−1 = +  (−1;)−1

(84)

Remembering that −1 = −1 and  = −
P−1

=+1  for all  = 1 2     −
2, one can use Equation (10) and sum vertically the decomposition (84) to obtain:

−1X
=1

 (; )  =

−2X
=1

(; )[ −
−2X

=+1

] +( − 1; )−1 (85)

Since 1


P

=1 

 =  −

P−1
=1  (; ) , one obtains finally:

1



X
=1

 = −
−2X
=1

(; )[ −
−1X

=+1

]−( − 1; )−1 +  (86)

In a symmetric fashion, one obtains from Equation (27) in Lemma 1:

1



X
=1

  = 1 +

−1X
=1

̄ (; ) [+1 − ]  (87)

Hence, letting 1 = 1 and  = ( −
P−1

=1 ) for all  = 2 3      − 1, we
rewrite

P−1
=1 ̄ (; ) [+1 − ] in (87) as follows:

For  =  − 1:
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 ( − 1; )−1 =  ( − 1; )[−1 −
−2X
=1

] +  ( − 1; )−2 + +  ( − 1; )1

=  ( − 1; )[−1 −
−2X
=1

] +  ( − 1; )[−2 −
−3X
=1

]

+2 ( − 1; )−3 + + 2 ( − 1; )1

=  ( − 1; )[−1 −
−2X
=1

] +  ( − 1; )[−2 −
−3X
=1

]

+2 ( − 1; )[−3 −
−4X
=1

] + 4 ( − 1; )−4+ 4 ( − 1; )1
= 

=  ( − 1; )−1 +  ( − 1; )−2 + 2 ( − 1; )−3 (88)

+22 ( − 1; )−4 + + 2−32 ( − 1; )1

For  =  − 2:
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 ( − 2; )−2 =  ( − 2; )[−2 −
−3X
=1

] +  ( − 2; )−3

+ ( − 2; )−4 + +  ( − 2; )1

=  ( − 2; )[−2 −
−3X
=1

] +  ( − 2; )[−3 −
−4X
=1

]

+2 ( − 2; )−4 + + 2 ( − 2; )1

=  ( − 2; )[−2 −
−3X
=1

] +  ( − 2; )[−3 −
−4X
=1

]

+2 ( − 2; )[−4 −
−5X
=1

]

+4 ( − 2; )−5 ++ 4 ( − 2; )1
= 

=  ( − 2; )−2 +  ( − 2; )−3 + 2 ( − 2; )−4(89)
+22 ( − 2; )−5 + + 2−42 ( − 2; )1

More generally, one has ̄ (1; )1 = ̄ (1; )1 and:

̄ (; )  = ̄ (; ) + ̄ (; )

−1X
=1

¡
2−−1

¢
  ∀ = 2 3      − 1  (90)

Hence, one can conclude that:

 ( − 1; )−1 =  ( − 1; )−1 +  ( − 1; )−2 + + 2−4 ( − 1; )2 + 2−3 ( − 1; 

 ( − 2; )−2 =  ( − 2; )−2 + · · ·+ 2−5 ( − 2; )2 + 2−4 ( − 2;

=

 (2; )2 =  (2; )2 +  (2; )1

 (1; )1 = +  (1; )1

(91)
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Using (22), and summing vertically the previous equation, one obtains:

−1X
=1

 (; ) = (1; )1 +

−1X
=2

(1; )[ −
−1X
=1

] (92)

These decompositions being obtained, consider now an integer  ∈ {2 3     −1}
such that:

−1 ≥ 0 and ( −
−1X

=+1

) ≥ 0 for  = 1  − 2 (93)

and:

 ≤ 0 and ( −
−1X
=

) ≤ 0 for  = + 1   − 1 (94)

From Equation (28) in Lemma 1, one has, for any such a  ∈ {2 3      − 1}:

1



X
=1

  =  −
−1X
=1

 (; ) +

−1X
=

̄ (; )  (95)

By using Equation (85) and replacing category  by category  in this equation,

one obtains:

−1X
=1

 (; ) =

−2X
=1

(; )

"
 −

−1X
=+1



#
+(− 1; ) −1  (96)

Symmetrically, replacing category 1 by category  in Equation (92) enables one to

write:
−1X
=

 (; ) = (; )  +

−1X
=+1

(; )

"
 −

−1X
=



#
 (97)
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Combining equations (95), (96) and (97), one gets finally:

1



X
=1

 = −
−2X
=1

(; )

"
 −

−1X
=+1



#
−(− 1; )] −1
+(; ) 

+

−1X
=+1

(; )

"
 −

−1X
=



#
(98)

as required.

A.9 Theorem 5

A.9.1 Statement (a) implies statement (b)

This results immediately from the definition of the set H (using Proposition 4).

A.9.2 Statement (b) implies statement (c)

Assume that the inequality
P

=1 

 ≥

P

=1 
0
 holds for all lists of real

numbers (1  ) ∈ H. This implies in particular that the inequality holds for
all (1  ) ∈ A . It then follows from Theorem 3 that society  -dominates

society 0. Similarly, the fact that the inequality
P

=1 

 ≥

P

=1 
0
 holds

for all lists of real numbers (1  ) ∈ H implies in particular that it holds for

all (1  ) ∈ A . Hence, thanks to Theorem 4, society  -dominates society

0. Hence society  both -dominates and -dominates society 0.

A.9.3 Statement (c) implies statement (b)

Assume that society  both -dominates and -dominates society 0. Thanks

to Proposition 5, one needs to show that
P

=1 

 ≥

P

=1 
0
 holds for

all (1  ) ∈ R
+ for which there exists an integer  ∈ {1  } such that

(+1−) ≥ (−+1), for all  = 1 2     − 1 (if any) and (0+1−0) ≤
(0 − ), for all 

0 ∈ { + 1     − 1} (again if this set is non-empty). Since
 both -dominates and -dominates 0, we know at once from Theorems 3 and
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4 that
P

=1 

 ≥

P

=1 
0
 holds for all list of real numbers (1  ) ∈

A ∩A . These lists of real numbers are associated to an integer  ∈ {1 }. The
only thing that remains to be shown is therefore that

P

=1 

 ≥

P

=1 
0


must hold as well for (1  ) ∈ R
+ for which there exists an integer  ∈

{2  − 1} such that (+1−) ≥ (−+1), for all  = 1 2     − 1 and
(0+1−0) ≤ (0−) for all 

0 = { +1     −1}. For this sake, we resort
to the decomposition result of Lemma 2, and, setting  = +1 −  for every

 = 1   − 1. we write:

1



X
=1

( − 
0
 ) =

−2X
=1

[( 0)−(; )]

"
 −

−1X
=+1



#
[(− 1 0)−(− 1; )] −1
+[(; ) −(; 0)]

+

−1X
0=+1

[(; )−(; 0)

"
 −

−1X
=



#
(99)

for any integer  ∈ {2 3      − 1} such that:

−1 ≥ 0 and ( −
−1X

=+1

) ≥ 0 for  = 1  − 2 (100)

and:

 ≤ 0 and (0 −
−1X
=

) ≤ 0 for  = + 1   − 1 (101)

Since society  both -dominates and -dominates society 0, one has ( 0)−
(; ) ≥ 0 and (; ) − (; 0) ≤ 0 for all  = 1  . Combining this

information with Equations (100) and (101) leads to the required conclusion that

Expression (99) is positive.

A.10 Proposition 8

Assume that  and 0 are two distinct societies for which ( ) ≤ ( 0) holds

for all categories  ∈ C. It follows from the recursive definition of the -curve

provided by Equations (9) and (11) that the smallest  ∈ {1 2     } for which
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 6= 0 is such that 

  0 . But this implies that  % 0. To show that the

converse implication is false, one just needs to consider the following example for

 =  = 3, and societies  and 0 such that:

01 = 1 
0
2 = 0, 

0
3 = 2

and:

1 = 3 = 0, 

2 = 3

It is clear that  % 0. The conclusion that (2 )  (2 0) and, therefore,

that  does not -dominate 0 follows then from the following table which gives

the values of (; ) and (; 0) as per expression (11) for  = 1 2 3.

category 1 category 2 category 3

 (; ) 0 1 1

(: ) 0 1 2

 (; 0) 13 13 1

(; 0) 13 23 2

A.11 Proposition 9

As a preliminary of the proof, we first notice that, for any society , and any

 ∈ {0 1 } one has:
(
2 + 1

2+1
) = 0 (102)

and:

+1(
2 + 1

2+1
; ) = 2+1(



2
; ) (103)

Indeed, for any  = 1 2     (2), one has:



2
=
2 

2+1
 (104)

Equation (102) then follows from the fact that ( 
2+1
) = 0 for all 

2+1
∈ C(),

while Equation (103) is an immediate consequence of Equations (102) and (104)
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and the fact that, thanks to Expression (11), one has:

+1(
2 + 1

2+1
; ) = 2+1(

2 

2+1
; ) + (

2 + 1

2+1
)

for every  = 0 1     (2) − 1. We also observe that:

+1(


2
; ) =

−1X
=1

¡
22(−)−1

¢
(



2
; ) +(



2
; ) (105)

for any society . Indeed, from Equation (35) applied to the grid C( + 1), we
know that:

+1 (; ) =
1



X
=1

¡
2−

¢
(2+1)

for any  ∈ C( + 1), and  = 2+1. Applying this to  = 
2
for any  =

1  (2) yields:

+1(


2
; ) =

1



2X
=1

¡
22−

¢
(2+1)  (106)

for any such . Expression (105) can then be obtained from (106) and the following

observations (made only for  = 1 2 3, but easily extendable to any other ). For

 = 1 2 3 (106) writes indeed as:

+1(
1

2
; ) =

1


[2(

1

2+1
) + (

2

2+1
)]

=
1


(

2

2+1
) (since (

1

2+1
) = 0)

=
1


(

1

2
) (107)

+1(
2

2
; ) =

1


[8(

1

2+1
) + 4(

2

2+1
) + 2(

3

2+1
) + (

4

2+1
)]

=
1


[4(

2

2+1
) + (

4

2+1
)]

=
1


[4(

1

2
) + (

2

2
)] (108)
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(since again ( 
2+1
) = 0 for all 

2+1
∈ C())

+1(
3

2
; ) =

1


[32(

1

2+1
) + 16(

2

2+1
) + 8(

3

2+1
)

+4(
4

2+1
) + 2(

5

2+1
)+(

6

2+1
)]

=
1


[16(

2

2+1
) + 4(

4

2+1
)+(

6

2+1
)]

=
1


[16(

2

2
) + 4(

4

2
)+(

6

2
)] (109)

(because again ( 
2+1
) = 0 for all 

2+1
∈ C()). Now, applying Equation (35) to

the grid C(), one has:

(
1

2
; ) =

1


(

1

2
) (110)

(
2

2
; ) =

1


[2(

1

2
) + (

2

2
)] (111)

(
3

2
; ) =

1


[4(

1

2
) + 2(

2

2
) +

1


(

3

2
)] (112)

so that Expression (105) for  = 1 2 3 results from combining (107)-(109) with

(110)-(112).

In order to prove the result, consider two societies  and 0 and assume that

society   dominates society 0 so that:



µ


2
; 

¶
≤ 

µ


2
; 0
¶

holds for all  ∈ {1  (2)}. Taking any such , one has in particular:



µ


2
; 

¶
≤ 

µ


2
; 0
¶

for any  ∈ {1  }. Hence, using (105):

+1(


2
; ) ≤ +1(



2
; 0)

for all  ∈ {1  (2)} which implies, thanks to (103), that society  +1-
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dominates society 0.

A.12 Theorem 6

The proof that statement (a) of the theorem implies statement (b) has been es-

tablished in Proposition 8 (by using  = 0). In order to prove the converse im-

plication, consider two arbitrary societies  and 0 such that  % 0. Because

of Proposition 9, we only have to show that there exists a non-negative integer 

for which  -dominates 0 holds or, equivalently thanks to Theorem 3, that 

can be obtained from 0 by means of a finite sequence of increments and/or Ham-

mond transfers on the grid C(). Since  % 0, there is by Definition 4 an index

 ∈ {1 2     } such that  = () = 
0
() = 0 for all  = 1 2     − 1

and  = ()  
0
() = 0 . Given this index , consider a society 00 such

that:

00 =  ∀ = 1      ;

00+1 =
X

=+1

 ;

00 = 0 ∀ = + 2      

Notice that
P

=1 
00
 =  and that  (; ) ≤  (; 00) for all  = 1   so

that, by Theorem (1),  can be obtained from 00 by means of a finite sequence of

increments. We also observe that:

0 () = 00  ∀ = 1     − 1 ; (114a)

0 − 00  0 ; 0+1 − 00+1  0 ; (114b)

0 ≥ 00 = 0 ∀ = + 2       (114c)

Define, for any  ∈ C, the number  by:

 = 0 − 00
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It is clear that  so defined is an integer (which may be positive or negative).

Since
P

= 
0
 =

P

= 
00
 , one can write:

 + +1 = −
X

=+2

  (115)

Since, by (114c),  ≥ 0 for all  = +2     , one observes that + +1 ≤ 0.
We consider two cases.

Case 1: + +1 = 0. In that case, we conclude from (115) that
P

=+2  = 0

and, thanks to (114c), that 0 = 00 for all  =  + 2     . Hence, one has

0 = 00 for all  = {1      − 1} ∩ { + 2     }, and  = 0 − 00 =


00
+1 − 

0
+1  0. Hence, 00 can be obtained from 0 by means of  increments

from  to  + 1 and we conclude that  %1 00 %1 0 which implies that  -

dominates 0 for all  = 0 

Case 2:  + +1  0. In that case, we deduce from (115) that there is an  ∈
{+2     } such that   0 or, equivalently, that 0  00 = 0. From (114a)-

(114c), one immediately observes that 00 can be obtained from 0 by means of 
increments from category  to category + 1, and (−+1) decrements (+1 is a
negative integer), from each category    + 1 for which 0  0 to category

 + 1. However more decrements than increments are required ((−+1)  ),

so that increments and decrements can not be matched one by one to produce

Hammond transfers — and only Hammond transfers — in order to obtain, on the

initial grid C, 00 from 0. Yet we can match the increments with the decrements

if an appropriate refinement of the grid between  and + 1 can be performed.

First, staying on the initial grid C, and starting from 0, we can combine ( − 1)
increments (from  to + 1) to the same number of decrements starting from one

or several categories  above + 1 and bringing the agents from these categories

to  + 1. This generates immediately ( − 1) Hammond transfers. In order

complete the move from 0 to  by means of Hammond transfers, we need to

match the last [ − ( − 1)] = 1 increment from  to  + 1 with the remaining

[(−+1) − ( − 1)]  1 decrements that are required from each category  

+ 1 where the number of agents remains strictly positive to the category + 1.

Whatever is the number [(−+1) − ( − 1)]  1, it is clearly possible to refine
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the grid C in such a way as to obtain at least [(−+1) − ( − 1)] adjacent

categories between  and  + 1. Once this refinement is obtained, one can then

proceed in decomposing the last increment from  to +1 into [(−+1)−(−1)]
“small” increments between adjacent intermediate categories, each of which being

matched with a decrement from each category    + 1 for which there is a

strictly positive number of agents. Hence, it is possible to achieve 00 from  by

using Hammond transfers only (provided that a suitable refinement of the grid

be performed). Hence, there exists a non-negative integer  such that 00 can be

obtained from 0 by means of exactly (−+1) Hammond transfers on the grid C()
(recalling that a transformation on the grid C is also a transformation on the grid
C()). We then conclude that society  first order dominates society 00 which in
turn -dominates society 0 and this completes the proof.
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