Optimal Mechanism for Selling Two Goods with Uniformly Distributed Valuations

Thirumulanathan D
Indian Institute of Science, Bengaluru

Advisers: Prof. Rajesh Sundaresan, Prof. Y Narahari

1 Aug 2015
Consider the problem of auctioning two items to a single buyer.
The setup

- Consider the problem of auctioning two items to a single buyer.
- The buyer’s valuations \(z = (z_1, z_2) \in \times_{i=1}^2 [c_i, c_i + b_i] \). Let \(D = \times_{i=1}^2 [c_i, c_i + b_i] \).
- \(z_i \sim f_i, \ z \sim f = f_1 f_2 \), where \(f \) is common knowledge. The buyer bids \(\hat{z} \).
The setup

▶ Consider the problem of auctioning two items to a single buyer.
▶ The buyer’s valuations \(z = (z_1, z_2) \in \times_{i=1}^{2}[c_i, c_i + b_i] \). Let \(D = \times_{i=1}^{2}[c_i, c_i + b_i] \).
▶ \(z_i \sim f_i, z \sim f = f_1 f_2 \), where \(f \) is common knowledge. The buyer bids \(\hat{z} \).
▶ Based on the value of \(\hat{z} \), the auctioneer decides the allocation probability \(q : D \rightarrow [0, 1]^2 \), and the payment from the buyer \(t : D \rightarrow \mathbb{R} \).
The setup

- Consider the problem of auctioning two items to a single buyer.
- The buyer’s valuations $z = (z_1, z_2) \in \times_{i=1}^2 [c_i, c_i + b_i]$. Let $D = \times_{i=1}^2 [c_i, c_i + b_i]$.
- $z_i \sim f_i$, $z \sim f = f_1 f_2$, where f is common knowledge. The buyer bids \hat{z}.
- Based on the value of \hat{z}, the auctioneer decides the allocation probability $q : D \to [0, 1]^2$, and the payment from the buyer $t : D \to \mathbb{R}$.
- Consider a quasi-linear mechanism, where the utility function of the buyer is given by $u(z, \hat{z}) = z \cdot q(\hat{z}) - t(\hat{z})$.
Optimal Auctions

- **Auctioneer’s objective**: Maximize $\mathbb{E}_z t(z)$, subject to IC and IR constraints.
- **IC**: $u(z) \geq u(z, \hat{z}) \forall z, \hat{z} \in D$.
- **IR**: $u(z) \geq 0 \forall z \in D$.

\[\phi(z) = z - 1 - F(z) f(z). \]

Myerson has also provided the solution for the single-item n-buyer setting.

Optimal Auctions

- **Auctioneer’s objective**: Maximize $\mathbb{E}_z t(z)$, subject to IC and IR constraints.

- **IC**: $u(z) \geq u(z, \hat{z}) \forall z, \hat{z} \in D$.

- **IR**: $u(z) \geq 0 \forall z \in D$.

- The solution for the single item case was solved by Myerson way back in 1981.1

Optimal Auctions

- **Auctioneer’s objective**: Maximize $E_z t(z)$, subject to IC and IR constraints.

- **IC**: $u(z) \geq u(z, \hat{z}) \ \forall z, \hat{z} \in D$.
- **IR**: $u(z) \geq 0 \ \forall z \in D$.

- The solution for the single item case was solved by Myerson way back in 1981.¹

- Define $\phi(z) = z - \frac{1-F(z)}{f(z)}$. Assume that ϕ is increasing. Then the optimal allocation is given by

\[q(z) = \begin{cases}
1 & \text{if } \phi(z) \geq 0 \\
0 & \text{if } \phi(z) \leq 0.
\end{cases} \]

- Myerson has also provided the solution for the single-item n-buyer setting.

Two-item optimal auctions

- What happens in the two-item one-buyer setting?

Two-item optimal auctions

» What happens in the two-item one-buyer setting?
» The general solution is not known till date!

Two-item optimal auctions

- What happens in the two-item one-buyer setting?
- The general solution is not known till date!
- The solution is known for cases when the distributions f_1 and f_2 give rise to a so-called well-formed partition of the support set D.
- Cases such as $f = \text{Unif}[0, b_1] \times [0, b_2]$, $f = \exp(\lambda_1) \times \exp(\lambda_2)$, and $f = \text{Beta} \times \text{Beta}$ belong to this category.

Two-item optimal auctions

- What happens in the two-item one-buyer setting?
- The general solution is not known till date!
- The solution is known for cases when the distributions \(f_1 \) and \(f_2 \) give rise to a so-called *well-formed* partition of the support set \(D \).
- Cases such as \(f = \text{Unif}[0, b_1] \times [0, b_2] \), \(f = \exp(\lambda_1) \times \exp(\lambda_2) \), and \(f = \text{Beta} \times \text{Beta} \) belong to this category.
- The optimal solution for all these cases was given by Daskalakis et al.\(^2\)

Two-item optimal auctions

- What happens in the two-item one-buyer setting?
- The general solution is not known till date!
- The solution is known for cases when the distributions f_1 and f_2 give rise to a so-called well-formed partition of the support set D.

 - Cases such as $f = \text{Unif}[0, b_1] \times [0, b_2]$, $f = \exp(\lambda_1) \times \exp(\lambda_2)$, and $f = \text{Beta} \times \text{Beta}$ belong to this category.

 - The optimal solution for all these cases was given by Daskalakis et al.\(^2\)

- In this talk, we shall derive the formulation of the optimization problem as done by Daskalakis et al., discuss their solutions when $f = \text{Unif}[0, b_1] \times [0, b_2]$, and then the work that we have done to find the optimal solution for the case when $f = \text{Unif}[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$.

Primal problem

- Recall that the auctioneer’s objective was to maximize $\mathbb{E}_z t(z)$ w.r.t. IC and IR constraints.
- Rochet’s theorem provides a necessary and sufficient condition for a mechanism to be IC and IR.

Theorem

A quasi-linear mechanism satisfies IC and IR, iff $u(\cdot)$ is convex, $\nabla u(z) = q(z)$ a.e. $z \in D$, and $u(z) \geq 0 \forall z \in D.$

- This theorem helps us formulate the optimization problem completely in terms of u.

$$\max_u \int_D (z \cdot \nabla u(z) - u(z))f(z) \, dz$$

s.t. $\{ u \text{ convex}, \nabla u(z) \in [0, 1]^2 \text{ a.e. } z, \text{ and } u(z) \geq 0 \forall z \}$

The problem undergoes a series of simplifications as follows:

- \(\nabla u(z) \in [0,1]^2 \iff u(x) - u(y) \leq c(x,y) \forall x, y \in D \), where,

 \(c(x,y) = (x_1 - y_1) + (x_2 - y_2) \).

- \(u(z) \geq 0 \iff u(0,0) \geq 0 \), since \(u(0,0) \geq 0 \) combined with \(\nabla u \geq 0 \) implies \(u(z) \geq 0 \).

- We further consider \(u(0,0) = 0 \), since fixing \(u(0,0) > 0 \) only reduces the objective function.

- The optimization problem now becomes

\[
\begin{align*}
\max & \quad u \int_D (z \cdot \nabla u(z) - u(z)) f(z) \, dz \\
\text{s.t.} & \quad u \text{ convex}, \\
& \quad u(x) - u(y) \leq c(x,y) \forall (x,y), \text{ and} \\
& \quad u(0,0) = 0.
\end{align*}
\]
Primal problem (contd...)

- The problem undergoes a series of simplifications as follows:
- \(\nabla u(z) \in [0, 1]^2 \iff u(x) - u(y) \leq c(x, y) \quad \forall x, y \in D^2 \), where,
 \(c(x, y) = (x_1 - y_1)_+ + (x_2 - y_2)_+ \).
Primal problem (contd...)

- The problem undergoes a series of simplifications as follows:
- $\nabla u(z) \in [0, 1]^2 \iff u(x) - u(y) \leq c(x, y) \forall x, y \in D^2$, where, $c(x, y) = (x_1 - y_1)_+ + (x_2 - y_2)_+$.
- $u(z) \geq 0 \iff u(0, 0) \geq 0$, since $u(0, 0) \geq 0$ combined with $\nabla u \geq 0$ implies $u(z) \geq 0$.
- We further consider $u(0, 0) = 0$, since fixing $u(0, 0) > 0$ only reduces the objective function.
Primal problem (contd...)

- The problem undergoes a series of simplifications as follows:
 - $\nabla u(z) \in [0, 1]^2 \iff u(x) - u(y) \leq c(x, y) \forall x, y \in D^2$, where, $c(x, y) = (x_1 - y_1)_+ + (x_2 - y_2)_+$.
 - $u(z) \geq 0 \iff u(0, 0) \geq 0$, since $u(0, 0) \geq 0$ combined with $\nabla u \geq 0$ implies $u(z) \geq 0$.
 - We further consider $u(0, 0) = 0$, since fixing $u(0, 0) > 0$ only reduces the objective function.
 - The optimization problem now becomes

$$\max_u \int_D (z \cdot \nabla u(z) - u(z))f(z) \, dz$$

s.t. \{ u convex, $u(x) - u(y) \leq c(x, y) \forall (x, y)$, and $u(0, 0) = 0$.\}
Primal problem (contd...)

- Using integration by parts, the objective function can be written as,

\[\int_D (z \cdot \nabla u(z) - u(z)) f(z) \, dz = \int_D u \, d(\mu + \mu_s) \]

- \(\mu(z) := -z \cdot \nabla f(z) - 3f(z), \mu_s(z) := f(z)(z \cdot n)1(z \in \partial D) \).
Primal problem (contd...)

Using integration by parts, the objective function can be written as,

\[\int_D (z \cdot \nabla u(z) - u(z)) f(z) \, dz = \int_D u \, d(\mu + \mu_s) \]

\[\mu(z) := -z \cdot \nabla f(z) - 3f(z), \quad \mu_s(z) := f(z)(z \cdot n)1(z \in \partial D). \]

\[\mu \] is the density of a measure absolutely continuous w.r.t. \(\mathcal{L}_2 \).
\[\mu_s, \text{ w.r.t. } \mathcal{L}_1, \] \(n \) is the normal to the surface \(\partial D \).
Primal problem (contd...)

- Using integration by parts, the objective function can be written as,

\[\int_{D} (z \cdot \nabla u(z) - u(z))f(z) \, dz = \int_{D} u \, d(\mu + \mu_s) \]

- \(\mu(z) := -z \cdot \nabla f(z) - 3f(z) \), \(\mu_s(z) := f(z)(z \cdot n)1(z \in \partial D) \).

- \(\mu \) is the density of a measure absolutely continuous w.r.t. \(L_2 \).

- \(\mu_s \), w.r.t. \(L_1 \), \(n \) is the normal to the surface \(\partial D \).

- We have \(\int_{D} d(\mu + \mu_s) = -1 \).
Using integration by parts, the objective function can be written as,

\[\int_D (z \cdot \nabla u(z) - u(z)) f(z) \, dz = \int_D u \, d(\mu + \mu_s) \]

\(\mu(z) := -z \cdot \nabla f(z) - 3f(z) \), \(\mu_s(z) := f(z)(z \cdot n)1(z \in \partial D) \).

\(\mu \) is the density of a measure absolutely continuous w.r.t. \(\mathcal{L}_2 \).
\(\mu_s \), w.r.t. \(\mathcal{L}_1 \), \(n \) is the normal to the surface \(\partial D \).

We have \(\int_D d(\mu + \mu_s) = -1 \).

To make this 0, we add a point measure \(\mu_p \) of 1 at \((0,0)\).

Defining \(\bar{\mu} = \mu + \mu_s + \mu_p \), we have the objective function to be \(\int_D u \, d\bar{\mu} \). Observe that defining \(\mu_p \) causes no harm to the objective function since \(u(0,0) = 0 \).
The Primal problem:

$$\max_u \int_D u \, d\bar{\mu}$$

s.t. \(\{ u \text{ convex}, \ u(x) - u(y) \leq c(x, y) \ \forall (x, y), \ u(0, 0) = 0. \} \)

The Dual problem:

$$\inf_\gamma \int_{D \times D} c(x, y) \, d\gamma(x, y)$$

s.t. \(\{ \gamma(\cdot, D) = \gamma_1(\cdot), \ \gamma(D, \cdot) = \gamma_2(\cdot), \ \text{and} \ \gamma_1 - \gamma_2 \succeq_{\text{cvx}} \bar{\mu}. \} \)

where we say the measure \(\alpha \) convex dominates measure \(\beta \) \((\alpha \succeq_{\text{cvx}} \beta) \) if for every convex and increasing function, we have \(\int_D f \, d\alpha \geq \int_D f \, d\beta. \)
The Optimal Transport problem

The dual problem is a version of *optimal transport* problem.
The Optimal Transport problem

- The dual problem is a version of *optimal transport* problem.
- \(c(x, y) \rightarrow \) Cost of transporting unit mass from \(x \) to \(y \).
- \(\gamma(x, y) \rightarrow \) The differential mass transported from \(x \) to \(y \).
The Optimal Transport problem

- The dual problem is a version of *optimal transport* problem.
- \(c(x, y) \) → Cost of transporting unit mass from \(x \) to \(y \).
- \(\gamma(x, y) \) → The differential mass transported from \(x \) to \(y \).
- We need to find a way to minimize the cost of transportation subject to the constraint that \(\gamma_1 - \gamma_2 \preceq_{cvx} \bar{\mu} \).
The solution by Daskalakis et al.

- The problem of optimal transport was solved by Daskalakis et al. for f_1 and f_2 that give rise to a well-formed canonical partition of the support set D.

$$z_1 + z_2 = 2b_1 + 2b_2 - \sqrt{2b_1b_2}.$$

The optimal γ that they provide is such that $\gamma_1 - \gamma_2 = \bar{\mu}$.
The solution by Daskalakis et al.

- The problem of optimal transport was solved by Daskalakis et al. for f_1 and f_2 that give rise to a well-formed canonical partition of the support set D.
- The solution when $f = Unif[0, b_1] \times [0, b_2]$ is:

\[
\text{where the line joining } P \text{ and } Q \text{ is } z_1 + z_2 = \frac{2b_1 + 2b_2 - \sqrt{2b_1 b_2}}{3}.
\]
The solution by Daskalakis et al.

- The problem of optimal transport was solved by Daskalakis et al. for f_1 and f_2 that give rise to a well-formed canonical partition of the support set D.

- The solution when $f = \text{Unif} [0, b_1] \times [0, b_2]$ is:

\[
\begin{align*}
(0, b_2) & \quad (0,1) & \quad s_1(z_1) & \quad (1,1) & \quad s_2(z_2) & \quad (1,0) \\
(2/3* b_1,0) & \quad (0,0) & \quad P & \quad (1,1) & \quad (2/3* b_1,0) & \quad (b_1,0) \\
\end{align*}
\]

where the line joining P and Q is $z_1 + z_2 = \frac{2b_1 + 2b_2 - \sqrt{2b_1 b_2}}{3}$.

- The optimal γ that they provide is such that $\gamma_1 - \gamma_2 = \bar{\mu}$.
Uniform \([c_1, c_1 + b_1] \times [c_2, c_2 + b_2]\)

- The procedure suggested by Daskalakis et al. does not extend to arbitrary nonnegative values of \((c_1, c_2, b_1, b_2)\).
Uniform \([c_1, c_1 + b_1] \times [c_2, c_2 + b_2]\)

- The procedure suggested by Daskalakis et al. does not extend to arbitrary nonnegative values of \((c_1, c_2, b_1, b_2)\).
- We aim to find a measure \(\bar{\alpha}\) such that \(\bar{\alpha} \succeq_{cvx} 0\), and then to construct a \(\gamma\) such that \(\gamma_1 - \gamma_2 = \bar{\mu} + \bar{\alpha} \succeq_{cvx} \bar{\mu}\).
The procedure suggested by Daskalakis et al. does not extend to arbitrary nonnegative values of \((c_1, c_2, b_1, b_2)\).

We aim to find a measure \(\bar{\alpha}\) such that \(\bar{\alpha} \succeq_{cvx} 0\), and then to construct a \(\gamma\) such that \(\gamma_1 - \gamma_2 = \bar{\mu} + \bar{\alpha} \succeq_{cvx} \bar{\mu}\).

One can prove that \(\bar{\alpha} \succeq_{cvx} 0\) for any \(m_2 \geq m_1 \geq 0, \ m_3 \geq 0\).
Uniform $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$

- The procedure suggested by Daskalakis et al. does not extend to arbitrary nonnegative values of (c_1, c_2, b_1, b_2).
- We aim to find a measure $\bar{\alpha}$ such that $\bar{\alpha} \succeq_{cvx} 0$, and then to construct a γ such that $\gamma_1 - \gamma_2 = \bar{\mu} + \bar{\alpha} \succeq_{cvx} \bar{\mu}$.

One can prove that $\bar{\alpha} \succeq_{cvx} 0$ for any $m_2 \geq m_1 \geq 0$, $m_3 \geq 0$.

We thus find a solution which does not relax the convexity constraint.
The general structure
Conjecture

Consider $z \sim \text{Unif}[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$. The structure of the optimal solution for any $(c_1, c_2, b_1, b_2) \in \mathbb{R}_+^4$ is one among the eight structures (a)-(h).

In other words, defining E_x to be the set of all (c_1, c_2, b_1, b_2) such that the optimal solution has the structure “x”, “x” taking any alphabet from (a) to (h), we conjecture that $\bigcup_{x=a}^{h} E_x = \mathbb{R}_+^4$.
Structures when $c_1 = 0$

Theorem

Consider $z \sim \text{Unif}[0, b_1] \times [c_2, c_2 + b_2]$. Then the optimal solution has one of the following structures when $\frac{b_1}{b_2} \geq 2$:

![Diagram showing the structures of the optimal solution](image)

1. $(0,0) \rightarrow (1,1)$
2. $(c_1, c_2 + b_2) \rightarrow (1,1)$
3. $(c_1, c_2 + b_2) \rightarrow (0,1)$
4. $(c_1, c_2) \rightarrow (c_1 + b_1)/2, (c_1 + b_1, c_2)$
Structures when $c_1 = 0$

The optimal solution has one of the following structures when $\frac{b_1}{b_2} \in [0.6541, 2]$:
Structures when $c_1 = 0$

The optimal solution has one of the following structures when $\frac{b_1}{b_2} \in [0, 0.6541]$:
Summary

- Formulated the two-item single-buyer auction as an optimization problem.

- Found its dual to be the problem of optimal transport.

- Provided the optimal solution when the underlying distribution of the buyer's valuations are uniform in $[0, b_1] \times [0, b_2]$.

- Identifying that the solution was found by relaxing the convexity constraint, we found a "shuffle measure" $\bar{\alpha}$, and tried to construct a γ that has its convexity constraint tight.

- We conjecture that the optimal solution satisfies one of the eight structures given by the shuffle measure.

- The optimal solution was proved to have one of those structures when $c_1 = 0$.
Summary

- Formulated the two-item single-buyer auction as an optimization problem.
- Found its dual to be the problem of optimal transport.
Formulated the two-item single-buyer auction as an optimization problem.

Found its dual to be the problem of optimal transport.

Provided the optimal solution when the underlying distribution of the buyer’s valuations are uniform in $[0, b_1] \times [0, b_2]$.

Identifying that the solution was found by relaxing the convexity constraint, we found a “shuffle measure” $\bar{\alpha}$, and tried to construct a γ that has its convexity constraint tight.

We conjecture that the optimal solution satisfies one of the eight structures given by the shuffle measure. The optimal solution was proved to have one of those structures when $c_1 = 0$.
Summary

- Formulated the two-item single-buyer auction as an optimization problem.
- Found its dual to be the problem of optimal transport.
- Provided the optimal solution when the underlying distribution of the buyer’s valuations are uniform in $[0, b_1] \times [0, b_2]$.
- Identifying that the solution was found by relaxing the convexity constraint, we found a “shuffle measure” $\bar{\alpha}$, and tried to construct a γ that has its convexity constraint tight.
Summary

- Formulated the two-item single-buyer auction as an optimization problem.
- Found its dual to be the problem of optimal transport.
- Provided the optimal solution when the underlying distribution of the buyer’s valuations are uniform in $[0, b_1] \times [0, b_2]$.
- Identifying that the solution was found by relaxing the convexity constraint, we found a “shuffle measure” $\bar{\alpha}$, and tried to construct a γ that has its convexity constraint tight.
- We conjecture that the optimal solution satisfies one of the eight structures given by the shuffle measure.
Summary

- Formulated the two-item single-buyer auction as an optimization problem.
- Found its dual to be the problem of optimal transport.
- Provided the optimal solution when the underlying distribution of the buyer’s valuations are uniform in $[0, b_1] \times [0, b_2]$.
- Identifying that the solution was found by relaxing the convexity constraint, we found a "shuffle measure" $\bar{\alpha}$, and tried to construct a γ that has its convexity constraint tight.
- We conjecture that the optimal solution satisfies one of the eight structures given by the shuffle measure.
- The optimal solution was proved to have one of those structures when $c_1 = 0$.
Future Work

- Can the conjecture be proved? Or can we find a counter-example of a (c_1, c_2, b_1, b_2) whose structure of optimal solution is different from the eight?
Future Work

- Can the conjecture be proved? Or can we find a counter-example of a \((c_1, c_2, b_1, b_2)\) whose structure of optimal solution is different from the eight?

- How do we find the optimal solution when the distribution of valuations is not uniform? Can we derive a general solution for finding the solution for any distribution?
Future Work

- Can the conjecture be proved? Or can we find a counter-example of a \((c_1, c_2, b_1, b_2)\) whose structure of optimal solution is different from the eight?
- How do we find the optimal solution when the distribution of valuations is not uniform? Can we derive a general solution for finding the solution for any distribution?
- What happens when the number of buyers is more than 1?