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Abstract

We propose and axiomatically characterize a representation of am-

biguity sensitive preferences. The distinguishing feature of our axioma-

tization is that we do not require preferences to be event-wise separable

over any domain of acts. Even without any such separability restric-

tions, we are able to uniquely elicit baseline subjective probabilities for

a decision maker. The novel axiom that allows us to do so expresses

the idea that, at least in the domain of a certain class of acts, the

decision maker exhibits a consistent tradeoff between risk and ambigu-

ity concerns. Under our representation of her preferences, any act is

assessed by its subjective expected utility with respect to her baseline

probabilities and a residual that captures her assessment of the act’s
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1 Introduction

In a famous thought experiment, Ellsberg (1961) demonstrated that many de-

cision makers’ choice behavior may be inconsistent with subjective expected

utility maximization. Subjective expected utility maximization requires a

decision maker’s preferences to be event-wise separable. However, as Ells-

berg showed, in many situations of uncertainty, this may be too demanding a

requirement for decision makers. Following Schmeidler (1989), a series of deci-

sion models have been proposed for such ambiguity-sensitive decision makers

that relax event-separability restrictions. A feature common to these mod-

els is that although preferences are not required to be event-wise separable

over the domain of all acts, each of them identifies a subdomain on which

event-separability still holds.

In an important contribution, Machina (2009) has shown that such ambiguity-

sensitive models may be susceptible to the same kind of difficulties that the

Ellsberg paradox poses for subjective expected utility.1 In other words, the

conflict between event-separability of preferences and ambiguity-sensitive be-

havior may be of a more serious nature than what these models can accom-

modate. As Machina writes “the phenomenon of ambiguity aversion is intrin-

sically one of nonseparable preferences across mutually exclusive events, and

the models that exhibit full–or even partial–event-separability cannot capture

all aspects of this phenomenon.” (Machina 2009, p. 390) Therefore, in mod-

eling ambiguity-sensitive behavior, reliance on event-separability assumptions

should be kept to the minimum and, if possible, done away with completely.

1Machina (2009) makes this point by proposing an Ellsberg-style paradox for the Cho-

quet expected utility model (Schmeidler (1989)). Baillon, Haridon, and Placido (2011)

have shown that the conflict between ambiguity-sensitive behavior and event-separability

of preferences that Machina’s example highlights causes difficulties for other models as

well, e.g., maxmin expected utility (Gilboa and Schmeidler (1989)), variational preferences

(Maccheroni, Marinacci, and Rustichini (2006)), α-maxmin (Ghirardato, Maccheroni, and

Marinacci (2004)) and the smooth ambiguity model (Klibanoff, Marinacci, and Mukerji

(2005)).
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In this paper, we attempt to implement the “Machina program” by propos-

ing and axiomatically characterizing a representation of ambiguity-sensitive

preferences that does away with event-separability restrictions completely. In-

stead, our focus is to identify whether the decision maker (DM) that we model

exhibits a consistent tradeoff between risk and ambiguity concerns, at least

over some class of acts. We propose such a class of acts and show that if her

choices do reveal a consistent ambiguity-risk tradeoff over this class, then it

is possible to uniquely elicit baseline subjective probabilities for her. Further,

we show that her preferences permit a representation under which she as-

sesses any act based on a subjective expected utility evaluation with respect

to her baseline probabilities and a residual that captures her assessment of

the act’s exposure to ambiguity. More formally, let Z denote an underlying

set of outcomes and ∆(Z) the set of objective lotteries on Z. Consider an

act f = (f1, . . . , fn) ∈ (∆(Z))n, which is a mapping from an underlying set

of states, S = {1, . . . , n}, to ∆(Z). The DM’s assessment of f under our

representation is given by

V (f) =
∑
s∈S

µ(s)Eu(fs) + φ(f),

where µ : S → [0, 1] specifies the DM’s subjective probabilities on the state

space, u is a vNM-utility index, with Eu(p) =
∑

x∈Z p(x)u(x) denoting the

expected utility of any lottery p, and φ(f) captures how the DM’s assessment

of f is affected by the ambiguity that she perceives. We call this representation

the fully non-separable ambiguity (FNSA) representation.

The first natural property that the function φ under an FNSA representation

has is that it takes the value zero for any constant act. To understand its

second important property, let (q, p−s) denote an act that gives q ∈ ∆(Z)

in state s and is identical to p ∈ ∆(Z) on all other states. We call two

such acts (q, p−s) and (r, p−s) almost identical and complementary (AIC) if
1
2
q+ 1

2
r ∼ p. Here complementarity is in the sense of Siniscalchi (2009). Under

an FNSA representation, the ambiguity assessments of any two pairs of AIC

acts ((q, p−s), (r, p−s)) and ((q̃, p̃−s), (r̃, p̃−s)), with q � p � r and q̃ � p̃ � r̃,
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have the property that

φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)
=
φ(q̃, p̃−s)− φ(r̃, p̃−s)

Eu(q̃)− Eu(r̃)
.

In other words, the difference in ambiguity assessments of two AIC acts is

proportional to the difference in the expected utility of the lotteries under

them in the state in which they vary and the constant of proportionality is

state-dependent. That is, (pairs of) AIC acts are precisely the minimal class

over which we require the DM to exhibit consistent ambiguity-risk tradeoffs.

In this paper, we provide a behavioral foundation for the FNSA representa-

tion. In addition, our elicitation of unique baseline subjective probabilities for

the DM allows us to provide an intuitive definition of ambiguity aversion. We

are also able to identify those acts which when randomized over are considered

by the DM to provide her with a hedging advantage.

As mentioned earlier, our paper draws motivation from Machina (2009) and

its key message about the fundamental conflict between ambiguity-sensitive

behavior and event-separability restrictions. Viewed from this perspective,

our paper shares the same spirit as Cerreia-Vioglio, Ghirardato, Maccheroni,

Marinacci, and Siniscalchi (2011) and Lehrer and Teper (2013), where too the

goal is to relax event-separability restrictions. The structure of the represen-

tation that we propose is similar to Siniscalchi’s VEU (Siniscalchi 2009) and

Grant and Polak’s mean-dispersion representations (Grant and Polak 2013).

In both these representations, like in ours, the DM’s assessment of an act is

based on a baseline subjective expected utility evaluation and an adjustment

term that captures her assessment of the act’s exposure to ambiguity.

The paper is organized as follows. Section 2 provides the setup. Section 3

formally defines the FNSA representation and provides its behavioral foun-

dations. Section 4 characterizes ambiguity attitudes. Proofs are provided in

the Appendix.
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2 Setup

Primitive Objects: Let S = {1, . . . , n} be a finite set of states. Let Z

denote a set of outcomes or prizes and ∆(Z) the set of simple (objective)

lotteries on Z. An act f is a function from S into ∆(Z). Let H be the

set of all such acts. We will denote generic elements of ∆(Z) by p, q, etc.,

and that of H by f, g, etc. We will engage in the usual abuse of notation

by not distinguishing between a lottery and a constant act that gives that

lottery in every state; for instance, p ∈ H as well as p ∈ ∆(Z). We will often

denote an act in vector-form, e.g., f = (f1, . . . , fn). Further, (q, p−s) shall

denote an act that gives q in state s and is identical to p on all other states.

For any p ∈ ∆(Z), p(x) will denote the probability that p assigns to the

outcome x ∈ Z. We define a convex combination of lotteries in ∆(Z) in the

standard way. For instance, if p, q ∈ ∆(Z) and α ∈ [0, 1], then αp+ (1− α)q

denotes an element in ∆(Z) that gives the outcome x ∈ Z with probability

αp(x) + (1− α)q(x).

Preferences: We consider a decision maker (DM) who has preferences %

on H. Observe that preferences on H induce preferences on the sets ∆(Z)

and Z.

Almost Identical Complementary Acts: We now introduce our notion

of almost identical complementary acts that is central to the analysis.

Definition 2.1. A pair of acts (q, p−s), (r, p−s) ∈ H are almost identical and

complementary (AIC) if 1
2
q + 1

2
r ∼ p.

We think of two acts like (q, p−s) and (r, p−s) as almost identical since they

are identical in all but one state. Further, these acts are complementary in

the sense of Siniscalchi (2009).2

2Two acts f and g are complementary if for all s, s′ ∈ S, 1
2fs + 1

2gs ∼
1
2fs′ + 1

2gs′ .
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3 Representation and Axioms

We now formally define a fully non-separable ambiguity (FNSA) representa-

tion. In the way of notation, for a utility function u : Z → R and p ∈ ∆(Z),

Eu(p) =
∑

x∈Z p(x)u(x) shall denote the expected utility of p.

Definition 3.1. % has a FNSA representation if there exists

1. a non-constant function u : Z → R

2. a probability measure µ on S

3. a function φ : H → R with the property that

(a) for any p ∈ ∆(Z), φ(p) = 0, and

(b) for any s ∈ S and two pairs of AIC acts ((q, p−s), (r, p−s)) and

((q̃, p̃−s), (r̃, p̃−s)), with q � r and q̃ � r̃,

φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)
=
φ(q̃, p̃−s)− φ(r̃, p̃−s)

Eu(q̃)− Eu(r̃)
,

such that the function V : H → R given by

V (f) =
∑
s∈S

µ(s)Eu(fs) + φ(f)

represents %.

The FNSA representation deviates from a subjective expected utility (SEU)

evaluation in that it incorporates a notion of how the DM’s assessment of an

act is affected by its exposure to ambiguity. This notion is captured by the

function φ. As the assessment of constant acts is not influenced by ambiguity,

the φ-value of any such act is zero. Further, the difference in ambiguity

assessments of two AIC acts is proportional to the difference in the expected

utility of the lotteries under them in the state in which they vary and the
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constant of proportionality is state-dependent. That is, for any state s ∈ S,

there exists a constant k(s) such that for any pair of AIC acts (q, p−s), (r, p−s),

with q � r,
φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)
= k(s)

We now introduce a set of axioms that constitute a behavioral foundation for

a FNSA representation.

(A1−Weak Order) % on H is transitive and complete.

(A2− Archimedean) If p, q ∈ ∆(Z), f ∈ H are such that p � f � q, then

there exists α, α ∈ (0, 1) such that

αp+ (1− α)q � f � αp+ (1− α)q

(A3−Monotonicity) For all f, g ∈ H, if fs % gs for all s ∈ S, then f % g.

(A4− Non-triviality) There exist x, y ∈ Z such that x � y.

(A5− Risk Independence) If p, q, r ∈ ∆(Z), then for all α ∈ (0, 1],

p � q ⇒ αp+ (1− α)r � αq + (1− α)r

Before we present our final axiom note that, following standard terminology,

we will refer to a state s ∈ S as null if f ∼ g for all f, g ∈ H such that fs′ = gs′

for all s 6= s′.

(A6− Consistent Ambiguity-Risk Tradeoff for AIC acts) If s ∈ S is a non-

null state and ((q, p−s), (r, p−s)), ((q̃, p̃−s), (r̃, p̃−s)) ∈ H×H are pairs of

AIC acts with q′ ∼ (q, p−s), r
′ ∼ (r, p−s), q̃

′ ∼ (q̃, p̃−s) and r̃′ ∼ (r̃, p̃−s),

q′, r′, q̃′, r̃′ ∈ ∆(Z), then for all α ∈ [0, 1],

αq′ + (1− α)r̃′ % αr′ + (1− α)q̃′ ⇔ αq + (1− α)r̃ % αr + (1− α)q̃
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Axioms (A1)-(A5) are standard. The novel axiom in this paper is that of

consistent ambiguity-risk tradeoff for AIC acts (the CART axiom, for short).

The CART axiom implies that for any pair of AIC acts, the difference in

the DM’s assessment of the two acts is proportional to the difference in the

expected utility of the two lotteries under them in the state in which they

vary. This is of course true for any SEU maximizer with the constant of pro-

portionality being the probability of that particular state. For someone who

is not an SEU maximizer and is sensitive to ambiguity, this axiom suggests

that her assessment of the difference in the ambiguity associated with two

AIC acts is also of an order proportional to the difference in the expected

utility of the two lotteries under them in the state in which they vary. In

other words, the axiom guarantees that at least in the domain of AIC acts,

the DM exhibits a consistent tradeoff between risk and ambiguity concerns.

As we will show below, this consistency is what is critical in eliciting unique

subjective probabilities for the DM.

We can now state the main result of our paper.

Theorem 3.1. % satisfies (A1) - (A6) if and only if it has a FNSA rep-

resentation. If (u, µ, φ) and (u′, µ′, φ′) are both FNSA representations of %,

then µ = µ′ and there exist constants a > 0 and b such that u = au′ + b and

φ = aφ′.

The second statement of the theorem establishes that the DM’s subjective

probabilities are unique and that her utility function is unique up to a positive

affine transformation. Further, the function φ is unique up to a positive

transformation.
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4 Attitude towards Ambiguity

We now provide a definition that summarizes the DM’s attitude towards am-

biguity. To that end, let (u, µ, φ) be a FNSA representation of %. Further,

for any f = (f1, . . . , fn) ∈ H, let p̄f :=
∑

s∈S µ(s)fs ∈ ∆(Z).

Definition 4.1. A DM whose preferences have a FNSA representation is

ambiguity-averse (respectively, ambiguity-loving) if for all f ∈ H, pf % f

(respectively, f % pf).

The definition introduces a notion of ambiguity aversion that mirrors the no-

tion of risk aversion for decisions under risk. Whereas there, when considering

monetary gambles, a DM is considered to be risk averse when she prefers the

expected value of any gamble to the gamble itself, here we think of the DM

as ambiguity averse, if she prefers the objective lottery generated by any act

(w.r.t. her probabilistic assessment) to the act itself. The DM’s ambiguity at-

titudes are neatly characterized by the φ-function as the following proposition

shows.

Proposition 4.1. An individual with a FNSA representation (u, µ, φ) is ambiguity-

averse (respectively, ambiguity-loving) if and only if φ(.) is non-positive (re-

spectively, non-negative).

We next show that we can elicit a revealed ambiguity relation for a DM with

a FNSA representation. To that end, note that for any f ∈ H, there exists

pf ∈ ∆(Z) such that f ∼ pf .

Definition 4.2. We define the revealed ambiguity relation %A on H as fol-

lows: for any f, f ′ ∈ H: f %A f ′ if .5pf + .5pf ′ % .5pf ′ + .5pf

Observe that the preference .5pf + .5pf ′ % .5pf ′ + .5pf represents a tradeoff

condition. Given that the DM behaves like a vNM expected utility maximizer
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on ∆(Z), this preference tells us that she considers the difference between pf

and pf ′ to be at least as great as that between pf and pf ′ . Further, the

difference between pf and pf ′ is the same as that between f and f ′, and pf

and pf ′ are, respectively, equivalent to the assessments of these acts based on

risk considerations alone. Therefore, the preference .5pf + .5pf ′ % .5pf ′ + .5pf

reveals that the difference between f and f ′ exceeds what is warranted by

the difference in their risk assessments. This excess must, accordingly, be

accounted for by the fact that f has an ambiguity advantage over f ′ for the

DM. For an ambiguity-averse DM, f %A f ′, therefore, means that f ′ is at least

as ambiguous as f . On the other hand, for an ambiguity-loving DM, f %A f ′

means that f is at least as ambiguous as f ′. The function φ represents the

ambiguity relation %A as the following proposition clarifies.

Proposition 4.2. For any f, f ′ ∈ H,

f %A f ′ ⇔ φ(f) ≥ φ(f ′)

Finally, we note that for an ambiguity averse agent, the ambiguity preference

relation allows us to identify those acts that have a hedging potential. An act

f ∈ H has a hedging potential if there exists f ′ ∈ H with f %A f ′ such that

αf + (1 − α)f ′ �A f ′ for all α ∈ (0, 1). The act f here has the potential to

serve as a hedge because when mixed with an act f ′ that is more ambiguous,

the resulting mixture is less ambiguous than f ′.

A Appendix

A.1 FNSA representation of %

We first establish the sufficiency of our axioms for the FNSA representation.

To that end, we define a function V : H → R that represents %.
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A Representation of %: Observe that the axioms of weak order, Archi-

medean and risk independence imply that preferences restricted to the set

of constant acts satisfy the three vNM axioms. Accordingly, there exists

a function u : Z → R such that the function V : ∆(Z) → R, given by

V (p) =
∑

x∈Z p(x)u(x), represents % restricted to ∆(Z). Further, for every

act f ∈ H, monotonicity along with the Archimedean and risk independence

axioms imply that there exists pf ∈ ∆(Z) such that f ∼ pf . By setting

V (f) := V (pf ) for all f ∈ H we extend the representation of % from ∆(Z) to

H.

Elicitation of Probabilities: Consider any non-null state s ∈ S and pairs

of AIC acts ((q, p−s), (r, p−s)), ((q̃, p̃−s), (r̃, p̃−s)) with q � p � r and q̃ � p̃ �
r̃. Note that by non-triviality such lotteries exist. Further, let q′, r′, q̃′ and r̃′

be such that q′ ∼ (q, p−s), r
′ ∼ (r, p−s), q̃

′ ∼ (q̃, p̃−s) and r̃′ ∼ (r̃, p̃−s). Given

that s is non-null, monotonicity implies that q � q′ � p � r′ � r. Similarly,

q̃ � q̃′ � p̃ � r̃′ � r̃. We next show that there exists a unique α̂ ∈ [0, 1]

such that α̂q + (1 − α̂)r̃ ∼ α̂r + (1 − α̂)q̃. To do so we define the function

f(α) := V (αq + (1 − α)r̃) − V (αr + (1 − α)q̃). Clearly, f is continuous and

strictly increasing in α. Furthermore, as

f(α) = α(V (q)− V (r))− (1− α)(V (q̃)− V (r̃))

we have f(0) < 0 and f(1) > 0. Accordingly, the intermediate value theorem

implies that there exists a unique α̂ ∈ (0, 1) such that

f(α̂) = V (α̂q + (1− α̂)r̃)− V (α̂r + (1− α̂)q̃) = 0

and, thus, α̂q + (1 − α̂)r̃ ∼ α̂r + (1 − α̂)q̃. Similarly, for q′ � r′ and q̃′ � r̃′,

there exists a unique α̌ ∈ (0, 1) such that α̌q′ + (1− α̌)r̃′ ∼ α̌r′ + (1− α̌)q̃′.

The CART axiom then implies α̂ = α̌. Consequently, we have

α̂(V (q)− V (r)) = (1− α̂)(V (q̃)− V (r̃))

α̂(V (q′)− V (r′)) = (1− α̂)(V (q̃′)− V (r̃′))
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which implies
V (q)− V (r)

V (q̃)− V (r̃)
=

1− α̂
α̂

=
V (q′)− V (r′)

V (q̃′)− V (r̃′)

and, thus,
V (q, p−s)− V (r, p−s)

V (q)− V (r)
=
V (q̃, p̃−s)− V (r̃, p̃−s)

V (q̃)− V (r̃)
. (1)

Now, for any state s ∈ S define

a(s) =
V (q, p−s)− V (r, p−s)

V (q)− V (r)
,

where (q, p−s), (r, p−s) is a pair of AIC acts with q � r. Equation (1) guar-

antees that a(s) is consistently defined for any non-null state s ∈ S. On the

other hand, for any null state s ∈ S, a(s) = 0 for any such pair of acts. In

turn, this allows us to define state probabilities µ(s) = a(s)∑
s′∈S a(s′)

, s ∈ S.

FNSA representation: Consider any f = (f1, . . . , fn) ∈ H and let pf :=∑
s∈S µ(s)fs ∈ ∆(Z). Define the function φ : H → R by

φ(f) = V (f)− V (pf )

= V (f)−
∑
s∈S

µ(s)
∑
x∈Z

fs(x)u(x)

Accordingly,

V (f) =
∑
s∈S

µ(s)
∑
x∈Z

fs(x)u(x) + φ(f).

represents %.

Properties of the FNSA representation: Now, we turn to the properties

of the φ-function. Clearly, φ(p) = 0 for all p ∈ ∆(Z). Further, consider two

pairs of AIC acts ((q, p−s), (r, p−s)) and ((q̃, p̃−s), (r̃, p̃−s)) with q � p � r and

q̃ � p̃ � r̃. The difference in the φ-values within the first pair of AIC acts can
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be expressed as

φ(q, p−s)− φ(r, p−s) = V (q, p−s)− V (r, p−s)− µ(s) [Eu(q)− Eu(r)]

= a(s)[V (q)− V (r)]− µ(s)[Eu(q)− Eu(r)]

= (a(s)− µ(s))[Eu(q)− Eu(r)]

Similarly,

φ(q̃, p̃−s)− φ(r̃, p̃−s) = (a(s)− µ(s))[Eu(q̃)− Eu(r̃)]

Therefore, the residuals have the property that

φ(q̃, p̃−s)− φ(r̃, p̃−s)

Eu(q̃)− Eu(r̃)
=
φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)

for any pair of AIC acts ((q, p−s), (r, p−s)) and ((q̃, p̃−s), (r̃, p̃−s)) with q � r

and q̃ � r̃. This establishes sufficiency of the axioms for the representation.

Necessity of axioms: Necessity of the axioms (A1)-(A5) is straightforward

to establish and we omit the details here. We now turn to the proof of necessity

of the CART axiom. Suppose (q, p−s), (r, p−s), (q̃, p̃−s), (r̃, p̃−s) and q′, r′, q̃′,

r̃′ are as stated in the axiom and s is a non-null state.

Case 1: q � r, q̃ � r̃

Observe that

V (αq′ + (1− α)r̃′)− V (αr′ + (1− α)q̃′)

= α[V (q′)− V (r′)]− (1− α)[V (q̃′)− V ((r̃′)]

= α[V (q, p−s)− V (r, p−s)]− (1− α)[V (q̃, p̃−s)− V (r̃, p̃−s)]

= α[µ(s)(Eu(q)− Eu(r)) + φ(q, p−s)− φ(r, p−s)]

− (1− α)[µ(s)(Eu(q̃)− Eu(r̃)) + φ(q̃, p̃−s)− φ(r̃, p̃−s)]

= α(Eu(q)− Eu(r))

[
µ(s) +

φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)

]
− (1− α)(Eu(q̃)− Eu(r̃))

[
µ(s) +

φ(q̃, p̃−s)− φ(r̃, p̃−s)

Eu(q̃)− Eu(r̃)

]
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We know that

φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)
=
φ(q̃, p̃−s)− φ(r̃, p̃−s)

Eu(q̃)− Eu(r̃)

Further, note that

(q, p−s) � (r, p−s)⇒ µ(s)(Eu(q)− Eu(r)) + φ(q, p−s)− φ(r, p−s) > 0

⇒ (Eu(q)− Eu(r))

[
µ(s) +

φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)

]
> 0

⇒ k := µ(s) +
φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)
> 0,

since Eu(q)− Eu(r) > 0. Hence, it follows that

V (αq′ + (1− α)r̃′)− V (αr′ + (1− α)q̃′)

= k[α(Eu(q)− Eu(r))− (1− α)(Eu(q̃)− Eu(r̃))]

= k[αEu(q) + (1− α)Eu(r̃)− (αEu(r) + (1− α)Eu(q̃))]

= k[αV (q) + (1− α)V (r̃)− (αV (r) + (1− α)V (q̃))]

= k[V (αq + (1− α)r̃)− V (αr + (1− α)q̃)]

Hence, αq′+(1−α)r̃′ % αr′+(1−α)q̃′ if and only if αq+(1−α)r̃ % αr+(1−α)q̃.

Case 2: Next, consider the alternative case where either r % q or r̃ % q̃ or

both. Clearly, by monotonicity, r % q ⇒ r′ % q′ and r̃ % q̃ ⇒ r̃′ % q̃′. First,

observe that if r ∼ q and r′ ∼ q′, then r̃ ∼ q̃ and r̃′ ∼ q̃′. In this case for any

α ∈ [0, 1] we have that

αq + (1− α)r̃ ∼ αr + (1− α)q̃ and αq′ + (1− α)r̃′ ∼ αr′ + (1− α)q̃′

and the axiom holds. Next, consider the case r � q and r̃ ∼ q̃. This implies

that r′ � q′ and r̃′ ∼ q̃′. In this case for all α ∈ (0, 1], αr + (1 − α)q̃ �
αq + (1 − α)r̃ and αr′ + (1 − α)q̃′ � αq′ + (1 − α)r̃′. Finally for α = 0 we

have r̃ ∼ q̃ and r̃′ ∼ q̃′. So in this case as well, the axioms holds. Finally, for

r � q, r̃ � q̃, we are back in the first case and the axiom is thus necessary for

the representation.
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Uniqueness of the representation: Let (u, φ, µ) and (ũ, φ̃, µ̃) both be

FNSA representations of %. Further, let V : H → R and Ṽ : H → R be the

corresponding assessment functions of acts. This implies that both u and ũ

are vNM representations of % restricted to ∆(Z). Hence, there exists a > 0,

b such that ũ = au+ b. Further, for any f ∈ H, there exists pf ∈ ∆(Z) such

that pf ∼ f . Accordingly,

V (f) = V (pf ) =
∑
x∈Z

pf (x)u(x)

and

Ṽ (f) = Ṽ (pf ) =
∑
x∈Z

pf (x)ũ(x)

= a
∑
x∈Z

pf (x)u(x) + b

= aV (f) + b.

Since u and ũ are non-constant, there exists q, p, r with q � p � r and

α′, α′′ ∈ (0, 1) such that (q, p−s) ∼ α′q+(1−α′)r and (r, p−s) ∼ α′′q+(1−α′′)r.
Hence,

V (q, p−s)− V (r, p−s) = (α′ − α′′)(V (q)− V (r))

⇒µ(s)(Eu(q)− Eu(r)) + [φ(q, p−s)− φ(r, p−s)]

Eu(q)− Eu(r)
= α′ − α′′

⇒µ(s) +
φ(q, p−s)− φ(r, p−s)

Eu(q)− Eu(r)
= α′ − α′′

⇒µ(s) +
V (q, p−s)− V (p(q,p−s))− (V (r, p−s)− V (p(r,p−s)))

Eu(q)− Eu(r)
= α′ − α′′,

where p(q,p−s) = µ(s)q+(1−µ(s))p and p(r,p−s) = µ(s)r+(1−µ(s))p. Likewise,

we have

µ̃(s) +
Ṽ (q, p−s)− Ṽ (p(q,p−s))− (Ṽ (r, p−s)− Ṽ (p(r,p−s)))

Eũ(q)− Eũ(r)
= α′ − α′′.

But, as Ṽ (.) = aV (.)+ b and ũ = au+ b this implies µ(s) = µ̃(s) for all s ∈ S.
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Finally, for any f ∈ H,

φ̃(f) = Ṽ (f)−
∑
s∈S

µ̃(s)
∑
x∈Z

f̃s(x)u(x)

= aV (f) + b− a
∑
s∈S

µ(s)
∑
x∈Z

fs(x)u(x)− b

= a

(
V (f)−

∑
s∈S

µ(s)
∑
x∈Z

fs(x)u(x)

)
= aφ(f).

A.2 Proofs of Propositions 4.1 and 4.2

The proofs of propositions 4.1 and 4.2 are straightforward and we omit details

here.
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