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CORE AND COALITIONAL FAIRNESS: THE CASE OF

INFORMATION SHARING RULE

ANUJ BHOWMIK

Abstract. We investigate two of the most extensively studied cooperative
notions in a pure exchange economy with asymmetric information. One of

them is the core and the other is known as coalitional fairness. The set of

agents is modelled by a mixed market consisting of some large agents and an
ocean of small agents; and the commodity space is an ordered Banach space

whose positive cone has an interior point. The information system in our

framework is the one introduced by Allen in [1]. Thus, the same agent can have
common, private or pooled information when she becomes member of different

coalitions. It is shown that the main results in Grodal [23], Schmeidler [30]
and Vind [35] can be established when the economy consists of a continuum

of small agents. We also focus on the information mechanism based on size of

coalitions introduced in [21] and obtain a result similar to the main result in
[21]. Finally, we examine the concept of coalitional fairness proposed in [24].

We prove that the core is contained in the set of coalitionally fair allocations

under some assumptions. This result provides extensions of Theorem 2 in [24]
to an economy with asymmetric information as well as a deterministic economy

with infinitely many commodities. Although we consider a general commodity

space, all our results were so far unsolved to the case of information sharing
rule with finitely many commodities.

1. Introduction

The classical deterministic Arrow-Debreu-McKenzie model on an economic sys-
tem consists of finitely many agents and commodities, refer to [3, 26]. In this model,
the set of Walrasian allocations is properly contained in the core. To see whether
any core allocation can be supported by prices so as to become a Walrasian allo-
cation, Debreu and Scarf [11] expanded the original economy by replicating each
agent m many times. They showed that each allocation in the core of any replicated
economy assigns the same consumption bundle to all agents of the same type and
as m becomes larger, more and more core allocations are ruled out and eventually
only the competitive allocations remain. Since no agent prefers her net trade to
that of another agent of the same type, Schmeildler and Vind [31] introduced the
concept of fair net trade in an exchange economy with finitely many agents, where
an agent was able to compare her net trade to that of another agent with a dif-
ferent type. A net trade is fair if the net trade of each agent is at least as good
for her as the net trade of any other agent would be. Thus, each agent evaluates
the other agent’s position on the same terms that she judges her own. To define it
formally, let x = (x1, · · · , xn) be an allocation of commodities among agents in an
exchange economy with n agents. The net trade of agent i is xi − ai, where xi is
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2 A. BHOWMIK

the commodity bundle received by i at x and ai is the initial endowment of agent
i. The net trade y = (y1, · · · , yn), defined by yi = xi − ai, is said to be fair if for
all agents i and j, yi �i yj , where �i denotes the preference relation of agent i.
In other words, if a net trade is fair then the market does not discriminate among
agents. It was shown in [31] that a fair net trade exists. An analogous idea of
discrimination was considered in Jaskold-Gabszewicz [24] in terms of coalitions and
it was termed as the coalitional fairness. The allocation x is called coalitionally un-
fair if there exist two disjoint coalitions S1 and S2 such that

∑
i∈S1

yi <
∑
i∈S2

yi.
In this case, agents in S1 could have benefited by achieving the net trade of S2.
Formally, there exists another allocation z = (z1, · · · , zn) such that zi � xi for all
i ∈ S1 and

∑
i∈S1

(zi−ai) =
∑
i∈S2

yi. So, S1 is treated under x in a discriminatory

way by the market. The allocation x is called coalitionally fair 1 if there does not
exist any two such disjoint coalitions. It is known that any Walrasian allocation is
coalitionally fair and the set of coalitionally fair allocations is a subset of the core.

In [4], Aumann remarked that in an economy with finitely many agents the influ-
ence of an agent is not negligible, thus the competition is imperfect. To achieve the
perfect competition, he introduced the concept of non-atomic agents. The conse-
quence of an economy with an atomless measure space of agents is that the influence
of a single agent on market prices is insignificant and so, it leads to characterization
of Walrasian allocations in terms of the core, refer to [4]. Thus, the core and the
set of coalitionally fair allocations are two indistinguishable co-operative notions in
atomless economies under standard assumptions. Eight years later, three notes in
the same issue of Econometrica gave a sharper interpretation to Aumann’s core-
Walras equivalence theorem as a characterization of perfect competition. Firstly,
Schmeidler [30] proved that if an allocation f is blocked by a coalition S via an
allocation g, then for any ε > 0, f can be blocked via the same allocation g by a
coalition S′ ⊆ S with µ(S′) ≤ ε. Schmeidler’s result was further generalized in [23]
by restricting the set of coalitions to those consisting of finitely many arbitrarily
small sets of agents with similar characteristics, which are presumably easier to
form and also interpret. Precisely, Grodal proved that an allocation belongs to
the core if and only if it cannot be blocked by a coalition which is the union of
at most ` + 1 sub-coalitions, each of which has measure and diameter less than
ε, where ` denotes the number of commodities. Finally, Vind [35] showed that if
some coalition blocks an allocation then there is a blocking coalition with any mea-
sure less than the measure of the grand coalition. These results imply that, for a
finite-dimensional commodity space, the set of Walrasian allocations of an atomless
economy coincides with the set of allocations that are not blocked by coalitions of
arbitrarily given measure less than that of the grand coalition.

It is recognized by several researchers that Aumann’s atomless model corresponds
to an extreme situation since the consumption in real economic exchange is far from
being perfect. An example of this kind of model is that an economy where some
agents concentrate in their hands initial ownerships of some commodities which
are large with respect to the aggregate endowments of those commodities. It was
Aumann [4] who first pointed out that such a market is probably best represented by
a mixed model, in which some agents are insignificant and others are individually
significant. Interestingly, the equivalence relationship between the core and the
set of Walrasian allocations fails to hold in this framework. However, the core

1See Shitovitz [33] for a similar concept.



CORE AND COALITIONAL FAIRNESS 3

is equivalent to the set of Walrasian allocations if there are at least two large
agents and all large agents have the same characteristics, that is, the same initial
endowments and the same preferences, refer to [32]. Thus, if the above assumptions
violate then one cannot claim that any allocation in the core is also coalitionally
fair. An interesting and weaker result in this direction was proved by Jaskold-
Gabszewicz in [24]. Indeed, in a pure exchange mixed economy with finitely many
commodities, Jaskold-Gabszewicz [24] showed that the core is contained in the set
of coalitionally fair allocations if coalitions are restricted to those measurable sets
which are either atomless or containing all atoms. The result may fail if coalitions
are any arbitrary measurable sets, refer to Proposition 2 in [24].

In the past few decades, an economy involving uncertainty and asymmetric in-
formation is one of the most important research areas in the theoretical economics.
It is well known that information structure within coalitions have major influence
on the set of allocations which can have attainable alternative, refer to [21]. Due
to different information and communication opportunities among agents, several
alternative core concepts had been proposed in [36, 37]. Precisely, Wilson [36]
introduced the concepts of fine and coarse cores, the first one takes into account
that agents within a coalition, pool their initial private information, whereas the
latter involves the common information of all agents within a coalition. The fine
core may be empty, since blocking is “easy”, whereas the coarse core is large, since
blocking is “difficult”. In the private core introduced by Yannelis [37], agents have
no access to the communication system. Thus, the information of each agent is
not modified when a coalition is formed and each member of the coalition uses
only her own private information whenever a coalition blocks an allocation. It is
worth pointing out that under standard assumptions, the private core is non-empty
(see [37]). Thus, the initial private information of each agent can be susceptible
to alter when she becomes a member of a coalition. Using Yannelis’s approach,
Graziano and Pesce [22] proposed an extension of the notion of coalitionally fair
allocations2 in asymmetric information economies. In fact, according to their defi-
nition, a function x = (x1, · · · , xn) is called an allocation if xi is Pi-measurable for
all 1 ≤ i ≤ n, and it is termed as coalitionally fair there are no coalitions S1, S2 and
z = (z1, · · · , zn) ∈ R`n+ satisfying zi is Pi-measurable and zi �i xi for all i ∈ S1 and∑
i∈S1

(zi − ai) =
∑
i∈S2

(xi − ai), where Pi is agent i’s initial private information.

One of the key results in [22] claims that in an asymmetric information economy
with a mixed measure space of agents and a finite dimensional commodity space,
the private core is a subset of the set of coalitionally fair allocations if coalitions
are restricted to those measurable sets which are either atomless or containing all
atoms. In their result, the allocations were restricted to a certain class of functions
(refer to the assumption (A.6) in [22]) and the feasibility was taken as free disposal.
Since joining a coalition has no direct consequences on information, it is necessary
to define similar concepts by adopting the mechanism that agents within a coalition
use either the pooled information or the common information. In all these concepts,
the rule that allocates the information to agents within a coalition is fixed a priori
and does not depend on any specific property of the coalition.

In this paper, we consider the notion of information sharing rule introduced by
Allen in [1]. This includes various possibilities of the information available to an
agent within different coalitions, which means the same agent can have common,

2See Donnini et al. [13] for an existence of a coalitionally fair allocation in the interim stage.
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pool or private information depending on the coalition in which she is a member.
We also restrict our attention to the information sharing rule based on size of
coalitions, as proposed in [21]. According to their rule, there is a family of exogenous
thresholds representing different sizes of coalitions, and each threshold is associated
with some information sharing rule. If an agent is a member of some coalition then
she can only access the information that is given by the information sharing rule
of the corresponding threshold. The feasibility condition in our paper is defined to
be exact, since when feasibility is defined with free disposal, the core allocations
may not be incentive compatible and contracts may not be enforceable, refer to
[2] for the case of private core. The commodity space in our model is an ordered
Banach space having an interior point in its positive cone. As stated in [20], infinite
dimensional commodity spaces arise if one allows an infinite variation in any of
the characteristics describing commodities. These characteristics could be physical
properties, locations or the time of delivery; and an infinite variation in time occurs
whenever infinitely many time periods are considered in each state of nature.

The purpose of this paper is to explore the main results in [23, 24, 30, 35] to
an asymmetric information economy whose commodity space is an ordered Banach
space admitting an interior point its positive cone and feasibility is defined as exact,
where the information of each agent is given by any information sharing rule. It is
clear from Examples 3 and 4 in [21] that such extensions are impossible unless we
use some assumptions on information sharing rules. It can be also checked that the
approaches in [21] for the proof of Schmeidler’s theorem are not directly applicable
for the case of information sharing rule with infinite dimensional commodity spaces
and the exact feasibility condition (see Bhowmik and Cao [6] for a similar result in
the case of the private core). It is crucial to remark that if the number of commodi-
ties is finite then also the techniques for Vind’s theorem under the exact feasibility
condition cannot be the same as in [21], since blocking is difficult by large coalitions
under any arbitrary information structure and the exact feasibility condition. We
establish these results under mild assumptions. The extended version of Vind’s
theorem in our framework allows us to obtain an extension of the main result of
Hervés-Beloso et al. [21]. For particular interests, we also establish Grodal’s result
in our framework. In a mixed economy, we define the concept of a coalitionally fair
allocation using the information sharing rule. Thus, given an information sharing
rule, an allocation is called coalitionally fair if no coalition could redistribute among
its members the net trade of any other coalition in a way which would assign a pre-
ferred bundle to each of its members, where preferred bundles are measurable with
respect to the given information sharing rule. We show that Jaskold-Gabszewicz’s
result can be extended to an asymmetric information economy whose commodity
space is an ordered Banach space admitting an interior point in its positive cone
and information structure is general enough like [1, 21]. It is worth pointing out
that Jaskold-Gabszewicz’s approach is not directly applicable if (i) the commodity
space is of infinite dimension or (ii) agents have asymmetric information and the
feasibility condition is defined as exact. In fact, in the first case, Lyapunov’s con-
vexity theorem does not hold in its standard form and it is only true in a weaker
form. The last case deals with the information structure and thus, the blocking will
be difficult under the exact feasibility condition. The rest of the paper is organized
as follows. In Section 2, a general description of the model and the concept of
information sharing rule are provided. Section 3 deals with some technical lemmas
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which are useful in the proofs of the main results. An atomless economy is con-
sidered in Section 4, where extensions of Grodal, Schmeidler and Vind’s theorems
are obtained under information sharing rules and it is shown that a result similar
to the main result in [21] is also valid in our framework. In section 5, we establish
a relation between the core and the set of coalitionally fair allocations in a mixed
economy under the information sharing rule formation. Finally, we conclude our
paper with some remarks and open questions which basically give the limitation of
our main results.

2. Economic model and information sharing rule

In this section, we describe the basic model of a pure exchange asymmetric
information economy and discuss the concept of an information sharing rule, which
means the information that an agent can dispose of when she becomes a member
of a coalition.

2.1. Description of the model. We consider a standard mixed model of a pure
exchange economy with asymmetric information. The space of economic agents is
denoted by a measure space (T,T , µ) with a complete, finite, and positive measure
µ. Since µ(T ) < ∞, the set T can be decomposed into two parts: one is atomelss
and the other contains countably many atoms. That is, T = T0 ∪ T1, where T0 is
the atomless part and T1 is the countable union of atoms. Let

T0 = {S ∈ T : S ⊆ T0} and T1 = {S ∈ T : T1 ⊆ S}.
Thus, T0 (resp. T1) is the subfamily of T containing no atoms (resp. all atoms).
Denote by

T2 = T0 ∪T1 = {S ∈ T : S ∈ T0 or S ∈ T1}
the subfamily of T containing either no atoms or all atoms. The exogenous uncer-
tainty is described by a measurable space (Ω,G ), where Ω is a finite set denoting
all possible states of nature and the σ-algebra G denotes all events. Thus, G is
generated by a partition G (P∗) of Ω. The commodity space is BΩ, where B is an
ordered Banach space whose positive cone has an interior point. The order on B
is denoted by ≤, and B+ = {x ∈ B : x ≥ 0} denotes the positive cone of B. The
symbol x � 0 is employed to denote that x is an interior point of B+, and put
B++ = {x ∈ B+ : x � 0}. Suppose that BΩ is endowed with the point-wise alge-
braic operations, the point-wise order and the product norm. An element y ∈ BΩ

+

can be identified with the function y : Ω → B+ and vise-versa. The economy ex-
tends over two periods. In the first period, agents arrange contracts that may be
contingent on the realized state of nature. Consumption takes place in the second
period when agents receive their private information.

Each agent t ∈ T is associated with the consumption set BΩ
+. The initial and

private information of agent t is described by a partition Pt of Ω. Recall that a
signal on Ω with values in some set X is just a mapping f : Ω→ X. Note that any
partition P can be seen as a signal f : Ω → 2Ω defined by f(ω) = P(ω), where
P(ω) denotes the unique member of the partition P containing ω. Reciprocally,
a signal f : Ω → X induces a partition on Ω given by Pf = {f−1(s) : s ∈ f(Ω)}
and the unique member of this partition containing ω is f−1(s) if f(ω) = s. Thus,
the partition Pt gives a signal to agent t and if ω∗ is the true state of nature
in the second period then agent t observes Pt(ω∗). An assignment is a function
f : T × Ω → B+ such that f(·, ω) is Bochner integrable for all ω ∈ Ω. There is a
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fixed assignment a; a(t, ω) represents the initial endowment density of agent t in
the state of nature ω. It is assumed that a(t, ω) ∈ B++ for all (t, ω) ∈ T × Ω and
a(t, ·) is G -measurable for all t ∈ T . The preference of agent t is described by a
correspondence Pt : BΩ

+ ⇒ BΩ
+. For any assignment f , defined a correspondence

Pf : T ⇒ BΩ
+ such that Pf (t) = Pt(f(t, ·)) for all t ∈ T . The graph of Pf is defined

by

GrPf
=
{

(t, x) ∈ T ×BΩ
+ : x ∈ Pf (t)

}
.

We assume that GrPf
∈ T ⊗B(BΩ), where B(BΩ) is the Borel σ-algebra generated

by BΩ. In addition, suppose that (i) for all (t, x) ∈ T × BΩ
+, Pt(x) is open in BΩ

+;

(ii) for all t ∈ T , Pt is monotone in the sense that x+ y ∈ Pt(x) for all x ∈ BΩ
+ and

y ∈ BΩ
++; and (iii) for all (t, x) ∈ T1 × BΩ

+, Pt(x) is convex. Thus, the economy E
can be described as

E =
{

(T,T , µ);BΩ
+; (Pt, Pt, a(t, ·))t∈T

}
.

Now, consider a special case when each agent t is associated with a state dependent
utility function Ut : Ω×B+ → R and a prior belief, which is given by a probability
measure Qt on Ω. The ex ante expected utility and ex ante preference relation of
agent t for a random bundle x : Ω→ B+ are defined by

EQt(Ut(·, x(·))) =
∑
ω∈Ω

Ut(ω, x(ω))Qt(ω)

and

Pt(x) =
{
y ∈ BΩ

+ : EQt(Ut(·, y(·))) > EQt(Ut(·, x(·)))
}
,

respectively. For any k ≥ 1, the (k − 1)-simplex of Rk is defined as

∆k =

{
x = (x1, · · · , xk) ∈ Rk+ :

k∑
i=1

xi = 1

}
.

Consider a function ϕ : (T,T , µ) → ∆|Ω| defined by ϕ(t) = Qt for all t ∈ T . For
each ω ∈ Ω, define a function ψω : T × B+ → R by ψω(t, x) = Ut(ω, x). Now we
impose some assumptions in the case of ex ante expected utility formulation. The
first two of these are similar to those in [9, 6, 7, 16], and the last two are standard.

(A1) The function ϕ is measurable, where ∆|Ω| is endowed with the Borel structure.

(A2) For each ω ∈ Ω, the function ψω is Carathéodory, that is, ψω(·, x) is measur-
able for all x ∈ B+, and ψω(t, ·) is norm-continuous for all t ∈ T .

(A3) For each (t, ω) ∈ T × Ω, Ut(ω, x+ y) > Ut(ω, x) if x, y ∈ B+ with y � 0.

(A4) For each (t, ω) ∈ T1 × Ω, Ut(ω, ·) is concave.

By (A1) and (A2), it can be easily verified that GrPf
∈ T ⊗B(B). Note that the

conditions (i)-(iii) are also satisfied under the above assumptions.

2.2. Information sharing rule. Any set in T is called a coalition of E . A null
coalition of E is a coalition whose measure is zero. If S and S′ are two coalitions of E
with S′ ⊆ S then S′ is termed as a sub-coalition of S. In a framework of asymmetric
information, one of the natural questions is that how the initial information of an
agent is altered when she becomes a member of a coalition S. In addition, one may
also think about the information available for an agent in a sub-coalition S′ of S.
Are the information of a common agent in S and S′ identical? In this subsection, we
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model these situations using the concept of an information sharing rule, introduced
in introduced in [1, 21].

The family of partitions of Ω is denoted by P. Since Ω is finite, P also has finitely
many elements: P1, · · · ,Pn. Throughout, by Pi-measurability of a function, we
mean the function is measurable with respect to the σ-algebra generated by Pi. It
is assumed that the set Ti = {t ∈ T : Pt = Pi} is T -measurable for all 1 ≤ i ≤ n.
For any non-null coalition S, let Si = S ∩ Ti and P(S) = {i : µ(Si) > 0}. Thus,
{Pi : i ∈ P(S)} is the structures of information available in the non-null coalition
S. There are three well known information sharing rules in the literature: the
coarse information sharing rule, the fine information sharing rule and the private
information sharing rule for S. To define these information sharing rules, recall
first that a partition P of Ω is finer than a partition Q of Ω, denoted by P � Q,
if for every A ∈ P there is some B ∈ Q such that A ⊆ B. In such a case, Q is
termed as coarser than P. Let Q be a subfamily of P. The meet of Q, denoted
by
∧
Q, is the finest partition that is coarser than every P ∈ Q. It was given

in Ore [28] that two points ω and ω′ belong to the same element of
∧

Q if there
is a set {ω1, · · · , ωk} of states of nature such that ω1 = ω, ωk = ω′ and for each
1 ≤ i ≤ k − 1, ωi and ωi+1 belong to the same element of some partition P ∈ Q.
Moreover, the join of Q, denoted by

∨
Q, is the coarsest partition that is finer than

every P ∈ Q. It can be shown that∨
Q =

{ ⋂
P∈Q

AP : AP ∈P for all P ∈ Q and
⋂

P∈Q

AP 6= ∅

}
.

The coarse information sharing rule, the fine information sharing rule and the
private information sharing rule are rules that assign to each non-null coalition S
and each agent in S the information partition

∧
{Pi : i ∈ P(S)},

∨
{Pi : i ∈ P(S)}

and Pt, respectively. Next, we give the formal definition of an information sharing
rule.

Definition 2.1. An information sharing rule is a rule Υ that assigns a collection
Υ(S) = {Υt(S) : t ∈ S} of information partitions of Ω to every non-null coalition
S, where Υt(S) denotes the information partition that an agent t ∈ S can have
under Υ.

The partition Υt(S) is intended as the signal that agent t receives when she
becomes a member of S. Thus, it is the information that agent t is able to use once
the coalition S has been formed. Given two information sharing rules Υ1 and Υ2,
the rule Υ1 is said to be finer than Υ2, denoted by Υ1 � Υ2, if Υ1

t (S) � Υ2
t (S) for

each non-null coalition S and each t ∈ S. In what follows, we give an example of an
information sharing rule which differs from the coarse, fine and private information
sharing rules.

Example 2.2. Let T = [0, 1] ∪ {2}. Suppose that (T,T , µ) is a measure space
of agents with µ(2) = 1 and [0, 1] is endowed with the Borel σ-algebra and the
Lebesgue measure. Assume Ω = {ω1, ω2, ω3}, and define the initial information of
each agent by

Pt =


{{ω1, ω2}, {ω3}}, if t ∈

[
0, 1

2

]
;

{{ω1, ω3}, {ω2}}, if t ∈
(

1
2 , 1
]
;

{{ω2, ω3}, {ω1}}, if t = {2}.
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Consider an information sharing rule Υ defined by

Υt(S) =


∧
{Pt : t ∈ S}, if µ(S) < 1

2 ;

Pt, if 1
2 ≤ µ(S) ≤ 3

4 ;∨
{Pt : t ∈ S}, if µ(S) > 3

4 .

For any coalition S, let TS = {R ∈ T : R ⊆ S} and µS the restriction of µ
on S. Throughout the rest of the paper, we use the following assumptions on an
information sharing rule Υ.

(P1) If S′ is a non-null sub-coalition of a non-null coalition S with P(S′) = P(S),
then Υt(S

′) = Υt(S) for all t ∈ S′.

(P2) If S′ is a non-null sub-coalition of a non-null coalition S, then Υt(S) � Υt(S
′)

for all t ∈ S′.

(P3) For any non-null coalition S, the function ξS : (S,TS , µS) → P, defined by
ξS(t) = Υt(S), is measurable when P is endowed with the power set as its σ-algebra.

The following example shows that the assumptions (P1) and (P2) are indepen-
dent.

Example 2.3. Let Ω = {ω1, ω2} and suppose that T = [0, 1] is endowed with the
Borel σ-algebra and the Lebesgue measure. The initial information of each agent
is given by

Pt =

{
{{ω1}, {ω2}}, if t ∈

[
0, 1

2

]
;

{ω1, ω2}, if t ∈
(

1
2 , 1
]
.

Consider two information sharing rules Υ1 and Υ2 defined by

Υ1
t (S) =

∧
{Pt : t ∈ S}

and

Υ2
t (S) =

{
Pt, if µ(S) ≤ 1

2 ;∨
{Pt : t ∈ S}, if µ(S) > 1

2 .

Note that Υ1 satisfies (P1). However, it fails to satisfy (P2). Indeed, if t ∈
[
0, 1

2

]
then Υ1

t (
[
0, 1

2

]
) = {{ω1}, {ω2}} and Υ1

t ([0, 1]) = {ω1, ω2}. On the other hand,

(P2) holds for Υ2. But, Υ2 does not satisfy (P1) since Υ2
t ([0, 1]) = {{ω1}, {ω2}} if

t ∈ [0, 1] and

Υ2
t

([
1

3
,

2

3

])
=

{
{{ω1}, {ω2}}, if t ∈

[
1
3 ,

1
2

]
;

{ω1, ω2}, if t ∈
(

1
2 ,

2
3

]
.

Remark 2.4. As mentioned in Hervés-Beloso et al. [21], (P1) claims that if one
non-null coalition is contained in the other coalition and they have the same in-
formational structure then any agent in the smaller coalition can use the same
information as the information she can use in the larger coalition. The assumption
(P2) says that if we consider an initial coalition and some additional agents join
in the later stage then the members in the original coalition cannot become worse
off from an informational point of view. An information sharing rule satisfying
(P2) is referred to as nested by Allen [1] and using this assumption, she established
the non-emptiness of the core for NTU games with finitely many players in the
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asymmetric information framework. The assumption (P3) is equivalence to the
TS-measurability of

SΥ
k = {t ∈ S : Υt(S) = Pk}

for all Pk ∈ P and any non-null coalition S. Thus, the assumption (P3) is satisfied
if Υ is either the coarse, fine or private information sharing rule. Note that the
assumptions (P1)-(P3) are restricted on only non-null coalitions since informational
structures for null coalitions do not have influence on the proofs of our main results.

3. Blocking Mechanism

In this section, we first introduce one of the main concepts of this paper. Then
we present some technical lemmas, and these lemmas will be employed to prove the
main results in the next two sections.

For any information sharing rule Υ and non-null coalition S, an assignment f is
termed as an Υ(S)-assignment if f(t, ·) − a(t, ·) is Υt(S)-measurable µ-a.e. on S.
Let F ⊆ P denote the informational structure that associates with each agent t a
signal Ft. An assignment f is called an allocation if f(t, ·)−a(t, ·) is Ft-measurable
µ-a.e. and ∫

T

f(·, ω)dµ =

∫
T

a(·, ω)dµ

for all ω ∈ Ω. An allocation f is said to be Υ-blocked by a non-null coalition S in
E if there is an Υ(S)-assignment g such that g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S and∫

S

g(·, ω)dµ =

∫
S

a(·, ω)dµ

for all ω ∈ Ω. The core3 of E under the information sharing rule Υ, denoted by
C Υ(E ), is the set of allocations that are not Υ-blocked by any non-null coalition.
In particular, (i) if Ft = Pt for all t ∈ T and Υ is the private information sharing
rule, then the corresponding core is known as the private core of E ; (ii) if Ft = Pt

for all t ∈ T and Υ is the fine information sharing rule, then the corresponding core
is termed as the fine core of E ; (iii) if Ft =

∨
{Pt : t ∈ T} for all t ∈ T and Υ

is the fine information sharing rule, then the corresponding core is called the weak
fine core of E . It is clear that the fine core is a subset of the weak fine core. Let 1Ω

denote the characteristic function on Ω, that is, 1Ω(ω) = 1 for all ω ∈ Ω. For any
two non-null coalitions S,R with S ⊆ R and information sharing rule Υ satisfying
(P3), define the set

IΥ
(S,R) =

{
k : 1 ≤ k ≤ n and µ

(
S ∩RΥ

k

)
> 0
}
.

Lemma 3.1. Assume (P3) is satisfied for an information sharing rule Υ. Suppose
that f is an assignment and S is a non-null coalition. If g is an Υ(S)-assignment
and g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S, then there exist an λ ∈ (0, 1), a zk ∈ B++,

3Our core concept is similar to that in Allen [1]. The only difference is that in her definition,
f is an allocation means f(t, ·) is an Υt(T )-measurable µ-a.e. Thus, under the assumption that
Υt(T ) � Ft µ-a.e., our definition is exactly the same as that in Allen [1]. We do not need this

assumption to prove some of our results and thus, we take a slightly different definition of the
core.
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and an assignment hk such that hk(t, ·) ∈ Pt(f(t, ·)) and hk(t, ·) − a(t, ·) is Pk-
measurable µ-a.e. on SΥ

k , and∫
SΥ
k

(hk − a)dµ+ z1Ω = (1− λ)

∫
SΥ
k

(g − a)dµ

for all k ∈ IΥ
(S,S).

Proof. Since f and g are Bochner integrable, there exist a sub-coalition R of S and a
separable closed linear subspace Z of BΩ such that f(R, ·)∪g(R, ·) ⊆ Z, µ(S\R) = 0
and g(t, ·) ∈ Pt(f(t, ·)) for all t ∈ R. Let {cm : m ≥ 1} be a monotonically
decreasing sequence in (0, 1) converging to 0. Define a function gm : R → Z+ by
gm(t) = (1 − cm)g(t, ·) for all t ∈ R. Note that gm+1(t) ≥ gm(t) for all t ∈ R and
m ≥ 1. For all k ∈ IΥ

(R,R), define Qk : RΥ
k ⇒ Z+ such that Qk(t) = Z+ ∩ Pf (t) for

all t ∈ RΥ
k . Since GrPf

is T ⊗B(BΩ)-measurable, GrQk ∈ TR ⊗B(Z). For all
m ≥ 1, let

Akm =
{
t ∈ RΥ

k : gm(t) ∈ Qk(t)
}

and

Bkm = GrQk ∩
{

(t, gm(t)) : t ∈ RΥ
k

}
.

Obviously, Akm is the projection of Bkm on RΥ
k . Note that{

(t, gm(t)) : t ∈ RΥ
k

}
∈ TR ⊗B(Z)

for all m ≥ 1. Thus, by the measurable projection theorem, one has Akm ∈ TR for
all m ≥ 1. Define

Rkm =
⋂{

Akr : r ≥ m
}
.

Since Pf (t) is open in BΩ
+ for all t ∈ R, one obtains

RΥ
k =

⋃{
Rkm : m ≥ 1

}
.

Since {Rkm : m ≥ 1} is monotonically increasing, there must exist some m0 ≥ 1
such that µ(Rkm0

) > 0 for all k ∈ IΥ
(R,R). It is easy to verify that4 there exist an

element b ∈ B++ and a non-null sub-coalition Ek of Rkm0
such that a(t, ω) � 2b

for all (t, ω) ∈ Ek × Ω and k ∈ IΥ
(R,R). Without any loss of generality, we assume

that µ(Ek) < µ(Rkm0
). Thus, one can find some m1 ≥ m0 such that

b− 1

µ(Ek)

∫
RΥ

k \Rk
m1

(g(·, ω)− a(·, ω))dµ� 0

for all ω ∈ Ω and k ∈ IΥ
(R,R). Pick an k ∈ IΥ

(R,R) and define yk : Ek ×Ω→ B+ such

that

yk(t, ω) = a(t, ω)− b− 1

µ(Ek)

∫
RΥ

k \Rk
m1

(g(·, ω)− a(·, ω))dµ.

4To see this, let c ∈ B++ and define

Dk
m =

{
t ∈ RΥ

k : a(t, ω)�
c

m
for all ω ∈ Ω

}
for all m ≥ 1 and k ∈ IΥ

(R,R)
. Then {Dk

m : m ≥ 1} is monotonically increasing and RΥ
k =

⋃
{Dk

m :

m ≥ 1}.
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So, yk(t, ω) ∈ B++ for all (t, ω) ∈ Ek×Ω. Consider an assignment hk : T×Ω→ B+

defined by

hk(t, ω) =


(1− cm0

)g(t, ω) + cm0
yk(t, ω), if (t, ω) ∈ Ek × Ω;

(1− cm0)g(t, ω) + cm0a(t, ω), if (t, ω) ∈ (Rkm1
\ Ek)× Ω;

g(t, ω), otherwise.

It follows from the definition of Rkm1
and the monotonicity of preferences that

hk(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on Rkm1
. Thus, hk(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on RΥ

k . Using

the Pk-measurability of g(t, ·) − a(t, ·), one can easily show that hk(t, ·) − a(t, ·)
is Pk-measurable µ-a.e. on RΥ

k . Put, λ = cm0
and zk = cm0

bµ(Ek). It can be
checked that ∫

RΥ
k

(hk − a)dµ+ zk1Ω = (1− λ)

∫
RΥ

k

(g − a)dµ.

Since µ(RΥ
k ) = µ(SΥ

k ) and IΥ
(R,R) = IΥ

(S,S), the proof has been completed. � �

Corollary 3.2. Under the hypothesis of Lemma 3.1, there exist a λ ∈ (0, 1), a
z ∈ B++, and an Υ(S)-assignment h satisfying h(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S and∫

S

(h− a)dµ+ z1Ω = (1− λ)

∫
S

(g − a)dµ,

where
z =

∑
k∈IΥ

(S,S)

zk

and the assignment h is defined by

h(t, ω) =

{
hk(t, ω), if (t, ω) ∈ SΥ

k × Ω;

g(t, ω), otherwise.

Let S be a coalition of E . For any allocation f , non-null coalition R ⊇ S and

information sharing rule Υ, define a correspondence Q
{Υ,R}
f : (S,TS , µS) ⇒ BΩ

+

such that

Q
{Υ,R}
f (t) = {x ∈ Pf (t) : x− a(t, ·) is Υt(R)-measurable} .

An integrable selection of the correspondence Q
{Υ,R}
f is a Bochner integrable func-

tion g : (S,TS , µS) → BΩ
+ such that g(t) ∈ Q{Υ,R}f (t) µS-a.e. The integration of

Q
{Υ,R}
f over a sub-coalition S0 of S in the sense of Aumann [5] is a subset of BΩ

+,
defined as∫

S0

Q
{Υ,R}
f dµ =

{∫
S0

gdµ : g is an integrable selection of Q
{Υ,R}
f

}
.

Since Pf (t) is convex for all t ∈ T1, one obtains the convexity of
∫
S0
Q
{Υ,R}
f dµ. In

proofs of the next two lemmas, this result will be used.

Lemma 3.3. Suppose that the assumption (P3) is satisfied for an information
sharing rule Υ, 0 < λ < 1 and z ∈ B++. Let S,R be two non-null coalitions such
that S ⊆ R. Assume f, g, h are three assignments satisfying∫

S∩RΥ
k

gdµ,

∫
S∩RΥ

k

hdµ ∈ cl

∫
S∩RΥ

k

Q
{Υ,R}
f dµ
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for all k ∈ IΥ
(S,R). Then there exists an assignment y such that y(t, ·) ∈ Pf (t) and

y(t, ·)− a(t, ·) is Υt(R)-measurable µ-a.e. on S, and∫
S

(y − a)dµ = λ

∫
S

(g − a)dµ+ (1− λ)

∫
S

(h− a)dµ+ z1Ω.

Proof. Fix an k ∈ IΥ
(S,R). Since cl

∫
S∩RΥ

k
Q
{Υ,R}
f dµ is convex,

λ

∫
S∩RΥ

k

gdµ+ (1− λ)

∫
S∩RΥ

k

hdµ ∈ cl

∫
S∩RΥ

k

Q
{Υ,R}
f dµ.

Choose an open neighbourhood W of 0 in B such that
z

|IΥ
(S,R)|

−W ⊆ B++,

where |IΥ
(S,R)| denotes the number of elements of IΥ

(S,R). It follows that(
λ

∫
S∩RΥ

k

gdµ+ (1− λ)

∫
S∩RΥ

k

hdµ+WΩ

)⋂∫
S∩RΥ

k

Q
{Υ,R}
f dµ 6= ∅.

So, there exist a function w : Ω→W and an integrable selection x of Q
{Υ,R}
f such

that

λ

∫
S∩RΥ

k

gdµ+ (1− λ)

∫
S∩RΥ

k

hdµ+ w =

∫
S∩RΥ

k

xdµ,

which is equivalent to

λ

∫
S∩RΥ

k

(g − a)dµ+ (1− λ)

∫
S∩RΥ

k

(h− a)dµ+ w =

∫
S∩RΥ

k

(x− a)dµ.

It follows from the last equation that w is Pk-measurable. Define an assignment
yk : T × Ω→ B+ such that

yk(t, ω) =

 x(t, ω) + 1
µ(S∩RΥ

k )

(
z

|IΥ
(S,R)

| − w(ω)

)
, if (t, ω) ∈ (S ∩RΥ

k )× Ω;

h(t, ω), otherwise.

So, one has yk(t, ·) ∈ Q{Υ,R}f (t) µ-a.e. on S ∩RΥ
k and∫

S∩RΥ
k

ykdµ = λ

∫
S∩RΥ

k

gdµ+ (1− λ)

∫
S∩RΥ

k

hdµ+
z

|IΥ
(S,R)|

1Ω.

Thus, the assignment y : T × Ω→ B+, defined by

y(t, ω) =

{
yk(t, ω), if (t, ω) ∈ (S ∩RΥ

k )× Ω, k ∈ IΥ
(S,R);

h(t, ω), otherwise,

is desired. � �

Corollary 3.4. Suppose that the assumption (P3) is satisfied for an information
sharing rule Υ, 0 < λ < 1 and z ∈ B++. Let f be an assignment and S a non-null
coalition. If g and h are two Υ(S)-assignments such that g(t, ·), h(t, ·) ∈ Pf (t) µ-
a.e. on S, then there is an Υ(S)-assignment y such that y(t, ·) ∈ Pf (t) µ-a.e. on
S and ∫

S

(y − a)dµ = λ

∫
S

(g − a)dµ+ (1− λ)

∫
S

(h− a)dµ+ z1Ω.
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Corollary 3.5. Assume (P2) and (P3) are satisfied for an information sharing
rule Υ, 0 < λ < 1 and z ∈ B++. Suppose that f is an Υ(T )-assignment and S
is a non-null coalition. If g is an Υ(S)-assignment such that g(t, ·) ∈ Pf (t) µ-a.e.
on S, then there is an assignment y such that y(t, ·) ∈ Pf (t) and y(t, ·) − a(t, ·) is
Υt(T )-measurable µ-a.e. on S, and∫

S

(y − a)dµ = λ

∫
S

(g − a)dµ+ (1− λ)

∫
S

(f − a)dµ+ z1Ω.

Lemma 3.6. Assume (P3) is satisfied for an information sharing rule Υ, 0 < λ < 1
and z ∈ B++. Let f be an assignment and S ∈ T0 a non-null coalition. Suppose
also that R is a coalition such that S ⊆ R and g is an assignment such that∫

Si∩RΥ
k

gdµ ∈ cl

∫
Si∩RΥ

k

Q
{Υ,R}
f dµ

for all k ∈ IΥ
(Si,R) and i ∈ P(S). Then there exist a sub-coalition S′ of S and an

assignment h such that (i) µ(S′) = λµ(S) and P(S′) = P(S); (ii) h(t, ·) ∈ Pf (t)
and h(t, ·)− a(t, ·) is Υt(R)-measurable µ-a.e. on S′, and∫

S′
(h− a)dµ = λ

∫
S

(g − a)dµ+ z1Ω.

Proof. Pick an i ∈ P(S) and an k ∈ IΥ
(Si,R). Let W be an open neighbourhood of

0 in B such that
z

2λ
∑
i∈P(S) |IΥ

(Si,R)|
−W ⊆ B++.

Applying an argument similar to that in the proof of Lemma 3.3, one obtains an

assignment yik such that yik(t, ·) ∈ Q{Υ,R}f (t) µ-a.e. on Si ∩RΥ
k and∫

Si∩RΥ
k

yikdµ =

∫
Si∩RΥ

k

gdµ+
z

2λ
∑
i∈P(S) |IΥ

(Si,R)|
1Ω.

By Lemma 3.3 in Bhowmik and Cao [6], one can find a sequence {Sikn : n ≥ 1} ⊆
TSi∩RΥ

k
such that µ(Sikn ) = λµ(Si ∩RΥ

k ) for all n ≥ 1 and

lim
n→∞

∫
Sik
n

(yik − a)dµ = λ

∫
Si∩RΥ

k

(yik − a)dµ.

The function xikn : Ω→ B, defined by

xikn (ω) = λ

∫
Si∩RΥ

k

(yik(·, ω)− a(·, ω))dµ−
∫
Sik
n

(yik(·, ω)− a(·, ω))dµ,

is Pk-measurable for all n ≥ 1 and limn→∞ ‖xikn (ω)‖ = 0 for all ω ∈ Ω. Choose an
nik ≥ 1 such that

z

2
∑
i∈P(S) |IΥ

(Si,R)|
+ xiknik

(ω)� 0

for each ω ∈ Ω and then consider a function hik : Siknik
× Ω→ B+ defined by

hik(t, ω) = yik(t, ω) +
1

µ(Siknik
)

(
z

2
∑
i∈P(S) |IΥ

(Si,R)|
+ xiknik

(ω)

)
.
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Obviously, hik(t, ·) ∈ Q{Υ,R}f (t) µ-a.e. on Siknik
and∫

Sik
nik

(hik − a)dµ = λ

∫
Si∩RΥ

k

(g − a)dµ+
z∑

i∈P(S) |IΥ
(S,R)|

1Ω.

Put,

S′ =
⋃{

Siknik
: i ∈ P(S), k ∈ IΥ

(Si,R)

}
.

Note that µ(S′) = λµ(S) and P(S′) = P(S). Thus, the sub-coalition S′ of S and
the assignment h : T ×Ω→ B+, defined by h(t, ω) = hik(t, ω), if (t, ω) ∈ Siknik

×Ω;
and h(t, ω) = g(t, ω), otherwise, are desired. � �

Corollary 3.7. Suppose that the assumption (P3) is satisfied for an information
sharing rule Υ, 0 < λ < 1 and z ∈ B++. Let f be an assignment and S ∈ T0 a
non-null coalition. If g is an Υ(S)-assignment such that∫

Si∩SΥ
k

gdµ ∈ cl

∫
Si∩SΥ

k

Pfdµ

for all k ∈ IΥ
(Si,S) and i ∈ P(S), then there are a sub-coalition S′ of S and an

assignment h such that (i) µ(S′) = λµ(S) and P(S) = P(S′); (ii) h(t, ·) ∈ Pf (t)
and h(t, ·)− a(t, ·) is Υt(S)-measurable µ-a.e. on S′, and∫

S′
(h− a)dµ = λ

∫
S

(g − a)dµ+ z1Ω.

Moreover, if (P1) is also satisfied for Υ, then h is an Υ(S′)-assignment.

Corollary 3.8. Assume (P3) is satisfied for an information sharing rule Υ, 0 <
λ < 1 and z ∈ B++. Let f be an assignment and S ∈ T0 a non-null coalition.
Suppose that g is an assignment such that g(t, ·)−a(t, ·) is Υt(T )-measurable µ-a.e.
on S and ∫

Si∩TΥ
k

gdµ ∈ cl

∫
Si∩TΥ

k

Pfdµ

for all k ∈ IΥ
(Si,T ) and i ∈ P(S). Then there exist a sub-coalition S′ of S and an

assignment h such that (i) µ(S′) = λµ(S) and P(S′) = P(S); (ii) h(t, ·) ∈ Pf (t)
and h(t, ·)− a(t, ·) is Υt(T )-measurable µ-a.e. on S′, and∫

S′
(h− a)dµ = λ

∫
S

(g − a)dµ+ z1Ω.

4. Core Solutions in Atomless Economies

In this section, we put our attention to only atomless economies. It is well
known that the information transmission within coalitions is costly: the larger
the coalition, the more difficult to communicate among its members. Thus, it
is reasonable to consider small coalitions. As mentioned in Hervés-Beloso et al.
[21], one can argue in a symmetric way whenever coalitions are large. In fact,
if a coalition becomes a member of a large coalition then she believes that her
private information is negligible and/ irrelevant as it is already available within the
coalition. As a result, she makes her private information public within the coalition.
Thus, it is also important to consider large coalitions. This section explores the
idea of finding a coalition of any size as well as a characterization of the core in
terms of the core for higher information structure.
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4.1. Blocking coalition for a given measure. Recall that the result in [30] rely
heavily on Lyapunov’s convexity theorem, which is not true in its exact form in
an infinite dimensional setting. Thus, the exact extension of Schmeidler’s result
is not possible in an economy with infinitely many commodities, as mentioned in
[18]. Indeed, Núñez [27] gave an example of an atomless economy, with infinitely
many commodities, where an assignment f is blocked by the grand coalition via
an assignment g, but there is no other different coalition blocking f via the same
allocation g. Despite the impossibility for obtaining the result in the exact strong
form, Hervés-Beloso [18] first established a variation of Schmeidler’s result in an in-
finite dimensional setting. In particular, they showed that in continuum economies
whose commodity space is the space of bounded sequences if an assignment f is
blocked by a coalition S via g then for every ε ∈ (0, µ(S)) there is a sub-coalition
S′ and an assignment g′ such that f is blocked by S′ via g′. In the case of asym-
metric information, Hervés-Beloso et al. [19, 20] obtained results similar to those in
[30, 35] in an economy with either finite dimensional commodity space or the real
bounded sequences as the commodity spaces. Later, these results were generalized
to an atomless economy with an ordered Banach space whose positive cone has an
interior point as the commodity space, refer to [16]. Since the results obtained so
far in an asymmetric economy without exact feasibility condition, Bhowmik and
Cao [6] proved these results in an asymmetric information economy with an atom-
less measure space of agents, an ordered Banach space whose positive cone has an
interior point as the commodity space and the exact feasibility condition. Recently,
Hervés-Beloso et al. [21] established similar results under information sharing rule
in economies with finitely many commodities. We now give an extension of Propo-
sition 5.1 in an economy with infinitely many commodities and the exact feasibility
condition.

Theorem 4.1. Suppose that the assumptions (P1) and (P3) are satisfied for an
information sharing rule Υ and that T = T0. If an allocation f is Υ-blocked by a
non-null coalition S, then f is also Υ-blocked by a coalition Sε with µ(Sε) = ε for
any ε ∈ (0, µ(S)).

Proof. Suppose that f is Υ-blocked by a non-null coalition S via g. Choose an
ε ∈ (0, µ(S)). Let α ∈ (0, 1) be such that ε = αµ(S). It follows from Corollary
3.2 that there are an Υ(S)-assignment h, a z ∈ B++ and a λ ∈ (0, 1) such that
h(t, ·) ∈ Pf (t) µ-a.e. on S and∫

S

(h− a)dµ+
z

α
1Ω = (1− λ)

∫
S

(g − a)dµ = 0.

By Corollary 3.7, there exist a sub-coalition S′ of S with µ(S′) = αµ(S) and an
Υ(S′)-assignment y such that y(t, ·) ∈ Pf (t) µ-a.e. on S′ and∫

S′
(y − a)dµ = α

∫
S

(h− a)dµ+ z1Ω.

Combining the last two equalities, one obtains
∫
S′(y − a)dµ = 0. Thus, f is Υ-

blocked by the coalition S′ via y. This completes the proof. � �

Remark 4.2. The assumption (P1) is essential to extend Schmeidler’s theorem to
an economy with finitely many commodities under any information sharing rule, as
noted in Hervés-Beloso et al. [21]. Similar to Hervés-Beloso et al. [21], it can be
verified that the assumption (P1) is enough to prove Theorem 4.1 for an economy
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with finitely many commodities and the exact feasibility condition. However, to
get a positive result in an infinite dimensional setting, the assumption (P3) plays
a crucial role to overcome the difficulty with weak form of Lyapunov’s convexity
theorem. Thus, at this stage, it is unclear that whether the conclusion of Theorem
4.1 is positive in an infinite dimensional setting without this additional assumption.

Next, we derive an extension of the main result in Grodal [23] under the formu-
lation of an information sharing rule.

Theorem 4.3. Suppose that (P1) and (P3) are satisfied for an information sharing
rule Υ and that T = T0. Let T be endowed with a pseudo-metric which makes T a
separable topological space such that B(T ) ⊆ T . If an allocation f is Υ-blocked by a
non-null coalition, then for every ε, δ > 0 there is a coalition R such that µ(R) ≤ ε
and f is Υ-blocked by R via some assignment y; and R =

⋃
{Ri : 1 ≤ i ≤ m} for a

finite collection of coalitions {R1, · · · , Rm} with the diameter of Ri is smaller than
δ and y is Υ(Ri)-assignment for all i = 1, · · · ,m.

Proof. By Theorem 4.1, there are a non-null coalition S and an assignment g such
that f is Υ-blocked by S via g and µ(S) ≤ ε. By Lemma 3.1, there exist a λ ∈ (0, 1),
a zk ∈ B++ and an assignment hk such that hk(t, ·) ∈ Pt(f(t, ·)) and hk(t, ·)−a(t, ·)
is Pk-measurable µ-a.e. on SΥ

k , and∫
SΥ
k

(hk − a)dµ+ zk1Ω = (1− λ)

∫
SΥ
k

(g − a)dµ

for all k ∈ IΥ
(S,S). For every k ∈ IΥ

(S,S) and non-null sub-coalition E of SΥ
k , let

bkE =
1

µ(E)

[∫
SΥ
k \E

(hk − a)dµ+ zk1Ω

]
.

Choose an α > 0 such that for all k ∈ IΥ
(S,S) and non-null coalition E ⊆ SΥ

k with

µ(SΥ
k \E) < α, one has bkE ∈ B++. Pick an k ∈ IΥ

(S,S) and let Ek be a sub-coalition

of SΥ
k such that µ(SΥ

k \ Ek) < α. Define yEk : Ek × Ω→ B+ by letting

yEk(t, ω) = hk(t, ω) + bkEk
(ω)

for all (t, ω) ∈ Ek × Ω. Clearly, yEk(t, ·) ∈ Pf (t) and yEk(t, ·) − a(t, ·) is Pk-
measurable µ-a.e. on Ek. Further,∫

Ek

(
yEk − a

)
dµ = (1− λ)

∫
SΥ
k

(g − a)dµ.

Thus, for each non-null sub-coalition E of S with µ(S \E) < δ, one has an assign-
ment y such that y(t, ·) ∈ Pf (t) and y(t, ·) − a(t, ·) is Υt(S)-measurable µ-a.e. on
E, and ∫

E∩SΥ
k

(y − a) dµ = (1− λ)

∫
SΥ
k

(g − a)dµ.

for all k ∈ IΥ
(S,S). As a result, one obtains∫

E

(y − a) dµ = (1− λ)

∫
S

(g − a)dµ = 0.
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For each i ∈ P(S), let {tim : m ≥ 1} be a sequence dense in Si. For all m ≥ 1, put

Sim = B

(
tim,

δ

2|P(S)|

)
.

Let

Ai1 = Si1 and Aim = Sim \ {Sij : 1 ≤ j < m}

for all m ≥ 2. For each i ∈ P(S), select some mi such that µ(Si \Dmi
) < δ

|P(S)| ,

where

Dmi
=
⋃{

Aim : 1 ≤ m ≤ mi

}
.

So, by decomposing each Aim as a union of mutually disjoint non-null coalitions5 if
necessary, one can assume that there is some m0 such that for each i ∈ P(S), there
is a family Ri = {Rim : 1 ≤ m ≤ m0} of coalitions satisfying the diameter of each
Rim is less than δ

|P(S)| and

µ

(
Si \

m0⋃
m=1

Rim

)
<

δ

|P(S)|
.

For all 1 ≤ m ≤ m0, define

Rm =
⋃{

Rim : i ∈ P(S)
}

and R =
⋃
{Rm : 1 ≤ m ≤ m0} .

Note that P(Rm) = P(R) = P(S). Since µ(S \ R) < δ, f is Υ-blocked by R via
some assignment y, and y is Υ(Rm)-assignment for all 1 ≤ m ≤ m0. � �

We now intend to prove an extension of Vind’s theorem under the settings of an
information sharing rule and the exact feasibility. Such a result is not necessarily
true without some additional assumptions as the following example shows.

Example 4.4. Consider an economy with Ω = {ω1, ω2, ω3}; one commodity in each
state; and the space of agents is [0, 3] with the Borel σ-algebra and the Lebesgue
measure. Assume that

Pt =


{{ω1, ω2}, {ω3}}, if t ∈ [0, 1);

{{ω1, ω3}, {ω2}}, if t ∈ [1, 2);

{ω1, ω2, ω3}, if t ∈ [2, 3],

and the preference of each agent t is represented by a utility function Ut, where
Ut : R3

+ → R is defined by

Ut(x, y, z) =


x+ y + z, if t ∈ [0, 1);

x+ z, if t ∈ [1, 2);

z, if t ∈ [2, 3].

Let Ft =
∨
{Pt : t ∈ [0, 3]} = {{ω1}, {ω2}, {ω3}} and a(t, ωi) = 4 for all t ∈ T and

i = 1, 2, 3. Suppose that Υ is the private information sharing rule. Consider an

5Note that the separability of T is used to get a finite collection {Ai
m : 1 ≤ m ≤ mi} of open

balls for each i ∈ P(S). Then, we apply the standard arguments of set theory to obtain a family

of mutually disjoint non-null coalitions (not necessarily intervals) containing the same number of
elements for each i ∈ P(S).
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allocation f defined by

f(t, ·) =


(11, 0, 0), if t ∈ [0, 1);

(1, 12, 0), if t ∈ [1, 2);

(0, 0, 12), if t ∈ [2, 3].

Note that f is Υ-blocked by all non-null coalitions contained in [0, 1), but it cannot
be Υ-blocked by any coalition whose measure is sufficiently close to 3.

Thus, to exploit the veto power of large coalitions, we now give an assumption
on the informational structure F .

(P4) For all t ∈ T , Υt(T ) � Ft.

It is worthwhile to point out that the assumption (P4) is standard under the fine
or private information sharing rule whenever Ft = Pt for all t ∈ T . It is also true
in the case when Υt(T ) = Ft for all t ∈ T . As a particular case, it is true when Υ
is the fine information sharing rule and Ft is the pooled information for all t ∈ T .
However, it does not hold, in general, if (i) Ft = Pt and Υ is the coarse information
sharing rule; and (ii) Ft =

∨
{Pt : t ∈ T} and Υ is the private information sharing

rule. Note that (P4) is not satisfied in Example 4.4.

Theorem 4.5. Suppose that the assumptions (P1)-(P4) are satisfied for an infor-
mation sharing rule Υ and that T = T0. If an allocation f /∈ C Υ(E ), then f is
Υ-blocked by a coalition Sε with µ(Sε) = ε for any ε ∈ (0, µ(T )).

Proof. Suppose that f is Υ-blocked by a coalition S via g. By Theorem 4.1, for
any ε ∈ (0, µ(S)), there is a coalition Sε such that µ(Sε) = ε and f is Υ-blocked by
Sε. If µ(S) = µ(T ), the proof has been completed. So, assume that µ(S) < µ(T )
and choose an ε ∈ (µ(S), µ(T )). Define

α = 1− ε− µ(S)

µ(T \ S)
.

By Corollary 3.2, there are a λ ∈ (0, 1), a z ∈ B++ and an Υ(S)-assignment h such
that h(t) ∈ Pf (t) µ-a.e. on S and∫

S

(h− a)dµ+
2

α
z1Ω = (1− λ)

∫
S

(g − a)dµ = 0.

It follows from Corollary 3.5 that there is an assignment hε such that hε(t, ·) ∈ Pf (t)
and hε(t, ·)− a(t, ·) is Υt(T )-measurable µ-a.e. on S, and∫

S

(hε − a)dµ = α

∫
S

(h− a)dµ+ (1− α)

∫
S

(f − a)dµ+ z1Ω.

By Corollary 3.8, there are a sub-coalition R of T \ S and an assignment f̂ such

that µ(R) = (1−α)µ(T \S) and P(R) = P(T \S); f̂(t, ·) ∈ Pf (t) and f̂(t, ·)−a(t, ·)
is Υt(T )-measurable µ-a.e. on R, and∫

R

(f̂ − a)dµ = (1− α)

∫
T\S

(f − a)dµ+ z1Ω.
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Let D = S ∪ R then P(D) = P(T ). Consider an assignment y : T × Ω → B+

defined by

y(t, ω) =


hε(t, ω), if (t, ω) ∈ S × Ω;

f̂(t, ω), if (t, ω) ∈ R× Ω;

g(t, ω), otherwise.

It can be easily verified that f is Υ-blocked by the coalition D via y. � �

Corollary 4.6. Suppose that C Υ
ε (E ) denotes the set of allocations which are not Υ-

blocked by any coalition whose measure is equal to ε. Thus, it follows from Theorem
4.5 that C Υ(E ) = C Υ

ε (E ) for all ε ∈ (0, µ(T )).

Remark 4.7. We stress that the argument in the proof of Theorem 4.5 is very dif-
ferent from Hervés-Beloso et al. [21] even in the case of finitely many commodities.
In particular, Lemma 3.1 plays a vital role whose proof is not straightforward. If
the commodity space is an infinite dimensional space, then Lyapunov’s convexity
theorem does not hold. Hence, in an infinite dimensional setting, in addition to
Lemma 3.1, we need other results in the previous section to prove Theorem 4.5.

4.2. Information sharing rule for a given measure. In this subsection, we
define an information sharing rule, introduced by Hervés-Beloso et al. [21], that
depend on the measure of a coalition. As a consequence, we provide a sharper
characterization of core solutions.

An in Hervés-Beloso et al. [21], suppose that {Ak : k ∈ K} is a partition of
the interval [0, µ(T )]. It can be taken as a family of thresholds in the sense that
for each coalition S there is exactly one Ak such that µ(S) ∈ Ak. Further, each
Ak is associated with an information sharing rule Υk. If an agent t takes part in a
coalition S then she has only access to the specific information prescribed by the
sharing rule Υk0 if µ(S) ∈ Ak0

. We assume that there is an k0 ∈ K such that
Υk0 � Υk for all k ∈ K, Ak0 6= {µ(T )} and the assumptions (P1)-(P4) are satisfied

for Υk0 . We now define the information mechanism Υ̃, where information that an
agent t can dispose of when she becomes a member of coalition S is defined as

Υ̃t(S) = Υk
t (S) if µ(S) ∈ Ak. The next theorem can be seen as an extension of

Theorem 5.1 in Hervés-Beloso et al. [21] to an economy with an ordered Banach
space whose positive cone has an interior point as the commodity space and the
exact feasibility condition.

Theorem 4.8. Assume T = T0. Then C Υ̃(E ) = C Υk0
(E ).

Proof. Since C Υk0
(E ) ⊆ C Υ̃(E ), it only requires to show that C Υ̃(E ) ⊆ C Υk0

(E ).

Let f ∈ C Υ̃(E ) and assume that f /∈ C Υk0
(E ). Hence, there are a coalition S and

an Υk0(S)-assignment g such that g(t, ·) ∈ Pf (t) µ-a.e. on S and∫
S

g(·, ω)dµ =

∫
S

a(·, ω)dµ

for all ω ∈ Ω. Pick k ∈ K satisfying µ(S) ∈ Ak. If k = k0, we arrived at a
contradiction. Assume now that k 6= k0. By Theorem 4.5, there must exist some

coalition S̃ such that µ(S̃) ∈ Ak0
and f is Υk0-blocked by S̃. Thus, f /∈ C Υ̃(E ),

and this again yields a contradiction. � �
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Remark 4.9. Theorem 4.8 says that the core of E under the information sharing

rule Υ̃ depends on the finest information sharing rule associated with some thresh-
old. It is also important to note that the theorem depends neither on the number
of thresholds nor no the precise thresholds.

5. Coalitional Fairness

In this section, we present an extension of Theorem 2 in Jaskold-Gabszewicz
[24] to an asymmetric information economy whose commodity space is an ordered
Banach space containing an interior point in its positive cone. The information
that each agent can have when she becomes a member of a coalition is susceptible
of being altered. It can be noted that the proof of Theorem 3.8 in Graziano and
Pesce [22] or Theorem 2 in Jaskold-Gabszewicz [24] contains two parts, but similar
techniques are enough to prove both parts. In contrast with them, the proofs of two
parts of our result are different. Thus, we plan to decompose the result into two
theorems. Since we are dealing with an asymmetric information economy with the
exact feasibility condition and an infinite dimensional commodity space, techniques
of our results are different from Graziano and Pesce [22] and Jaskold-Gabszewicz
[24].

Definition 5.1. An allocation f is called C Υ
(T1,T0)-fair if there do not exist two

disjoint coalitions6 S1 ∈ T1, S2 ∈ T0 and an Υ(S1)-assignment g such that g(t, ·) ∈
Pt(f(t, ·)) µ-a.e. on S1 and∫

S1

(g(·, ω)− a(·, ω))dµ =

∫
S2

(f(·, ω)− a(·, ω))dµ

for each ω ∈ Ω.

Theorem 5.2. Suppose that the assumptions (P1)-(P4) are satisfied for an infor-
mation sharing rule Υ and that f ∈ C Υ(E ). Then f is C Υ

(T1,T0)-fair.

Proof. On the contrary, suppose that f is not C Υ
(T1,T0)-fair. Thus, there must exist

two disjoint coalitions S1 ∈ T1, S2 ∈ T0 and an Υ(S1)-assignment g such that
g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S1 and∫

S1

(g − a)dµ =

∫
S2

(f − a)dµ.

Since f ∈ C Υ(E ), one obtains µ(S2) > 0. Now, Corollary 3.2 yields a λ ∈ (0, 1), a
z ∈ B++ and an Υ(S1)-assignment h1 such that h1(t, ·) ∈ Pf (t) µ-a.e. on S1 and∫

S1

(h1 − a)dµ+ 7z1Ω = (1− λ)

∫
S1

(g − a)dµ = (1− λ)

∫
S2

(f − a)dµ.

By Corollary 3.8, one obtains a sub-coalition R2 of S2 with P(R2) = P(S2) and an
assignment h2 such that h2(t, ·) ∈ Pf (t) and h2(t, ·) − a(t, ·) is Υt(T )-measurable
µ-a.e. on R2, and ∫

R2

(h2 − a)dµ = λ

∫
S2

(f − a)dµ+ z1Ω.

6We allow S2 to be a null coalition.
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As a result, one has∫
S1

(h1 − a)dµ+

∫
R2

(h2 − a)dµ+

∫
T\S2

(f − a)dµ+ 6z1Ω = 0.

Applying Corollary 3.5, one has an assignment x1 such that x1(t, ·) ∈ Pf (t) and
x1(t, ·)− a(t, ·) is Υt(T )-measurable µ-a.e. on S1 and∫

S1

(x1 − a)dµ =
1

2

∫
S1

(h1 − a)dµ+
1

2

∫
S1

(f − a)dµ+ z1Ω.

By Corollary 3.8, one obtains a sub-coalition R3 of R2 with P(R3) = P(R2) and
an assignment h3 such that h3(t, ·) ∈ Pf (t) and h3(t, ·)−a(t, ·) is Υt(T )-measurable
µ-a.e. on R3, and ∫

R3

(h3 − a)dµ =
1

2

∫
R2

(h2 − a)dµ+ z1Ω.

The rest of the proof is decomposed into two cases.

Case 1. µ(T \ (S1 ∪ S2)) = 0. Define R4 = S1 ∪R3 then P(R4) = P(T ). Thus,
f is Υ-blocked by the coalition R4 via the assignment h4, defined by

h4(t, ω) =

{
x1(t, ω), if (t, ω) ∈ S1 × Ω;

h3(t, ω) + z
µ(R3) , otherwise.

This is a contradiction.

Case 2. µ(T \ (S1 ∪ S2)) 6= 0. Since T \ (S1 ∪ S2) is atomless, by Corollary 3.8,
there exist a sub-coalition R5 of T \ (S1 ∪ S2) with P(R5) = P(T \ (S1 ∪ S2)) and
an assignment h5 such that h5(t, ·)−a(t, ·) is Υt(T )-measurable and h5(t, ·) ∈ Pf (t)
µ-a.e. on R5, and∫

R5

(h5 − a)dµ =
1

2

∫
T\(S1∪S2)

(f − a)dµ+ z1Ω.

Let R6 = S1∪R3∪R5 then P(R6) = P(T ). Define an assignment h6 : T ×Ω→ B+

by

h6(t, ω) =


x1(t, ω), if (t, ω) ∈ S1 × Ω;

h3(t, ω), if (t, ω) ∈ R3 × Ω;

h5(t, ω), otherwise.

Note that f is Υ-blocked by the coalition R6 via the assignment h6, which is again
a contradiction. � �

Definition 5.3. An allocation f is called C Υ
(T0,T1)-fair if there do not exist two

disjoint non-null coalitions S1 ∈ T0, S2 ∈ T1 and an Υ(S1)-assignment g such that
g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S1 and∫

S1

(g(·, ω)− a(·, ω))dµ =

∫
S2

(f(·, ω)− a(·, ω))dµ

for each ω ∈ Ω.

The following assumption is stronger than the assumption (P4) and it plays
a key role in the proof of the next theorem. It holds under the fine or private
information sharing rule whenever Ft = Pt for all t ∈ T . Moreover, it is also true
if Υt(S) = Ft for all t ∈ S and S ∈ F0. However, it does not hold when Υt(S)
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is the private information for any agent t in some non-null coalition S ⊆ T0, and
Υt(T ) and Ft are both pooled information for all t ∈ T . Note that in the last case,
(P4) is satisfied.

(P5) For all non-null coalition S ∈ T0 and t ∈ S, Υt(S) � Ft.

Theorem 5.4. Suppose that (P1)-(P3) and (P5) are satisfied for an information
sharing rule Υ and that f ∈ C Υ(E ). Then f is C Υ

(T0,T1)-fair.

Proof. On the contrary, suppose that f is not C Υ
(T0,T1)-fair. Then there exist two

disjoint non-null coalitions S1 ∈ T0, S2 ∈ T1 and an Υ(S1)-assignment g such that
g(t, ·) ∈ Pt(f(t, ·)) µ-a.e. on S1 and∫

S1

(g − a)dµ =

∫
S2

(f − a)dµ.

By Corollary 3.2, one has a λ ∈ (0, 1), a z ∈ B++ and an Υ(S1)-assignment h such
that h(t, ·) ∈ Pf (t) µ-a.e. on S1 and∫

S1

(h− a)dµ+ 19z1Ω = (1− λ)

∫
S1

(g − a)dµ.

Applying Corollary 3.7, one can find a sub-coalition R1 of S1 and an Υ(R1)-
assignment g1 such that µ(R1) = λµ(S1), P(R1) = P(S1), g1(t, ·) ∈ Pf (t) µ-a.e.
on R1, and ∫

R1

(g1 − a)dµ = λ

∫
S1

(g − a)dµ+ z1Ω.

Combining above two equations, one has∫
S1

(h− a)dµ+

∫
R1

(g1 − a)dµ+ 18z1Ω =

∫
S1

(g − a)dµ.

Since P(R1) = P(S1), h is an Υ(R1)-assignment. Thus, Corollary 3.4 implies that
there must exist an Υ(R1)-assignment h1 such that h1(t, ·) ∈ Pf (t) µ-a.e. on R1

and ∫
R1

(h1 − a)dµ =
1

2

∫
R1

(h− a)dµ+
1

2

∫
R1

(g1 − a)dµ+ z1Ω.

By Lemma 3.6, one has a sub-coalition R2 of S1 \ R1 and an assignment h2 such
that h2(t, ·) ∈ Pf (t) and h2(t, ·)− a(t, ·) is Υt(S)-measurable µ-a.e. on R2, and∫

R2

(h2 − a)dµ =
1

2

∫
S1\R1

(h− a)dµ+ z1Ω.

Thus, one concludes that∫
R1

(h1 − a)dµ+

∫
R2

(h2 − a)dµ+ 7z1Ω =
1

2

∫
S2

(f − a)dµ.

Let R3 = R1 ∪R2 and define an assignment h3 : T × Ω→ B+ such that

h3(t, ω) =


h1(t, ω), if (t, ω) ∈ R1 × Ω;

h2(t, ω), if (t, ω) ∈ R2 × Ω;

g(t, ω), otherwise.
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Note that P(R3) = P(S1) and h3 is an Υ(R3)-assignment satisfying h3(t, ·) ∈ Pf (t)
µ-a.e. on R3. Moreover,∫

R3

(h3 − a)dµ+ 7z1Ω =
1

2

∫
S2

(f − a)dµ.

If
∫
S2

(f − a)dµ = 0 then f is Υ-blocked by the coalition R3 via the assignment

y : T × Ω→ B+, defined by

y(t, ω) =

{
h3(t, ω) + 7z

µ(R3) , if (t, ω) ∈ R3 × Ω;

g(t, ω), otherwise,

which is a contraction with the fact that f ∈ C Υ(E ). So,
∫
S2

(f − a)dµ 6= 0 which

means µ(T \ S2) > 0. In this case,∫
R3

(h3 − a)dµ+
1

2

∫
T\S2

(f − a)dµ+ 7z1Ω = 0.

It follows from (P5) that f is an Υ(T \ S2)-assignment. Applying Corollary 3.7,
the above equality can be expressed as∫

R3

(h3 − a)dµ+

∫
R4

(h4 − a)dµ+ 6z1Ω = 0

for some sub-coalition R4 of T \S2 with P(R4) = P(T \S2) and Υ(R4)-assignment
h4 satisfying h4(t, ·) ∈ Pf (t) µ-a.e. on R4, and∫

R4

(h4 − a)dµ =
1

2

∫
T\S2

(f − a)dµ+ z1Ω.

The rest of the proof is decomposed into two cases.

Case 1. µ(R3 ∩R4) = 0. Thus, f is Υ-blocked by R3 ∪R4 via the assignment ŷ,
defined as

ŷ(t, ω) =

{
h3(t, ω) + 6z

µ(R3) , if (t, ω) ∈ R3 × Ω;

h4(t, ω), otherwise,

which is a contradiction.

Case 2. µ(R3 ∩ R4) 6= 0. Since R3 ⊆ T \ S2, h3(t, ·) − a(t, ·) is Υt(T \ S2)-
measurable µ-a.e. onR3. In this case, there are three possibilities: (i) µ(R3\R4) 6= 0
and µ(R4 \ R3) 6= 0; (ii) exactly one of µ(R3 \ R4) and µ(R4 \ R3) is 0; and (iii)
µ(R3 \R4) = 0 and µ(R4 \R3) = 0. We only work on the possibility (i) and others
can be done analogously. Applying Lemma 3.3 for the coalition R3 ∩ R4, Lemma
3.6 for coalitions R3 \R4 and R4 \R3, one can find three sub-coalitions

R5 = R3 ∩R4, R6 ⊆ R3 \R4, R7 ⊆ R4 \R3

with

P(R6) = P(R3 \R4) and P(R7) = P(R4 \R3)

and three assignments hi for i = 5, 6, 7 such that hi(t, ·) − a(t, ·) is Υt(T \ S2)-
measurable and hi(t, ·) ∈ Pf (t) µ-a.e. on Ri for i = 5, 6, 7 and

7∑
i=5

∫
Ri

(hi − a)dµ = 0.
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Put, R = R5 ∪R6 ∪R7 and note that P(R) = P(T \ S2). Thus, f is Υ-blocked by
R via the assignment y : T × Ω→ B+, defined by

y(t, ω) =

{
hi(t, ω), if (t, ω) ∈ Ri × Ω, i = 5, 6, 7;

g(t, ω), otherwise,

which is again a contradiction. � �

The following definition and theorem are extensions of those in Jaskold-Gabszewicz
[24] to an asymmetric information economy.

Definition 5.5. An allocation f is said to be C Υ-fair relative to T0 and T1

if it is C Υ
(T0,T1)-fair and C Υ

(T1,T0)-fair. The set of such allocations is denoted by

C Υ
{T0,T1}(E ).

Theorem 5.6. Assume the assumptions (P1)-(P3) and (P5) are satisfied for an
information sharing rule Υ. Then C Υ(E ) ⊆ C Υ

{T0,T1}(E ).

Proof. Let f ∈ C Υ(E ). Applying Theorem 5.2 and Theorem 5.4, one has f is
both C Υ

(T1,T0)-fair and C Υ
(T0,T1)-fair. So, f ∈ C Υ

{T0,T1}(E ), and this completes the

proof. � �

6. Conclusion

In this section, we compare our results to those in others and provide some open
questions.

Remark 6.1. Since the assumptions (P1)-(P4) are satisfied trivially under the fine
and private information sharing rules if Ft = Pt for all t ∈ T , Vind’s theorem in
the case of the fine core and the private core in Bhowmik and Cao [6] are particular
cases of Theorem 4.5 in our paper. Note that Vind-type theorem for the weak
fine core is also obtained as a corollary of Theorem 4.5 in our paper. In addition,
Grodal’s theorem in Bhowmik and Cao [6] is obtained as a special case of our
Theorem 4.3. However, it is unclear to the author that whether a similar result is
true in an asymmetric information economy with a Banach lattice as the commodity
space and the feasibility is defined as exact. Recently, extensions of the main results
in [23] and [35] to mixed economies were established in [10] and [29]. These results
deal with the Aubin coalitions. Since the purpose of our paper is to analyze the
standard core notion, we restrict our attention to atomless economies in Section 4.
However, interested reader can consider all our results in Section 4 to the case of a
mixed economy under any information sharing rule.

Remark 6.2. In an asymmetric information economy with a continuum of non-
atomic agents [0, 1], consider the following information sharing rules.

Υ̃1
t (S) =

{
Pt, if µ(S) < ε;∧
{Pt : t ∈ S}, if µ(S) ≥ ε,

Υ̂1
t (S) =

{ ∧
{Pt : t ∈ S}, if µ(S) < ε;

Pt, µ(S) ≥ ε,
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Υ̃2
t (S) =


∨
{Pt : t ∈ S}, if µ(S) < ε;

Pt, if ε ≤ µ(S) ≤ δ;∧
{Pt : t ∈ S}, if µ(S) > δ,

Υ̂2
t (S) =


∧
{Pt : t ∈ S}, if µ(S) < ε;

Pt, if ε ≤ µ(S) ≤ δ;∨
{Pt : t ∈ S}, if µ(S) > δ,

where 0 < ε < δ < 1. Note that if Ft = Pt for all t ∈ T , then the private
information sharing rule satisfies (P1)-(P4). Thus, it follows from Theorem 4.8

that C Υ̃1

(E ) = C Υ̂1

(E ) is the private core of E . On the other hand, if Ft = Pt

or
∨
{Pt : t ∈ T}, then the fine information sharing rule satisfies (P1)-(P4). As

a consequence, Theorem 4.8 claims that C Υ̃(E ) = C Υ̂(E ) is the fine (resp. weak
fine) core of E if Ft = Pt (resp.

∨
{Pt : t ∈ T}) for all t ∈ T .

Remark 6.3. It is known that Vind’s theorem or its extensions in general equi-
librium theory have been employed to establish characterizations of the core in
terms of non-dominated allocations and relations among several cores, refer to
[7, 8, 14, 15, 19, 20]. It would be interesting to know whether those results can be
obtained using Theorem 4.5 under the framework of any information sharing rule.

Remark 6.4. Comparing to Hervés-Beloso et al. [21], we additionally use the
assumption (P3) to obtain the main results in Section 4, which was not the case
in Hervés-Beloso et al. [21]. This assumption has played vital roles in the proofs
of our results in Section 4. All these results are technically different from those in
Hervés-Beloso et al. [21]. In addition, we extend the main result in Grodal [23]
to an asymmetric information economy where each agent’s information is given by
information sharing rules, which was not established in Hervés-Beloso et al. [21].

Remark 6.5. We now compare our assumptions to those in Graziano and Pesce
[22]. Note that assumptions for initial endowments and utility functions in Graziano
and Pesce [22] and our paper are similar. Moreover, the set of allocations of The-
orem 3.8 in Graziano and Pesce [22] was required to satisfy a certain property.
More precisely, for every allocation f : T × Ω→ R`+ in Theorem 3.8 in their paper

there is some 1 ≤ j ≤ ` such that the jth-coordinate f j(t, ω) > 0 µ-a.e. and all
ω ∈ Ω. This restriction is not employed in our results. Further, the main result
in Section 5 is technically different from that in Graziano and Pesce [22] and is
valid in an asymmetric information economy whose commodity space is either the
finite dimensional space or an infinite dimensional space having an interior point
in its positive cone. It is also valuable to mention that an extension of Theorem 2
in Jaskold-Gabszewicz [24] to an asymmetric information economy with the exact
feasibility condition first appears in our paper. Note also that Theorem 5.6 in this
paper is the first extension of Theorem 2 in Jaskold-Gabszewicz [24] to an infinite
dimensional framework.

Remark 6.6. Our fairness concept deals with the net trade allocation. However,
some other concepts of fairness have been introduced without the notion of net
trade. Firstly, Foley [17] proposed a concept of fair allocation which is efficient and
satisfies the condition that each agent prefers to keep her own bundle rather than
to receive bundles of other agents. In an exchange economy, such an allocation
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exists as shown by Varian in [34]. Differently from Jaskold-Gabszewicz [24], Varian
[34] also introduced the notion of a coalitionally fair allocation. According to the
definition in [34], an allocation is coalitionally fair if no coalition envies the aggregate
bundle of other coalition of the same size or smaller. Besides, Zhou [38] proposed
the concept of a strictly fair allocation. In this paper, we study the notion of a
coalitionally fair allocation given in [24]. It would be interesting to work on other
fairness notions in an asymmetric information economy under information sharing
rules.

Remark 6.7. Recently, the formulation of a maximin expected utility becomes
well known and it is defined as

U
¯ t

(ω, x) = min{Ut(ω′, x(ω′)) : ω′ ∈Pt(ω)}.
In this context, de Castro et al. [12] introduced the concept of the maximin core.
One can analogously define the notion of a coalitionally fair allocation and verify
whether results similar to our results are true in the framework of a maximin
expected utility.

Remark 6.8. We conclude this section with a discussion about the coalitionally
incentive compatibility of our notions. Koutsogeras and Yannelis [25] showed that
the private core is weak coalitionally incentive compatible in an asymmetric infor-
mation economy with finitely many agents. A similar concept of weak coalitionally
incentive compatibility can be defined in a mixed economy under the information
sharing rules. It can be checked that a technique similar to Theorem 4.1 in Kout-
sogeras and Yannelis [25] is enough to show that the core under an information
sharing rule is weak coalitionally incentive compatible. In the framework of a max-
imin expected utility, de Castro et al. [12] introduced the notion of coalitionally
incentive compatibility similar to that in Koutsogeras and Yannelis [25]. They
showed that the maximin core is maximin coalitionally incentive compatible when
the number of agents is finite. Note that the above concept of a maximin expected
utility can be extended to the case of any information sharing rule Υ by replacing
Pt(ω) with the atom of Υt(S) containing ω for any non-null coalition S. Thus, by
invoking the arguments of de Castro et al. [12], one can show that a variation of the
maximin core under an information sharing rule is maximin coalitionally incentive
compatible under the same information sharing rule in a mixed economy. However,
at this stage, it is unclear to the author that whether the coalitionally incentive
compatibility of any coalitionally fair allocation can be established in the above two
frameworks.
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[19] C. Hervés-Beloso, E. Moreno-Garćıa, N.C. Yannelis, An equivalence theorem for a differential

information economy, J. Math. Econ. 41 (2005), 844–856.

[20] C. Hervés-Beloso, E. Moreno-Garćıa, N.C. Yannelis, Characterization and incentive compati-
bility of Walrasian expectations equilibrium in infinite dimensional commodity spaces, Econ.

Theory 26 (2005), 361–381.
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