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Abstract

In this paper, I examine the effect of introducing heterogeneity between players

in models of strategic experimentation. I consider a two-armed bandit problem with

one safe arm and a risky arm. There are two players and each has an access to such a

bandit. A player using the safe arm experiences a safe flow payoff . The risky arm can

either be good or bad. A bad risky arm is worse than the safe arm and the good risky

arm is better than the safe arm. Players start with a common prior about the probability

of the risky arm being good. We show that without any payoff externalities, heteroge-

neous players in non cooperative equilibrium do more experimentation than a model

with homogeneous players. When competition is introduced between the players, in-

efficiency in non cooperative equilibrium is in form of too much of experimentation

along the risky arm.
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1 Introduction

In this paper, I address the problem of optimal behavior of players in a game of strategic
experimentation with two-armed bandits where there are both informational and payoff
externalities as well as heterogeneous players.

In the economics literature, the two-armed bandit models have been extensively used
to formally address the issue of trade-offs between exploration and exploitation in dynamic
decision problems with learning. In the standard continuous time exponential bandit model,
an agent has to decide how long to experiment along an arm to get rewarded before switch-
ing to experimenting along another arm. As the agent experiments along a particular arm
without getting rewarded, the likelihood he attributes to ever getting rewarded along that
arm is revised downwards. In this paper, I study models of strategic experimentation that
incorporate variants of this standard exponential bandit with two arms. Both informational
and payoff externalities are present in the models and players are heterogeneous. Informa-
tional externalities arise from the fact that an agent’s learning about the state of the reward
process along an arm is not only influenced by his own experimentation experiences but
also by the behavior of other agents. On the other hand, payoff externalities imply that the
extent to which an agent can convert a reward into a meaningful payoff depends on the or-
der in which he gets the reward with respect to other agents. Finally, heterogeneous players
mean that players have different innate abilities along different arms. Given that a reward
occurs along an arm, the expected time required to get that reward differs among agents.
With these features, I show that in a game of strategic experimentation, the non-cooperative
equilibrium (markovian) always involves inefficient experimentation. The inefficiency is
in the form of too much duplication. This means that there arise instances when all agents
experiment along the same arm, though the social planner would have prefered the agents
to diversify their experimentation along different arms.

The analysis starts with first introducing only heterogeneity in the now cannonical form
of Two-armed Bandit Model (a.la Keller, Rady and Cripps). That is, each player faces a
common two armed exponential bandit. One of the arms is safe and a player accessing it
gets a flow payoff of s > 0. The other arm is either good or bad. A player who accesses the
good risky arm gets an arrival according to a Poisson process with known intensity. Each
arrival gives a lumpsum payoff, which is drawn from a time-invariant distribution with
mean h > 0. Players differ with respect to their innate abilities. This means the poisson
intensity with which a player experiences an arrival along a good risky arm differs across
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players. Player 1’s intensity is λ1 and that of player 2 is λ2 with λ1 > λ2. Hence player
1’s flow payoff along a good risky arm g1 = λ1h and that of player 2 is g2 = λ2h such that
g1 > g2 > s.

We start with analysing the social planner’s problem, which aims to maximise the sum
of the expected surplus of the players. The planner, in a continuous time, decides on allo-
cating players to one of the arms. The social optimal involves specialisation for extreme
range of beliefs and diversification for interim range of beliefs. This means that if it is too
likely that one of the arms is good (in this setting this implies belief being close to either
0 or 1), then both the players are made to access this arm. For interim beliefs, the wekaer
player (player 2 ) is allocated to the safe arm and the stronger player (player 1 ) is allocated
to the risky arm.

For the analysis of noncooperative solutions, we restrict ourselves to Markovian strate-
gies with the common posterior belief as the state variable. The first main result shows
that there cannot be an efficient equilibrium. We show that if the degree of heterogeneity
is large enough then there exists a unique inefficient diversification equilibrium. The be-
lief at which all experimentation c eases is greater than that in the optimal solution of the
planner’s problem. Also, player 2 shifts to the risky arm at a belief greater than that in the
planner’s solution. This is due to free riding.

Next, I compare the extent of experimentation in a model with heterogeneous players to
that in model with homogeneous players. It has been shown that if the degree of heterogen-
ity is high enough then keeping the total ability constant (which is the sum of the poisson
intensities of the players) the amount of experimentation in a model with heterogeneous
players is more than that in any non cooperative equilibrium with homegeneous players.

In the second setting, we introduce payoff externalities . The previous model is mod-
ified as follows. A player acessing a safe arm experiences arrivals according to a poisson
process with intensity π0 > 0. Player 1 along a good risky arm experiences arrivals accord-
ing to a poisson process with intensity π1 and player 2 experiences arrivals with intensity
π2. We have π1 > π2 > π0. Payoff externalities arises from the fact that only the first arrival
across any of the arms yields a payoff of one unit to the player who experiences it. The
planner’s solution is qualitatively similar to that in the previous setting. When it is very
likely (unlikely) that the risky arm is good(bad)1, both the players are made to access the
risky (safe) arm. For interim range of beliefs, the player who is relatively better off along
a risky arm is made to access it and the other player is made to access the safe arm. The

1that is for high (low) beliefs
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noncooperative equilibrium obtained is unique in the class of markovian equilibria in cut-
off strategies. It is inefficient and inefficiency is in the form of too much duplication. Thsi
means that there exists a range of beliefs over which the less efficient player still accesses
the risky arm when efficiency would require him to access the safe arm. As before, we find
that for homogeneous players, the equilibrium is always efficient.

In real world, there are many instances where agents have alternative potential ap-
proaches to pursue in order to achieve the same goal and they compete for success. Con-
sider a situation where competing agents who are trying to make the same discovery, have
a choice between potential alternate methods and the rent accruing to the second inventor
is disproportionately lower than the first. This is true in many contexts. We can think of
two firms engaged in a R&D race, who have alternate research methods or hypothesis to
pursue. Firms do not know which method would lead to success. However, they are aware
of a likelihood by which each avenue could lead to success. In this regard, one can cite
an example from the pharmaceutical industry, where firms are competing to invent a drug
for the Alzheimer’s disease. Firms know that either eliminating the beta-amyloid protein or
the tau-protein would eradicate the disease. Hence, firms need to decide on which hypoth-
esis to adopt and over time they learn about the quality of the methods in the light of their
search experiences. Given the high perceived valuation of a possible drug, it is evident that
whoever invents the drug first would make a disproportionately higher amount of money
than the later inventor(s). One could also think of a situation where two researchers are
attempting to explain a scientific phenomenon. There may be alternative forms of expla-
nation, any of which might or might not be correct. At a time there could be only one
correct explanation. For example, in the 17th century, the Phlogiston theory used to be
put forward to explain the process of combustion. However, by the end of the eighteenth
century this theory was challenged and finally became void when the new Calorific theory
came in. There could be similar situations in a firm also. Consider a manager who has two
or more employees under his control. The manager needs to get an assignment done and
would reward the employee in form of a bonus to the one who does it first. The employees
have to choose among several alternate avenues to get the assignment done, although they
are not sure which avenue would finally lead to success. In this case it is possible that one
of the avenues will surely lead to success, but there is an alternate avenue which can either
lead to success at a faster rate or can lead to failure. Clearly here each of the employees
competes with others to be the first one to do the assignment successfully. In all the above
situations it could be possible that conditional on an avenue being the correct one, agents
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would differ in their probability to achieve success along that avenue. For instance, in the
pharmaceutical industry example, it is quite possible that one firm may be relatively more
efficient in eradicating the β -amyloid protein, while the other may be more proficient in
eradicating the τ-protein. The models of strategic experimentation analysed in this paper
capture the main features of the situations described above. There are stylized facts in re-
ality which might be due to the phenomenon of too much duplication. Again, consider the
Alzheimer’s drug research case. It was widely believed that the level of β -amyloid protein
is the main culprit. Consequently for the past two decades almost exclusive attention was
given to developing drugs to remove amyloid plaques. However, not much success has
been attained in this direction. The drugs which are presently in the market, only delay the
onset of this disease.([8]) As a consequence of this, the theory that β -amyloid protein is the
culprit is waning and the conjecture that tau-proteins are to be blamed is gaining ground.
However major R&D activities still involve removal of amyloid plaques. This may be due
to too much duplication.

Related Literature: This paper contributes to the strategic bandit literature. Some of
the works which have studied the bandit problem in the context of economics, are Bolton
and Harris ([4]) Keller,Rady and Cripps([11]), Keller and Rady([12]), Klein and Rady (
[14]) and Thomas([21]). In all of these papers except ([21]) and ([14]), players have repli-
cas of bandits and Free-riding is a common feature in all the above models except ([21]).
This leads to an inefficient level (too little) of experimentation. The present work differs
from ([11]) and ([12]) in two ways. First, we show the effect of heterogeneity and find that
unlike in a model with homogeneous players, for certain range of parameters we can obtain
unique non-cooperative equilibrium.

Next, we introduce payoff externalities. Due to this, the phenomenon of free riding
does not arise . Secondly, agents differ with respect to their innate abilities. This gives us
inefficiency in equilibrium, the nature of which is very different from the ones in ([11]) and
([12]).

Thomas([21]) analyses a set-up where each player has access to an exclusive risky arm,
and both of them have access to a common safe arm. At a time the safe arm can be accessed
by one player only. Hence, there is congestion along an arm. The present paper differs from
this in the way that here each of the arms can be accessed by all the players. Further, we do
not have congestion along any of the arms.

This paper also contributes to the relatively less explored area of the broad literature
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on R&D races. It shows that in presence of heterogeneity and competition among agents,
there is always a distortion in the choice of research avenue in a non-cooperative inter-
action. Bhattacharya and Mookerjee([3]), Dasgupta and Maskin([6]) are two of the early
papers which explore this issue in a static framework. Chatterjee and Evans ([5]) analy-
ses similar issues in a dynamic setting. The first setting of this paper has similarities with
[5]. However, we consider a continuous time framework with heterogeneous players. Here
we can show that we always have too much duplication in the non-cooperative interaction.
Some other papers to look into similar issues are Fershtman and Rubinstein ([9]) and Ak-
cigit and Liu([1]). ([9]) studies a two-stage model in which agents simultaneously rank a
finite set of boxes. Exactly one of the boxes contains the prize. Players commit to opening
the boxes according to their ranked order. Inefficiency arises due to the fact that the box
which is most likely to have the prize is not opened first. Their model is basically static in
nature. Hence, the present paper lays down dynamic models which show that inefficiency
in R&D with respect to choice of research method, is in form of too much duplication.

The rest of the paper is organised as follows. Section 2 lays down the detail of setting
with introducing only heterogeneity and section 3 introduces payoff externalities.

2 Heterogeneous Agents, No Payoff externalities

Model: There are two players (1 and 2). Each player faces a continuous time two-armed
bandit. One of the arms is safe and a player who uses it gets a flow payoff of s> 0. The risky
arm can either be good or bad. If a risky arm is good then a player choosing it experiences
arrivals according to a Poisson process with a known intensity. Each arrival gives lumpsum
payoffs to the player who experiences it. These lump sums are drawn from a time invariant
distribution with mean h. Player 1 experiences this arrivals acording to a Poisson process of
intensity λ1 > 0 and player 2 experiences this according to a Poisson process with itensity
λ2 > 0 such that λ1 > λ2. Hence along a good risky arm player 1 experiences a flow payoff
of g1 = λ1h and player 2 experiences a flow payoff of g2 = λ2h. A player can either choose
the safe arm or the risky arm. Player discount the future according to a common discount
rate r > 0.
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2.1 Planner’s Problem

Suppose the players are controlled by a benevolent social planner. Let (k1,k2) be the action
profile of the planner. ki ∈ {0,1}. ki = 0 implies player i is in the safe arm and ki = 1
implies that player i is in the risky arm. The planner wants to maximise the sum of the
expected discounted payoffs of the players. If v is the value function of the planner then we
must have

v = max
k1,k2∈{0,1}

[r{(1− k1)s+(1− k2)s+ k1 pg1 + k2 pg2}dt

+(1−r dt){p(k1λ1+k2λ2)dt(g1+g2)+
(
1− p(k1λ1+k2λ2)dt

)
(v−v

′
p(1− p)(λ1k1+λ2k2)dt)}]

Simplifying above and ignoring the terms of order o(dt) we have

v = 2s+ k1[b1(p,v)− c1(p)]+ k2[b2(p,v)− c2(p)]

where ci(p) = [s− pgi] and

bi(p,v) = λi p
{(g1 +g2)− v− v

′
(1− p)}

r

Conjectured Solution:

There exists thresholds p∗1, p∗2 with 0 < p∗1 < p∗2 < 1 such that player 2 is switched to
the safe arm at p∗2 and player 1 is switched to the safe arm at p∗1.

Consider p < p∗2. Thus according to the conjectured solution k2 = 0. If it is optimal for
the planner to have 1 in the safe arm then k1 = 0. Thus v(p) = 2s. If it is optimal for the
planner to have 1 at the risky arm then k1 = 1. v(.) then satisfies the following O.D.E:

v
′
+ v

[r+λ1 p]
p(1− p)λ1

=
rs

p(1− p)λ1
+

[rg1 +λ (g1 +g2)]

(1− p)λ

The solution to the above diferential equation is:

v = s+[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]p+C(1− p)[Λ(p)]

r
λ1

where g = (g1 +g2); Λ(p) = (1−p)
p .
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Imposing the value matching and the smooth pasting condition at p∗1 we have

s+[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]p+C(1− p)[Λ(p)]

r
λ1 = 2s

⇒C =
s− [λ1g+rg1

λ1+r −
sλ1

r+λ1
]p

(1− p)[Λ(p)]
r

λ1

Smooth pasting condition requires that both the right hand and left hand derivative of v

at p∗1 is zero. Thus

[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]−C[Λ(p)]

r
λ1 (1+

r
λ1 p

) = 0

Substituting C we have

[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]−

s− [λ1g+rg1
λ1+r −

sλ1
r+λ1

]p

(1− p∗1)
(1+

r
λ1 p

) = 0

⇒ p∗1 =
sµ1

(µ1 +1)g1 +g2−2s

where µ1 =
r

λ1
.

Now consider p > p∗2. If the planner finds it optimal to keep both players at the risky
arm then k1 = k2 = 1. The value function then satisfies:

v
′
p(1− p)(λ1 +λ2)+ v[r+(λ1 +λ2)p] = pg(λ1 +λ2 + r)

⇒ v(p) = gp+C(1− p)[Λ(p)]
r
λ

where g = g1 +g2 and λ = λ1 +λ2.
It is clear that at the belief p∗2, when the planner finds it optimal to switch player 2 to

the safe arm, it must be the case that

b2(p,v) = s−g2 p

For p≥ p∗2 we have
v
′
(p) = g−C[Λ(p)]

r
λ (1+

r
λ p

)
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Hence b2(p,v) can be written as

λ2

λ
(1− p)C[Λ(p)]

r
λ =

λ2

λ
[v−gp]

Thus b2(p∗2,v) = s−g2 p∗2 gives us

v(p∗2) =
λ1 +λ2

λ2
s > 2s

since λ1 > λ2. Let vsr(.) be the value function when 1 uses risky arm and 2 uses the safe
arm and vrr be the value function when boh players use the risky arm. We have

vrr(p∗2) = vsr(p∗2) =
λ1 +λ2

λ2
s

Thus p∗2 satisfies

[
λ1g+ rg1

λ1 + r
− sλ1

r+λ1
]p∗2 +[

s− [λ1g+rg1
λ1+r −

sλ1
r+λ1

]p∗1

(1− p∗1)[Λ(p∗1)]
r

λ1

](1− p∗2)[Λ(p∗2)]
r

λ1 =
λ1

λ2
s

One can show that there actually exists a p2∗ ∈ (p∗1,1) such that the above relation
holds. This is because the L.H.S is equal to s < λ1

λ2
s when p = p∗1. At p = 1, it is equal to

g1 +
λ1

r+λ
(g2− s)> g1 =

λ1

λ2
g2 >

λ1

λ2
s

Since L.H.S is continuous in p and monotonically increasing, there exists a unique
p∗2 ∈ (p∗1,1) such that the above equality holds. This confirms that our conjectured solution
is correct.

The integration constant of vrr is given by

C =

λ1+λ2
λ2

s−gp∗2
(1− p∗2)[Λ(p∗2)]

r
λ

2.2 Non-cooperative solution

The above two players now act noncooperatively. We consider stationary Markovian strate-
gies with the common belief as the state variable.
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Best Responses: ki denotes player i’s action given the current belief. ki ∈ {0,1}. ki = 0
means the player is activating the safe arm and ki = 1 means the player is activating the
risky arm.

Let v1 be the value function of player 1. Then it should satisfy the following Bellman
equation

v1(p) = max
k1∈{0,1}

{
r[(1− k1)s+ k1 pg1]dt +(1− r dt)[(k1λ1 + k2λ2)pdtg1

+(1− k1λ1 pdt− k2λ2 pdt)(v1− v
′
1 p(1− p)(k1λ1 + k2λ2)dt)

}
Player 1’s expected discounted payoff is (after ignoring the terms of order o(dt))

(1−r dt)(k1λ1 pdtg1+k2λ2 pdtg1+v1−k1λ1 pdtv1−k2λ2 pdtv1−(k1λ1+k2λ2)p(1− p)v
′
1)dt

= v1+r[
k1λ1 pdtg1− k1λ1 pdtv1− k1λ1 p(1− p)dtv

′
1

r
+

k2λ2 pdtg1− k2λ2 pdtv1− k2λ2 p(1− p)dtv
′
1

r
−v1]

After rearranging we have

v1(p) = s+ k2[λ2b1(p,v1)]+ max
k1∈{0,1}

k1[λ1b1(p,v1)− (s−g1 p)]

where

b1(p,v1) = p
{g1− v1− (1− p)v

′
1}

r
Similarly we have

v2(p) = s+ k1[λ1b2(p,v2)]+ max
k2∈{0,1}

k1[λ2b2(p,v2)− (s−g2 p)]

where

b2(p,v2) = p
{g2− v2− (1− p)v

′
2}

r

Optimal response of player 1
Consider any k2 ∈ {0,1}.
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Player 1’s best response is:

k1 =


1 : if λ1b1(p,v1)> s−g1 p,

∈ {0,1} : if λ1b1(p,v1) = s−g1 p,

0 : if λ1b1(p,v1)< s−g1 p.

Putting this in the Bellman equation satisfied by v1(p) we have

k1 =


1 : if v1 > s+ k2

λ2
λ1
[s−g1 p],

∈ {0,1} : if v1 = s+ k2
λ2
λ1
[s−g1 p],

0 : if v1 < s+ k2
λ2
λ1
[s−g1 p].

when k2 = 1, then player 1 chooses risky,safe or is indifferent between them according
as his value in the (p,v) plane lying above, below or on the line

D1 : v = s+
λ2

λ1
[s−g1 p]

If k2 = 0, player 1 chooses the risky arm as long as his value is greater than s. He
smoothly switches from R to S at p̄1. Since player 1 switches to S at p̄1 smoothly, we will
have v

′
1(p̄1) = 0.Also v1(p̄1) = s. From the bellman equation we would then have

λ1 p(g1− s) = rs− rg1 p

⇒ p̄1 =
rs

λ1(
r

λ1
g1 +g1− s)

⇒ p̄1 =
µ1s

(µ1 +1)g1− s)

where µ1 =
r

λ1
.

Similarly if k1 = 1, player 2 chooses risky, safe or is indifferent between them according
as his value in the (p,v) plane lying above, below or on the line

D2 : v = s+
λ1

λ2
[s−g2 p]
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If k1 = 0, player 2 switches to the safe arm from the risky arm smoothly at p̄2 where

p̄2 =
µ2s

(µ2 +1)g2− s

Payoffs: Before we discuss equilibrium formally, we obtain explicit solutions for the
payoffs obtained by the players. We adopt following notations:

vrr
i : payoff to player i when he chooses risky and the other player also chooses risky

vrs
i : payoff to player i when he chooses risky and the other player chooses safe

Fi : Payoff to player i when the other player chooses the risky arm and he free rides by choosing the safe arm

We have

vrr
i (p) = gi p+C(1− p)[Λ(p)]

r
λ

vrs
i (p) = gi p+C(1− p)[Λ(p)]

r
λi

F1(p) = s+
λ2

λ2 + r
[g1− s]p+C(1− p)[Λ(p)]

r
λ2

F2(p) = s+
λ1

λ1 + r
[g2− s]p+C(1− p)[Λ(p)]

r
λ1

Diversification Equilibrium:
Suppose there exists a Markov perfect equilibrium as follows:
Player 2 chooses risky arm for p > p2 and safe arm for p≤ p2. Player 1 chooses risky

arm for p > p1 and safe for p≤ p1.

0 < p1 < p2 < 1

We would construct an equilibrium as described above and in the course of our con-
struction we would determine the condition under which such an equilibrium actually ex-
ists.

Proposition 1 If λ2 is sufficiently low with respect to λ1, then we have an equilibrium as

above and it is the unique Markov perfect equilibrium. This equilibrium is inefficient and
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involves free riding.

Proof. In any noncooperative equilibrium no experimentation will occur for beliefs less
than or equal to p̄1. Also in any equilibrium at the right ε− neighborhood of p̄1 only player
1 will be experimenting and player 2 will be free riding. This is because if player 2 were
the only player choosing the risky arm, he would do so for beliefs greater than p̄2. Hence
player 2 will never choose the risky arm for beliefs less than or equal to p̄2.

We will now work backwards from p̄1. In any equilibrium, at the right ε− neighbor-
hood of p̄1 player 1 chooses the risky arm and player 2 free rides. This is because if player
is the only one to choose the risky arm then he smoothly switches to the safe arm at the
belief p̄1. Thus payoff of 1 will be given by vrs

1 and that of 2 will be given by F2(). Since
the value functions are continuous we will have

vrs
1 (p̄1) = g1 p̄1 +C(1− p̄1)[Λ(p̄1)]

r
λ1 = s⇒C =

s−g1 p

(1− p̄1)[Λ(p̄1)]
r

λ1

and

F2(p̄1) = s+
λ1

λ1 + r
[g2− s]p̄1 +C(1− p̄1)[Λ(p̄1)]

r
λ1 = s⇒C =−

λ1
λ1+r [g2− s]p̄1

(1− p̄1)[Λ(p̄1)]
r

λ1

The integration constant for vrs
1 is positive and thus it is strictly convex. The slope of

v1 at p̄1 is 0. Hence vrs
1 is strictly increasing for p > p̄1. On the other hand, the integration

constant of F2 is negative and thus it is strictly concave. At p̄1, the slope of F2 is strictly
positive. Hence at the right ε− neighborhood of p̄1, F2 will lie above vrs

1 .
Player 2 will stop free riding as soon as in the (p,v) plane, the payoff function of 2

crosses the line D2 . This is demonstrated in the diagram below.
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Since g1 = λ1h and g2 = λ2h we have

D1 : v = s+
λ2

λ1
(s−g1 p) = s+

λ2

λ1
s−g2 p;D2 : v = s+

λ1

λ2
(s−g2 p) = s+

λ1

λ2
s−g1 p

Hence D1 has a negative slope of magnitude g2 and D2 has a negative slope of magnitude
g1. Since g1 > g2, D1 is flatter than D2. D1 intersects the horizontal line v = s at p1m = s

g1

and D2 intersects at p2m = s
g2

.
The upper curve v2 depicts the payoff of player 2 and the lower curve v1 depicts the

payoff of player 1. Suppose the payoff curve of player 2 intersects the line D2 at p = p2.
This is determined from

F2(p2) = s+
λ1

λ2
(s−g2 p2)
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We have F2(p̄1) = s < s+ λ1
λ2
(s−g2 p̄1) and F2(1) = s+ λ1

λ1+r [g2−s]> s+ λ1
λ2
(s−g2). Since

F2 is monotonically increasing and D2 is monotonically decreasing, there exists a unique
p2 ∈ (p̄1,1) such that F2(p2) = s+ λ1

λ2
(s−g2 p2).

Next, observe that given λ1, a decrease in λ2 results in an increase in p2. To see this
consider a p2 for particular given values of λ1 and λ2. As λ2 decreases, the slope of F2 at
p̄1 goes down and since F2 is strictly concave, at the present p2, F2 becomes lower. Thus
L.H.S decreases. On the other hand, R.H.S increases. Given the nature of F2 and D2, to
restore equality the new p2 should be higher.

Now a diversification equilibrium as conjectured will exist if at p2 the payoff curve of
player 1 lies above the line D1. Referring to the diagram above this implies that the lower
curve should intersect D1 before the upper curve intersects D2.

The payoff curve of player 1 lies above the line D1 when

vrs
1 (p2)> s+

λ2

λ1
s−g2 p2⇒

λ2

λ1
<

g2 p2

s
+

vrs
1
s
−1

Since p2 < s
g2

and vrs
1 (p2) > s, g2 p2

s +
vrs

1
s − 1 < 1. Given a λ1, we can always choose λ2

so that the above condition is satisfied. This is because p2 increases with the decrease of
λ2. Thus a diversification equilibrium exists only when the degree of heterogenity is high
enough.

The other integration constants are determined as follows:

C for vrr
1 from vrr

1 (p2) = vrs
1 (p2)

C for vrr
2 from vrr

2 (p2) = F2(p2) = s+
λ1

λ2
[s−g2 p2]

This concludes the proof.

The above result can be intuitively understood from the diagram. In a diversification
equilibrium player 1 should never free ride. Given λ1, if λ2 decreases then the line D1

becomes flatter. This reduces the range of beliefs over which player 1 would have wanted
to free ride if 2 was choosing the risky arm. The area under the line D1 represents the
opportunities to free ride for player 1.

The diversification equilibrium is inefficient. The inefficiency arises from two channels.
First, no experimentation takes place for beliefs below p̄1, whereas the planner would have
wanted experimentation up to p = p∗1 < p̄1. Clearly player 1 does not internalise the benefit
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to player 2 from his experimentation. Secondly, player 2 inefficiently free rides for some
range of beliefs. At p2, player 2’s private return is equal to the private cost s−g2 p2. How-
ever the social benefit is higher, since player 2 does not internalise the benefit to player 1
from his experimentation. Thus p∗2 < p2 and there is inefficient free riding for p ∈ (p∗2, p2).
We call this inefficient free riding as the planner makes player 2 to free ride over some
range of beliefs as part of the efficient solution.

Welfare Comparison: Homogeneity and Heterogeneity
One natural question to ask is whether with heterogeneous players we would have rel-

atively more experimentation in the non-cooperative equilibrium than that in a model with
homogeneous players. To make a meaningful comparison of this sort we first define an
index to compare the extent of experimentation in two models of strategic experimentation.
This index is defined below

Index of Experimentation: Suppose there are two models of strategic experimenta-
tion. In both the models suppose players start with a common prior p0. Let pc

1 be the belief
where conditional on no breakthrough all experimentation ceases in model 1 and let pc

2

be the belief where conditional on no breakthrough all experimentation ceases in model 2.
Without loss of generality let pc

1 > pc
2 .Then the index η is defined as:

η = [
p0− pc

1
τ1

]− [
p0− pc

1

τ
pc

1
2

+
pc

1− pc
2

τ
pc

2
2

]

τ1 is the time required to reach to the belief pc
1 starting from p0 in model 1. τ

pc
1

2 is the time
required to reach pc

1, starting from p0 and τ
pc

2
2 is the time required to reach pc

2 from pc
1 in

model 2.
η positive(negative) indicates that the extent of experimentation is more in model 1 (2)

is more. Note that this index of comparison captures both the range of beliefs over which
experimentation takes place and also the total intensity with which the experimentation has
taken place(reflected in τ .). In particular if in two models experimentation has taken place
for the same range of beliefs but slower in one of them then the extent of experimentation
should be lower for that model. This is because slower experimentation means lower in-
tensity of experimentation. Similarly suppose in a model we have experimentation over
large range of beliefs but very slowly and in another model we have experimentation over
a smaller range of beliefs but at a much faster pace. Thus it is possible to have the extent
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of experimentation to be lower in the first case.
The following proposition now states that there exist situations where with hetero-

geous players we can acheive more experimentation in noncooperative equilibrium than
in a model with homogeneous players, keeping the sum of the Poisson intensities of the
players constant.

Proposition 2 Suppose there are two players with Poisson intensities λ1 and λ2 respec-

tively (λ1 > λ2). Let λ = λ1 + λ2. Then there exists a λ ∗2 such that for all λ2 ∈ (0,λ ∗2 ),
keeping the summation of λ1 and λ2 constant, the extent of experimentation in the nonco-

operative equilibrium is more than that in any noncooperative equilibrium in a model of

strategic experimentation with each player having a Poisson intensity of λ

2 .

Proof.
First, from the previous proposition we can infer that keeping the sumation of λ1 and

λ2 constant, we can find a λ
′
2 such that for all λ2 ∈ (0,λ

′
2), there is a unique diversification

equilibrium in Markovian Strategies.
Next, from Keller et.al (2005) we know that in any equilibrium of the noncooperative

game of the model with each player having a Poisson intensity of λ

2 , all experimentation
ceases at the belief

p1
c =

µhoms
(µhom +1)(g

2 − s)+µhoms

where µhom = r
λ

2
, g = λh.

With heterogeneous players all experimentation ceases at the belief p̄1, the monopoly
cutoff belief for the player with Poisson intensity λ1. Since λ1 >

λ

2 , we have p1
c > p̄1.

Consider a λ2 ∈ (0,λ
′
2). We know that there exists a unique equilibrium with thresholds

p2 and p̄1 (p2 > p̄1) such that player 2 switches to the safe arm at p2 and player 1 at p̄1.
In any non cooperative equilibrium of the model with homogeneous players, there exists

ranges of beliefs when only one of the players is experimenting. Hence we must have

τ1 >
1
λ
[log[Λ(p1

c)]− log[Λ(p0)]]

where 1
λ
[log[Λ(p1

c)]− log[Λ(p0)]] is the time required to reach p1
c from the prior p0 had all

players been experimenting. Hence this is the time required to reach the belief p1
c from the

prior p0 if the players were controlled by a social planner. τ1 is the time required by the
players in an arbitrary noncooperative equilibrium of a model with homogeneous players.
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Next, suppose p2 > p1
c . Then the time required to reach p1

c from p0 in the noncoopera-
tive game with heterogeneous players is

τ
p1

c
2 =

1
λ1

[log[Λ(p1
c)]− log[Λ(p2)]]+

1
λ
[log[Λ(p2)]− log[Λ(p0)]]

This is becuase for the range (p2, p0] both players are experimenting and for the range
(p1

c , p2) only player 1 is experimenting.
Now as λ2 → 0 (keeping λ constant), τ

p1
c

2 →
1
λ
[log[Λ(p1

c)]− log[Λ(p0)]] from below.
Thus there exists λ ∗2 ≤ λ

′
2 such that for λ2 ∈ (0,λ ∗2 ) we have

τ1 > τ
p1

c
2 >

1
λ
[log[Λ(p1

c)]− log[Λ(p0)]]

Since p1
c−p̄1

τ
p̄1
2

> 0, we have

η =
p0− p1

c
τ1

− [
p0− p1

c

τ
p1

c
2

+
p1

c− p̄1

τ
p̄1
2

]< 0

If p2 < p1
c , then for any λ2 we have τ

p1
c

2 = 1
λ
[log[Λ(p1

c)]− log[Λ(p0)]. Thus η will be
negative.

Hence the extent of experimentation with heterogeneous players is more. This con-
cludes the proof.

The economic intuition behind the above result is as follows. With homogeneous play-
ers, both players free ride on each other. However when we introduce heterogeneity, player
1 never free rides on the other player in the noncooperative equilibrium. Player 2 how-
ever has an increased opportunities for free riding. In the figure the area under the line D2

represents the opportunities to free ride for player 2. As λ2 goes down, λ1 increases since
the summation remains constant. This makes the line D2 steeper and in turn increases the
opportunities for player 2 to free ride. However since the intensity of player 2’s experimen-
tation is low and in the noncooperative equilibrium only player 2 free rides we have more
experimentation in the game with heterogeneous players.
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3 Introducing Payoff Externalities

Two players face a common continuous time two-armed bandit. Each of the arms is acces-
sible by both the players. The bandit is of exponential type. One of the arms is safe(S) and
the other arm is risky(R). A player who activates the safe arm, gets arrival according to a
Poisson process with intensity π0 > 0. A risky arm can either be good or bad. If player i

activates a good risky arm, then he experiences arrival according to a Poisson process with
intensity πi, such that

π1 ≥ π2 > π0 > 0

No arrivals are experienced along a bad risky arm.
Players start with a common prior p0, which is the probability with which the risky arm

is good. Players observe each other’s actions and the arrivals experienced by them. Hence
at each time point t, players share a common posterior belief pt . Only the first player to
experience an arrival gets a payoff of 1 unit. We start with the case when the players are
homogeneous, i.e π1 = π2.

3.1 Symmetric Players

In this subsection, we lay out the analysis with homogeneous players. Thus players’ ability
to learn along the risky arm is the same. They both experience arrivals at the good risky
arm according to a Poisson process with intensity π1 > π0.

We start our analysis with the benchmark case, i.e the social planner’s problem.

3.1.1 Social Planner’s problem: The efficient benchmark

Consider the problem of a benevolent social planner who wants to maximise the sum of
expected discounted payoff of the players. Hence at each instant, based on p, he allocates
each of the players to activate one of the arms. kt denotes the action profile chosen by the
planner at the instant t. kt ∈ {0,1,2}. kt denotes the number of players made to activate
the risky arm at the instant t. kt(t ≥ 0) is such that it is measurable with respect to the
information available at time t

It is assumed that if the planner is indifferent between making a player to activate the
risky arm or the safe arm, then he makes him to activate the safe arm. Thus the planner’s
action is left continuous.
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From now on we will do away with the time subscript. Let v(p) be the value function of
the planner. Since actions are left continuous and beliefs can move only in the left direction,
left continuity of v(p) can always be assumed.

Then v(p) should satisfy,

v(p) = max
k∈{0,1,2}

{(2− k)π0 dt + kpπ1 dt+

(1− r dt)(1− (2− k)π0 dt− kpπ1 dt)(v(p)− v
′
(.)kπ1 p(1− p)dt)},

since (v(p+ d p) = v(p)+ v
′
(p)d p) and d p =−kπ1 p(1− p)dt.

After expanding and rearranging the above and ignoring the terms of order o(dt) we
have

rv = max
k∈{0,1,2}

{(2− k)π0[1− v]+ k(π1 p[1− v− v
′
(1− p)])} (1)

Proposition 3 The planner’s optimality involves making both the players to activate the

risky arm as long as p > p∗, where p∗ = π0
π1

. For p≤ p∗, both are made to activate the safe

arm.

Proof. Since (1) is linear in k, we know that at the optimum, k will either be 2 or 0. When
both players are optimally made to activate the risky arm, the value function satisfies:

v =
2π1

r+2π1
+C(1− p)[Λ(p)]

r
2π1 ,

where Λ(p) = 1−p
p and C is the integration constant. This is derived by solving the O.D.E

obtained by putting k = 2 in (1).
When both players are optimally made to activate the safe arm, then v = 2π0

r+2π0
. Since

v(p) satisfies the value matching and smooth pasting conditions at p = p∗, we get

C =

2π0
r+2π0

− 2π1
r+2π1

(1− p∗)[Λ(p)]
r

2π1

and p∗ =
π0

π1

This concludes the proof.

3.1.2 The non-cooperative game

Player i chooses actions {kit ∈ {0,1}}, such that kit is measurable with respect to the in-
formation available at time t. We restrict our attention to Markovian strategies, such that
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strategy of player i is defined by the mapping ki : [0,1]→ {0,1}. We allow only those ki

functions which satisfy the property that k−1
i (1) and k−1

i (0) are disjoint unions of a finite
number of non-degenerate sub-intervals in [0,1], such that ki(0) = 0 and ki(1) = 1. This
ensures that the game is well-defined in the continuous time framework.

Players simultaneously update their belief about the risky arm to be good as long as
there is at least one player activating the risky arm and there is no arrival(at any of the
arms). Both k1 and k2 are left continuous, which guarantee the existence of a well defined
law of motion of the posterior.

Let vi be the value function (equilibrium payoff) of player i (i= 1,2)in the non-cooperative
game. If (k1,k2) is an equilibrium strategy profile then given k j ( j = 1,2), ki (i = 1,2; i 6= j)
and vi should satisfy

vi = max
ki∈{0,1}

{(1− ki)π0 dt + kiπ1 pdt+

(1− r dt)(1−π0 dt(2− ki− k j)− pπ1(ki + k j)dt)(vi− v
′
i p(1− p)π1(ki + k j)dt)}

Simplifying the above, we obtain

rvi = max
ki∈{0,1}

{(1− ki)π0(1− vi)+ ki(π1 p[1− vi− v
′
i p(1− p)])

− (1− k j)π0vi− k jπ1 p(vi +(1− p)v
′
i)} (2)

Proposition 4 There exists an efficient equilibrium.

Proof. Consider the following strategy profile: Each player activates R for p > p∗ and S

for p ≤ p∗ (Hence p∗ is the switching point). This is a symmetric strategy profile and the
outcome implied by this profile is the efficient outcome. We need to show that this profile
constitutes an equilibrium.

Suppose player 2 follows the above strategy. We will determine the best response of
player 1. It is clear that for p = 1, player 1 will choose R. Thus the optimal switching point
of player 1 is to be determined. It is shown in the supplemental appendix that the unique
optimal switching point for player 1 is p∗. Similarly, this can be shown for player 2.

This concludes the proof.
This is an interesting point to note. From [11] we know that with homogeneous play-

ers, efficient equilibrium in threshold type strategies never exists. Here we observe that
just by introducing payoff externalities, we can obtain efficient equilibrium in threshold
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type strategies. Hence we see that competition among players brings in efficiency which
intuitively makes sense.

Next, we move on to our analysis with heterogeneous players. We find that the nature of
distortion in the non-cooperative game with respect to the benchmark case (social planner’s
problem) is exactly the same as obtained in the previous environment.

3.2 Heterogeneous Players

Consider the setting where players are heterogeneous, i.e their ability to learn across the
risky arm is different. Hence we have π1 > π2 > π0.

To start with, as before, we first analyse the social planner’s problem which is intended
to be the efficient benchmark.

3.2.1 The Social Planner’s problem

The planner’s objective is the same as before. Let (k1,k2) be his action profile. ki ∈ {0,1},
for i = 1,2. ki = 1(0) implies that the planner has made the ith player to activate risky(safe)
arm. Let v(p) be the value function of the planner. Then it should satisfy

v(p) = max
ki∈{0,1}

{(2− k1− k2)πo dt + k1 pπ1 dt + k2 pπ2 dt+

(1−r dt)(1−(2−k1−k2)π0 dt−k1 pπ1 dt−k2 pπ2 dt)(v(p)−v
′
(p)p(1− p)(k1π1+k2π2)dt)}

⇒ rv= max
ki∈{0,1}

{(2−k1−k2)π0[1−v]+k1(pπ1[1−v−v
′
(1− p)])+k2(pπ2[1−v−v

′
(1− p)])}

(3)
This is because v(p+ d p) = v(p)+ v

′
(p)d p and d p =−(k1π1 + k2π2)p(1− p)dt.

The following lemma establishes a property for an interior solution of the planner’s
problem.

Lemma 1 If there exists an interior solution (i.e there exists p∗i ∈ (0,1) such that for p> p∗i
player i is made to activate R and for p≤ p∗i , player i is made to activate S) then optimality

requires diversification over a range of beliefs. That is, there exists a range of beliefs over

which the planner will make one player to activate the risky arm and the other player to

activate the safe arm.

Proof of Lemma. Suppose not. This implies that the planner’s optimality requires him
to switch both the player from the risky arm to the safe arm at the same p, say p

′
. At the
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optimum the smooth pasting condition must hold which implies that v
′
(p
′
) = 0. From (3),

we know that optimality requires,

p
′
π2[1− v] = p

′
π1[1− v(p

′
)] = π0[1− v(p

′
)]

However since π1 > π2, p
′
π2[1− v(p)]< p

′
π1[1− v(p

′
)]. This is a contradiction.

This proves the lemma.
The next lemma shows that if the planner’s solution involves diversification, then player

2 is to be switched to the safe arm at a higher belief than the one at which player 1 is
switched.

Lemma 2 Player 2 is to be switched to the safe arm from the risky arm at a higher p than

player 1.

Proof of Lemma. Suppose not. From lemma (1) we know that this implies player 1
is switched to the safe arm at a higher p than player 2. Let this switching point be p∗1.
From (3), we know that at p∗1 we must have, π0[1− v(p∗1)] = p∗1π1[1− v(p∗1)− v

′
(p∗1)(1−

p∗1)]. Since π2 < π1, we have π0[1−v(p∗1)] = p∗1π1[1−v(p∗1)−v
′
(p∗1)(1− p∗1)]> p∗1π2[1−

v(p∗1)−v
′
(p∗1)(1− p∗1)]. This is a contradiction to the claim that it is optimal to keep player

2 at the risky arm at p = p∗1. This proves the lemma.
With the help of the above two lemmas we are now in a position to describe the plan-

ner’s solution. The following proposition does this.

Proposition 5 There exists a solution to the planner’s problem, where both the players are

made to activate the risky arm for p > p∗2, player 2 is made to activate the safe arm and

1 to activate the risky arm for p ∈ (p∗1, p∗2], and both players are made to activate the safe

arm for p≤ p∗1 where p∗1 =
π0
π1

.

Proof. First, assume that there exists some π0
π1

< p∗2 < 1, such that it is optimal to switch
player 2 to the safe arm at p∗2. v(p) in the range of beliefs over which 2 is made to activate
the safe arm and 1 is made to activate the risky arm, should satisfy

v =
π0

r+π0
+

rπ1 p
(r+π0)(r+π0 +π1)

+C2(1− p)[Λ(p)]
r+π0

π1 ≡ vSR

This is derived through solving the O.D.E obtained by putting k2 = 0 and k1 = 1 in (3).
Suppose p∗1 is the belief where 1 is to be switched to the safe arm. Since at p∗1, both players
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are activating S, optimality would require to have v
′
(p∗1) = 0(smooth pasting condition).

According to lemma (2), player 2 is switched from R to S at a higher p. Then from the
value matching condition, we know that we should have vSR(p∗1) = v(p∗1). This gives us

C2 =
rπ0

(r+π0)(r+2π0)
− rπ1 p∗1

(r+π0)(r+π0+π1)

(1−p∗1)[Λ(p∗1)]
r+π0

π1

. Observe that C2 > 0. Also, the smooth pasting condition at

p∗1 implies v
′
SR(p∗1) = 0. This gives us

rπ1

(r+π0)(r+π0 +π1)
−C2[Λ(p∗1)]

r+π0
π1 [1+

(r+π0)

π1 p∗1
] = 0⇒ p∗1 =

π0

π1

We now need to prove the existence of a p∗2 ∈ (p∗1,1), such that at p∗2, the planner finds
it optimal to switch player 2 from R to S. The existence of such a p∗2 is proved in the
supplemental appendix.

This concludes the proof of the proposition.

Corollary 1 p∗2 > π0
π2

, the threshold p where the planner would have switched player 2
from R to S had he been dealing with this player only.

Proof. Suppose not. Then p∗2 ≤
π0
π2

. At p∗2, v
′
(p∗2) = v

′
SR(p∗2)> 0. Since v is strictly convex

for p > π0
π1

, v
′
(π0

π2
) > 0. Therefore at p = π0

π2
, π0[1− v] > π2 p[1− v− v

′
(1− p)]. From (3),

we can see that this contradicts the claim that p∗2 ≤
π0
π2

. This proves the corollary.

3.2.2 The non-cooperative game

This is similar to the non-cooperative game with homogeneous players. Thus k1(.) and
k2(.) are the Markovian strategies of the players.

Let v1(p) and v2(p) be the payoff functions of players 1 and 2 respectively in a Marko-
vian equilibrium. vi along with ki should then satisfy

rvi = max
ki∈{0,1}

{(1−ki)[π0(1−vi)]+ki[πi p(1−vi−v
′
i(1− p))]−[(1−k j)π0vi+k j p(vi+v

′
(1− p))]}

(4)
This implies that given k j, at any p optimality on player i’s part requires choosing

ki(p) = 0(1) if [π0(1− vi)]≥ (<)[πi p(1− vi− v
′
i(1− p))] .

We determine the non-cooperative equilibrium in following steps.

Lemma 3 Suppose player 2 follows the strategy of activating R for p > p∗N2 and S for

p≤ p∗N2 such that π0
π1

< p∗N2 < 1. Then player 1’s best response is to activate R for p > p∗1
and S for p≤ p∗N1 where p∗1 =

π0
π1

.
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Proof of Lemma. First, consider the range p≤ p∗N2 . If k1 = 1 (k2 = 0 by hypothesis), then
by putting i = 1 in (4) we know that v1 should solve

v
′
1 +

[r+π0 +π1]

p(1− p)π1
v1 =

1
(1− p)

This is a first order O.D.E. Solving this we have,

v1 =
π1

r+π0 +π1
p+C(1− p)[Λ(p)]

r+π0
π1 ≡ vRS

1 (p) (5)

where C is an integration constant. If he choose k1 = 0 then v1(p) should satisfy,

v1 =
π0

r+2π0
(6)

Initially, we assume that player 1 indeed behaves in the way as claimed, for p ≤ p∗N2 .
Later, we will show that the value function thus obtained for the specified range will satisfy
the Bellman equation for this range. This is shown in the supplemental appendix.

Next, consider the range p > p∗N2 . As before we conjecture that it is optimal for 1 to
choose k1 = 1 and derive the value function. Then we show that the obtained value function
indeed satisfy the bellman equation. Again, this is shown in the supplemental appendix.

This concludes the proof.

Lemma 4 Suppose player 1 plays the following strategy: Activate R for p > p∗N1 = π0
π1

and Activate S for p ≤ p∗N1 . Then there exists a p∗N2 ∈ (p∗N1 , π0
π2
), such that player 2’s best

response is to activate R for p > p∗N2 and activate S for p≤ p∗N2 .

Proof of Lemma. Consider p ≤ p∗N1 . First, as before we conjecture that it is optimal
for player 2 to be at S. Then v2 = π0

r+2π0
for p ≤ p∗N1 . From (4) one can conclude that

π0(1− v2)> π2 p[1− v2− v
′
2(1− p)] for p≤ p∗N1 . This supports our conjecture.

Now consider the optimal stopping problem of player 2 in the range [p∗N1 ,1], given
player 1’s strategy. This is done in the supplemental appendix, which shows the existence
of a unique p∗N2 ∈ (p∗N1 ,1).

From (4), we know that at the optimal we shall have [π2 p∗N2 (1−v2(p∗N2 )−v
′
2(p∗N2 )(1−

p∗N2 ))] = π0(1− v2(p∗N2 )). Since [1− v2(p∗N2 )] < [1− v2(p∗N2 )− v
′
2(p∗N2 )(1− p∗N2 )], we

have p∗N2 < π0
π2

.
The above two lemmas now allow us to formally state the non-cooperative equilibrium.

The following proposition describes this.
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Proposition 6 Player 1 activating R (S) for p > (≤)p∗N1 and player 2 activating R (S)for

p > (≤)p∗N2 constitutes a unique Markovian equilibrium in threshold type strategies.

Proof. The proof of this proposition follows directly from lemma (3) and (4).
The above proposition describes the unique equilibrium in threshold type Markovian

strategies. Since p∗N2 < π0
π2

< p∗2, there exists a range of beliefs (p∗N2 , p∗2) when efficiency
requires player 2 to switch to the safe arm, but it does not. This shows, that the non-
cooperative equilibrium outcome involves the phenomenon of too-much duplication.

4 Conclusion

We have demonstrated that when the players are heterogeneous with respect to learn across
the risky arm(s), then efficiency requires diversification, i.e each player to experiment along
an exclusive arm. Keeping the total ability constant, if the degree of heterogeneity is high
enough then the extent of experimentation in the non-cooperative equilibrium is more than
that in any non-cooperative equilibrium with homogeneous players. When payoff external-
ities is introduced then with heterogeneous players we have inefficiency in equilibrium in
form of too much of duplication.
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