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Abstract

This paper develops two axiom-based measures to characterize social fragmentation over social networks:
generalized fractionalization and proclivity. Many traditional measures of fragmentation, like ethno-
linguistic fractionalization (ELF), are highly sensitive to researchers’ definitions of groups and social
categorizations and thus highly susceptible to researcher biases. The measures discussed in this paper do
not require researchers to define groups a priori if a social network can be observed or perceived between
members of the population. In particular, the paper proposes a series of intuitive axioms that uniquely
characterize the suggested measures, thereby providing an intuitive meaning to fairly objective measures
over a social network. Furthermore, it is shown that these measures can be used to endogenously define
social cleavage structures for any social network. In short, this paper develops intuitive axiomatically-
characterized measures of social fragmentation which can be derived directly from the structure of a
social network without relying upon researcher biases about social categorization.
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1 Introduction

This paper develops two axiom-based measures to characterize social fragmentation over social networks:
generalized fractionalization and proclivity. Many traditional measures of fragmentation, like ethno-
linguistic fractionalization (ELF), are highly sensitive to researchers’ definitions of groups and social cat-
egorizations and thus highly susceptible to researcher biases. The measures discussed in this paper do
not require researchers to define groups a priori if a social network can be observed or perceived between
members of the population. In particular, the paper proposes a series of intuitive axioms that uniquely
characterize the suggested measures, thereby providing an intuitive meaning to fairly objective measures
over a social network. Furthermore, it is shown that these measures can be used to endogenously define
social cleavage structures for any social network. In short, this paper develops intuitive axiomatically-
characterized measures of social fragmentation which can be derived directly from the structure of a
social network without relying upon researcher biases about social categorization.

Section 2 introduces the reader to non-directed networks and notions of homophily, and provides moti-
vation for the proposed definition of social fragmentation. Section 3 develops a uniquely characterized
generalized fractionalization measure from three axioms, and section 4 uses similar axiomatic and statis-
tical techniques to measure identity-based clustering in a network and uses these measures to construct a
partition of the space. Section 5 concludes the paper.

2 Preliminaries

Traditional methods in assessing identity-based social fragmentation try to characterize the salient identity
groups in social fragmentation. The most well-known of these measures is ethno-linguistic fractionaliza-
tion (ELF). ELF (originally designed by Atlas Narodov Mira (1964)) has been subject to much controversy
and debate. In fact, there have been recent attempts to create more accurate ELF measures (Posner, 2004;
Laitin and Posner, 2001). The classic ELF measure is a Herfindahl index using relative sizes of each group
population as inputs in the index.1 Furthermore, as Fearon (2003) notes, two countries, one with two
groups of equal size and one with three groups with shares 2

3 , 1
6 , and 1

6 , would both have an ELF of
0.5.

Measurement of social polarization, i.e., measures of variance and clustering in social connectedness, is
less common. One notable exception is the work of Esteban and Ray (1994), who construct a general class
of polarization measures from a set of core axioms (much like this paper). In their construction, individ-
uals are endowed with an underlying attribute (e.g., income) upon which social connected/alienation is
characterized. This is a measure that is well suited to measuring certain "types" of polarization, i.e., po-
larization due to income classes, but it maybe difficult to implement when the type of polarization results
from an complex combination of multiple attributes since it puts the onus on the researcher to find such
a measure.

The bigger problem with these measures is that it requires the researcher to determine "relevant" groups
for the measure.2 For instance, the original characterization of ELF did not view Hutus and Tutsis as
separate ethnic groups because they spoke the same language. These measures stand in direct contrast to
those who emphasize that people may have multiple identities at once. Sen (2006), in response to anti-
Muslim tensions, notes, “The increasing tendency to overlook the many identities that any human being
has and to try to classify individuals according to a single allegedly pre-eminent religious identity is an
intellectual confusion that can animate dangerous divisiveness." Similarly, Linz and Stepan (1996) argue

1The Herfindahl index formula is: ELF = 1−∑n
i=1 s2

i where si is the share for each group i ∈ {1, 2, ..., n}.
2Daniel Posner’s PREG index is one attempt to rigorously define relevant groups by searching newspapers and country-specific

data.
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that individuals may have multiple and complementary identities, and thus characterization by unique
identities tend to overstate the level of fractionalization in society.

At the same time, if individuals hold on to multiple identities at once, we are left with question of when
and why certain identities are actionable for the purposes of conflict, i.e. why do people of certain sets
of identities fail to build social ties with each other? The approach undertaken in this paper is shy away
from a classification of multiple identities and when they may become relevant. Rather, this paper uses
underlying or perceived patterns of interaction in a social network, which are necessarily a function of
multiple identities and personal attributes, to characterize fragmentation.

2.1 Observing Social Fragmentation

Lack of social ties may occur for two reasons: 1) preferences of individuals, and 2) lack of opportunity to
interact. When we speak of social fragmentation, we are primarily concerned with the former reason, and
when we speak of social segregation we usually mean the latter reason. Of course, fragmentation can lead
to segregation and vice versa, but it is useful to keep the two concepts analytically distinct. An example
should clarify the distinction. Consider the bordering neighborhoods of the Upper West Side, with a large
white population, and Harlem, with a large black population, in New York City, which tell us that the city
is segregated. Now, as a thought experiment, imagine that populations are mixed so that over the course
of the day, any person from either of the two neighborhoods has an opportunity to interact with everyone
else in the Upper West Side and Harlem. Presumably, some members of the white and black populations
would form social ties with each other when they did not have the opportunity to do so before. On the
other hand, there will be those who refuse to form social ties across race, even with guaranteed interaction.
We can now put the populations in the following equation:

(# No Social Ties Before Mixing) =

(# No Social Ties After Mixing) + (# Social Ties After Mixing, but No Ties Before Mixing)

The left side of the equation refers to the estimate of the lack of social ties under segregation, and the first
term on the right refers to what I shall call social fragmentation, the lack of social ties between individuals
when given the opportunity to interact. We can see that observing social structure under a condition of
segregation overestimates fragmentation.3 Interaction is the crucial element here. In particular, interaction
allows individuals to individuals to assess multiple identities at once and make choices about cooperation
based upon these assessments. As Goffman (1983) writes,

Once individuals–for whatever reason–come into another’s immediate presence, a fundamental condition
of social life becomes enormously pronounced, namely, its promissory, evidential character. It is not only
that our appearance and manner provide evidence of our statuses and relationship. It is also that the line
of our visual regard, the intensity of our involvement, and the shape of our initial actions, allow others
to glean our immediate intent and purpose, and all this whether or not we are engaged in talk with them
at the time (p. 3)

In this view, the best approach to measuring social fragmentation is to directly observe interaction between
individuals. Of course, this sort of observation is not always feasible; however, it does provide us with
a benchmark or ideal for the measurement of social fragmentation. Nonetheless, the measures described
in this paper are well-defined even without the opportunity/preference distinction, but the interpretation
of such social fragmentation differs based on the relative opportunity of individual to interact with each
other.

3The assumption here is that people do not break social ties after mixing. In a situation where this occurs, there may be fewer
social ties under mixing than under segregation.
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2.2 Games of Interaction and Coordination

In the study of sociology, economics and politics, we are often interested in how our objects of study
behave when they are forced to interact with each other. The logic of these situations are different from the
sort of community-mapping exercise that is common in sociology. Inferences from community-mapping
are interested in the proximity of individuals with each other. Taking this as a starting point, the goal
is to understand the probability of interaction between two individuals or the flow of information in a
network. In the setup for this paper, we assume that every individual has an opportunity to "meet" every
other individual in the study.

A number of situations can be modeled in this way. For instance, in bilateral trade or treaty negotiations,
both countries must agree. However, theoretically, no country is a priori restricted from interacting with
another country. Another situation would be the co-authorship of bills in a legislature. Once again,
legislators are perfectly free to interact with each other, but who do they choose to coordinate with on
bills?

A second class of situations of interest are when individuals who do not normally interact with each
other are forced to do so. In a game of coordination, we are interested in isolating lack of interaction
due to stigma, as opposed to lack of opportunity. Individuals use signals available to them in tandem
with preconceived notions to decide with whom to coordinate. For instance, we could be interested in
investigating how students from disparate "ethnic groups" might interact with each other in a newly
integrated school. Or, we might be interested in testing whether such groups would be amenable to
supporting the same political party or candidate. Each of these hypothetical scenarios would shed light
upon the level of social fragmentation in the sample.

2.3 Understanding Non-Directed Graphs

The theory in this paper is based on an analysis of non-directed graphs, or social networks. Non-directed
graphs model pairwise interaction. We may view ties or links in a network as coordination between two
individuals, as in friendship or a shared task. Typically, we view this coordination as stemming from some
social “similarity" between the individuals, or homophily. The graph is considered “non-directed" because
both individuals must agree in order for cooperation to take place. In other words, links in a non-directed
graph indicate reciprocal behavior and agreement.

Many of the situations we have discussed above can be modeled with non-directed networks. Consider
the example of friendship networks in schools. A "link" is formed between the two individuals in a dyad
if each individual views the other as a friend, i.e. beliefs of friendship are reciprocal. Although each
person may use some combination of race, gender, or attractiveness to determine friends, the link is solely
a function of interaction between the individual in the dyad. Thus, the researcher places no restriction
in identity categorization upon the individual in order to determine cooperation or connection. Figure 1
shows a set of possible graphs formed by this routine.

Graph A is what we might think of as a divided system, where there are two components, each of
which is a complete subgraph (i.e. each individual has formed a link with each other individual in the
component). The level of connectedness measures in some way the density of the group structure. So, for
instance, graph A denotes two very dense groups that do not interact with each other. Graph B shows that
a connected graph need not change the structure too much, but now we don’t have two distinct groups.
Imagine that the left group is the "black" group and right group is the "white" group. The link between
the two groups suggests that there is a person who is mixed in a way that suggests that she is accepted by
both black and white groups and she views herself as both black and white. However we still basically see
two groups here. Since the structure is quite similar, we want fractionalization in A and B to be similar,
a topic discussed in the following section. Graph C shows a situation where one individual is isolated
from to tight-knit groups, and graph D shows a situation where there aren’t two easily discernible groups
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Figure 1: A Few Possible Networks

and the network is not as dense in clusters as graph A. While networks are an extremely flexible way of
representing social structure, they are also extremely difficult to summarize statistically.4 Our task in the
following sections is made easier by the fact that we are working in a context where each individual is
allowed to interact with every other individual.

3 Fractionalization

In common parlance, when we speak of Òsocial fragmentation,Ó we are actually conflating two very
different phenomena. Let’s consider graphs A and D once again from figure 1. Which network is more
fragmented? On one hand, the groups in graph A are much more dense, so we may be inclined to
argue that A is less fragmented than D. On the other hand, A exhibits two discernible groups that do
not interact with each other, whereas this sort of separation is not present in D. Social fragmentation can
be decomposed along two dimensions: fractionalization and variance in connectedness. In this section,
we discuss fractionalization, which we intuitively define as the average level of disconnectedness in the
network. The issue of variance in connectedness is addressed in the following section.

3.1 Defining Fractionalization

Throughout the paper, we use G = {N, V} to denote the social network whereN to denote the set of
vertices or nodes in the networks V denotes the set of ordered pairs in node set that have links between
them. In ELF, the the proportion of group j, sj, in the whole population is used in the formula. Here, we
define a proportion, connectedness, for each individual.

Definition 3.1. Let δi denote the degree (number of links) for person i. The personal connectedness of player i, pi is
just δi

n−1 , where |N| = n.

In turn, the generalized ethno-linguistic fractionalization (Z) is just a function of pi:

Definition 3.2. The generalized ethno-linguistic fractionalization, Z is given by the following formula:

Z = 1− 1
n

n

∑
i=1

pi = 1− 1
n(n− 1)

n

∑
i=1

δi

4The standard text on different statistical measures to characterize networks is Wasserman and Faust (1994).
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One natural interpretation here is that Z represent the fraction of dyads that did not form a link between
them. In other words, Z represents the probability that two randomly chosen individual do not have a
link between them. The index, Z, ranges from 0 to 1, and clearly the maximum value of the index goes to 1
as the sample size grows. Furthermore, Z is monotonically decreasing in the total number of links formed
in the network. The expression is remarkably simple, as it is a function of the average of connectedness
measures in population. Note that the definition is of connectedness here is quite different from the
definition in Krackhardt (1994), which is more concerned with the reachability from one individual to
another, i.e. there exists a path that connects two nodes.

Figure 2: Various Social Structures

(a) Divided Society (b) One Person Mixing

(c) Many People Mixing

The graphs above depict two groups, the“red" and “blue" groups. When linking within group, the link is the color of the
group. When linking across groups, the link is purple. Even though (a) and (c) have very different structures, they admit
the same generalized fractionalization score, 4

7 or 0.571 in the frequentist measure, or 17
30 or 0.567 in the Bayesian measure

(see section 3.3 for discussion).

In figure 2, (a) and (c) have identical values of Z , 0.57. Since the fractionalization score is simply conceived
as average disconnectedness, it does not account for any clustering behavior. Although, Z is not a function
of experimenter coding like the ELF, it is still subject to the same non-uniqueness problem of the classic
measure. In fact, there is an intimate connection between ELF and Z. Consider a network divided into
m components5, then, as the following theorem shows, ELF and Z correspond under special circumstances:

Theorem 3.3. Let Gn denote a graph of sample size n, and let Zn correspond to the value of Z on Gn. Assume that
each Gn contains m (fixed) components, each of which is a complete subgraph. Then,

lim
n→∞

Zn = ELF

Proof: Assume Gn contains m components, each of which is complete, and sj corresponds to the fraction
of the population in component j, then:

lim
n→∞

Zn = lim
n→∞

1− 1
n(n− 1)

n

∑
i=1

δi = lim
n→∞

1− n
n− 1

m

∑
j=1

s2
j −

1
n− 1

= 1−
m

∑
j=1

s2
j = ELF

From this perspective, the classical ELF makes very strong assumptions about the level of connectedness
in a network. It implies that members of one group are connected with every other member of the group
and no one else.6 Thus, we can surmise that the ELF assumes within-group connectedness is quite dense

5A component is defined as the maximal subgraph where each pair of nodes can be connected by a path. In other words, two
individuals are in different component if there is no set of links connecting in the graph connecting the individuals to each other.

6Of course, there may be knife-edge results where members of the group are not completely connected to each other, but are
connected outside the group in such a proportion to make the total number of links correspond approximately to what would have
occurred in the assumptions of theorem 3.2.
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and across group connectedness is very sparse in large samples. However, the direction of the bias is
ambiguous. For instance, it may be that within-group connectedness is more sparse than assumed under
classical ELF. In this case, the ELF underestimates the level of fractionalization in the population. On the
other hand, there is certainly some connectedness across groups, and ELF overestimates fractionalization
in that situation. Another common interpretation of the ELF is that it measures the probability that two
people chosen at random will belong to different groups, whereas Z measure the probability that two
people chosen at random do not have a link.

3.2 An Axiomatic Approach to Fractionalization

In order to further understand the measure proposed above, this subsection attempts to construct the mea-
sure from an intuitive set of axioms. These axioms constitute a sufficient set of conditions to characterize
a network using Z. The validity of Z is a function of the intuitive appeal of the axioms presented below.
In this subsection, we will present each axiom followed by a brief discussion, concluding with the main
theorem of the subsection.

In order to orient the discussion, we define a process of graph formation. Assume that the set of individ-
uals, N, has cardinality n. N induces a dyad set, D, of cardinality n(n−1)

2 with some ordering. A dyad

(pair of individuals) in D is chosen randomly, one at a time without replacement, until all n(n−1)
2 dyads

have been selected. The result of the process is a n(n−1)
2 -tuple denoted by D∗. For In each period, the dyad

selected is given the opportunity to form a link. Our goal is to determine a function f : P (D∗) → [0, 1]
that assigns the space of permutations of D∗, P (D∗) to a number between 0 and 1, defining the fraction-
alization index. The following definition is helpful for characterizing the axioms:

Definition 3.4. Let A ⊆ D be the subset of dyads that have formed links. We define D∗(A) to be a process where
the members of A have formed links.

The first of our axioms is monotonicity, which requires that forming a new link necessarily decreases the
fractionalization. The second axiom, anonymity, requires that each dyad has the same effect on the index.
The third axiom, order invariance, requires that dyads have the same effect on the index irrespective of
when they are chosen. The axioms are stated formally below.

Monotonicity. Let A, B ⊆ D be the set of dyads that have a link between them in two different processes, D∗(A)
and D∗(B). If A ( B, then f (D∗(A)) > f (D∗(B)).

Anonymity. The fractionalization function, f , is not dyad-specific. Formally, we say f
(
(ΠD)∗

)
= f (D∗) where

ΠD is a permutation of D.

Order Invariance. Dyads have same impact on the index, irrespective of when they are chosen. Formally, we say
f (ΠD∗) = f (D∗) where ΠD∗ is a permutation of D∗.

The appeal of monotonicity is fairly obvious. As more people form links, the fractionalization in society
decreases. Notice, however, that the condition above is weaker than stating a process with more links has
lower fractionalization. We require that the sets of dyads forming links in two processes be nested in order
to satisfy the monotonicity condition. Intuitively, we may take a process and add a link between a dyad
that failed to form one, which creates a new process that is strictly less fragmented than the old one. The
anonymity condition is an egalitarian condition that allows us to calculate the same index irrespective of
who is forming a link. The order invariance condition can be thought of as an independence condition.
Link formation between two individuals is not a function of the actions of other dyads and thus the con-
tribution of a link between the elements of a dyad in the fractionalization index is independent of the
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actions of the other links. These three axioms allow us to derive the main result of this subsection:

Theorem 3.5. The fractionalization index, Z, is the unique function f : P (D∗)→ [α, β] that satisfies monotonicity,
anonymity, and order invariance with a range of [0, 1].

Proof: Consider a process D∗ and some dyad k ∈ D. The marginal effect on f of forming a link in the
process is defined by:

f (D∗(A ∪ {k}))− f (D∗(A)) = ck

By order invariance, the marginal effect of forming a link for k is a constant ck irrespective of when it is
chosen and thus dyad k has a marginal effect of ck in every process. By anonymity, however, ck = α for all
k, i.e. each dyad has the same contribution. It follows that f is linear in the number of links, so:

f (D∗) = β− α× ∑
k∈D

dk where dk =

{
0 if no link is formed
1 if a link is formed

Monotonicity implies that α > 0 and a range of [0, 1] implies that β = 1 and α = 2
n(n−1) . Now, we use the

fact that:

2× ∑
k∈D

dk = ∑
i∈N

δi

Substituting in directly gives us:

f = 1− 1
n(n− 1)

n

∑
i=1

δi = Z

3.3 Stochastic Approaches to Fractionalization

In the previous subsection, the axiomatic approach constructed the fractionalization index as a determin-
istic quantity. However, we can also treat the index as a stochastic quantity based on the probability
definition, the probability that two people chosen at random do not have a link between them. Accord-
ingly, we can give both a frequentist and Bayesian interpretation of the measure.

Why might we select one over the other? Apart from philosophical concerns about one interpretation or
the other, the main difference between the two interpretations is about how to handle sample size. The
frequentist approach simply counts the number of links and divides by the number of possible links to
get probability of link formation. Thus, the frequentist measure is precisely Z as we have already defined
it.

One Bayesian critique of this approach is that it give non-credible results in smaller sample sizes. Imagine
that we only sample two people from a population and they form a link. Do we really believe that the
probability of not forming a link in this population is 0? The Bayesian measure described here starts off
with a non-informative prior, which says that prior belief about probability of link formation (and, thus,
non-formation) is uniformly distributed between 0 and 1, which intuitively pulls probability of link for-
mation (or non-formation), also known as the posterior, towards 1

2 . This allows us to give the Bayesian
version7 of Z below:

7For more discussion of the Bayesian estimator(s), please see Gelman, Carlin, Stern and Rubin (2003)
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Definition 3.6. Let the prior belief about the probability of link formation in a population be uniformly distributed
on [0, 1]. Then, the Bayesian version of the fractionalization index is given by:

ZB = 1− (∑n
i=1 δi) + 2

n(n− 1) + 4

The standard errors of the two types of estimates are fairly straightforward to calculate. In the frequentist

case, we have the probability of a link p = ∑n
i=1 δi

n(n−1) . In the frequentist case, the data are generated from
a binomial distribution with paramater p, and thus standard error of the frequentist estimate of Z is
just:

se(Z) =
√

p(1− p)√
n(n−1)

2

=

2×
√

n(n− 1)
n
∑

i=1
δi −

n
∑

i=1
δi

n
3
2 (n− 1)

3
2

. It can be shown that probability of link formation in the Bayesian case, where the probability is just

pB =
(∑n

i=1 δi)+2
n(n−1)+4 , follows a beta distribution with parameters ∑n

i=1 δi
2 + 1 and n(n−1)

2 − ∑n
i=1 δi
2 + 1. It follows

that estimated standard error of Bayesian case, ZB, is just:

se(ZB) =

(
∑n

i=1 δi
2 + 1

) (
n(n−1)

2 − ∑n
i=1 δi
2 + 1

)
(

n(n−1)
2 + 2

)2 ( n(n−1)
2 + 3

) =

2
(

n
∑

i=1
δi + 2

)(
n(n− 1)−

n
∑

i=1
δi + 2

)
(n(n− 1) + 4)2 (n(n− 1) + 6)

In this paper, I do not advocate one measure over the other. Rather, because they are both very easy to
calculate, it may be beneficial to calculate both measures and be concerned if the two measures are very
far off. In the case where the values of the indices are far off, we would suspect that the sample size is too
small, and the frequentist measure should be interpreted with caution.

4 Proclivity

In the previous section, we saw that the fractionalization index alone does not adequately capture major
changes in social structure. The approach in this subsection is to derive a difference of probabilities
measure which captures group-level clustering. In particular, we may have groupings in mind according
to some identity-based measure like race or gender, and we would like to test whether there is clustering
interaction across these identities. In this section, I define and discuss the properties of a proclivity measure,
which is based on the Z measure above. Again, we use an axiomatic approach to derive the measure as a
deterministic quantity, and we discuss its stochastic application thereafter.

4.1 Defining and Axiomatizing Proclivity

As we will see, the definitions described in this subsection are straightforward applications of the routine
described in the previous section on fractionalization. The statistical estimation of these values, however,
can be complicated (which is discussed in the next subsection).

Let the fractionalization of group X restricted to group Y be defined in the following way:

Definition 4.1. The fractionalization of group X restricted to group Y is defined as:

ZX,Y = 1− 1
nY(nY − 1) ∑

i∈X
δY

i
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where nY = |Y| and δY
i is the degree of person i restricted to when restricted to members of group Y.

In turn, the proclivity of a member of group X towards a member of group Y (as opposed to a member of
the complement of Y, ¬Y) is defined by a difference of these restricted fragmentation indices:

Definition 4.2. The proclivity of group X towards group Y is defined as:

QX,Y = ZX,Y − ZX,¬Y =
1

nY(nY − 1) ∑
i∈X

δY
i −

1
n¬Y(n¬Y − 1) ∑

i∈X
δ¬Y

i

where, ¬Y denotes the complement of Y, nY = |Y|, n¬Y = |¬Y|, and δY
i , δ¬Y

i is the degree of person i restricted to
when restricted to members of group Y(¬Y).

Intuitively, this measure is just the probability of a member of X forming a link with someone in Y,
subtracting the probability of a member of X forming a link with someone outside of Y, which ranges
between -1 and 1. An interpretation of Q would be the “correlation" in link formation between members
of groups X and Y. One way to conceive of the measure is to think of “latin square design" experiment.
In figure 3, we see a diagram of this scenario. Intuitively, we can partition the dyad set into X and ¬X,
as well as Y and ¬Y. Then, we can further conceive of the probability of links forming in each of the
combinations (< X, Y >, < X,¬Y >, < ¬X, Y >, and < ¬X,¬Y >). The proclivity measure is just the
difference of the top two cells (those links in the complement of ¬X).

Figure 3: A Latin Square Conceptualization of QX,Y

The latin square image above depicts the set of nodes divided in two ways, by X and its complement, and by Y and its
complement. The darker shade implies a higher probability of forming a link, and QX,Y is just the difference of the two
shaded regions.

We may look at the problem cases from before, where very different structures admit the same fractional-
ization score. In order to test "in-group" clustering, we would measure QX,X . As the next theorem shows,
QX,X has a very intuitive interpretation.

Theorem 4.3. If QX,X = 1, then X forms a complete component, i.e. each member of X has a link to every other
member of X and no one else.

The proof is trivial, and is thus omitted. However, QX,X can be thought of as a measure of how close a
comes to the extreme case of forming a “clique" (complete subgraph) without connecting to anyone else.
Thus, the proclivity measure combines a notion of clustering with a notion of isolation, and groups with
high values of Q are dense and isolated.
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Figure 4: Various Social Structures

(a) Divided Society (b) Many People Mixing

The graphs above depict two groups, the“red" and “blue" groups. When linking within group, the link is the color of the
group. When linking across groups, the link is purple. Even though (a) and (b) have very different structures, they admit
the same generalized fractionalization score, 4

7 or 0.571 in the frequentist measure, or 17
30 or 0.567 in the Bayesian measure.

However, they admit very different proclivity scores, where QX,X is 1 (frequentist) or 0.9997 (Bayesian) for (a), and where
QX,X is 0.4791 (frequentist) or 0.4783 (Bayesian) for (b). See section 4.2 for a discussion of the Bayesian measure.

The axiomatic construction of proclivity is similar to the one given in the last section, and one of the ax-
ioms is identical (order invariance), while the other axioms are very similar. The setup is almost identical
as well. This time all individuals are placed into four, possibly overlapping, categories: X, ¬X, Y, ¬Y.
Once again, dyads are chosen randomly without replacement until all n(n−1)

2 have been selected, and each
dyad has to option to form a link. We are interested in measuring the proclivity of a member of X to
a member of Y. In the discussion below, we will define Di,j to be the set of dyads, with some ordering,
that can be constructed between member of groups i and j, so, for instance, DX,Y is the ordered set of
dyads formed between members of X and Y. To simplify the notation in the following part, the following
definition is useful.

Definition 4.4. Let R ⊆ DX,Y, and S ⊆ DX,¬Y be the (ordered) subsets of the dyad sets that have links between
them, then D∗X,Y (R, S) is a process associated with R and S, involving groups X and Y.

The axioms are stated below to define a proclivity measure for X towards Y, g:

Two-Way Monotonicity. More links to members of Y by X yields a higher value, and more links outside of Y
leads to a lower value. Define X, Y ⊆ N. Let A, B ⊆ DX,Y and A′, B′ ⊆ DX,¬Y be subsets of links between dyads.
If A ⊆ B and B′ ( A′, or A ( B and B′ ⊆ A′ , then g(D∗(A, A′)) < g(D∗X,Y(B, B′)).

Group Information Only. The index is only dependent upon group labels, so there is anonymity within groups.
Let R ⊆ DX,Y and S ⊆ DX,Y be ordered subsets of the dyad sets. Furthermore, let ΠDX,Y and ΠDX,¬Y be permu-
tations of DX,Y and DX,¬Y, respectively. Then, g(D∗ΠX,ΠY(R, S)) = g(D∗X,Y(R, S)).

Order Invariance. Dyads have same impact on the index, irrespective of when they are chosen. Formally, we
say g

(
ΠD∗X,Y

)
= g

(
D∗X,Y

)
where ΠD∗X,Y is a permutation of D∗X,Y.

Intuitively, the axioms are as they were in defining Z in the section above, but now individuals use group
information to form links. The first condition just states that, all else being even, proclivity of X towards
Y increases as more links are formed between members of X with members of Y and decreases, all else
being even, when links are formed outside of Y. The second condition allows individuals to form links
based upon group information only, and the order invariance is a condition carried over from before so
that impact of forming a link on the proclivity measure is independent of when in the process it was
formed. Taking these three axioms together, we can once again form our index of interest.

Theorem 4.5. The proclivity index between X and Y, QX,Y, is the unique function, g : P
(

D∗X,Y

)
→ [α, β]

that satisfies two-way monotonicity, group information only, and order invariance with a range of [−1, 1] with
g
(

D∗X,Y(∅, ∅)
)
= 0 for a graph with no isolated vertices.
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Proof: Consider a dyad, k, involving a node from X, and some process D∗X,Y(R, S). If k is a dyad between
members of X and Y and forms a link (when it didn’t do so before), then the marginal contribution of the
link formed by k is:

g
(

D∗X,Y(R ∪ {k}, S)
)
− g

(
D∗X,Y(R, S)

)
= cX,Y

k

Similarly, the marginal contribution of a node in X forming a link in ¬Y is simply:

g
(

D∗X,Y(R, S ∪ {k})
)
− g

(
D∗X,Y(R, S)

)
= cX,¬Y

k

As before, order invariance requires that cX,Y
k and cX,¬Y

k be constants. Groups only requires anonymity
within groups, so we can set cX,Y

k = α1 and cX,¬Y
k = α2, where α1 and α2 are constants. It follows that g is

“quasilinear " in the number of links between X and Y and between X and ¬Y. So:

g
(

D∗X,Y
)
= α1 × ∑

k∈DX,Y

dk − α2 × ∑
j∈DX,¬Y

dj + h
(

D∗¬X,¬X
)

where dk, dj = 1 if a link is formed in the dyad and h is some function of the links formed with both nodes

in ¬X. Monotonicity implies α1, α2 > 0, and the condition g
(

D∗X,Y(∅, ∅)
)
= 0 implies h ≡ 0. Finally, a

range of [0, 1] implies:

α1 =
2

nY(nY − 1)
; α2 =

2
n¬Y(n¬Y − 1)

Once again we use the fact that:

2× ∑
k∈DI,J

dk = ∑
i∈I

δJ

Substituting in directly gives us:

g =
1

nY(nY − 1) ∑
i∈X

δY
i −

1
n¬Y(n¬Y − 1) ∑

i∈X
δ¬Y

i = QX,Y

4.2 Stochastic Approaches to Proclivity

Once again, while the axiomatic approach gives a view of the proclivity measure as a deterministic quan-
tity, the measure has a clear stochastic interpretation, the difference between the probability of a member
of X forming a link with a member of Y and the probability of forming a link with ¬Y.

Since the choices of X and Y are up to the researcher, there is some concern about manipulation of the
numbers. In particular, the estimates for proclivity might be unreliable in small groupings. As an extreme
case, we can conceive of X and Y as two (distinct) nodes with a link between them. Do we really want to
believe that the probability of forming a link between X and Y is 1? When thinking about the proclivity
measure, the sample size concerns are more acute because we are subsetting the data. As before, I propose
a Bayesian routine to deal with these concerns.

It is useful to understand proclivity in a regression context. In the frequentist context, we restrict our data
to all of the dyads that have at least one member of X (i.e. we throw out the dyads in D¬X,¬X). Let dk
be 1 if a link is formed in dyad k, and 0 otherwise. Furthermore, define ωX,Y to be 1 if the dyad is in
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DX,Y and 0 otherwise (i.e. the dyad is in DX,¬Y. We may quickly calculate QX,Y by running the following
regression:

logit(dk) = β0 + β1 ×ωX,Y

where β0 and β1 are parameters estimated from the regression. We would then estimate:

QX,Y = logit−1 (β0 + β1)− logit−1 (β0)

Notice that the first term on the right side is just the (frequentist) probability of forming a link in DX,Y and
the second term is just the probability of forming a link in DX,¬Y. Thus, we can quickly calculate QX,Y as
a frequentist measure in a regression context.

We can also use a similar setup to derive a Bayesian estimate. The problem with the frequentist estimate
is the researcher may choose small X and Y groupings, for which there is less confidence in the measure.
In order to account for this situation, we run a random intercepts model, where the dyads are broken into
three groups: G = {DX,Y, DX,¬Y, D¬X,¬X}.8. Formally, we run:

logit(dk) = αi; αi ∼ N(µα, σα)

where i ∈ G and µα and σα are hyperparameters used to estimate the random effects model (i.e. the
random coefficients are assumed to be normally distributed with some common mean and variance). In
this case, the Bayesian estimate of proclivity of X towards Y is:

QB
X,Y = logit−1

(
αDX,Y

)
− logit−1

(
αDX,¬Y

)
It is advisable to run simulations to determine standard errors for each of these estimates. Since there is no
“error term" in a binary logistic regression as there is in least squares, we need our calculate our standard
errors off of the standard error estimates for each of the parameters in the regression models. Thus, in the
frequentist case, we would use the standard errors on α and β to simulate the data-level standard error. In
the Bayesian case, we would simulate off of the standard error estimates of each of the random intercepts.
While these estimates do not have simple closed form values, modern computing technology makes this
approach quick and straightforward.9

4.3 Defining Cleavage Structures

Naturally, we are interested in methods to select the groups; in other words, we want to endogenize
the choice of X and Y in the proclivity measure. In order to endogenize the process, we introduce a
mathematical notion of cleavage structure. When we think of a social/political cleavage, like an ethnic
or linguistic cleavage, we tend to think of a set of “groups" that partition society10 and have an aversion
to each other (i.e. a strong proclivity towards their own group). Using this logic of a cleavage, and the
proclivity measure discussed above, we construct endogenously defined groups. The following definition
is useful for our purposes:

8We may, also, if we choose, further partition D¬X,¬X into dyads that have a link with Y and those that have a link with ¬Y, so
that the inferences are more consistent with the latin square motivation.

9For a nice introduction to this approach, please see the discussion in Gelman and Hill (2006).
10There is some criticism as to whether group/cleavage structures should partition society. For instance, Airoldi, Blei, Fienberg

and Xing (2008) argue that rather than viewing individuals as members of one group, they should be viewed as having a probability
distribution over all groups in society. While appealing in many ways, this argument is more a criticism of the notion of cleavage
structures rather than a definitional problem.
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Definition 4.6. A cleavage structure of order M is a partition of the non-empty graph with no isolated vertices, G,
P = {x1, x2, ..., xJ} such that

M = sup{K|Qxi ,xi > K ∀xi, xj ∈ P , i 6= j}

In other words, M, is the greatest lower bound of the proclivity measures for all of the groups in the
partition. This definition of cleavage structures allows us to distinguish a cleavage-type structure from a
process that might be better described as "ghettoization" rather than a true cleavage structure. In other
words, the reciprocal aversion between groups in cleavages allows us to get high values of M. The
following graphic shows the basic logic:

Figure 5: Comparison of Social Structures

(a) Ghettoization: M=0.22 (b) Cleavage: M=1

The graphs above depict two groups under different social structures. Clearly, the structure in (b) admits a much higher
value of M due to reciprocal aversion.

The value of M also rapidly decreases with the size of groups in the partition. The following graphic
shows that it is very hard to have high values of M with partitions composed of small groups. Just by
adding two links, we are able drop M by 19%. This also explains why this approach is not just a simple
clustering algorithm. In some sense, the size of the groups is endogenously defined within this definition,
and the cleavage structure biases towards larger groupings (which is consistent with our intuitions about
social cleavages being composed of a few large groups).

This simple framework of cleavage structure, leads to an intuitive definition of the most salient cleavage in
society:
Definition 4.7. Let PG be the collection of possible partitions of the graph G. The cleavage function, CG : PG →
[−1, 1] takes each partition to the order (M) of the cleavage. The most salient cleavage is the partition:

P∗ = arg max C(P), P ∈ PG

This cleavage may not be unique. To see this, notice that any partition over a complete graph will yield
M = 0 for all groups. Nonetheless, we can put a sharper lower bound on the cleavage order of the most
salient cleavage:

Theorem 4.8. Let M∗ = C(P∗); M∗ ∈ [0, 1] and M∗ = 0 if and only if the graph, G is complete.

Proof: M∗ is bounded above by 1. If G is a complete graph, then clearly M∗ = 0 since each partition of
the graph yields M = 0. To prove the theorem, it suffices to show there exists a partition P ′ of the graph
such that CG(P ′) > 0 for all the G that are not complete.

Consider the coarsest partition of G such that each element of the partition is a complete subgraph. This
is always feasible when the number vertices is even (a list of edges satisfies this condition). It is trivial
to show that the proclivity measure is greater than 0 for each element of the partition. Now consider the
scenario when the number of vertices is odd. Remove the lowest degree vertex (if the partition above is
not feasible) and create a partition as above and then add the vertex to the largest component. Direct
calculation shows that each proclivity measure is again positive.
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Figure 6: Comparison of Small Group Structures

(a) M=1 (b) M=0.94

(c) M=0.81

The graphs above depict how M decreases rapidly as we add links. Between (a) and (c), M decreases 19% by adding 2
links. Also note that we can factor in the uncertainty due to the size of the groups by using Bayesian measures of proclivity,
which would lower M even further for smaller groups.

5 Conclusion

This paper develops three measures for the study of social fragmentation using non-directed network
data: fractionalization, proclivity, and most salient cleavage. Fractionalization measures the level of dis-
connectedness in the sample. Proclivity measures the preferences in forming a link with members of Y
by members of X (as compared to those outside of Y). Finally, the most salient cleavage is a method to
partition the network into meaningful clusters. In the paper, we begin by interpreting network data in
terms of a theoretical framework where each individual has the opportunity to interact with every other
individual. Using this approach, we develop measures of fractionalization and proclivity measures from
both an axiomatic and statistical perspective.

The data demands for the type of analysis described in the paper are quite high. At the very least, it
represents an ideal scenario for estimation of social fragmentation. The measures can be adapted to more
easily obtainable data, like that of directed networks which can often be obtained by surveys. Furthermore,
it may be possible to obtain non-directed network data which conform to the assumptions of the paper
in an experimental setting or some micro-level structure (e.g. a school or an apartment building). This
paper represents a first step in developing a framework where social fragmentation can be estimated more
accurately from network-type data. Hopefully, further research will help determine large-scale estimation
techniques that can approximate the structure in this paper.
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