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Abstract

We study dominance in competitive systems with positive feedbacks. The conven-

tional view is that relatively insignificant and randomly occurring imbalances between

the shares of competitors can, in the presence of positive feedbacks, lead the system

to a path that decisively favours the one that gained early advantage. This is based

on non-linear feedback. In this paper we consider the firm targetting some specific

market share (e.g., 60%), with sufficiently high probability (e.g., 0.9) and using Pólya’s

linear urn process, examine the path to such intermediate levels of dominance over

finite or infinite horizons. We determine the trade-off between initial market presence

and feedback strength in locking-in to any specified degree of dominance .
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1 Introduction

The competitive diffusion of innovative products, technologies, ideas and practices is of

great importance in a world abounds in them. There are many reasons why positive feedback

characterises consumer choice among competing alternatives in markets for innovative goods.

they include word-of-mouth publicity, social learning, cost-advantages of larger scales of

operation, and network externalities – by which each customer gains more value the more

others have made the same choice, and therefore tends to make her choice to accord with the

choice made by others. In influential theoretical models of markets with positive feedback,

these and similar factors make the future adoption rate highly elastic with respect to present

market share, and monopoly is the certain eventual market outcome. The process whereby

intermediate degrees of dominance emerges in markets is of great practical and academic

interest and remains underexplored.

In the extant literature the certain eventual monopoly outcome is generally explained

in terms of non-linear positive feedback driving an adoption process (Arthur, 1989). Under

these types of self-reinforcement, the market outcome is history-dependent in the sense that

small share differences early on can be decisive in picking out the winner in the long run.

The battle between QWERTY and DVORAK keyboard formats has been explained as a

case of an inefficient QWERTY being picked out by accidents of history, and emerging

due to positive feedbacks from the economies of learning-by-doing and learning-by-using

(David 1985). Other often mentioned examples include the battle between CP/M, DOS and

Macintosh among operating systems, and between VHS and Betamax among video-recorder

formats, which we examine in section 8. The focus in the literature has been on the potential

for market failure, in the sense of the potential for inefficient firms, technologies, products to

come to dominate the market, even when accounts of the dominance of the inefficient have

been contested (Liebowitz and Margolis, 1999).

In this paper we consider the firm targetting some specific market share (e.g., 60%),

with sufficiently high probability (e.g., 0.9) and using Pólya’s linear urn process, examine

the path to such intermediate levels of dominance over finite or infinite horizons. We also

consider the fact that in feedback strength is a variable. Feedback may be positive, but not
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very strong in some markets. Intuition suggests that if an competitor has a large lead in

its initial market share, then it should not take as strong a positive feedback to eventually

attain a specified degree of dominance, compared to the situation where this agent has a

smaller lead in initial share. How much does a greater initial advantage compensate for

smaller feedback strength in leading to a specific equilibrium? The explicit consideration

of the trade-off involved between initial market presence and feedback strength, for chosen

dominance target focusses attention on the pay-off to competing for various extents of initial

market share, conditional on the strength of positive feedback.

2 The Pólya urn Model

Thus the urn can represent a market with two competing firms. The initial numbers of

balls of each colour represent the initial sizes of the two firms. The strength of feedback,

S, is common to both competing agents, i.e. it is independent of the colour of the sampled

ball. The proportions of balls of the two different colours in the urn evolve stochastically

depending on the sequence of sampled ball types, and the replacement rule. This history

dependence of the process is reflected in the way the distribution of the proportions of balls

of different colours in the urn change over time.

The limiting equilibrium of a Pólya process with a linear replacement rule has a con-

tinuous distribution. More general urn models, with non-linear replacement rules which

reflect nonlinear (positive) feedback, can potentially have discrete distributions as limiting

equilibria.

2.1 Notation

The basic notation and ideas can be introduced using a model with two competing agents,

represented by two colours: black and white. Without loss of generality we will focus on the

evolution of the proportion of black balls in the urn. We now proceed formally:

Notation 2.1. Let Z+ := {x ∈ Z : x ≥ 0}. Note that this differs from N = {x ∈ Z : x > 0}.

Let n ∈ Z+ index time, i.e. the rounds over which sampling (and replacement) occur.
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Let B0 be the initial number of black balls in our two-colour urn (i.e. at time n = 0) and

let W0 likewise be the initial number of white balls. Let S be the number of additional balls

replaced according to the replacement rule.

For modelling positive feedback, S > 0. Let Bn and Wn be the number of black and white

balls respectively in the urn after n rounds. Denote by Yn the proportion of black balls in

the urn at round n, that is,

Yn :=
Bn

Bn +Wn

. (2.1)

The limiting proportion, whose existence we will shortly prove, is then defined by Y∞ :=

limn→∞ Yn.

For n ≥ 0 we inductively define

Bn+1 := Bn + S1{Un+1≤Yn}

Wn+1 := Wn + S1{Un+1>Yn},
(2.2)

where 1A is the indicator function of the event A, and the random variables (Un)n≥1 are

independent and identically distributed with distribution Unif[0, 1]. {Un+1 ≤ Yn} is thus

the event of drawing a black ball in round n. These uniform draws correspond to drawing

a black ball with probability Yn, independently of past draws. The probability comes from

the random variable Un+1, which is the only source of randomness in going from round n

to round n + 1. Notice the probability of drawing a black ball at any time is equal to the

proportion of black balls in the urn - it is a linear urn model.

2.2 Feedback strength and initial asymmetry in the urn process

The initial proportion of black balls Y0 measures the degree of initial asymmetry in the

urn.

The number of balls returned each period after sampling from the urn, according to the

replacement policy, represents the strength of feedback. The different values of S differentiate

dynamic processes and induce different limiting distributions: S > 0 models positive feedback

in a growth process; S = 0 is a degenerate process (Bn = B0 and Wn = W0 for all n); and

S < 0 is a model of negative feedback. The large family of urn models is reviewed in

Pemantle (2006).
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Normalizing S with the total initial number of balls in the urn, we define the feedback

strength of the urn as the expression

S

B0 +W0

. (2.3)

This of course is the growth rate of the market in the initial period.

2.3 Pólya’s Result

Proposition 2.2. The random variables Yn converge almost surely as n→∞ to a limit Y∞

where

Y∞ ∼ Beta

(
B0

S
,
W0

S

)
. (2.4)

In particular, when B0 = W0 = S, the limit variable Y∞ is uniform on the interval [0, 1].

It is an interesting and non-intuitive result that Pólya’s urn has a random limit. The

proof of the above proposition goes back to Pólya (1930); see also Freedman (1965).

2.4 Multivariate generalisation of the Pólya urn model

Athreya (1969) showed that the two colour result above generalises to the case with any

number d ≥ 2 of colours, with the shares of colours in this generalised Pólya urn following a

generalised Beta distribution (i.e. a Dirichlet distribution) of order d over the unit (d− 1)-

simplex. We can specify a general d-variate Pólya urn process by the parameters (x0, S),

where the constant x0 ∈ (0,∞)d is the vector of initial numbers of balls of each colour in

the urn and the constant S > 0 is the feedback. Notice that we have now generalised to an

abstract urn in which the numbers of balls of each colour do not have to be integers; they

must merely be positive.

Notation 2.3. If X = (X1
n, . . . , X

d
n)n≥0 is a d-variate Pólya urn process with parameters

(x0, S), then we use the notation

X ∼ PU(d;x0, S). (2.5)

The random variable X i
n then denotes the amount of colour i in the urn at time n.
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For example, our previous two-colour urn (Bn,Wn)n≥0 can now be expressed as the

distribution PU(2; (B0,W0), S). The version of Athreya’s result that we will be using can be

stated as follows:

Proposition 2.4. Let X ∼ PU(d;x0, S) and let the process Y = (Y 1
n , . . . , Y

d
n )n≥0 be defined

for each i ∈ {1, . . . , d} and n ≥ 0 by

Y i
n =

X i
n∑d

j=1X
j
n

, (2.6)

that is, Y i
n represents the proportion of balls in the urn with colour i at time n. Then the

process (Yn) converges almost surely as n → ∞ to a limit Y∞ with a Dirichlet distribution,

in particular

Y∞ ∼ Dir
(x0
S

)
. (2.7)

2.5 Aggregation property

One of the most useful features of the Dirichlet distribution is its aggregation property,

proven by Frigyik et al. (2010):

Proposition 2.5. Suppose Z ≡ (Z1, . . . , Zd) ∼ Dir(α), where α = (α1, . . . , αd). Let

{A1, . . . , Ar} be a partition of {1, . . . , d}. Then(∑
j∈A1

Zj, . . . ,
∑
j∈Ar

Zj

)
∼ Dir

(∑
j∈A1

αj, . . . ,
∑
j∈Ar

αj

)
. (2.8)

In our competing firms analogy, this would be consistent with the idea of two (or more)

firms merging in an attempt to capture a larger share of the market.

The aggregation property can be used to prove that the marginals of a Dirichlet distri-

bution are Beta distributions. Specifically, if Z ∼ Dir(α) is d-variate, then for i ∈ {1, . . . , d},

Zi ∼ Beta

(
αi,

d∑
j 6=i

αj

)
. (2.9)

It follows that if we are only concerned with the limiting market share of a single specific

firm, then it is enough to consider a market with only two competitors: the firm we are

concerned with, and a corporate group consisting of all of the other firms. This we do in

section 3.
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2.6 Critique

The linear Pólya urn process is a highly structured model with a specific form of history

dependence. The probability of adding S balls of a particular colour is linear with respect

to the proportion of that colour.

Generalisations where the linear urn function is varied to allow the probability of an

addition to a colour to be an arbitrary function of the proportion of all colours, and in

addition the urn function is allowed to vary in a structured way with time, have been

explored by Hill, Lane and Sudderth (1980) and by Arthur, Ermoliev, Kaniovski (1983,

1984). In this class of non-linear Pólya processes, the equilibrium proportion of each agent

is dynamically selected from among the fixed points of the mapping from proportions to

probabilities. When the stable fixed points of the non-linear urn function occur only at the

unit vectors, the equilibrium will yield monopoly to one of the agents almost surely. Lock-in

to dominance is swift in the non-linear Pólya urn process but the choice between agents will

depend on history.

This is unlike the linear process where each equilibrium is a continuous distribution over

the unit interval - the full range of shares. The parameters of the process, initial asymmetry

and feedback strength, can weight the equilibrium probabilistically towards any degree of

dominance, ranging from monopoly in the limit to one colour, all the way to symmetry

between colours. Depending on “history”, the linear Pólya process could converge to any

proportion of balls. But as the number of balls in the urn increases, the current proportions

will grow more stable, and balls will continue to be selected in the same proportions. Initially,

each round of addition of balls to the urn has a large influence on the probability of choice

of colour of the next batch of S balls and the positive feedback will dominate. Eventually

however the number of balls will have grown so large that the next batch of S balls has

negligible effect on the proportion of colours in the urn. This also implies that the market

growth rate (and thus feedback strength) declines continuously over time, converging to 0.

The market movement is ever towards saturation.

Finally, it is worth emphasizing that the linear model is Markov. That is, for the out-

come in round n, the precise sequence in which the balls accumulated by round n− 1 have
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been drawn does not matter. The long-run equilibrium, looking forward from any date, de-

pends only upon the set of occurrences that have happened beforehand, and not upon their

chronological order. Independence of equilibrium from this order makes it easier to obtain

predictions of the future looking forward from any chosen date.

3 Stochastic dominance

Definition 3.1. Let Z1 and Z2 be real-valued random variables. Let F1 and F2 be their

respective cumulative distribution functions.

1. Z1 has first-order stochastic dominance over Z2 if F1(x) ≤ F2(x) for all x ∈ R, with

strict inequality at some x.

2. Z1 has second-order stochastic dominance over Z2 if
∫ x
−∞ F1(u)du ≤

∫ x
−∞ F2(u)du for

all x ∈ R, with strict inequality at some x.

In this section we obtain stochastic dominance results on the limiting distributions of

markets that can be modelled using linear Pólya processes. We will only be considering

the limiting share of a single competitor in the market, so by the aggregation property we

may use the bivariate process PU(2; (B0,W0), S) without loss of generality. Let α = B0

S

and β = W0

S
. The limiting market share of the firm B is then, as before, the random

variable Y∞ ∼ Beta(α, β). Our objective is a partial ordering on the set of parameter pairs

(α, β) ∈ (0,∞)2 for this limiting random variable, in the sense of stochastic dominance. In

other words, given two parameter pairs for Y∞, which would be preferred by firm B?

Since the Beta distribution is supported only in [0, 1], in this case we can replace “x ∈ R”

in the above definitions of stochastic dominance with “x ∈ [0, 1]”, and likewise replace

“
∫ x
−∞” with “

∫ x
0

”. Throughout this section, let Beta(α1, β1) and Beta(α2, β2) be two Beta

distributions with (α1, β1) 6= (α2, β2). Let I(x;α1, β1) and I(x;α2, β2) be their respective

cumulative distribution functions, i.e.

I(x;α, β) =
1

B(α, β)

∫ x

0

tα−1(1− t)β−1dt. (3.1)
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We look for conditions under which stochastic dominance arises between these two distribu-

tions. Define the difference function δ by

δ(x) = I(x;α1, β1)− I(x;α2, β2). (3.2)

We now state and prove an extremely important theorem:

Theorem 3.2. If either α1 > α2 and β1 > β2, or α1 < α2 and β1 < β2, then there exists a

unique x∗ ∈ (0, 1) such that I(x∗;α1, β1) = I(x∗;α2, β2). Otherwise, there exists no x ∈ (0, 1)

such that I(x;α1, β1) = I(x;α2, β2).

Proof in Appendix A.1.

3.1 First-order stochastic dominance

Proposition 3.3. Suppose α1 ≥ α2 and β1 ≤ β2. Then Beta(α1, β1) has first-order stochas-

tic dominance over Beta(α2, β2).

Proof in Appendix A.2.

This Proposition is intuitive, since in the standard two-colour Pólya urn, adding black

balls or removing white balls at the start should give the black balls an advantage. Note

also that first-order dominance always implies second-order dominance.

3.2 Second-order stochastic dominance

The indefinite integral of the CDF of the Beta distribution is given by∫ x

0

I(u;α, β)du =

(
x− α

α + β

)
I(x;α, β) +

xα(1− x)β

(α + β)B(α, β)
(3.3)

for x ∈ [0, 1], and can be checked simply by differentiation. Notice in particular that∫ 1

0

I(u;α, β)du =
β

α + β
. (3.4)

Lemma 3.4. Suppose α1 > α2 and β1 > β2, and let x∗ ∈ (0, 1) be the unique intersection

point of I(x;α1, β1) and I(x;α2, β2). Then δ′(x∗) > 0.

Proof in Appendix A.3.
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Remark 3.5. It follows that δ is negative in a lower neighbourhood of x∗, and positive in

an upper neighbourhood of it. Thus in this case there is no first-order stochastic dominance.

Proposition 3.6. Suppose α1 > α2 and β1 > β2. Then

• Beta(α2, β2) does not have second-order stochastic dominance over Beta(α1, β1).

• Beta(α1, β1) has second-order stochastic dominance over Beta(α2, β2) if and only if

α1

α1 + β1
≥ α2

α2 + β2
. (3.5)

Proof in Appendix A.4.

Remark 3.7. The expression α
α+β

is exactly the mean of the Beta(α, β) distribution.

Remark 3.8. By a simple rearrangement of Proposition 3.6, if α1 > α2 and β1 > β2, we

have that
α1

α1 + β1
≤ α2

α2 + β2
(3.6)

if and only if Beta(β1, α1) has second-order stochastic dominance over Beta(β2, α2). The

interpretation of this in our two-colour Pólya urn model is that increasing the initial amounts

of both colours in the urn will always benefit at least one of the colours, and could potentially

benefit both! This is perhaps slightly counterintuitive, but explainable in the following way:

the variance of the Beta(α, β) distribution is given by

αβ

(α + β)2(α + β + 1)
. (3.7)

In particular, observe that if we set β = kα for a fixed k, and increase α, the variance will

decrease. Therefore if both firms (colours) are risk-averse, then increasing the parameters

of the limiting distribution while keeping its mean fixed will decrease the variance, and thus

benefit both firms (colours).

3.3 Further remarks

Notation 3.9. Since first- and second-order stochastic dominance both define partial orders

on the set of parameter pairs (0,∞)2 of the Beta distribution, we will use the notation

(α1, β1) >1 (α2, β2) (3.8)
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Figure 1: Regions of (α1, β1) for which (α1, β1) >1 (α2, β2) or (α1, β1) <1 (α2, β2). The

boundary points of the regions are contained in them. To be precise, the point (α2, β2)

should not actually be a member of either region.

to mean that Beta(α1, β1) has first-order stochastic dominance over Beta(α2, β2), and likewise

we will use

(α1, β1) >2 (α2, β2) (3.9)

for second-order stochastic dominance.

We may be able to better visualise the orderings we have defined in this section by fixing

a pair (α2, β2) ∈ (0,∞)2 and looking at the sets of parameter pairs (α1, β1) for which, for

example, (α1, β1) >1 (α2, β2).

Figure 1 displays the sets of parameter pairs (α1, β1) for which first-order stochastic

dominance exists in some direction with respect to some fixed pair (α2, β2). The lower-

right region is the set {(α1, β1) : (α1, β1) >1 (α2, β2)}, whereas the upper-left region is

{(α1, β1) : (α1, β1) <1 (α2, β2)}.

Likewise, Figure 2 displays the sets of parameter pairs (α1, β1) for which second-order
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Figure 2: Additional regions of (α1, β1) for which (α1, β1) >2 (α2, β2) or (α1, β1) <2 (α2, β2),

but for which no first-order dominance exists. The regions contain the points on their

diagonal boundaries, but not the points on their horizontal boundaries.

stochastic dominance exists in some direction with respect to (α2, β2), but first-order dom-

inance does not (recall that first-order dominance implies second-order dominance). The

upper-right region is {(α1, β1) : (α1, β1) >2 (α2, β2)}, whereas the lower-left region is {(α1, β1) :

(α1, β1) <2 (α2, β2)}.

Remark 3.10. Using first- and second-order stochastic dominance, the only case in which

two Beta distributions are not ordered is when one has higher parameters but a lower mean

than the other. Which one is preferred will come down to the details of the specific utility

function used.
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Figure 3: Polya Process: Asymptotic CDFs of proportion of black balls - Extreme cases.

4 Probabilistic market dominance

Competition law is concerned with the abuse of ‘dominant market position’, which is

conventionally defined in terms of market shares; for example, by the US Department of

Justice, and likewise in Article 82 of the EC treaty. From the point of view of an evolving

market, a valid view that can be taken is of the outcome in the indefinite future. If we define

dominance as “agent i eventually monopolises the market”, then the corresponding event is

{
Y i
∞ = 1

}
. (4.1)

As noted in section 1, this can occur with positive probability in, for example, a non-linear

bivariate Pólya process when the stable fixed points of the urn function are at 0 and/or 1. In

a linear bivariate Pólya process the limiting random variable has a continuous distribution

so the above event is a null set. However, taking S very large relative to B0 and W0 results

in arbitrarily high probabilities of near-monopoly outcomes, as illustrated in Figure 3.

A more general and applicable notion of dominance should permit us characterise the
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evolving market, looking to the future, as heading for dominance if an agent is on track to

exceed some specified (high) share, with some stipulated probability. There must of course

be some basis specifying what amounts to a “high” market share and the related probability,

in order to pin down this notion of dominance.

Remark 4.1. We stress the difference between the notion of dominance to be introduced

in this section and the notion of stochastic dominance in section 3. The two concepts are

unrelated.

We define dominance as having occurred if the share of a given colour is sufficiently likely

to reach a (high) value. This probability value can be specified depending on how conser-

vative we wish to be in defining dominance; the values 10%, 5% and 1% are conventional

significance levels, but other values may be more appropriate in different contexts. For ex-

ample, if a parameter pair in the bivariate Pólya process PU(2; (B0,W0), S) gives at least

95% probability that the limiting share of colour B (black) is at least 60% then we may

conclude that the system is heading towards 60% dominance by B at the 5% level. More

generally, denoting the significance level for defining dominance by p ∈ (0, 1) and the target

share by x ∈ (0, 1), we have dominance for colour B if

P [Y∞ ≥ x] ≥ 1− p, (4.2)

where Y∞ is as before the limiting proportion of black balls.

5 The iso-dominance function

The probabilistic definition of dominance requires us to specify a pair of numbers (x, p) ∈

(0, 1)2. We say that dominance occurs if, with probability at least 1− p, a firm will have a

limiting share of the market of at least x.

Let us consider a firm’s preferences over (and potential efforts to control) initial param-

eters of the market (by the aggregation property we can assume again that the market only

contains two firms without loss of generality). This corresponds to preferences over the pa-

rameters of the distribution of its limiting market share. Suppose that the firm would like
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to attain a limiting share of at least x ∈ (0, 1) with probability 1− p ∈ (0, 1). Our question

is then: given this constraint, what choice of parameters does the firm have?

Mathematically, our question is equivalent to the following: given the pair (x, p), what is

the set of Beta distribution parameters (α, β) ∈ (0,∞)2 such that I(x;α, β) = p? The aim

of this section is to derive a few of the properties of this set.

In Özçaḡ et al. (2008) a proof is given that, for x ∈ (0, 1) and all (α, β), all of the partial

derivatives of the incomplete Beta function

Bx(α, β) :=

∫ x

0

tα−1(1− t)β−1dt (5.1)

with respect to (α, β) exist. In fact, all we really need from this result is continuity. Since

the Beta function itself is well known to be continuous for (α, β) ∈ (0,∞)2, it follows that

the CDF of the Beta distribution

I(x;α, β) ≡ Bx(α, β)

B(α, β)
(5.2)

is continuous in (α, β) for all x ∈ (0, 1) and all (α, β) ∈ (0,∞)2. We now prove a lemma

concerning exactly how I(x;α, β) varies with (α, β):

Lemma 5.1. Fix x ∈ (0, 1) and α ∈ (0,∞). Then

• limβ→0 I(x;α, β) = 0,

• limβ→∞ I(x;α, β) = 1.

Proof in Appendix A.5.

Remark 5.2. The intuition behind this lemma is simple. Consider our two-colour urn. Re-

ducing the initial number of white balls should push the CDF of Black’s limiting proportion

to the right (i.e. to higher values) and increasing the initial number of white balls should

do the opposite. Now when we talk about CDFs, which are increasing functions, moving to

the right is the same as moving downwards. Thus we would expect I to decrease when we

decrease β.

We can now state and prove the following important theorem:
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Theorem 5.3. Let (x, p) ∈ (0, 1)2 and α ∈ (0,∞). Then there exists a unique β ∈ (0,∞)

such that

I(x;α, β) = p. (5.3)

Proof in Appendix A.6.

Definition 5.4. We will denote the unique β in the above theorem by βx,p(α), and view it

as a family of functions of α parametrised by (x, p). Formally, we thus have the function

βx,p : (0,∞)→ (0,∞) (5.4)

for each (x, p) ∈ (0, 1)2. We will call βx,p an iso-dominance function and we will call its

graph in the (α, β)-plane an iso-dominance curve.

Finding an analytical expression for βx,p(α) in terms of α appears to be non-trivial in

general, and the only obvious case is (x, p) = (1
2
, 1
2
), for which β 1

2
, 1
2
(α) = α.

Proposition 5.5 (Properties of βx,p). Let (x, p) ∈ (0, 1)2. Then the function βx,p is strictly

increasing and continuous.

Proof in Appendix A.7.

Remark 5.6 (Digression into duality). Suppose we define point sets D = (0, 1)2 and P =

(0,∞)2, and define line sets

L(D) = {{(x, I(x;α, β)) : x ∈ (0, 1)} ⊆ D : (α, β) ∈ P},

L(P) = {{(α, βx,p(α)) : α ∈ (0,∞)} ⊆ P : (x, p) ∈ D}.
(5.5)

That is, “lines” are simply the graphs of functions of the form I(·;α, β) or βx,p. Then by

construction, the incidence structures (D, L(D),∈) and (P , L(P),∈) are isomorphic to each

other’s duals.

5.1 Limiting properties

In this section we seek to prove a number of results about the asymptotic properties of

iso-dominance functions. We must first however prove a few results about the convergence
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properties of the Beta distribution. Fix (x, p) ∈ (0, 1)2 and consider the family of functions

I(·;α, βx,p(α)) parametrised by α. In other words, we are considering the family of Beta

CDFs that pass through the point (x, p).

Let (Xα)α∈(0,∞) be a family of random variables such that, for each α ∈ (0,∞),

Xα ∼ Beta(α, βx,p(α)). (5.6)

Proposition 5.7 (Small-α degenerate limit). If x′ ∈ (0, 1), then

lim
α→0

I(x′;α, βx,p(α)) = p. (5.7)

(Equivalently: As α → 0, Xα converges in distribution to a Bernoulli random variable X0

with P[X0 = 0] = p.)

Proof in Appendix A.8.

Proposition 5.8 (Large-α degenerate limit). If x′ ∈ (0, x), then

lim
α→∞

I(x′;α, βx,p(α)) = 0. (5.8)

If x′ ∈ (x, 1), then

lim
α→∞

I(x′;α, βx,p(α)) = 1. (5.9)

(Equivalently: As α→∞, Xα converges in distribution to a degenerate random variable X∞

satisfying X∞ = x almost surely.)

Proof in Appendix A.9.

We have now done enough preliminary work to prove the result that we’ve been aiming

for:

Corollary 5.9 (First-order asymptotics of the iso-dominance function).

lim
α→0

βx,p(α)

α
=

p

1− p
,

lim
α→∞

βx,p(α)

α
=

1− x
x

.

(5.10)

Proof in Appendix A.10.

17



Remark 5.10. Note that the previous corollary implies in particular that limα→0 βx,p(α) = 0

and limα→∞ βx,p(α) =∞. It follows that the iso-dominance function is a bijection. In other

words, the iso-dominance curve represents a one-to-one relationship between α and β: for

each α ∈ (0,∞) there exists a unique β ∈ (0,∞) such that (α, β) lies on the curve, and for

each β there exists a unique α such that (α, β) lies on the curve.

5.2 Pairs of Dominance conditions

Let us return to our competing firms. Suppose a firm decides it would like to attain

a limiting share of x1 with probability 1 − p1 as before, but it now specifies another pair

(x2, p2) corresponding to an additional dominance condition. Is it possible to satisfy both

conditions at once? Mathematically, given two points (x1, p1), (x2, p2) ∈ (0, 1)2, is there a

Beta distribution whose CDF passes through both of these points? The requirements for

this to occur will seem rather familiar.

Proposition 5.11. Let (x1, p1), (x2, p2) ∈ (0, 1)2 with (x1, p1) 6= (x2, p2). If either x1 > x2

and p1 > p2, or x1 < x2 and p1 < p2, then there exists a unique pair (α∗, β∗) ∈ (0,∞)2 such

that I(x1;α∗, β∗) = p1 and I(x2;α∗, β∗) = p2. Otherwise, there exists no pair (α, β) ∈ (0,∞)2

such that I(x1;α, β) = p1 and I(x2;α, β) = p2.

Proof in Appendix A.11.

Remark 5.12. Proposition 5.11 can be stated in the following equivalent way in terms of

iso-dominance functions:

Let (x1, p1), (x2, p2) ∈ (0, 1)2 with (x1, p1) 6= (x2, p2). If either x1 > x2 and p1 > p2, or

x1 < x2 and p1 < p2, then there exists a unique α∗ ∈ (0,∞) such that βx1,p1(α∗) = βx2,p2(α∗).

Otherwise, there exists no α ∈ (0,∞) such that βx1,p1(α) = βx2,p2(α).

Notice the similarities between this and Theorem 3.2. This is an example of a symmetry

between the dual incidence structures (D, L(D),∈) and (P , L(P),∈) defined in Remark 5.6.

5.3 Asymmetry-feedback trade-off

Again we look at the bivariate case PU(2; (B0,W0), S) without loss of generality. Let

α = B0

S
and β = W0

S
, the parameters associated with the Beta distribution of Y∞, which is
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as before the limiting market share of firm B. Recall the definitions of initial asymmetry

B0

B0+W0
and feedback strength S

B0+W0
. There is then a homeomorphism between the set of

pairs (α, β) ∈ (0,∞)2 and the set of pairs ( B0

B0+W0
, S
B0+W0

) ∈ (0, 1)× (0,∞) given by

B0

B0 +W0

=
α

α + β
,

S

B0 +W0

=
1

α + β
,

(5.11)

and

α =

(
B0

B0 +W0

)
·
(

S

B0 +W0

)−1
,

β =

(
1− B0

B0 +W0

)
·
(

S

B0 +W0

)−1
.

(5.12)

It follows that we may instead plot our iso-dominance curves on a graph of B0

B0+W0
against

S
B0+W0

without losing any information - it is simply a change of variables. This provides us

with the trade-off between initial asymmetry and feedback strength.

Remark 5.13. The set of points described by an iso-dominance curve in the ( B0

B0+W0
, S
B0+W0

)-

plane may not in general represent a bijection between B0

B0+W0
and S

B0+W0
. For example, if

(x, p) = (1
2
, 1
2
) then every point of the corresponding iso-dominance curve satisfies B0

B0+W0
= 1

2
.

However, it is the case that for any (x, p) ∈ (0, 1)2, the function

α 7→ 1

α + βx,p(α)
(5.13)

is a strictly decreasing bijection that maps (0,∞) → (0,∞). Now suppose that we have

an iso-dominance curve in the ( B0

B0+W0
, S
B0+W0

)-plane. Recalling the expression of S
B0+W0

in

terms of α and β, it follows that for every value of S
B0+W0

∈ (0,∞), there exists a unique

value of B0

B0+W0
∈ (0, 1) such that this pair of values lies on the curve.

Illustration is provided in Figures 4 and 5.

6 Finite-time case: Dirichlet-multinomial distribution

Useful real-life applications of dominance analysis cannot rely on the luxury of infinite

time. We hence seek to derive finite-time analogues to the limiting results of section 1.
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Figure 4: Iso-dominance map: Finite time case

Figure 5: Iso-dominance map: Limiting Market share of 60%
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For this, we turn to the Dirichlet-multinomial (DM; also known as the multivariate Pólya)

distribution. This is a family parametrised by
{

(n, α) : n ∈ N, d ∈ N, α ∈ (0,∞)d
}

. It can

be interpreted as a d-variate multinomial distribution Multin(n, P ) which has a d-variate

random parameter P ∼ Dir(α), and is the multivariate generalisation of the perhaps more

well-known Beta-binomial distribution. Its probability mass function (see Mosimann (1962))

is given as follows: let Z ∼ DM(n, α), and let z ∈ Zd+ such that
∑d

j=1 z
j = n. Then

P [Z = z] =
n!∏d

j=1(z
j!)

Γ(A)

Γ(n+ A)

d∏
j=1

Γ(zj + αj)

Γ(αj)
(6.1)

where A =
∑d

j=1 α
j. For any other value of z the probability is 0.

Proposition 6.1. Let X ∼ PU(d;x0, 1) be a Pólya urn process with unit feedback. Then for

all n ≥ 1,

Xn − x0 ∼ DM(n, x0). (6.2)

Proof in Appendix A.12.

It is fairly simple to generalise this proposition to all positive feedbacks S with a scaling

argument:

Proposition 6.2. Let X ∼ PU(d;x0, S). Let k > 0 be a constant. Then

kX ∼ PU(d; kx0, kS). (6.3)

Proof in Appendix A.13.

Our desired result immediately follows:

Corollary 6.3. Let X ∼ PU(d;x0, S). Then for all n ≥ 1,

Xn − x0
S

∼ DM
(
n,
x0
S

)
. (6.4)

In addition to the fact that it deals directly with the fixed-time distributions of a Pólya

process, an advantage of DM over Dirichlet is that it is a discrete distribution with a known

probability mass function. It may thus be easier to implement numerically than the Dirichlet

distribution. Finally, the DM distribution inherits the aggregation property (section 2.5)

from the Dirichlet distribution:
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Proposition 6.4 (Aggregation). Suppose Z ≡ (Z1, . . . , Zd) ∼ DM(n, α), where α = (α1, . . . , αd).

Let {A1, . . . , Ar} be a partition of {1, . . . , d}. Then(∑
j∈A1

Zj, . . . ,
∑
j∈Ar

Zj

)
∼ DM

(
n,

(∑
j∈A1

αj, . . . ,
∑
j∈Ar

αj

))
. (6.5)

Proof in Appendix A.14.

As with the Dirichlet distribution, the marginals of the Dirichlet-multinomial distribution

follow from the aggregation property, and are, in this case, Beta-binomial (BB) distributions.

If Z ∼ DM(n, α) is d-variate, then for i ∈ {1, . . . , d},

Zi ∼ BB

(
n, αi,

d∑
j 6=i

αj

)
. (6.6)

Thus if we are concerned with the finite-time distributions of a single firm, we need only

look at the properties of the much simpler Beta-binomial distribution.

6.1 Iso-dominance in finite time

After seeing that the DM distribution inherits the aggregation property from the Dirichlet

distribution, it is natural to ask what other properties it might inherit. In particular, can we

construct a family of iso-dominance curves in the finite-time case as we did for the limiting

case in section 5? It turns out that we can. Since we will we looking at the size of a single

firm, it is enough to use the Beta-binomial distribution to conduct our analysis, by the

aggregation property.

Let n ∈ N, (α, β) ∈ (0,∞)2, and let Z ∼ BB(n, α, β). We will denote the CDF of this

distribution by In(k;α, β), a function of k ∈ {0, 1, . . . , n}. The probability mass function of

Z is given by

P[Z = k] =

(
n

k

)
B(k + α, n− k + β)

B(α, β)
(6.7)

for k = 0, 1, . . . , n. As with the Dirichlet-multinomial distribution, we can view the Beta-

binomial as a compound distribution: Z can be interpreted as a binomial distribution

Bin(n, P ) with random parameter P ∼ Beta(α, β). This gives rise to a conditional ver-
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sion of the probability mass function:

P[Z = k] = E [P[Z = k|P ]]

= E
[(
n

k

)
P k(1− P )n−k

]
.

(6.8)

The CDF of Z can be expressed in a similar way, conditioning on P :

In(k;α, β) = E [P[Z ≤ k|P ]]

= E [I(1− P ;n− k, 1 + k)]
(6.9)

where the familiar function I without a superscript is the regularised incomplete Beta func-

tion, i.e. the CDF of the Beta distribution.

Lamberson and Page investigated a much more general urn model than the Pólya model

that this paper is concerned with, and one of their results was that strictly increasing the

initial state of any one firm whilst keeping everything else the same would strictly increase

the expected total sales of that firm up to any finite time. In our more restricted model we

can do a bit better than this.

Proposition 6.5. Let n ∈ N, and let (α1, β1), (α2, β2) ∈ (0,∞)2. Suppose that (α1, β1) >1

(α2, β2) (see section 3.3). Then for all k ∈ {0, 1, . . . , n− 1},

In(k;α1, β1) < In(k;α2, β2). (6.10)

Proof in Appendix A.15.

Remark 6.6. This implies that, under the given conditions, BB(n, α1, β1) has first-order

stochastic dominance over BB(n, α2, β2). This is analogous to some of the results that we

derived in section 3, since it also implies that the CDFs of the two distributions “do not

intersect” under certain conditions.

Recall that the PMF of the Beta-binomial distribution is given by the expression(
n

k

)
B(k + α, n− k + β)

B(α, β)
. (6.11)

This is clearly continuous in (α, β), and thus the CDF In(k;α, β) is also continuous in (α, β)

for any fixed n ∈ N and k ∈ {0, 1, . . . , n}. The next result is analogous to Lemma 5.1:

23



Lemma 6.7. Fix n ∈ N and α ∈ (0,∞). Then for k ∈ {0, 1, . . . , n− 1},

• limβ→0 I
n(k;α, β) = 0,

• limβ→∞ I
n(k;α, β) = 1.

Proof in Appendix A.16.

We now have enough machinery to prove our existence and uniqueness theorem.

Theorem 6.8. Let n ∈ N, k ∈ {0, 1, . . . , n − 1}, p ∈ (0, 1) and α ∈ (0,∞). Then there

exists a unique β ∈ (0,∞) such that

In(k;α, β) = p. (6.12)

Proof in Appendix A.17.

Definition 6.9. We will denote the unique β in the above theorem by βnk,p(α), and view it

as a family of functions of α parametrised by (k, p) for each n. Formally, we thus have the

finite-time iso-dominance function

βnk,p : (0,∞)→ (0,∞). (6.13)

6.2 Properties of the finite-time iso-dominance function

Fix n ∈ N, k ∈ {0, 1, . . . , n − 1} and p ∈ (0, 1). The iso-dominance function βnk,p is

strictly increasing, continuous and bijective, which are all properties that can be proven

using methods not dissimilar to their infinite-time analogues in section 5. We may also, as

before, plot finite-time iso-dominance curves in the ( B0

B0+W0
, S
B0+W0

)-plane.

Again, finding an analytical expression for βnk,p(α) in terms of α seems to be tricky if not

impossible in general. The only obvious case is when n is odd, k = n−1
2

and p = 1
2
, in which

case βnn−1
2
, 1
2

(α) = α.

An important point to note about finite-time iso-dominance functions is that they give the

parameters for a firm to reach a threshold size, not a threshold market share as in the infinite-

time case. Looking at market share in the finite-time case is slightly more complicated, since

the total market size itself changes as we change the parameters α and β of the relevant

Beta-binomial distribution. See the examples section below for a demonstration of this

difficulty.
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7 Examples

The theory developed so far is readily applicable . Suppose we have a market that evolves

according to the positive feedback model X ∼ PU(d;x0, S). That is, there are d competing

firms in the market and X i
n denotes the “size” of firm i after n years (for some unspecified

measure of size). It is currently year 0, and the initial sizes of the firms in the market are

given by the vector x0. At the end of every year, a single firm grows in size by S with

probability equal to its current market share, and the other firms remain the same size.

7.1 Finite-time dominance

Suppose firm 1 would like to achieve a size of at least x10 + 4S with probability 3
4
, by the

year n = 5. That is, it would like to grow in at least four out of the first five years. We assume

that the firm has some influence over the parameters x0 and S of the model, otherwise there

is nothing to solve. By our knowledge of the finite-time marginal distributions of Pólya’s

urn, we know that the size of firm 1 at year 5 is X1
5 where

X1
5 − x10
S

∼ BB

(
5,
x10
S
,

∑d
j=2 x

j
0

S

)
. (7.1)

Let Z =
X1

5−x10
S

, α =
x10
S

and β =
∑d
j=2 x

j
0

S
, so that Z ∼ BB (5, α, β). We would like to pick

(α, β) such that

P
[
X1

5 ≥ x10 + 4S
]

=
3

4
. (7.2)

This is equivalent to

P [Z ≤ 3] =
1

4
. (7.3)

Thus k = 3, p = 1
4

and we need to consider the iso-dominance function β5
3, 1

4

. All pairs (α, β)

such that β = β5
3, 1

4

(α) would be acceptable parameters for our target market size. We should

also consider parameter pairs that lie below the iso-dominance curve in the (α, β)-plane to

be acceptable, since they dominate (in the sense of >1) other parameter pairs that lie on

the curve. These are parameter pairs for which the firm can reach its target size with a

probability greater than its target probability.
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Now we instead attempt to look at the market share of firm 1 in the finite time case. For

example, suppose firm 1 would like to achieve at least 80% market share with probability 3
4
,

by the year n = 5. If we define Z, α and β as before, we see that the market share of firm 1

in year 5 is given by

P 1
5 =

X1
5∑d

j=1X
j
5

=
x10 + SZ∑d
j=1 x

j
0 + 5S

=
α + Z

α + β + 5
,

(7.4)

so the set of acceptable parameter pairs is the set of pairs (α, β) ∈ (0,∞)2 such that

P
[

α + Z

α + β + 5
≥ 4

5

]
≥ 3

4
(7.5)

and cannot be expressed by an iso-dominance function that we have defined.

7.2 Infinite-time dominance

In the theoretical limiting equilibrium of the market the sizes of all the firms tend to

infinity so it is meaningless to discuss firm sizes. We thus restrict the discussion to market

share. Suppose firm 1 would like to achieve at least 80% market share with probability 3
4

in

this theoretical long-run equillibrium. We know that the limiting market share of firm 1 has

the distribution

Y 1
∞ ∼ Beta

(
x10
S
,

∑d
j=2 x

j
0

S

)
. (7.6)

Define α and β as in the previous example. We would like to find pairs (α, β) such that

P
[
Y 1
∞ ≥

4

5

]
=

3

4
. (7.7)

This is equivalent to

P
[
Y 1
∞ ≤

4

5

]
=

1

4
. (7.8)

Thus we should look at the iso-dominance function β 4
5
, 1
4
. All pairs (α, β) such that β =

β 4
5
, 1
4
(α) would be acceptable, as would all pairs that lie below the iso-dominance curve in

the (α, β)-plane, as mentioned in the previous example.
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8 Application: VHS vs. Betamax

There are a number of detailed accounts of the fight for dominance among different VCR

formats; see Cusumano, Mylonadis and Rosenbloom (1992), Grindely (1992) and Liebowitz

and Margolis (1994). In brief, Sony pioneered the commercialization of home video recording

technology in 1975 with the Betamax system. Eighteen months later the VHS standard was

launched by a consortium consisting of Matsushita, JVC, and RCA. Tapes and machines

were not compatible between the two standards and customers had to choose between the

two. By 1979 VHS had gained a market share lead over Betamax. VHS continued to grow

in the years that followed, while Betamax shrank. By 1988 VHS was so dominant that Sony

abandoned the Betamax standard.

In the battle for the market, the attractiveness of the different formats to the consumer

depended, as with any product, on a number of factors. Price, picture quality, play time,

machine features such as programmability, ease of use, and size mattered. Absence of com-

patibility was a key factor. As the installed base of VHS format machines increased, so

did the attractiveness of VHS format to potential buyers, and this in turn increased mar-

ket share, boosting installed base further. The other main positive feedback came through

complementary assets - rental stores chose to stock tapes in the more common format, and

studios offered films in the format compatible with the more popular technology.

From its introduction, for 5 years till 1980, Betamax was the market leader, but were un-

able to deploy technological and business strategies to exploit the positive feedback potential.

Cusumano et al. (1992) have pointed out that while Sony did not license Betamax to other

firms, JVC and Matsushita aggressively sought partners and delayed VHS introduction till

allies could agree on technical standards. Matsushita built and sold VCRs under the label

of other firms, gaining access to their distribution channels, greater scale economies, as well

as the potential to move down the learning curve.

In this brief empirical analysis of the trade-off between history and feedback, we use sales

data reported in Cusumano et al. (1992) to estimate, for each year between 1976 and 1988,

the limiting probability distribution over market shares for both VHS and Betamax. The

actual market shares and the overall growth of the market are shown below.
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Figure 6: VHS and Betamax market shares and VCR market growth rate, 1975 to 1988.
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Figure 7: Probability of Dominance (limiting market share not less than 95%.
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Figure 8: Iso-dominance curve: 10% probability that limiting market share is 95% or over

For each year between 1976 and 1988, we condition on the asymmetry between market

shares and feedback strength (overall market growth rate) and estimate the probability that

the long rum market share exceeds 95%. Between 1978 and 1979, VHS overtook Betamax,

its actual market share rising from 44% to 60%. The probability of VHS dominance (lim-

iting market share not less than 95%) rose from 10% to 35% between 1978 and 1979. The

probability of Betamax having a limiting market share that is not less than 95% fell from

18% to 7% between 1979 and 1980. After 1980 the probability of Betamax dominance had

fallen to 0. The decline in the VCR market between 1980 and 1981 reduced the probability

of VHS dominance too, but with the recovery after 1982, the probability of VHS dominance

rose again, never turning back after this year. Figure 6 shows the trade-off between observed

market share and feedback strength, for a level of dominance defined as a limiting share of

95% or greater with 10% probability.
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It is worth noting that even when VHS was the smaller player (39% market share) in

1976, the very high growth rate of the VCR market (168%) secured for it 14% probability

of a limiting market share of 95% or greater (in comparison to 34% for Betamax).

9 Conclusions

Forecasting winners in dynamic competition is a useful art. In this paper we have pre-

sented a method based on a simple model which is applicable when the market is charac-

terized by positive feedback, for example, due to increasing returns. Feedback, which is the

source of history dependence, is recognized to be an general self-organizational feature in a

large class of markets and systems.

We model the dynamics using a linear urn process and determine the trade-off between

initial asymmetry in market shares and the feedback strength in such systems. In character-

izing the trade-off, we introduce a probabilistic definition of the notion of dominance. This

analysis is of relevance in finding the optimal strategy in dynamic contexts where externali-

ties generate positive feedback. It is also of relevance as a diagnostic tool for tipping.
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A Appendix: Proofs

A.1 Proof of Theorem 3.2

Proof. The result concerns the zeroes of δ. Notice that δ is smooth in (0, 1), continuous in

[0, 1], and that δ(0) = δ(1) = 0. If we suppose that δ has n zeroes in the interval (0, 1), then

it follows by Rolle’s theorem that δ′, the derivative of δ, has at least n + 1 zeroes in this

interval. Equivalently, if δ′ has m zeroes, then δ must have at most m− 1 zeroes.

We have that

δ′(x) =
xα1−1(1− x)β1−1

B(α1, β1)
− xα2−1(1− x)β2−1

B(α2, β2)

=
xα2−1(1− x)β2−1

B(α1, β1)
g(x)

(A.1)

where

g(x) = xα1−α2(1− x)β1−β2 − B(α1, β1)

B(α2, β2)
. (A.2)

For x ∈ (0, 1), we have δ′(x) = 0 if and only if g(x) = 0. We hence already know by Rolle’s

theorem that g has at least one zero in (0,1). We intend to use Rolle’s theorem again, so

differentiating g:

g′(x) = (α1 − α2)x
α1−α2−1(1− x)β1−β2 − (β1 − β2)xα1−α2(1− x)β1−β2−1

= xα1−α2(1− x)β1−β2
(
α1 − α2

x
− β1 − β2

1− x

)
.

(A.3)

Now we consider the conditions laid out in the statement of the Proposition. Suppose

that α1 > α2 and β1 > β2, so that g(0) = g(1) = −B(α1,β1)
B(α2,β2)

< 0. By looking at the expression

for g′, we see that it has exactly one zero in (0, 1), specifically at

x =
α1 − α2

α1 − α2 + β1 − β2
. (A.4)

By Rolle, g therefore has either one or two zeroes in (0, 1). The values of g(0) and g(1) are

both negative so if g were to have exactly one zero in (0, 1), this zero must be at a stationary

point (a maximum) of g. Thus δ′ would be negative almost everywhere in (0, 1) and this

would contradict δ(0) = δ(1).

Thus g has exactly two zeroes in (0, 1). δ′ must share these same two zeroes. By Rolle,

δ therefore must have at most one zero in (0, 1). We can pinpoint the number of zeroes by
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observing that δ′(x) is negative when x is sufficiently close to either 0 or 1. Thus δ(x) must

be negative when x is sufficiently close to 0 and postive when x is sufficiently close to 1.

It finally follows from the intermediate value theorem that δ must have exactly one zero in

(0, 1). We get the same result if α1 < α2 and β1 < β2.

Now we suppose “otherwise”, i.e. either α1 = α2 or β1 = β2 or the two expressions

α1 − α2 and β1 − β2 have different signs. In any of these cases, looking at the expression for

g′ we see that it has no zeroes in (0, 1). By Rolle, g (and therefore δ′) must have exactly one

zero in (0, 1). By Rolle again, δ must have no zeroes in (0, 1).

A.2 Proof of Proposition 3.3

Proof. Recall the definition of g from the proof of Theorem 3.2, and recall that (α1, β1) 6=

(α2, β2) so at least one of the inequalities in the Proposition must be strict. Looking at the

expression for g′ we observe that it is positive in (0, 1), so if r ∈ (0, 1) is the unique zero

of g (and thus also of δ′; we know this zero exists by Theorem 3.2) in (0, 1), then g (and

also δ′) is strictly increasing at r. In particular δ′ is negative in (0, r) and positive in (r, 1).

Therefore δ attains a strict global minimum at r, so δ(r) < 0. From Theorem 3.2 we know

that the CDFs of the two distributions do not intersect in (0, 1), so δ(x) < 0 for all x ∈ (0, 1)

and we’re done.

A.3 Proof of Proposition 3.4

Proof. Let r, s ∈ (0, 1) be the two stationary points of δ (i.e. zeroes of δ′, see Theorem 3.2),

such that

0 < r < x∗ < s < 1. (A.5)

The point x∗ is the unique zero of δ in (0, 1), and so must lie in between r and s by Rolle’s

theorem. Observe from the expressions for δ′ and g given in the proof of Theorem 3.2 that

δ′(x) < 0 when x ∈ (0, r) ∪ (s, 1). What is the sign of δ′(x) when x ∈ (r, s)? If it were

negative, then δ′ would be negative almost everywhere in (0, 1) and this would contradict

δ(0) = δ(1). So it’s positive. So δ′(x∗) > 0 and we’re done.
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A.4 Proof of Proposition 3.6

Proof of Proposition 3.6. Define the function ∆ by

∆(x) =

∫ x

0

δ(u)du

=

∫ x

0

I(u;α1, β1)du−
∫ x

0

I(u;α2, β2)du.

(A.6)

Obviously ∆′ = δ, by the fundamental theorem of calculus. By the properties of δ and δ′

that we derived in Theorem 3.2 and Lemma 3.4, we know that ∆ has a single stationary

point in (0, 1), and that this stationary point is a strict minimum. Let’s call this point x∗,

as it is the same point that we were concerned with in Lemma 3.4. Obviously ∆(0) = 0, so

∆(x∗) < 0. This is enough to show that Beta(α2, β2) does not have second-order stochastic

dominance over Beta(α1, β1).

Does ∆ have any zeroes in (0, 1)? It cannot have any in the interval (0, x∗), as this would

imply the existence of a second stationary point of ∆ by Rolle’s theorem. We therefore have

∆(x) < 0 for all x ∈ (0, x∗). As for the interval (x∗, 1), we note that

∆(1) =
β1

α1 + β1
− β2
α2 + β2

=
α2

α2 + β2
− α1

α1 + β1
.

(A.7)

Since ∆′ = δ has a single zero x∗ ∈ (0, 1) and is strictly increasing at x∗, it must be positive

in (x∗, 1). This implies that ∆ is strictly increasing in (x∗, 1), and in particular for all

x ∈ (x∗, 1),

∆(x∗) < ∆(x) <
α2

α2 + β2
− α1

α1 + β1
. (A.8)

Suppose that α1

α1+β1
≥ α2

α2+β2
. Then ∆(x) < 0 for all x ∈ (0, 1), and additionally ∆(0) ≤ 0,

∆(1) ≤ 0. Thus Beta(α1, β1) has second-order stochastic dominance over Beta(α2, β2).

If on the other hand α1

α1+β1
< α2

α2+β2
then immediately from ∆(1) > 0 we have that

Beta(α1, β1) does not have second-order stochastic dominance over Beta(α2, β2).
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A.5 Proof of Lemma 5.1

Proof of Lemma 5.1. Observe that

I(x;α, β) =
Bx(α, β)

B(α, β)

=

∫ x
0
tα−1(1− t)β−1dt∫ x

0
tα−1(1− t)β−1dt+

∫ 1

x
tα−1(1− t)β−1dt

=
1

1 +Qx(α, β)

(A.9)

where

Qx(α, β) :=

∫ 1

x
tα−1(1− t)β−1dt∫ x

0
tα−1(1− t)β−1dt

. (A.10)

Both of the results we seek to prove are thus equivalent to results about Qx. We prove the

first item. We have ∫ 1

x

tα−1(1− t)β−1dt ≥ min{xα−1, 1}
∫ 1

x

(1− t)β−1dt

= min{xα−1, 1}(1− x)β

β

(A.11)

and, assuming β < 1 without loss of generality,∫ x

0

tα−1(1− t)β−1dt ≤ (1− x)β−1
∫ x

0

tα−1dt

=
xα(1− x)β−1

α
.

(A.12)

Thus

Qx(α, β) ≥ min{xα−1, 1}α(1− x)

βxα

→∞ as β → 0,

(A.13)

and so

lim
β→0

I(x;α, β) = 0. (A.14)

The proof of the second item follows almost identically, with the inequalities reversed. We

have ∫ 1

x

tα−1(1− t)β−1dt ≤ max{xα−1, 1}
∫ 1

x

(1− t)β−1dt

= max{xα−1, 1}(1− x)β

β

(A.15)
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and, assuming β > 1 without loss of generality,∫ x

0

tα−1(1− t)β−1dt ≥ (1− x)β−1
∫ x

0

tα−1dt

=
xα(1− x)β−1

α
.

(A.16)

Thus

Qx(α, β) ≤ max{xα−1, 1}α(1− x)

βxα

→ 0 as β →∞,
(A.17)

and so

lim
β→∞

I(x;α, β) = 1. (A.18)

A.6 Proof of Theorem 5.3

Proof. Existence: Consider I(x;α, 1). If I(x;α, 1) = p, then we’re done. If not, suppose that

I(x;α, 1) > p. We know that limβ→0 I(x;α, β) = 0 by Lemma 5.1, and in addition we know

that I is continuous in (α, β). Thus by the intermediate value theorem, there exists β > 0

with I(x;α, β) = p. A similar argument using the other item of Lemma 5.1 shows that the

same is true when I(x;α, 1) < p.

Uniqueness : Suppose β1, β2 ∈ (0,∞) with I(x;α, β1) = p = I(x;α, β2). If β1 6= β2 then

by Theorem 3.2, I(x′;α, β1) and I(x′;α, β2) do not intersect at any x′ ∈ (0, 1). This is a

contradiction, so β1 = β2.

A.7 Proof of Proposition 5.5

Proof. Strictly increasing : Let α1, α2 ∈ (0,∞) with α1 < α2. The CDFs I(·;α1, βx,p(α1))

and I(·;α2, βx,p(α2)) satisfy I(x;α1, βx,p(α1)) = p = I(x;α2, βx,p(α2)), by definition. Thus

by Theorem 3.2, it follows that βx,p(α1) < βx,p(α2).

Continuous : We argue by contradiction. Let (αn)n be a sequence in (0,∞) that converges

to some α∞ ∈ (0,∞), and suppose that the sequence (βx,p(αn))n does not converge to

βx,p(α∞), i.e. suppose that there exists an ε > 0 such that for all N ∈ N, there is an
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n > N with |βx,p(αn) − βx,p(α∞)| ≥ ε. Observe that, since αn → α∞ ∈ (0,∞), we have

that infn αn, supn αn ∈ (0,∞). Moreover, since βx,p is increasing, (βx,p(αn))n is a sequence

contained between βx,p(infn αn) and βx,p(supn αn) so we can use the Bolzano-Weierstrass

theorem. Thus by taking a particular subsequence we can assume without loss of generality

that |βx,p(αn)− βx,p(α∞)| ≥ ε for all n, and also that (βx,p(αn))n converges to some

β∞ ∈ [βx,p(inf
n
αn), βx,p(sup

n
αn)] ⊆ (0,∞). (A.19)

In particular it follows that |β∞ − βx,p(α∞)| ≥ ε.

Now recall that, by definition, I(x;αn, βx,p(αn)) = p for all n. Thus by continuity of

I(x;α, β) with respect to (α, β),

p = lim
n→∞

I(x;αn, βx,p(αn)) = I(x;α∞, β∞). (A.20)

By uniqueness, this implies that β∞ = βx,p(α∞), a contradiction! Thus we must have

lim
n→∞

βx,p(αn) = βx,p(α∞). (A.21)

A.8 Proof of Proposition 5.7

Proof. We proceed in a manner similar to the proof of Lemma 5.1. The result in the case

x′ = x is true, by definition. Suppose x′ > x. Then

I(x′;α, βx,p(α)) = P[Xα ≤ x′]

= p+ P[x < Xα ≤ x′],
(A.22)

where we have

P[x < Xα ≤ x′] =

∫ x′
x
tα−1(1− t)βx,p(α)−1dt
B(α, βx,p(α))

≤
∫ x′
x
tα−1(1− t)βx,p(α)−1dt∫ x0

0
tα−1(1− t)βx,p(α)−1dt

.

(A.23)

Assuming α < 1 without loss of generality, the numerator in the above expression satisfies∫ x′

x

tα−1(1− t)βx,p(α)−1dt ≤ xα−1 max{(1− x)βx,p(α)−1, (1− x′)βx,p(α)−1} (A.24)
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and the denominator satisfies∫ x

0

tα−1(1− t)βx,p(α)−1dt ≥ xα

α
min{1, (1− x)βx,p(α)−1}. (A.25)

Now the function βx,p is positive and strictly increasing, so as α → 0, βx,p(α) eventually

becomes bounded between 0 and βx,p(1), say. This is enough to conclude that, for small

enough α,

P[x < Xα ≤ x′] ≤
∫ x′
x
tα−1(1− t)βx,p(α)−1dt∫ x

0
tα−1(1− t)βx,p(α)−1dt

≤ α

x

max{(1− x)βx,p(α)−1, (1− x′)βx,p(α)−1}
min{1, (1− x)βx,p(α)−1}

→ 0 as α→ 0,

(A.26)

and hence

lim
α→0

I(x′;α, βx,p(α)) = p. (A.27)

If x′ < x, we instead have

I(x′;α, βx,p(α)) = p− P[x′ < Xα ≤ x] (A.28)

and the argument proceeds more or less identically.

A.9 Proof of Proposition 5.8

Proof. We will take a slightly different approach with this proof. Recall that the variance of

Xα is given by

VarXα =
αβx,p(α)

(α + βx,p(α))2(α + βx,p(α) + 1)

≤ α2 + 2αβx,p(α) + βx,p(α)2

2(α + βx,p(α))2(α + βx,p(α) + 1)

≤ 1

2(α + 1)

→ 0 as α→∞.

(A.29)

We will first prove that limα→∞ EXα = x. Let ε > 0. By Chebyshev’s inequality,

P [|Xα − EXα| ≥ ε] ≤ VarXα

ε2
. (A.30)
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Since limα→∞VarXα = 0, there exists an A > 0 such that, for all α > A,

P [|Xα − EXα| ≥ ε] < min{p, 1− p}. (A.31)

It follows1 that |EXα − x| ≤ ε for all such α. Thus limα→∞ EXα = x.

Now if x′ ∈ (0, x), by conditioning on the event
{
|EXα − x| ≤ 1

2
(x− x′)

}
we have

I(x′;α, βx,p(α)) = P[Xα ≤ x′]

≤ P [|Xα − x| ≥ x− x′]

≤ P
[
|Xα − EXα| ≥

1

2
(x− x′)

]
+ 1{|EXα−x|> 1

2
(x−x′)}

→ 0 as α→∞.

(A.32)

The case x′ ∈ (x, 1) is similar:

I(x′;α, βx,p(α)) = P[Xα ≤ x′]

≥ P [|Xα − x| ≤ x′ − x]

= 1− P [|Xα − x| > x′ − x]

→ 1 as α→∞.

(A.33)

A.10 Proof of Corollary 5.9

Proof. The proof relies on the definition of convergence in distribution, which for real-valued

random variables (Zn)n and Z is equivalent to the following: Zn → Z in distribution as

n→∞ if and only if for all bounded and continuous functions f ,

Ef(Zn)→ Ef(Z) as n→∞. (A.34)

We will take advantage of the fact that the Beta distribution can only take values in [0, 1].

Define the function f : R→ R by

f(x) =


0 if x < 0,

x if 0 ≤ x ≤ 1,

1 if x > 1.

(A.35)

1e.g. if x < EXα − ε then p = P[Xα ≤ x] ≤ P [|Xα − EXα| ≥ ε] < min{p, 1− p}, a contradiction.

39



Observe that f is bounded and continuous, and if a random variable Z only takes values in

[0, 1] then Ef(Z) ≡ EZ. Thus Propositions 5.7 and 5.8 give us

lim
α→0

EXα = EX0 = 1− p (A.36)

and

lim
α→∞

EXα = EX∞ = x (A.37)

respectively. The final step comes from the observation that for α ∈ (0,∞),

EXα =
α

α + βx,p(α)
=

1

1 + βx,p(α)

α

. (A.38)

The statements of the Corollary follow by continuity of the function t 7→ 1
t
− 1 for t ∈

(0, 1).

A.11 Proof of Proposition 5.11

Proof. Let’s get the “otherwise” out of the way first. The CDF of the Beta distribution is

always strictly increasing, so in this case there’s no way that a Beta CDF could pass through

both points. So we’re done.

Now assume without loss of generality that x1 > x2 and p1 > p2.

Existence: The pair (α∗, β∗) we are looking for must necessarily satisfy β∗ = βx2,p2(α∗)

so the problem reduces to finding an α∗ ∈ (0,∞) such that

I(x1;α∗, βx2,p2(α∗)) = p1. (A.39)

We try α∗ = 1. Note that since x1 > x2, we must have I(x1; 1, βx2,p2(1)) ∈ (p2, 1). If

I(x1; 1, βx2,p2(1)) = p1, then we’re done. If not, then consider that the function α 7→

I(x1;α, βx2,p2(α)) is continuous. If I(x1; 1, βx2,p2(1)) > p1, then our desired α∗ must ex-

ist by Proposition 5.7 and the intermediate value theorem. If I(x1; 1, βx2,p2(1)) < p1 then we

get the same result via Proposition 5.8.

Uniqueness : If two Beta CDFs pass though both of the points, then they obviously

intersect at least twice. By Theorem 3.2 these CDFs must be equal.
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A.12 Proof of Proposition 6.1

Proof. We use induction on n. For i ∈ {1, . . . , d}, let ei denote the unit vector in the ith

component. Now for n = 1, the probability of picking any colour from the urn is equal to

that colour’s initial proportion in the urn. The colour that is picked is then replaced along

with one more unit of the same colour, so the only values that X1 − x0 can take are unit

vectors. For i ∈ {1, . . . , d},

P [X1 − x0 = ei] =
xi0
A

=
1!∏d

j=1(e
j
i !)

Γ(A)

Γ(1 + A)

d∏
j=1

Γ(eji + xj0)

Γ(xj0)
,

(A.40)

where A =
∑d

j=1 x
j
0. So the Proposition is true for n = 1.

For the inductive step, suppose the Proposition is true for some n ≥ 1. We consider the

distribution of Xn+1 − x0. Let r ∈ Zd+ such that
∑d

i=1 r
i = n + 1. By the properties of the

urn model,

P [Xn+1 − x0 = r] =
d∑
i=1

xi0 + ri − 1

A+ n
P [Xn − x0 = r − ei] 1{ri>0}

=
d∑
i=1

xi0 + ri − 1

n+ A

n!∏d
j=1((r

j − eji )!)
Γ(A)

Γ(n+ A)

d∏
j=1

Γ(rj − eji + xj0)

Γ(xj0)
1{ri>0}

=
d∑
i=1

xi0 + ri − 1

n+ A

rin!∏d
j=1(r

j!)

Γ(A)

Γ(n+ A)

d∏
j=1

Γ(rj − eji + xj0)

Γ(xj0)

=
d∑
i=1

ri

n+ 1

(n+ 1)!∏d
j=1(r

j!)

Γ(A)

Γ(n+ 1 + A)

d∏
j=1

Γ(rj + xj0)

Γ(xj0)

=
(n+ 1)!∏d
j=1(r

j!)

Γ(A)

Γ(n+ 1 + A)

d∏
j=1

Γ(rj + xj0)

Γ(xj0)
.

(A.41)

The numbers of balls of each colour added to the urn by time n + 1 must be integers and

they must sum up to n + 1, so for any other value of r the above probability is 0. This

completes the inductive step.
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A.13 Proof of Proposition 6.2

Proof. We first recall that all Pólya urn processes are Markov. Moreover, kX inherits the

Markov property from X. It is therefore sufficient to check only the initial value of the

process and its transition probabilities:

1. By definition, kX0 = kx0.

2. For i ∈ {1, . . . , d}, let ei denote the unit vector in the ith component. Fix an integer

n ≥ 0. It is clear (since X is a Pólya urn process) that kXn can only take values

of the form kx0 + kSr where r ∈ Zd+ with
∑d

j=1 r
j = n. Then for all such r and all

i ∈ {1, . . . , d},

P [kXn+1 = kx0 + kS(r + ei)|kXn = kx0 + kSr]

= P [Xn+1 = x0 + S(r + ei)|Xn = x0 + Sr]

=
xi0 + Sri∑d

j=1

(
xj0 + Srj

)
=

kxi0 + kSri∑d
j=1

(
kxj0 + kSrj

) .
(A.42)

These are exactly the properties of the PU(d; kx0, kS) process.

A.14 Proof of Proposition 6.4

Proof. By the construction of the DM distribution, we can interpret Z as a d-variate Multin(n, P )

random variable with d-variate random parameter P ∼ Dir(α). The multinomial distribution

satisfies the (easily verifiable) aggregation property(∑
j∈A1

Zj, . . . ,
∑
j∈Ar

Zj

)
∼ Multin

(
n,

(∑
j∈A1

P j, . . . ,
∑
j∈Ar

P j

))
, (A.43)

and the Dirichlet distribution satisfies the aggregation property(∑
j∈A1

P j, . . . ,
∑
j∈Ar

P j

)
∼ Dir

(∑
j∈A1

αj, . . . ,
∑
j∈Ar

αj

)
. (A.44)

The Proposition follows.
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A.15 Proof of Proposition 6.5

Proof. Recall that (α1, β1) >1 (α2, β2) simply means that α1 ≥ α2, β1 ≤ β2 and (α1, β1) 6=

(α2, β2).

Define random variables X1 ∼ BB(n, α1, β1) and X2 ∼ BB(n, α2, β2). We will use the

compound interpretation of the Beta-binomial distribution: for i = {1, 2}, we have that

Xi ∼ Bin(n, Pi) where Pi ∼ Beta(αi, βi). Then for k ∈ {0, 1, . . . , n− 1},

P[Xi > k] = E [1− I(1− Pi;n− k, 1 + k)]

= E
[∫ 1

0

1{t≤1−I(1−Pi;n−k,1+k)}dt

]
=

∫ 1

0

P [t ≤ 1− I(1− Pi;n− k, 1 + k)] dt

(A.45)

where the last equality follows from Fubini’s theorem. Now the expression 1− I(1− p;n−

k, 1+k) is a strictly increasing function of p, so it admits a strictly increasing inverse function

which we will simply call I−1. In particular, I−1 maps the interval (0, 1) to itself. From the

above we have that

P[Xi > k] =

∫ 1

0

P
[
I−1(t) ≤ Pi

]
dt. (A.46)

We supposed that (α1, β1) >1 (α2, β2), so by our results in section 3 we know that

P [P1 ≥ x] > P [P2 ≥ x] (A.47)

for all x ∈ (0, 1). Thus

P[X1 > k]− P[X2 > k] =

∫ 1

0

P
[
I−1(t) ≤ P1

]
− P

[
I−1(t) ≤ P2

]
dt

> 0

(A.48)

and the result follows.

A.16 Proof of Lemma 6.7

Proof. Define a family (Xβ)β∈(0,∞) of random variables such that Xβ ∼ BB(n, α, β) for each

β. We again use the compound interpretation of the Beta-binomial distribution: for each

β ∈ (0,∞), we have that Xβ ∼ Bin(n, Pβ) where Pβ ∼ Beta(α, β). Lemma 5.1 implies that

43



as β → 0, Pβ converges in distribution to a degenerate random variable that takes the value

1 almost surely. The expression I(1− p;n− k, 1 + k) is a bounded and continuous function

of p. Thus

lim
β→0

In(k;α, β) = lim
β→0

E [I(1− Pβ;n− k, 1 + k)]

= E [I(0;n− k, 1 + k)]

= 0.

(A.49)

The second item follows similarly.

A.17 Proof of Theorem 6.8

Proof. Existence: Just as in the proof of Theorem 5.3, except that we use Lemma 6.7 instead

of Lemma 5.1.

Uniqueness : Suppose β1, β2 ∈ (0,∞). If, for example, β1 > β2, then (α, β1) >1 (α, β2).

Thus by Proposition 6.5, In(k;α, β1) < In(k;α, β2) for all k ∈ {0, 1, . . . , n− 1}. This proves

uniqueness.
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