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Abstract

In coalitional game theory, the issue of stability in presence of externalities has been given

very little attention. Moreover, there is no solution concept in the literature which guarantees

non-emptiness of the set of stable outcomes under this environment. Using the partition

function form representation, we propose a new solution concept which is unique and always

non-empty. It is also proved that if payoff distribution rule is an equivalence relation, non-

emptiness is always guaranteed.

1 Introduction

In coalitional game theory, stability is the answer often associated with one of the fundamental

questions-what coalitions will form? In a vast majority of literature, it is assumed that the payoff of

a coalition is independent of the structure of outside coalitions existing in the system and there

are many famous solution concepts to analyze the stability e.g. the core, the nucleolus, the bar-

gaining set and the kernel. This assumption does not seem to be realistic in many socio-economic

applications and therefore it is important to consider externalities. To capture such situations,

the partition function games (Thrall and Lucas, 1963), in which each coalition is assigned a pay-

off depending on the entire coalition structure, are widely used to develop solution concepts.

Extensions of the core to partition function games have been proposed in the literature to an-

alyze the stability of coalitional games with externalities. In such games, a coalition can have

more than one value depending on how the outside players partition themselves, and while
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testing the coalitional deviations in the core, certain behavioral assumptions like optimism and

pessimism about the reaction of outside players are made. Such assumptions lead to different

outcomes and lack of consistency. This issue is well taken in the γ-core (Chander and Tulkens,

1997) which is based on the individual’s best strategy residual players, and further improved in

the r-core (Huang and Sjostrom, 2003) and the recursive core (Koczy, 2007) which allow arbitrary

reactions. Nevertheless, it is well known that the core of coalitional games in presence of exter-

nalities can be empty ((Koczy, 2007);(Funaki and Yamato, 1999)) and attempts are being made to

develop a solution concept which can guarantee non-emptiness of the stable outcomes (McCain,

2009). Other classical solution concepts like the bargaining set (Aumann and Maschler, 1961)

and the nucleolus (Schmeidler, 1969), which are always nonempty for games without externali-

ties, have also begun to receive attention for the extension to the games with externalities. This

is the basic premise of our work. In our model, we introduce a concept, called bargaining power

and define a payoff division rule, called equality of satisfaction values to obtain stable outcome.

The payoff division rule is motivated from the egalitarian solution of a two person bargaining

problem by (Myerson, 2013), which is guided by the equal gain principle. Here the players with

equal satisfaction value come together to form a coalition but two players with different satis-

faction values can never be a part of the same coalition. The division rule is first proved to be

an equivalence relation and using the fundamental theorem of equivalence relation, it is proved

that the stable outcome is always nonempty. It is also shown that any division rule, if it is an

equivalence relation, always gives a non-empty stable outcome.

In the subsequent sections, we discuss preliminaries and some key definitions in Section 2,

and present the model in Section 3. We illustrate the model through numerical examples in

Section 4 and show some important results in Section 5.

2 Preliminaries

A finite set of players N is given. A coalition C is a subset of N. Structuring of N into a set of

disjoint coalitions is called partition of N, denoted by P. An embedded coalition over N is a pair

of the form (C, P) where C ∈ P. EN the set of all embedded coalitions over N. A characteristic

function v : 2N 7→ R, associates with each coalition C ⊆ N, a real valued payoff v(C) that
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the coalition’s members can distribute among themselves. Also v(∅) = 0. A partition function

u : EN 7→ R is a mapping that assigns a real number u(C, P) to each embedded coalition (C, P).

A characteristic function game (CFG) is represented as a pair (N, v(C)) and a partition function game

(PFG) is represented as a pair (N, u(C, P)).

2.1 Key Definitions

If P = {C1, C2, · · · , Cr, φ} and Q = {B1, B2, · · · , Bs, φ} are two partitions and ∀i = 1, 2, · · · , s

∃k ∈ {1, 2, · · · , r} such that Ck 6= φ, then Q is called the refinement of partition P, if Bi ⊂ Ck ∈ P.

For any partition P and a coalition S /∈ P, residual partition of P with respect to coalition S, de-

noted by P′S, is given by P′S = {C|∃B ∈ P such that C = B − S} ∪ {S}. A vector of payments

x = (x1, x2, · · · , xN) to the players of a game G = {N, u(C, P)} is admissible to partition P, if

∀S ∈ P, ∑i∈S xi = xS = u(S, P). A payoff vector x ∈ Rn is individually rational 1 payoff vector,

if ∀i ∈ N, xi ≥ min u({i}, P′) where P′ ∈ PN−{i} ∪ {i}. Imputation set I(G, x) is a set of payment

vectors x ∈ Rn of a game G = {N, u(C, P)}, if x is admissible and x >lex y,2 where y is the

individually rational payoff vector to the game G, with its elements sorted in increasing order.

A payoff configuration to a game G, is a pair (P, x) where P is a partition and x is an imputation

corresponding to P. An outcome of a game (N, u) is a payoff configuration (P, x) to that game.

3 The Solution Concept

3.1 Bargaining Power

Consider a partition function game (N, u(C, P)) and a payoff configuration (P, x) associated with

it. Any deviation of a set of players S /∈ P leads to the residual partition P′S. If ∑i∈S xi < u(S, P′S),

then the players constituting S have incentive to deviate from their affiliations in P and form P′S.

P′S puts externalities on residual coalitions, thereby changing their potential payoffs which they

1Individual rationality vs Participation rationality (Koczy, 2007): Participation rationality assumes xi ≥ 0∀i ∈ N.
We define individual rationality for PFF games which is along the line of its classical definition. However, the main
purpose of individually rational payoff vector is to provide the greatest lower bound of imputations

2>lex denotes the lexicographical ordering. If (x, y) ∈ Rm, then x >lex y iff, x = y or ∃ts.t.1 ≤ t ≤ m and
∀is.t.1 ≤ i ≤ t, xi = yi and xt ≥ yt.
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can generate now. This provokes residual players to restructure themselves which may not be

good for S. Therefore, the players in S would not deviate, if there is a scope of loosing due to

residual players’ actions. In short, a deviation is not credible if it can be nullified or countered.

We consider that credible deviation of a player reflects its influence in a game. Hence, for every

i ∈ N in a game (N, u(C, P)), bargaining power of player i, denoted by Bi, is defined as a real

number which a player assigns itself as a measure of its influence in the game. It is an intrinsic

value of each player in the game in a sense that, it does not depend on partitions.

Definition 1 (Objection). Let (P, x) be a payoff configuration to a game G. Also CP(i) = Cj such

that i ∈ Cj and Cj ∈ P where all Cj(s) are disjoint sets. An objection of i against Cj − {i} in the first

refinement of P with respect to i, will lead to a payoff configuration (P′S, y) consists of the residual partition

of P with respect to S such that i ∈ S, S /∈ P, S ∈ P′S and a payoff vector y admissible to it. For which,

∑i∈S yi ≤ u(S, P′S). Also ∀k ∈ S, yk ≥ xk and yi > xi.

Definition 2 (Counter-objection). Let (P, x) be a payoff configuration for a game G, and (P′S, y) be an

objection of i against CP(i)− {i} in the residual partition of P with respect to S, a counter-objection of

any coalition T ⊂ N − S, where T /∈ P′S and T ∈ R, against S is a payoff configuration (R, z), such that

∑i∈T zi ≤ u(T, R). Also ∀k ∈ T, zk ≥ yk and ∃k ∈ S such that zk < xk.

Following steps are followed to compute the bargaining power of a player:

1. Step 1: Choose a payoff configuration (P, x) randomly. Check for any objection (P′S, y) to

it, such that i ∈ S, S /∈ P, S ∈ P′S and ∑i∈S yi ≤ u(S, P′S), y ∈ Rn. Also ∀i ∈ S, yi ≥ xi and

∃k ∈ S such that yk > xk. If there is no objection, go to step 3.

2. Step 2: If (P′S, y) is an objection to (P, x), check if there exists a counter-objection (R, z) such

that, ∃T ⊂ N − S, T /∈ P′S and ∑i∈T zi ≤ u(T, R), z ∈ Rn. Also ∀i ∈ T, zi ≥ yi and ∃k ∈ S

such that zk < xk. If counter-objection exists, neglect the objection as it is not a credible

objection.

3. Step 3: Repeat the above steps for all the given partitions, unless all the possibilities are

exhausted and there is no credible objection.
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4. Step 4:If (P, x) is the only payoff configuration with no credible objection, then the lower

limit of each element of the payoff vector x is equal to the bargaining power of the corre-

sponding player. In case of multiple such payoff configurations, choose the one with the

most refined partition.

3.2 Equivalence Nucleolus

For a given partition function game (N, u(C, P)) and a payoff configuration (P, x) associated

with it, we introduce some terms as follows. Satisfaction value of player i, denoted by si, is defined

as si = xi − Bi. Due to admissibility constraint, xi changes with change in partition. Hence

the same player can have different satisfaction values under different partitions. For a given

partition Pj of N, a sequence of satisfaction values of all players, denoted by e(Pj), is defined

as e(Pj) =< s1, s2, · · · , sn >. The most preferred sequence of satisfaction values is the one which

is lexicographically maximal among all such sequences when their elements are sorted in non-

decreasing order.

Definition 3 (Equality of Satisfaction Values). According to the rule of equality of satisfaction values

-“the satisfaction values of all the players within the same coalition should be same”.

For illustration,let there be a coalition consists of two players - 1 and 2. The bargaining pow-

ers of 1 and 2 are B1 and B2 respectively.x1 and x2 are the payoffs received by the players 1 and

2 respectively. According to the rule of equality of satisfaction values, (x1 − B1) = (x2 − B2).

Here we like to mention that for a two players coalition, our proposed division rule becomes

very similar to the egalitarian solution guided by the equal gain principle for a two person bar-

gaining problem Myerson (2013). The rule of equality of satisfaction values can be considered as

a generalization of the equal gain principle for more than two players.

Definition 4 (Justifiable Outcome). For a given partition function game (N, u(C, P)), a payoff config-

uration (P, x) is said to be justifiable, if ∀C ∈ P and ∀i, j ∈ C, where i 6= j, si = sj; Also ∀i, j ∈ N such

that i ∈ C and j /∈ C, si 6= sj.

The rule essentially says that in a justifiable outcome, the payoff should be distributed in

such a manner that the satisfaction values of each player within a coalition is equal and no
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two players across different coalitions have the same satisfaction values. Thus the players with

same satisfaction value come together, segregating themselves in various coalitions and thereby

forming a partition.

Definition 5 (Equivalence Nucleolus). A payoff configuration (P, x) is called equivalence nucleolus

of a game (N, u(C, P)), if it is justifiable and the payoff vector associated with it constitutes the most

preferred sequence.

Definition 6 (Stable Outcome). An outcome (P, x) of a game (N, u(C, P)) is stable if it coincides with

the equivalence nucleolus.

Following steps are followed to compute the equivalence nucleolus of a game:

1. Step 1: Get the bargaining power Bi, ∀i ∈ N as the initial solution.

2. Step 2: Choose any partition Pk and let x be a payoff vector associated with it. Divide

u(Sr, Pk) ∀r where
⋃

r Sr = Pk, in such a way that, (xi − Bi) = (xj − Bj), ∀i, j ∈ Sr, where

i 6= j and (xi − Bi) 6= (xj − Bj), if either of i or j does not belong to Sr, along with the

admissibility constraint, ∑i∈Sr
xi = u(Sr, Pk), compute x. Repeat the above steps for all the

given partitions of N.

3. Step 3: Write the sequence of satisfaction values (xi− Bi) for all players in all partitions. For

every sequence, sort the satisfaction values in non-decreasing order. Choose the sequence

which is lexicographically maximal. This is the most preferred sequence.

4. Step 4: Select the payoff configuration corresponding to the most preferred sequence. This

is the equivalence nucleolus.

4 Numerical Examples

Example 1

Let N = {1, 2, 3, 4} be a set of 4 players and u be the partition function such that:

u(123, 4) = (7, 0)
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u(12, 34) = (4.4, 4.4)

u(12, 3, 4) = (3, 3, 3)

u(1, 2, 34) = (3, 3, 3)

u(1, 2, 3, 4) = (2, 2, 2, 2)

Payoffs not indicated here are all zero 3. For the sake of simplicity in representation, here we use

abbreviated notations 4 for coalitions, partitions and payoffs.

Solution:Equivalence nucleolus is computed in two stages - (i) The bargaining power of ev-

ery player participating in the game is calculated, and (ii) The division rule is applied to di-

vide the payoffs. For the given game, the bargaining power of the players are found to be

B1 = 2, B2 = 2, B3 = 2.6 and B4 = 1.4. Now we divide the payoffs of coalitions in such a way

that the satisfaction values all players within a coalition are equal, Then we find the sequences of

satisfaction values and choose the one which is lexicographically maximal. The following table

describes the computation.

Table 1: Finding Equivalence Nucleolus

Partition Collective
payoffs

Payoff vector Satisfaction sequence

(123, 4) (7, 0) (32/15, 32/15, 41/15, 0) (0.13, 0.13, 0.13,−1.4)

(12, 34) (4.4, 4.4) (2.2, 2.2, 2.8, 1.6) (0.2, 0.2, 0.2, 0.2)

(12, 3, 4) (3, 3, 3) (1.5, 1.5, 3, 3) (−0.5,−0.5, 0.4, 1.6)

(1, 2, 34) (3, 3, 3) (3, 3, 2.1, 0.9) (1, 1,−0.5,−0.5)

(1, 2, 3, 4) (2, 2, 2, 2) (2, 2, 2, 2) (0, 0,−0.6, 0.6)

It is trivial that a sequence containing all non-negative satisfaction values will be preferred over

the one which contains at least one negative satisfaction value.In this example, there is only

one sequence which contains all non-negative satisfaction values and that is corresponding to

the partition (12, 34) with the payoff vector (2.2, 2.2, 2.8, 1.6). Hence equivalence nucleolus of

3The data is taken from Koczy (2003) for comparison purpose.
4For example: u(12, 34) = (4.4, 4.4) represents the following: The partition is ({1, 2}, {3, 4}), which con-

tains two coalitions {1, 2} and {3, 4}. u is the partition function such that u({1, 2}, ({1, 2}, {3, 4})) = 4.4 and
u({3, 4}, ({1, 2}, {3, 4})) = 4.4
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the game is the payoff configuration ((12, 34), (x1 = 2.2, x2 = 2.2, x3 = 2.8, x4 = 1.6)). The

approach followed by Koczy (2003) gives the core outcome of the game as ((12, 34), x) where

x = (x1, x2, x3, x4) satisfies x1, x2, x4 ≥ 2 and x3 ≥ 2.6. However, we notice that the core

outcome of this game may not exist. For instance x3 = 2.6 and x4 = 2 lies in the core but

it violates admissibility constraint, because in this case x3 + x4 = 4.6 which cannot exceed

u({3, 4}, ({1, 2}, {3, 4}) = 4.4. Classically, it is similar to efficiency condition which is one of

the reasonable requirements of a solution concept.

Example 2

Consider a Cournot oligopoly market in which the firms produce output at unit cost of c and face

a linear demand function p = A− bx. The firms are free to form coalitions among themselves

and the profit each coalition accruing is given by, D/(m + 1)2, where D = (A− c)2/b and m is

the number of coalitions into which the firms existing in the market partition themselves.5

Representing the game in the partition function form: Let N = {1, 2, 3} be a set of 3 firms existing

in the market and u be the partition function, then the payoffs, in the abbreviated form, could be

written as

u(123) = (D/4)

u(1, 2, 3) = (D/16, D/16, D/16)

u(i, jk) = (D/9, D/9)∀i, j, k ∈ N

Solution: Equivalence nucleolus is computed in two stages - (i) The bargaining power of ev-

ery firm is calculated, and (ii) The division rule is applied to divide the payoffs. The bargain-

ing power of the players are found to be B1 = D/12, B2 = D/12 and B3 = D/12 (Calcula-

tion method: In (1, 2, 3) each player gets D/16 which has an objection as (123) because each

player in the objection can get a better value of D/12. Further (123) could have an objection

in the form of (i, jk), in which i better off with a value of D/9, but this partition has a counter-

objection in the form of (1, 2, 3), which already had a credible objection in the form of (123)

with x1 = D/12, x2 = D/12, x3 = D/12). Table 2 describes the computation of payoff vectors

5This example is taken from Ray (2007)
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Table 2: Finding Equivalence Nucleolus

Partition Collective payoffs Payoff vector Satisfaction se-
quence

(123) (D/4) (D/12, D/12, D/12) (0, 0, 0)

(1, 2, 3) (D/16, D/16, D/16) (D/16, D/16, D/16) (−D/48,−D/48,−D/48)

(i, jk) (D/9, D/9) (D/9, D/18, D/18) (D/36,−D/36,−D/36)

and satisfaction sequences. Here (0, 0, 0) is the only sequence with all non-negative satisfaction

values, hence this is lexicographically maximal among all the sequences. Hence equivalence nu-

cleolus of the game is the payoff configuration corresponding to the sequence (0, 0, 0), which is

((123), (x1 = D/12, x2 = D/12, x3 = D/12)). Our solution coincides with the solution of Ray

(2007).

5 Results

Lemma 1. A relation R described as “equality of satisfaction values”, on a set N, is an equivalence

relation.

Proof. Let R be the relation on the set N, defined as aRb, if a has same satisfaction value as b.

Reflexive: Suppose a ∈ N, then (xa − Ba) = (xa − Ba). Hence R is reflexive. Symmetric: Suppose

a, b ∈ N and aRb, then (xa − Ba) = (xb − Bb) ⇒ (xb − Bb) = (xa − Ba) ⇒ bRa. Hence R is

symmetric. Transitive: Suppose a, b, c ∈ N, aRb and bRc, then aRb ⇒ (xa − Ba) = (xb − Bb) and

bRc⇒ (xb − Bb) = (xc − Bc). It implies that (xa − Ba) = (xc − Bc)⇒ aRc. Hence R is transitive.

Since R is reflexive, symmetric and transitive, it is an equivalence relation.

Theorem 1. Equivalence nucleolus always exists.

Proof. According to the fundamental theorem of equivalence relation, an equivalence relation on

a set N induces a partition of N. Therefore if the function generating the sequence of satisfaction

values is an equivalence relation (which is always the case according to Lemma 1), there exists

at least one partition.It is trivial that this property would not disappear due to lexicographical

ordering of sequences and choosing the maximal sequence, which constitutes the equivalence

nucleolus.
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Corollary 1. Any division rule, if it is an equivalence relation, always gives a non-empty stable outcome.

However, uniqueness may not be guaranteed.

Theorem 2. Equivalence nucleolus is unique.

Proof. Suppose equivalence nucleolus is not unique, then we have two different partitions P1

and P2, such that e(P1) = e(P2)⇒ 〈s(i)〉P1 = 〈s(j)〉P2 ⇒ (s(i))P1 = (s(j))P2 ∀i, j ∈ N ⇒ i, j ∈ S,

where S ∈ P1, P2, because S is an equivalence class. This implies that P1 = P2. Two sets are

equal if they both have the same members. It contradicts our initial assumption that P1 and P2

are different partitions. Hence the equivalence nucleolus is unique.

6 Conclusion

This paper considers the issue of stability of coalitional games with externalities, using the par-

tition function form representation of such games. We first define some terminologies and then

propose a solution concept called equivalence nucleolus which draws its motivation from the

classical nucleolus given by Schmeidler (1969). We prove that the equivalence nucleolus is

unique and always non-empty. We like to mention that we do not consider the optimality of

coalition structure e.g. one which maximizes social welfare, rather our focus is to find a point at

which no player has incentive to deviate. The proposed solution concept can be used to analyze

issues such as the strategic actions of cartels, environmental and other public goods agreements,

international relations, high vote share - seats dis-proportionality in political game setting, re-

search and development collaborations,etc. Our future work includes the geometrical character-

ization of the equivalence nucleolus and development of a computational method for the same.
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