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Abstract

We consider an oligopoly setting in which firms form pair-wise collaborative links in R&D

with other firms, and then compete in an oligopoly. Each collaborative link allows firms in-

volved in to obtain process innovation with some idiosyncratic probability. First, we assume

that the process innovation impacts identically the two firms involved in a collaborative link.

We provide a condition satisfied by any equilibrium network. Second, we deal with situations

where the process innovation associated with a collaborative link between two firms affects

these firms in a different way. We highlight two results. The first is called the tyranny of the

weakest: firms which are the most able to use the process innovation cannot form links while

firms which are the least able to use the process innovation are linked together. The second is

called positive assortative matching with regard to the ability to take advantage of a process

innovation.

JEL classification: C70, L13, L20.

Key Words: Networks, R&D collaboration, innovation uncertainty on process innovation,

oligopoly.
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1 Introduction

Research shows that collaborations among firms in innovative activities has become widespread,

especially in industries characterized by rapid technological change like the pharmaceutical,

chemical and computer industries (see Hagedoorn, 2002; Powell et al., 2005). R&D collabo-

rations improve the ability of firms to innovate. In addition, they provide access to indirect

spillovers since they allow for the diffusion of information across firms (see Ahuja, 2000; Powell

et al., 2005). The increasing importance of this phenomenon has spurred economic research

on the structural features of the network of R&D collaboration, and on their impact on in-

dustry performance. Empirical studies have shown that such real-world networks typically

have asymmetric architectures. In fact, it is not uncommon to find that there simultaneously

exist firms having many collaborations with others having only a few collaborations (see for

example Powell et al., 2005).

In this paper, we study the incentives for R&D collaboration between horizontally related

firms. We consider a two stage oligopoly setting in which firms first form pair-wise collabora-

tive R&D links with other firms, and then compete in an oligopoly. The collection of pair-wise

links defines a collaboration network and induces a distribution of (expected) costs across the

firms in the industry. Given these costs, firms compete in the market. By its very nature, the

outcome of R&D collaboration is uncertain and depends on the characteristics of the firms

(Gomes-Casseres, Hagedoorn and Jaffe, 2006). Our model allows us to incorporate several

realistic aspects of R&D collaboration. To the best of our knowledge this is the first instance

when these features have been studied in network models of collaborative oligopolies. First,

we model the fact that collaborative links do not always lead to a process innovation. In

other words, we introduce uncertainty regarding the outcome of collaborative links. Second,

we capture the idea that the success probability of a pair-wise R&D collaboration depends on

the identity of the firms engaged in. Finally, unlike the earlier literature we account for the

fact that a process innovation may not affect the firms involved in a collaborative link in an

identical manner.

In our paper, the pair-wise collaborative links involve a commitment of resources on the

part of the collaborating firms. One can imagine that these resources are utilized in R&D,
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thereby increasing the probability that the firms will hit upon a desirable process innovation.

If a process innovation occurs, it results in lower costs of production for the firms involved in

the pair-wise collaborative link. Note that each pair-wise collaborative link is associated with

a specific process innovation. As already noted an important feature of our model is that a

pair-wise collaborative link does not always lead to a successful process innovation. We assume

that the probability a pair-wise collaborative link leads to a process innovation depends on

the characteristics of the two firms involved in the link. We assume that firms cannot mod-

ify these characteristics in the short run. For instance, the success probability may depend

on the geographic proximity of firms and it is reasonable to assume that locations are fixed

in the short run. We then consider two possible ways in which the outcome of a successful

collaboration impacts the two firms. In the first scenario, a successful pair-wise collaborative

link allows the two firms involved to improve their production process in the same way. Next,

we consider situations where the two firms involved in the link do not benefit in an identical

manner from the process innovation.

We use the notion of pair-wise equilibrium network borrowed from Goyal and Joshi (2006) to

model stable collaborations. A pair-wise equilibrium network is a network where firms have

no unilateral incentive to remove some of their links and where there does not exist a pair of

unlinked firms which have an incentive to form a link. Our objective is to examine the set of

pair-wise equilibrium networks.

We first analyze the case where the process innovation obtained by two collaborating firms

induces the same reduction in the expected marginal cost for these firms. The classic example

of a market with homogeneous products under quantity competition forms our starting point.

We first show that under zero costs of link formation we obtain the same results as GJ (2003).

Moreover, GJ’s results do not change when we introduce uncertainty in the process innovation

as long the innovation probabilities are not very different. Second, we identify a property that

is satisfied by all pair-wise equilibrium networks, providing an easy and quick way to look

for these networks. Then, we show that there exist situations where pair-wise equilibrium

networks are clearly asymmetric: firms that have formed links are in asymmetric positions

in the network. Note that this result does not arise in models where pair-wise collaborative

links yield a process innovation with certainty. Next, we show that the innovation success
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probabilities satisfy the following non-monotonicity property. Consider an equilibrium net-

work. Suppose the innovation success probability between the linked firms goes up (while that

between unlinked firms remain unchanged), then there exist situations where linked firms have

an incentive to delete some of their existing links. This result puts into perspective the posi-

tive impact of public policy aimed at promoting R&D collaboration. We then investigate what

happens when the innovation success probability depends on firm characteristics by focussing

specifically on one characteristic: firms location. Hence we use geographical proximity as a

measure of similarity between firms, and firms that are closer have higher innovation success

probabilities. Interestingly, we find that in a pair-wise equilibrium network sometimes two

firms that are close may not collaborate, while two firms that are far may in fact collaborate.

In the next section of the paper, we go beyond the linear oligopoly and demonstrate how the

results described above can be generalized further. Here we provide results about cost-reducing

collaboration for both Cournot and Bertrand differentiated oligopolies.

The last part of the paper studies a question that can only be examined in the presence

of heterogeneity. We analyze situations where the process innovation associated with a col-

laborative link between firms i and j affects the production process of i and j differently1.

Here, we identify two interesting situations that can occur in a pair-wise equilibrium network.

In some pair-wise equilibrium networks, firms that are able to use the process innovation the

most efficiently may have formed no links while the firms that are the least efficient in their

ability to use the process innovation may have formed links. We call this result the tyranny of

the weakest. Moreover, in some situations, pair-wise equilibrium networks can be partitioned

into two groups: one consisting of the most efficient firms with respect to process innovation

and another consisting of the least efficient firms with respect to process innovation. Firms

form links with all the other firms of their group while having no links with firms that belong

to the other group. We call this result positive assortative matching in collaborative networks.

Not surprisingly we are also able to show that the complete network is not always a pair-wise

equilibrium network when the costs of forming link are zero. It follows that the result found

by Goyal and Joshi (2003) under small cost is not robust to the introduction of a heterogene-

1Note that Cohen and Levinthal (1989, p. 149) highlight the fact that firms can differ in the absorptive capacity
that will permit effective exploitation of the venture’s knowledge output.
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ity assumption on values of the process innovations associated with a pair-wise collaboration.

Finally, we provide a condition which allows us to characterize the set of pair-wise equilibrium

networks.

Our paper is a contribution to the study of group formation and cooperation in oligopolies.

The model of collaborative networks we present is inspired by recent research on R&D net-

works. Goyal and Moraga-Gonzales (2001), Goyal, Moraga-Gonzales, and Konovalov (2008)

analyze the interaction between the effort of firms on collaborative links and the effort of firms

on other projects in R&D. Some other papers focus on the spillovers of process innovation

instead of the effort which yields spillover. For instance, König et al. (2012), Goyal and Joshi

(2003) assume that the effort in collaboration is exogenous. König et al. examine stability and

efficiency of R&D networks in a model with network dependent spillovers. Our paper is more

directly related to Goyal and Joshi (GJ, 2003), where firms always obtain a process innovation

due to their collaborative R&D links. Moreover, firms are homogeneous and a link between

firms i and j impacts the cost of these two firms in an identical manner.

Our paper differs from GJ (2003) since we take into account the fact that the success of collab-

orative R&D links is uncertain and depends on the identity of the firms engaged in it. We also

examine what happens when process innovation does not affect the firms involved in a R&D

link in the same way. Formally, Goyal and Joshi use three properties to obtain their results

for the Cournot oligopoly case: (1) all links lead the same reduction in marginal costs (2) the

profit function is convex, that is the incentive of firm i to form an additional link is increasing

with the number of links it has already formed, (3) the profit function is sub-modular, that is

the incentive of firm i to form an additional link is decreasing in the number of links formed

by the other firms. Note that the first property is crucial for using the two other properties.

The introduction of uncertainty not only leads to a more realistic model, but also allows us to

introduce heterogeneity in the framework through probability of success of collaborative R&D

links. This allows us to relax property (1) and therefore alter the formal analysis of the GJ

(2003)’s model. Roughly speaking heterogeneity can be seen as a third force along with the

two forces (convexity and sub modularity) that are present in the GJ (2003) model. Thus the

GJ (2003)’s framework is a special case of our framework, where the probability of success of

an innovation associated with a collaborative link is 1.
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Two additional things are worth keeping in mind about the way we introduce heterogeneity

in the paper. First we identify in a precise manner the magnitude of uncertainty that is needed

in the model before it can affect results. Second, we do not introduce heterogeneity in the

way in which it is most frequently done in the networks literature − by making the cost of

link formation heterogeneous. This way, as we explain later, will not affect network formation

in a strategic manner since the firms treat link formation costs like a fixed cost. Finally, by

introducing heterogeneity we are able to answer a question that cannot be addressed in the

original framework − what happens to collaborations when firms have different abilities to

handle or benefit from innovative activities.

The rest of the paper is organized as follows. In section 2, we present the model setup.

In section 3, we provide the results in the textbook example of a market with homogeneous

products under quantity competition. In section 4, we propose a generalized framework which

allows us to deal with differentiated oligopoly. In section 5, we develop a model where pair-wise

collaborative links have some positive probability to create a process innovation, and where

the process innovation affects in a different way the efficiency of the production process of the

firms involved in the same collaborative link. In section 6, we discuss the differences between

our framework and a framework where the costs of forming links are heterogeneous.

2 Model setup

Networks. Consider an industry where N = {1, . . . , i, j, . . . , n}, with n ≥ 3, denotes the

finite set of firms. In the following for each i ∈ N , N−i = N \ {i}. In the game we model,

every firm first announces its intended R&D collaborative links: si,j = 1 means that firm i

intends to form a collaborative link with firm j, while si,j = 0 means that firm i does not

intend to form such a link. Firms only play pure strategies. Thus a strategy of firm i is given

by si = {{si,j}j∈N−i}. Let Si denote the strategy set of firm i. The set S = ×j∈NSj is the

set of strategy profiles of firms and S−i = ×j∈N−iSj is the joint strategy set of all firms except

i; s−i is a typical member of S−i. A link between two firms i and j is formed if and only

if si,j = sj,i = 1. A strategy profile s = {s1, s2, ..., sn} therefore induces a network g[s]. For
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expositional simplicity we shall often omit the dependence of the network on the underlying

strategy profile. Thus, the (undirected) network or graph g is the pair (N,L) consisting of

the set of nodes N representing the population of firms, and the set of links L(g) representing

R&D collaborations among the firms. The set Li(g) ⊂ L(g) is the set of links in which i is

involved in g.

We denote by G the set of simple networks2 whose set of nodes/firms is N . A link ij ∈ L(g)

represents the existence of a R&D collaboration between firms i and j in g. The neighborhood

of firm i is the set g(i) = {j ∈ N−i : ij ∈ Li(g)}. An isolated firm i in g is such that g(i) = ∅.

A walk W (i1, ik) connecting firm i1 and ik in g is a sequence of firms (i1, i2, . . . , ik) such that

i1i2, i2i3, . . . , ik−1ik ∈ L(g). A component in g is a maximal set of firms such that there exists a

walk between any two of them. A complete component in g is a maximal set of firms such that

there exists a link between any two of them. A connected network is a network consisting of

only one component without any isolated firms. The complete network is a network consisting

of only one complete component without any isolated firms. The empty network is the network

g such that L(g) = ∅. A network has the k−dominant group architecture if k firms belong to

a complete component and the other n− k firms are isolated. A star is a network where there

exists a firm, say i, such that g(i) = N−i and for firms j ∈ N−i, we have g(j) = {i}; i is called

the centre of the star.

We define network g−i as the network similar to g except that firm i and all its links are

ii ii i hh hh h
A star network A network which has the

4-dominant group architecture

Figure 1: Networks architectures

removed from g. We assume that if ij 6∈ L(g), then network g + ij is the network obtained

2Simple networks are networks without loops (a firm i cannot form a link with itself) or multiple links (firms i
and j can establish at most one link between them).
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when the link ij is added to g. We assume that if ij ∈ L(g), then network g− ij is the network

obtained when the link ij is removed from g. Finally, we denote by ḡ the complement network

of g. We have: ij ∈ L(ḡ) if and only if ij 6∈ L(g).

Flows/Probabilities of innovation. We assume that a strictly positive value also called flow

is assigned to each link of the complete network. In our context, flow describes the probability

that a R&D collaboration between firms i and j yields a process innovation, and is denoted

by ρi,j ∈ (0, 1]. Although not explicitly modeled, one can imagine that these probabilities ρi,j

depends on the identity and the characteristics of firms i and j. Initially, we will assume that

link ij has the same impact on firms i and j, that is ρi,j = ρj,i. This allows us to define the

sequence of all possible probabilities. Note that this sequence is independent of the network g.

Let B = (ρi,j)i∈N,j∈N−i . When it is useful we note ρi,j(B). Let ρM (B) = max{x : x ∈ B} and

ρm(B) = min{x : x ∈ B}. For simplicity we may just write ρM and ρm when the sequence of

probabilities B does not play a role in the analysis.

We associate with each firm i ∈ N a number Ui(g) =
∑

j∈g(i) ρi,j representing its “flow

degree”. We provide an interpretation of this flow degree when we present the impact of

collaborative links on the marginal cost of firms. For each (i, j) ∈ N × N−i, we define

Umi,j(g) = min{Ui(g),Uj(g)}, and U(g) =
∑

ij∈L(g) ρi,j , and so U(g−i) = U(g) − Ui(g). In

the following, we call U(g−i) the total flow degree of firms j ∈ N \ {i} in g−i.

Structure of the game. The game played by the firms consists of two stages.

1. In the first stage, firms simultaneously choose the collaborative links they intend to

form. These choices induce a network g. Collaborative links allow firms to decrease their

expected marginal cost.

2. In the second stage, firms play a simultaneous oligopoly game.

Note that at the end of the first stage, firms are aware of the network g in which they are

involved; they play the Oligopoly game given the network g formed in the first stage.

Pair-wise equilibrium network. We assume that in the second stage of the game firms

play an oligopoly equilibrium given the network formed in the first stage. For the equilibrium

networks, we use the notion of pair-wise equilibrium networks defined by Goyal and Joshi
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(2006).

First, we define a Nash equilibrium. Let Π?
i (g

[s]) be the oligopoly equilibrium profit of firm i in

the second stage given the strategy profile s played by the firms in the first stage. The strategy

si ∈ Si is said to be a best response of firm i to s−i ∈ S−i if Π?
i (g

[si,s−i]) ≥ Π?
i (g

[s′i,s−i]), for all

s′i ∈ Si. The set of firm i′s best responses to s−i is denoted by BRi(s−i). A strategy profile

s ∈ S is said to be a Nash equilibrium if si ∈ BRi(s−i), for all i ∈ N . In the following, to

simplify notation we replace Π?
i (g

[s]) by Π?
i (g).

Definition 1 (Goyal and Joshi, pg. 324, 2006) A network g is a pair-wise equilibrium network

if the following conditions hold:

1. There is a Nash equilibrium strategy profile which supports g.

2. For gi,j = 0,Π?
i (g + ij)−Π?

i (g) > 0⇒ Π?
j (g + ij)−Π?

j (g) < 0.

A pair-wise equilibrium network is a refinement of Nash equilibrium: it is a Nash equilibrium

where there do not exist two firms with an incentive to form a collaborative link.

3 Cost-reducing collaboration in linear oligopoly

In this section, we consider the textbook linear oligopoly model, and in the following section

we generalize our results.

Collaboration links and cost reduction. We assume that a collaborative link requires

a fixed investment by each firm, given by f ≥ 0, and allows to reduce costs of production

through process innovations.

We assume that the probability of success of a process innovation depends on the characteristics

of firms: all links do not have the same probability of leading to a process innovation. A link

between firms i and j leads to a process innovation with probability ρi,j ∈ (0, 1], and it is

independent of the probability of success of an innovation process associated with other links.

Moreover, the process innovation targeted by a link is different from the process innovation

targeted by another one. To simplify the analysis, we assume that the expected marginal cost

function of a firm is affine, that is:
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ci(g) = γ0 − γ
∑
j∈g(i)

ρi,j = γ0 − γUi(g), (1)

where γ > 0,3 γ0 > γ(n− 1).

When γ = 1 the flow degree, Ui(g), can be interpreted as the expected impact of the process

innovations from the collaborative links in lowering the marginal costs. Note that we make the

following implicit assumption: each successful process innovation in which firm i is involved

decreases i’s marginal cost by the same amount γ.

A network g induces an expected marginal cost vector for the firms which is given by

c(g) = (c1(g), c2(g), . . . , cn(g)).

Demand and expected profit function. To start with, we consider the simplest text-

book oligopoly model: the linear Cournot Oligopoly with a homogeneous good. We assume

the following linear inverse demand function:

p = α−
∑
i∈N

qi, α ≥ 0,

where p is the market price of the good and qi is the quantity sold by firm i.

Given any network g, the Cournot equilibrium output is:

q?i (g) =
α− γ0 + γ[(n− 1)Ui(g)− 2U(g−i)]

n+ 1
.

To ensure that each firm produces a strictly positive quantity, we assume the following condi-

tion

(C1) : α− γ0 > γ(n− 1)(n− 2)ρM .

The second stage Cournot gross expected profit of firm i ∈ N is given by:

π?i (g) = ϕ(Ui(g),U(g−i)) =

(
α− γ0 + γ[(n− 1)Ui(g)− 2U(g−i)]

n+ 1

)2

, (2)

and the second stage Cournot expected profit of firm i ∈ N is given by Π?
i (g) = π?i (g)−|Li(g)|f .

3Formally, collaborative links reduce unit costs. It follows that any mechanism that can reduce unit costs will
lead to the same qualitative results as in our paper.
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To simplify the analysis we assume in the following that ϕ is differentiable.

First, we consider X ⊂ Li(g) and provide the expected marginal gross profit obtained by firm

i when it maintains the links belonging to X.

ζ−i (X, g) =

∑
ij∈X

ρi,j

 (A+ 2BUi(g)− CU(g−i))− B

∑
ij∈X

ρi,j

2

,

where A = 2(n − 1)γ(α − γ0)/(n + 1)2, B = ((n − 1)γ/(n + 1))2, C = 4γ2(n − 1)/(n + 1)2.4

Second, we consider X ⊂ Li(ḡ), a subset of links that firm i can form in g, and provide the

expected marginal gross profit for i when it forms the links belonging to X:

ζ+i (X, g) =

∑
ij∈X

ρi,j

 (A+ 2BUi(g)− CU(g−i)) + B

∑
ij∈X

ρi,j

2

.

We set zm(g) = mini∈N{ζ−i ({ij}, g) : ij ∈ L(g)}. Roughly speaking zm(g) is the lowest

marginal value of the links formed in g. We also set zM (g) = maxij /∈L(g) min{ζ+i ({ij}, g),

ζ+j ({ij}, g)}. Roughly speaking zM (g) is highest marginal value of the unformed links in g,

accounting for the fact that the formation of a link needs the consent of both firms involved

in. Moreover, note that U(g−k) = U(g)− Uk(g), so if Ui(g) ≥ Ui′(g), then U(g−i) ≤ U(g−i′).

3.1 Pair-wise Equilibrium Networks and Uncertainty

Before proceeding further, we define a property that allows us to check for pair-wise equilib-

rium in a quick and easy manner.

(P1) For all X ⊂ Li(g), ζ−i (X, g) > |X|f . In other words, firm i has an incentive to maintain

its links in g.

Lemma 1 (P1) is satisfied for all firms i in g and f > zM (g) if and only if g is a pair-wise

equilibrium network.

4It is worth noting that if (C1) is satisfied, then ζ−i (X, g) is increasing with
∑

ij∈X ρi,j . Indeed, ζ−i (X, g) can be

rewritten as follows:
(∑

ij∈X ρi,j

)
(A+ B(

∑
ij∈X ρi,j + 2

∑
ij∈Li(g)\X ρi,j)− CU(g−i)).
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Proof Suppose (P1) is satisfied. Then, no firm has an incentive to remove some of their links.

Let i and j be such that ij 6∈ L(g). Since f > zM , either ζ+i ({ij}, g) < f or ζ+j ({ij}, g) < f .

Therefore, no unlinked pair of firms have an incentive to form a link. Now suppose g is a

pair-wise equilibrium network. Then no firm has an incentive to remove some of their links,

and (P1) is satisfied. Moreover, no pair of firms has an incentive to add a link, and f > zM (g)

is satisfied. The result follows. �

We now examine what happens to network formation when links formation is costless.

Proposition 1 Suppose f = 0. Then a pair-wise equilibrium network is the complete network.

Proof Suppose f = 0. The minimal expected marginal profit that a firm i can obtain from

a link with firm j is Ξ = ρm(A− (n − 1)(n − 2)ρMC); Ξ > 0 since condition (C1) is satisfied

giving us the complete network. �

By a continuity argument, if the costs of forming links are sufficiently small, then the

complete network is always the pair-wise equilibrium network. This result is similar to the

result found by GJ (2003) where the process innovation between two collaborative firms is

always successful. In other words, GJ (2003)’s result is robust to the introduction of uncer-

tainty regarding the outcome of pair-wise collaborative links concerning process innovation.

The mechanism behind this result is the same as in GJ where ρi,j = 1 for all i, j ∈ N : each

additional link formed by firm i allows it to increase its quantity, and so its profit.

We now provide a necessary condition for a pair-wise equilibrium network by comparing a

link that exists with a link that does not.

Proposition 2 Let g be a pair-wise equilibrium network and suppose ij ∈ L(g) and i′j′ /∈ L(g).

Then, Umi,j(g) > Umi′,j′(g) or ρi,j > ρi′,j′.

Proof To introduce a contradiction suppose a pair-wise equilibrium network g does not

satisfy the necessary condition. Wlog, we assume that Ui(g) ≤ Uj(g) and Ui′(g) ≤ Uj′(g).

Since Ui(g) ≤ Ui′(g), we have U(g−i) ≥ U(g−i′). Set ρi′,j′ = ρi,j + δ, δ ≥ 0. We note that

ζ+i′ ({i
′j′}, g)− ζ−i ({ij}, g) is equal to(

(n− 1)γ

(n+ 1)2

)
ρi,j [2γ(n− 1)(Ui′(g)− Ui(g) + ρi,j)− 4(U(g−i′)− U(g−i))] + δT,
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where T > 0 by (C1). Since ρi,j > 0, Ui′(g) ≥ Ui(g), and U(g−i′) ≤ U(g−i), ζ
+
i′ ({i

′j′}, g) −

ζ−i ({ij}, g) > 0. It follows that ζ+i′ ({i
′j′}, g) > ζ−i ({ij}, g) ≥ f . The last inequality comes

from the fact that firm i has an incentive to maintain the link ij in g. Since ζ+j′ ({i
′j′}, g) >

ζ+i′ ({i
′j′}, g), the result follows.

�

Proposition 2 states that it is not possible for a pair of unlinked firms i′, j′ to simultane-

ously have (i) a cost competitive advantage, and (ii) an innovation probability advantage over

linked firms.

For cost-reducing collaborations in linear oligopoly models we can also provide a sufficient

condition for a pair-wise equilibrium network. This condition allows us to easily establish some

additional results. Let Li(g) = {ij1, . . . , ijm} with ρi,jk < ρi,jk+1
for all k ∈ {1, . . . ,m − 1}.

Let gijk be the network identical to g except that links ij1, . . . , ijk are removed. By convention

gij0 = g.

(P2) ζ−i ({ijk+1}, gijk) > ζ−i ({ijk+2}, gijk+1) for all k ∈ {0, . . . ,m− 2}.

In (P2), we rank the collaborative links formed by firm i according to the success proba-

bilities. Then, we assume that the marginal profit is more affected by removing the kth link

than removing the (k + 1)th link. In the appendix we provide some additional explanations

about (P2).

Proposition 3 Suppose that (P2) is satisfied, and Π?
i (g) ≥ ((α− γ0 − 2γU(g−i))/(n+ 1))2

for all firms i in g, and zM (g) < f . Then, g is a pair-wise equilibrium network.

Proof Consider firm i which has formed links ij1, . . . , ijm. By (P2) firm i has an incen-

tive to maintain links ij1, . . . , ijm, or remove all its links. To introduce a contradiction

suppose that firm i has an incentive to remove only some of its links. Then, firm i will

remove the “least valuable” links. For instance, i removes links ij1, . . . ij`−1 and maintain

links ij`, . . . ijm. Then,
∑m

k=`+1 ζ
−
i ({ijk}, gijk−1) > (m − `)f . Since ζ−i ({ij`−1}, gij`−2) >

maxk∈{`,...m}{ζ−i ({ijk+1}, gijk)} > f firm i has an incentive to maintain link ij`−1, a contradic-

tion. Since for all i ∈ N , Π?
i (g) ≥ ((α−γ0−2γU(g−i))/ (n+1))2, no firm has a strict incentive

13



to remove all its links. It follows that no firm has an incentive to remove links. Finally, since

f > zM (g), no pair of firms has an incentive to add a link, since this link decreases the profit

of one of these firms. �

Following Proposition 3, we observe that in pair-wise equilibrium networks the most valu-

able links are not always formed by firms. For instance, suppose that α − γ0 = 4, γ = 1. For

network g drawn in Figure 2, we have zm(g) = 0.21 while zM (g) = 0.12. If f = 0.2, then

network g is a candidate for being a pair-wise equilibrium network even if ρ1,5 = 0.25 ≥ ρi,j ,

with i ∈ N and j ∈ N−i. Indeed, the assumptions of Proposition 3 are satisfied. In particular

(P2) is satisfied since all the success probabilities associated with the links formed in g are

identical.
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Figure 2: A pair-wise equilibrium network without the most valuable link

Recall that when collaborative links are always successful, GJ (2003) find that the k-

dominant group architecture is the only equilibrium network, where connected firms are in a

symmetric position. We now highlight the fact that in our model, because of heterogeneous

innovation success probabilities of R&D links, it is possible to obtain pair-wise equilibrium

networks where firms that have formed collaborative R&D links are in asymmetric positions.

More precisely, in the next corollary, we show that if there exists a firm i whose collaborative

links lead to an innovation with a high probability, while collaborative links between the other

firms have a low innovation success probability, then the pair-wise equilibrium network is a

star where i is the centre.

Corollary 1 Suppose ρi,j = ρ for all j ∈ N−i and ρi′,j′ ≤ ρ′ for all i′ ∈ N−i and j′ ∈ N−i\{i′}.

If (i) ρ(A + Bρ − C(ρ(n − 2) + ρ′(n − 2)(n − 3)/2)) > f and (ii) ρ′(A + 2B(ρ + (n − 2)ρ′) −

(n − 2)Cρ + (n − 2)Bρ′) < f , then the unique pair-wise equilibrium network is a star where i

is the centre.
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Proof Let g be a star where i is the centre. We assume that ρi,j = ρ for all j ∈ N−i.

Therefore, (P2) is satisfied for firm i. Using the same arguments as in the proof of Proposition

3, firm i should preserve all its links or remove all its links. Firm i has no incentive to remove

its links since condition (i) implies that R = ρ(A + (n − 1)Bρ) > f , where (n − 1)R is the

difference between the gross profit of firm i in g and its gross profit in the empty network.

Conditions (i) and (ii) imply that no firm j ∈ N−i has an incentive to modify its strategy in

the star network. Moreover, (i) implies that firms i and j ∈ N−i and firm i always have an

incentive to form a link together in a pair-wise equilibrium network, and (ii) implies that firms

j, j′ ∈ N−i never have an incentive to form a link together in the network where there exist

links between firm i and each firm j ∈ N−i. The result follows. �

In the previous corollary, we did not state the result for ρi,j ≥ ρ for all j ∈ N−i. We now

explain the reason for this statement. If the success probabilities of R&D links in a pair-wise

equilibrium network increase, then there exist situations such that some of these links will be

removed in pair-wise equilibrium networks.

Example 1 Suppose N = {1, . . . , 6}, α − γ0 = 490, γ = 1, ρ = 0.9, ρ′ = 0.8918244, κ =

1.000111, and f = 89.752038. The sequence B is given by ρi,j = ρ for ij ∈ {12, 13, 45},

ρi,j = ρ′ for ij = 23, and ρi,j = η, η arbitrarily low, for all other links. Finally, we define the

sequence B′ as follows ρi,j = κρ for ij ∈ {12, 13, 45}, ρi,j = ρ′ for ij = 23, and ρi,j = η for

all other links. Network g in Figure 3 is the unique pair-wise equilibrium network when the

sequence of probabilities is given by B, while network g′ in Figure 3 is the unique pair-wise

equilibrium network when the sequence of probabilities is given by B′.5

We now explain the intuition behind Example 1. The link between firms 2 and 3 is not

formed in g but is formed in g′, since ζ+i is increasing in Ui(g) and the links 12 and 13 are

more valuable in g′ than in g. Given that the link 23 is formed in g′, firms 4 and 5 have an

incentive to remove their link in g′ since ζ−i is decreasing in U(g−i).

Example 1 illustrates a non-monotonic property. In the following proposition, we state this

formally. For each sequence of probabilities on collaborative links, B, we denote by G?(B) the

set of pair-wise equilibrium networks associated with this sequence. We now consider a net-

5Additional details about this example can be found in the Appendix.
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Figure 3: Example of non-monotonicity

work g ∈ G?(B) and associate with the sequence B and the network g a sequence B(κ,g) which

satisfies: ρi,j(B
(κ,g)) = κρi,j(B), where κ > 1, for all ij ∈ L(g), and ρi,j(B

(κ,g)) = ρi,j(B) for

all ij /∈ L(g).

Proposition 4 Let κ > 1. There exist B, g ∈ G?(B), and B(κ,g) such that L(g′) 6⊂ L(g) for

all g′ ∈ G?(B(κ,g)).

Example 1 has implications for policy. It highlights the fact that there exist situations

where the government should not try to improve the probability of success of the innova-

tions associated with collaborative links. Indeed, in this case we obtain κ > 1. In Example

1, the total expected reduction in marginal costs in g drawn in Figure 3 is 0.27γ, while the

total expected reduction in marginal costs in g′ drawn in Figure 3 is strictly smaller than 0.27γ.

Till now we have focussed on properties of pair-wise equilibrium networks. We have pro-

vided necessary and sufficient conditions for their existence. We have shown that they can

lead to networks where firms are in asymmetric positions and the fact the equilibrium networks

can be non-monotonic with respect to probabilities. We have also shown that we get the same

results as GJ (2003) when links are costless. However, recall that unlike the two forces in GJ

(2003)’s model there are three forces at work in our framework. We now investigate how these

three forces affect outcomes by examining the relationship between uncertainty, heterogeneity

and equilibrium architectures. More precisely, we show that there exists a sufficient condition

under which the model with heterogeneous success probabilities in collaborative links yields

the same outcome as a model of collaborative R&D with no heterogeneity in probabilities, one

special case of which is the model with no uncertainty.
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For each B, we set ŪB = max{
∑

j∈N−i
ρi,j : i ∈ N}. We define the following function for

ε, with 0 ≤ ε ≤ ρm(B)/2:

zB(ε) = −2

(
n− 1

n+ 1

)(
(α− γ0) + γ(n− 1)ŪB

n+ 1

)
ε+ γ

(
n− 1

n+ 1

)2

(ρm(B))2.

Let ZB = {ε ∈ [0, ρm(B)/2(n − 1)] : zB(ε) ≥ 0}. By construction, ZB is bounded since

ZB ⊂ [0, ρm(B)/2]. Moreover, we have zB(0) > 0 and by (C1) zB(ρm(B)/2(n− 1)) < 0. Since

zB(0) > 0, ZB is non-empty. Consequently, ZB has a least upper bound. Moreover since zB

is continuous, zB(0) > 0 and zB(ρm(B)/2(n − 1)) < 0, there exists ε ∈ (0, ρm(B)/2(n − 1)),

such that zB(ε) = 0 by the Intermediate Value theorem. Therefore, ε, such that zB(ε) = 0,

belongs to ZB. Moreover, zB is strictly decreasing. It follows that the least upper bound of

ZB belongs to ZB. We denote by ε̄(B) the maximal element of ZB, obviously zB(ε̄(B)) = 0

and ε̄(B) > 0.

Lemma 2 Consider a network g such that ij 6∈ L(g). The gross expected marginal profit

obtained by firm i from a link with firm j is at least

ρi,jϕ1(Ui(g),U(g−i)).
6

Proof Let g be such that ij 6∈ L(g). The gross expected marginal profit that firm i obtains

from the link ij is ϕ(Ui(g)+ρi,j ,U(g−i))−ϕ(Ui(g),U(g−i)). By the Mean Value theorem, there

is ω ∈ (Ui(g),Ui(g) + ρi,j) such that

ϕ1(ω,U(g−i)) =
ϕ(Ui(g) + ρi,j ,U(g−i))− ϕ(Ui(g),U(g−i))

ρi,j
.

Since ϕ is strictly convex in its first argument, we have ϕ1(ω,U(g−i)) > ϕ1(Ui(g),U(g−i)) and

so

ρi,j

(
ϕ(Ui(g) + ρi,j ,U(g−i))− ϕ(Ui(g),U(g−i))

ρi,j

)
> ρi,jϕ1(Ui(g),U(g−i)),

and the result follows. �

Proposition 5 establishes that the result obtained in the framework where innovations are

always successful (GJ, 2003) is preserved in a framework with low variability in uncertainty

6ϕ1 is the first derivative of ϕ wrt to its first argument.
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and heterogeneity about the outcome of collaborative links. In particular, if collaborative

links have similar probabilities of yielding a process innovation, then a non-empty pair-wise

equilibrium network has the k−dominant group architecture. Let ρM − ρm = µ.

Proposition 5 Suppose µ < ε̄(B). Then, a pair-wise equilibrium network has the k−dominant

group architecture.

Proof Let g be a pair-wise equilibrium network. Suppose that µ < ε̄(B). We show that if ij ∈

L(g) and i′j′ ∈ L(g), then ij′ ∈ L(g). We have ζ−` ({`k}, g) = ρ`,k(A+B(2U`(g)−ρ`,k)−CU(g−`).

Since firm ` ∈ {i, j, i′, j′} has an incentive to maintain its link with firm k ∈ {i, j, i′, j′} \ {`}

in g, then we have ζ−` ({`k}, g) ≥ f .

By Lemma 2, if ij′ 6∈ L(g) and firms i and j′ form a link together, then firm i obtains a

gross expected marginal profit equal to ρi,j′(A + B(2Ui(g) + ρi,j′) − CU(g−i)) which is higher

than [ρi,j′ ]ϕ1(Ui(g),U(g−i)). If ρi,j′ ≥ ρi,j , then [ρi,j′ ]ϕ1(Ui(g),U(g−i)) > ζ−i ({ij}, g), and

firm i has an incentive to form a link with firm j′. Suppose now that ρi,j′ < ρi,j . We

know that |ρi,j − ρi,j′ | < ε̄(B). We set ρi,j′ = ρi,j − ε, with ε ∈ (0, ε̄(B)). Let H =

[ρi,j′ ]ϕ1(Ui(g),U(g−i)) − ζ−i ({ij}, g). We have: H = B(ρi,j)
2 − ε(A + 2BUi(g) − CU(g−i)). It

follows that

H/γ ≥ −2

(
n− 1

n+ 1

)(
(α− γ0) + γ[(n− 1)ŪB]

n+ 1

)
ε+ γ

(
n− 1

n+ 1

)2

(ρm(B))2

= zB(ε) > zB(ε̄(B)) = 0.

The last inequality comes from the fact that zB is strictly decreasing. It follows that firm

i has an incentive to form the collaborative link with firm j′. We use similar arguments to

establish that firm j′ has an incentive to form a collaborative link with firm i. �

The above proposition implies a result shown in GJ (2003).

Corollary 2 (Proposition 4.1, pg.74, GJ, 2003) If for all ρ ∈ B, we have ρ = 1, then a

non-empty pair-wise equilibrium network has the k−dominant group architecture.

Thus, the result obtained in the framework where innovations are always successful is preserved

when we introduce uncertainty in the outcome of collaborative links. One way to interpret
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this result is that when probability of success of innovations does not depend on the identity

or the characteristics of the firms, i.e., the success probabilities are very similar, the presence

or absence of uncertainty does not matter; the “third force”, heterogeneity between firms,

does not modify the effect of the two other “forces” (strict convexity and sub-modularity).

However, when the probabilities of success of process innovations depend on the identity or

the characteristics of the firms and these probabilities are very different, this result no longer

holds.

3.2 Geographical Proximity and Innovation Probability

Till now, we have not imposed any restrictions on the characteristics of firms and on the differ-

ence of innovation success probabilities across links. However, in many cases, these probabili-

ties may depend on factors like geographic proximity or cultural similarities (Gomes-Casseres,

Hageddorn and Jaffe, 2006). We now illustrate our framework by considering one such factor

−we assume that geographic location is the main determinant of the success probabilities of

process innovations. If two firms are located in the same place, then they belong to the same

set (or group), otherwise they belong to two distinct sets. Suppose that there are m ≤ n

distinct groups of firms. These groups are denoted by [1], [2], . . . , [m]. We assume that if firms

i and i′ belong to the same group and j and j′ belong to another group, then collaborative

links between i and j, and between i′ and j′ have the same probability of yielding a successful

process innovation. Formally, if i, i′ ∈ [i] and j, j′ ∈ [j], then ρi,j = ρi′,j′ .

We define a ring on which we rank the groups in the natural order. We define the distance

between the groups [x] and [y], d([x],[y]) as follows d([x],[y]) = min{|x− y|,m− |x− y|}. Let

φ be a function which satisfies:

(A1) If i1 ∈ [i] and j1 ∈ [j], then ρi1,j1 = φ(d([i],[j]));

(A2) The function φ is decreasing.

In the following, let [x̄] = {i ∈ [x] : g(i) 6= ∅}. In the two following results, we assume

that the probabilities associated with the links satisfy assumptions (A1), and (A2). The first

proposition establishes some properties that pair-wise equilibrium networks must satisfy when
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geographic proximity determines innovation success probabilities.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Figure 4: A ring with m = 8 groups of firms

Proposition 6 Let g be a pair-wise equilibrium network and suppose (A1) and (A2) are sat-

isfied.

1. If i1, i2 ∈ [̄i], then i1 and i2 are linked in g.

2. Suppose min{d([j], [i]), d([k], [i])} ≥ d([k], [j]). If i1 ∈ [i] is linked with j1 ∈ [j] and i1 is

linked with k1 ∈ [k], then j1 is linked with k1 in g.

Proof We prove successively the two parts of the proposition. Let g be a pair-wise equilibrium

network.

1. To introduce a contradiction suppose that i1, i2 ∈ [̄i] and i1i2 6∈ L(g). Since i1, i2 ∈ [̄i],

g(k) 6= ∅, with k ∈ {i1, i2}. Therefore, there exist j1, j2 ∈ N such that i1j1 ∈ L(g)

and i2j2 ∈ L(g). We set j1 ∈ [j1]. Since d([i], [i]) ≤ d([i], [j1]) and φ is decreasing,

we have ρi1,j1 = φ(d([i],[j1])) ≤ φ(d([i],[i])) = ρi1,i2 . If firm i1 forms a link with firm

i2, then i1 obtains an expected marginal profit equal to ζ+i1 ({i1, i2}, g). By straightfor-

ward calculations, ζ+i1 ({i1, i2}, g)) > ζ+i1 ({i1, j1}, g − i1j1) = ζ−i1 ({i1, j1}, g). Moreover,

ζ−i1 ({i1, j1}, g) ≥ f since g is a pair-wise equilibrium network. It follows that firm i1

has an incentive to form a link with firm i2. We use similar arguments to show that

firm i2 has an incentive to form a link with firm i1. Consequently, g is not a pair-wise

equilibrium network, a contradiction.

2. We set min{d([j], [i]), d([k], [i])} ≥ d([k], [j]). Therefore, we have for firms i1 ∈ [i], j1 ∈ [j]

and k1 ∈ [k], ρi1,j1 = φ(d([i],[j])) ≤ φ(d([j],[k])) = ρj1,k1 since φ is decreasing. We assume

that firm i1 ∈ [i] is linked with firm j1 ∈ [j] and i1 is linked with firm k1 ∈ [k], while j1 is

not linked with k1. If j1 forms a link with k1, it obtains an expected marginal profit equal

to ζ+j1({j1, k1}, g) ≥ ζ+j1({j1, i1}, g − i1j1) = ζ−j1({j1, i1}, g). Moreover, ζ−j1({j1, i1}, g) ≥ f
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since g is a pair-wise equilibrium network. It follows that firm j1 has an incentive to form

a link with firm k1. We use similar arguments to show that k1 has an incentive to form

a link with j1.

�

It is worth noting that in our model, it is possible to obtain a pair-wise equilibrium network

where i1 ∈ [i] is linked with j1 ∈ [j] but i1 is not linked with k1 ∈ [k], with k ∈ {i, . . . , j}. In

other words, geographic proximity between two firms is not the only point to take into account

for analyzing R&D networks built by firms. Our result is in line with some empirical findings.

For instance, Gomes-Casseres, Hagedoorn and Jaffe (2006) show that success of inter-firm

collaborations depends on several factors, with geographical proximity being only one of these

factors. Below, we provide an example to illustrate this point.

Example 2 Suppose that N = {1, . . . , 12}, with {1, 2, 3} = [1], {4, 5, 6} = [2], {7, 8, 9} = [3],

{10, 11, 12} = [4]. We set φ(x) = 1/
√
x+ 1, α − γ0 = 34, γ = 1, and f = 3/2. Then network

g drawn in Figure 5 is a pair-wise equilibrium network.
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Figure 5: Network g

Example 2 illustrates that in this model the choice of collaborators is not driven only by

geographic proximity, but also by innovation uncertainty the firms face. It follows that a col-

laborative link can appear between two firms which are far from each other, for instance firms

1 and 9, when they have a high flow degree leading to a higher cost advantage, while such a

collaborative link may not appear if at least one of the two firms involved in has a low flow

degree, for instance between firms 9 and 10.

The next corollary establishes that there exists a condition for geographic proximity to

play a crucial role in the pair-wise equilibrium networks. Under this condition all firms which

are close enough and have already formed a link are all linked with each other.
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Corollary 3 Suppose that for all [i], [j] such that d([i],[j]) < m, m > 0, we have φ(0) −

φ(d([i],[j])) < ε̄(B). Then, each firm i1 ∈ [̄i] is linked with each firm j1 ∈ [j̄] such that

d([i],[j]) < m.

4 Results for a Larger Class of Oligopoly Games

In this section, we establish that the characterization result of the previous section (Proposition

2) is true even when the expected profit function satisfies some general properties. Then, we

show that models of cost-reducing collaboration in differentiated oligopolies (Cournot and

Bertrand) also satisfy these conditions. In other words, we establish that it is possible to

obtain results for a general framework where uncertainty regarding the success of innovation

is introduced. This result complements the work of Goyal and Joshi (2006).

Let σ be a twice differentiable function. We say that σ is strictly convex if for all y, σ11(x, y) > 0

for all x. We say that σ is sub-modular if for all y, σ12(x, y) ≤ 0 for all x. In the following we

assume that the gross expected profit function of firm i is:

πi(g) = σ(Ui(g),U(g−i)), (3)

where σ is a strictly convex and sub-modular function. In other words the net expected

marginal profit of firm i satisfies the following conditions:

1. strictly increasing with Ui(g), that is strictly increasing in the flow degree of firm i; and

2. decreasing with U(g−i), that is decreasing in the total flow degree of firms j ∈ N \ {i} in

g−i.

Finally, we assume that the expected profit function of firm i is Πi(g) = πi(g) − |Li(g)|f ,

where f > 0.

Proposition 7 Suppose that the payoff function is given by (3) where σ is strictly increasing

in its first argument, strictly convex and sub-modular. Let g be a pair-wise equilibrium network,

with ij ∈ L(g) and i′j′ /∈ L(g). Then, Umi,j(g) > Umi′,j′(g) or ρi,j > ρi′,j′.

Proof To introduce a contradiction suppose a pair-wise equilibrium network g does not satisfy

the condition. Wlog, assume that Ui(g) ≤ Uj(g) and Ui′(g) ≤ Uj′(g). Note that Ui(g) ≤ Ui′(g)
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implies that U(g−i′) ≥ U(g′−i) = U(g−i), where g′ = g − ij and where the equality comes from

the fact links in which i is not involved are the same in g and g′. We have:

πi′(g + i′j′)− πi′(g) = σ(Ui′(g) + ρi′j′ ,U(g−i′))− σ(Ui′(g),U(g−i′))

≥ σ(Ui′(g) + ρi′j′ ,U(g−i))− σ(Ui′(g),U(g−i))

≥ σ(Ui′(g) + ρij ,U(g−i))− σ(Ui′(g),U(g−i))

≥ σ(Ui(g),U(g−i))− σ(Ui(g)− ρij ,U(g−i))

= πi(g)− πi(g − ij)

The first inequality comes from the fact that U(g−i′) ≤ U(g−i) and σ is sub-modular. The

second inequality comes from the fact that ρi′j′ ≥ ρij and σ is increasing. The third inequality

comes from the fact that Ui′(g) ≥ Ui(g), and σ is strictly convex. We now establish the strict

inequality between πi′(g + i′j′)− πi′(g) and πi(g)− πi(g − ij). If ρi,j < ρi′,j′ , then the second

inequality is strict since σ is strictly increasing. If Ui(g) < Ui′(g), then the third inequality

is strict since σ is strictly convex. Since one of these two possibilities must hold under our

assumptions, we have πi′(g + i′j′) − πi′(g) > πi(g) − πi(g − ij). Using similar arguments, we

establish that πj′(g+ i′j′)− πj′(g) > πi(g)− πi(g− ij). Since πi(g)− πi(g− ij) ≥ f , it follows

that firms i′ and j′ have an incentive to form a link together. Therefore, network g is not a

pair-wise equilibrium network, a contradiction. �

We now illustrate how Proposition 7 relates to some specific payoff functions. Let θ :

(x, y) 7→ (a1 + a2x − a3y)2 be a function where a1, a2, a3 ∈ IR+ \ {0} and a1 > a3y for

all y ∈ IR+. We have θ1(x, y) = 2a2(a1 + a2x − a3y) > 0, θ11(x, y) = 2(a2)
2 > 0 and

θ12(x, y) = −2a2a3 < 0. The function θ is strictly increasing in its first argument, strictly

convex and sub-modular; so it satisfies the properties used to establish Proposition 7. We

observe that if a1 = (α − γ0)/(n + 1), a2 = γ(n − 1)/(n + 1), and a3 = 2γ/(n + 1), then θ is

equal to the expected gross profit given in equation 2.

In Examples 3 and 4 we consider the cost function given by Equation 1.
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Example 3 (Differentiated Cournot Oligopoly) Suppose each firm i faces the following linear

inverse demand function: pi = α− qi − β
∑

j∈N−j
qj , where pi is the price of the product sold

by firm i, α > 0, and β ∈ (0, 1).

The equilibrium expected net profit for firm i ∈ N is given by πdi (g) = θ(Ui(g),U(g−i)) =

(a1 + a2Ui(g) − a3 U(g−i))
2, where a1 = (α − γ0)/(2 + β(n − 1)) > 0, a2 = γ((n − 2)β +

2)/((2−β)(2+β(n−1)) > 0 and a3 = γβ/((2−β)(2+β(n−1)) > 0. Moreover, to ensure that

each firm produces a strictly positive quantity in equilibrium, assume that a1 > a3U(g−i) for

all U(g−i). Then, pair-wise equilibrium networks satisfy the conditions given in Proposition 7.

Example 4 (Differentiated Bertrand Oligopoly) We assume that demand is similar to the one

given in Example 3. We let

λ =
(1− β)(1 + (n− 1)β)

1 + (n− 2)β
.

In the Bertrand equilibrium, the expected net profit for firm i ∈ N can be written as: πBi (g) =

θi(Ui(g),U(g−i)) = λ(a1 + a2Ui(g)− a3U(g−i))
2 where

a1 =
(1 + (n− 2β))

(2 + (n− 3)β)(1 + (n− 1)β)
(α− γ0) > 0, (4)

a2 = γ
2 + (5n− 11)β + (4n2 − 19n+ 21)β2 + ((n2 − 8n+ 19)n− 14)β3

(2 + (n− 3)β)(1 + (n− 1)β)(1− β)(2 + (2n− 3)β)
> 0,

a3 = 2γ
β + (2n− 4)β2 + (n2 − 4n+ 4)β3

(2 + (n− 3)β)(1 + (n− 1)β)(1− β)(2 + (2n− 3)β)
> 0.

Using arguments similar to those in Example 3, we establish that in the model of cost-reducing

collaboration in a differentiated Bertrand oligopoly, pair-wise equilibrium networks satisfy the

conditions given in Proposition 7.

We now provide a result in line with Proposition 3. We need to define two notions. First,

zMσ (g) = maxij /∈L(g){σ(Umij (g) + ρij ,U(g) − Umij (g)) − σ(Umij (g),U(g) − Umij (g))}. Second, we

define a property akin to (P2) and useful in this general specification of our framework. Let

Li(g) = {ij1, . . . , ijm} with ρi,jk < ρi,jk+1
for all k ∈ {1, . . . ,m − 1}. Let gijk be the network

identical to g except that links ij1, ..., ijk are removed.
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(P2’) σ(Ui(gijk),U(g−i))−σ(Ui(gijk+1),U(g−i)) > σ(Ui(gijk+1),U(g−i))−σ(Ui(gijk+2),U(g−i)),

for all k ∈ {0, . . . ,m− 2}.

In (P2’), we assume that the marginal profit is more affected by removing the kth link than

removing the (k + 1)th link. In the following proposition, we use the same argument as in

Proposition 3: no firm has an incentive to remove a link since it has no incentive to remove

all its links and (P2’) is satisfied; and no pair of unlinked firms i and j can add a link since

this link decreases the profit of one of these firms.

Proposition 8 Suppose that (P2’) and σ(Ui(g),U(g−i))−σ(0,U(g−i)) ≥ f |Li(g)| are satisfied

for all firms i in g, and zMσ (g) < f . Then, g is a pair-wise equilibrium network.

This result allows us to obtain the same kind of results as those obtained in the cost-

reducing collaboration under linear oligopoly. Obviously, as we already showed, the class of

model where the non-monotonicity result is true is not empty (Proposition 4). Moreover,

when the success probabilities are sufficiently similar, the pair-wise equilibrium network is a

k-dominant network (Proposition 5).

5 When firms obtain different benefits from the same

innovation

Till now the network formation literature has only considered models where innovation is

always certain and therefore all firms benefit equally from it. In practice, neither is innovation

always certain and nor do all firms always benefit equally from it. In this section, we present an

extension of the previous model. Here as before, pair-wise collaborative links have a positive

probability of leading to a process innovation, but the value of the process innovation is different

for the firms involved in the same collaborative link. In the following, we assume that if the

link between firms i and j allows for a process innovation, then firm i reduces its marginal

cost by γτ ′i,j > 0, while firm j reduces its marginal cost by γτ ′j,i > 0, where τ ′i,j and τ ′j,i may
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be different. Formally the expected marginal cost function is given by:

Chi (g) = γ0 − γ
∑
j∈g(i)

ρi,jτ
′
i,j , (5)

Equation 5 can be rewriten as follows:

Chi (g) = γ0 − γ
∑
j∈g(i)

τi,j ,

where τi,j = ρi,jτ
′
i,j , so τi,j > 0.

Let B′ = (τi,j)i∈N,j∈N−i , and τMB′ = max{x : x ∈ B′}. For simplicity we use τM when the set

B′ does not play a crucial role in the analysis. Analogous to the notion of flow probabilities

we define Ti(g) =
∑

j∈g(i) τi,j , and T (g) =
∑

j∈N Tj(g).

To simplify, in the following, we consider the linear Cournot oligopoly model with homogeneous

goods. Given any network g, the Cournot equilibrium output is:

qhi (g) =
α− γ0 + γ(nTi(g)−

∑
j∈N−i

Tj)
n+ 1

.

In order to ensure that each firm produces a strictly positive quantity, we have condition

(C1′) : α− γ0 > γ(n− 1)2τM .

The second stage Cournot expected gross profit of firm i ∈ N is given by:

πhi (g) =

(
α− γ0 + γ(nTi(g)−

∑
j∈N−i

Tj(g))

n+ 1

)2

. (6)

The gross marginal expected profit obtained by firm i in g when it maintains the link ij ∈ L(g)

is

ξ−i ({i, j}, g) = (nτi,j − τj,i)

A′ + B′(2Ti(g)− τi,j)− C′
2

∑
j∈N−i

Tj(g)− τj,i

 ,

where A′ = 2γ(α−γ0)/(n+ 1)2, B′ = n(γ/(n+ 1))2, C′ = (γ/(n+ 1))2. It is worth noting that

B′ = nC′ for n ≥ 3. The gross marginal expected profit obtained by firm i in g when it forms

an additional link ij 6∈ L(g) is:
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ξ+i ({i, j}, g) = (nτi,j − τj,i)

A′ + B′(2Ti(g) + τi,j)− C′
2

∑
j∈N−i

Tj(g) + τj,i

 .

For the following results, we assume that the second stage Cournot expected profit of each

firm i is given by Πh
i (g) = πhi (g)− |Li(g)|f , where πhi (g) is given by equation 6. To establish

the results we define @= {(i, j) ∈ N ×N : τi,j > nτj,i} as a strict order relation over B.7

Proposition 9 Let g be a pair-wise equilibrium network. If i @ j or j @ i, then ij 6∈ L(g).

Proof Suppose f = 0 and nτi,j < τj,i. By the condition (C1’), we haveA′ + B′(2Ti(g) + τi,j)− C′
2

∑
j∈N−i

Tj + τj,i

 > 0.

Since nτi,j− τj,i < 0, the expected marginal profit obtained by firm i when it forms a link with

firm j is negative. Consequently, if i @ j or j @ i and f = 0, then ij 6∈ L(g). The expected

marginal profit associated with the link ij is decreasing with f . The result follows. �

Corollary 4 Suppose f = 0 and i @ j or j @ i. Then, a pair-wise equilibrium network is not

the complete network.

Proof The result follows from Proposition 9. �

Corollary 4 shows that when we introduce asymmetry concerning the impact of the process

innovation on the firms involved in the same collaborative link, the result obtained under zero

costs of forming collaborative links (Proposition 1) is not preserved: a pair-wise equilibrium

network is not always the complete network. This is due to the following fact: suppose that

a firm i is able to use process innovations in a much more efficient way than a firm j. If

firm j forms a link with firm i, this link will greatly increase the competitiveness of one j’s

competitor while the competitiveness of firm j will only slightly change. As a result, j’s profit

will decrease, even if the costs of forming the link is null. It follows that j will never consent

7The relation @ is irreflexive, asymmetric and transitive, so it is a strict order relation.

27



to form the link with i.

The next corollary and example illustrate the fact that there exist situations where firms

that are more efficient in the use of the process innovation are the ones which are isolated.

Indeed, the other firms will have no incentive to form collaborative links with them since the

latter will become very strong competitors during the second stage of the game. Recall that

in equilibrium, isolated firms always obtain a smaller expected profit than other firms.

Corollary 5 (The tyranny of the weakest). Suppose that i 6@ j and j 6@ i for all i, j ∈ S,

S ⊂ N , and for all i′ ∈ N \S, j′ ∈ N−i′, i′ @ j′ or j′ @ i′. If f = 0, then a pair-wise equilibrium

network has the |S|−dominant group architecture, where only firms in S have formed links.

Example 5 Suppose N = {1, . . . , 6}, α − γ0 = 5, γ = 1, and f = 0. We assume that if i

belongs to {1, . . . , 4}, then τi,j = 0.01 for all firms j ∈ N−i. Moreover, τ5,k = 0.1 for all firms

k ∈ N \ {5}, and τ6,k = 0.7 for all firms k ∈ N \ {6}. Then, network g drawn in Figure 6 is

the unique pair-wise network. In this network, firm i ∈ {1, . . . , 4} obtains an expected profit

equal to 0.53 while firms 5 and 6 obtain an expected profit equal to 0.49.

m
m
m
m m

1 2

3 4 5

m6

Figure 6: Tyranny of the weakest

Next we illustrate the fact that when there is heterogeneity in the value of the process

innovation, pair-wise equilibrium networks may partition firms. More precisely, in a situation

where some firms obtain high expected value from collaborative links, while others obtain

low expected value, the pair-wise equilibrium network contains two components: the first one

consisting of firms that obtain high expected value from process innovations, and the second

one consisting of the firms obtaining low expected value from process innovations. We illustrate

this situation in the next example.

Example 6 (Positive Assortative Matching). Suppose N = {1, . . . , 6}, α − γ0 = 5, γ = 1,

and f = 0. Let S = {1, 2, 3}. We assume that if i ∈ S, then τi,j = 0.5 for all firms j ∈ N \ {i}
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and if i′ ∈ N \S, then τi′,j′ = 0.01 for all firms j′ ∈ N \ {i′}. Then, network g drawn in Figure

7 is the unique pair-wise equilibrium network.

m
m
m mm

1 2

3

4

5

m6

Figure 7: Partition of the collaboration network

We now present a result in line with Proposition 2. It provides properties concerning links

that are formed and links that are not formed in pair-wise equilibrium networks. We assume

that for all i, j ∈ N , τi,j ∈ ((1/n)τj,i, nτj,i). In other words, the reduction in the expected

marginal cost of firms cannot be very different. Under this condition, Proposition 9 does not

prevent some links from occurring. Wlog we assume in the next proposition that τi,j < τj,i

and τi′,j′ < τj′,i′ . We state that it is not possible that there exists a pair-wise collaborative

link between i and j in g while the collaborative link between i′ and j′ has not been formed

in g if

1. firms i′ and j′ have a flow degree which is higher than the flow degree of firms i and j;

2. and the expected process innovation value obtained by i′, τi′,j′ , and j′, τj′,i′ , from the

collaborative link between i′ and j′ belongs to (τi,j , τj,i), i.e., the expected process inno-

vation values obtained by i′ and j′ are bounded by the minimal and maximal expected

process innovation values associated with the collaborative link ij.

Proposition 10 Assume that for all k, k′ ∈ N , τk,k′/τk′,k ∈ (1/n, n). Let g be a pair-wise

equilibrium network such that ij ∈ L(g) and i′j′ /∈ L(g). Then, [τi′,j′ , τj′,i′ ] 6⊂ (τi,j , τj,i) or

min{Ti(g), Tj(g)} > min{Ti′(g), Tj′(g)}.

Proof Recall that for all k ∈ N , T (g−k) = T (g)−Tk(g). To introduce a contradiction, assume

a pair-wise equilibrium network g where both conditions are not satisfied. Wlog let Ti(g) =

min{Ti(g), Tj(g)} and Ti′(g) = min{Ti′(g), Tj′(g)}. To sum up, we have [τi′,j′ , τj′,i′ ] ⊂ (τi,j , τj,i)

and Ti′(g) ≥ Ti(g). Since [τi′,j′ , τj′,i′ ] ⊂ (τi,j , τj,i) we have nτi,j − τj,i ≤ nτi′,j′ − τj′,i′ . Moreover,

B′(τi′,j′ + τi,j) − C′(τj′,i′ + τj,i) = C′(n(τi′,j′ + τi,j) − (τj′,i′ + τj,i)) > 0 since n(τi′,j′ + τi,j) ≥

2nτi,j > 2τj,i ≥ τj′,i′ + τj,i. The strict inequality comes from the fact that τk,k′ > nτk′,k for all
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k, k′ ∈ N . It follows that A′+B′(2Ti(g)− τi,j)−C′
(

2
∑

j∈N−i
Tj(g)− τj,i

)
< A′+B′(2Ti′(g) +

τi′,j′)−C′
(

2
∑

j∈N−i′
Tj(g) + τj′,i′

)
since Ti(g) ≤ Ti′(g), and B′(τi′,j′+τi,j)−C′(τj′,i′+τj,i) > 0.

We conclude that ξ+i′ ({i
′, j′}, g) > ξ−i ({i, j}, g) ≥ f . Consequently, firms i′ and j′ have an

incentive to form the link i′j′, a contradiction. �

Note that in contrast to Proposition 2, in Proposition 10, when we deal with a collaborative

link ij we have to take into account the fact that the positive impact of the link on the

competitiveness of firm j can be a disincentive for firm i to form this link.

6 Discussion

In the theoretical literature on network formation, several papers examine heterogeneity (see

for instance Galeotti, Goyal, and Kamphorst, 2005 ; Billand, Bravard and Sarangi, 2011, 2013).

These papers highlight the fact that heterogeneity in cost of links plays a crucial role in the

emergence of new equilibrium architectures. Hence, it is important to discuss the differences

between our framework and a framework without uncertainty, that is τi,j = 1 for all i ∈ N ,

j ∈ N \ {i}, but with cost heterogeneity. In the latter framework, each firm i incurs a cost

fi,j when it forms a collaborative link with firm j. In our framework, in equilibrium there is

no possibility of formation of a link between firms i and j when these firms obtain additional

benefits from this link that are too different. More precisely, we have shown (see Proposition

9) that if τi,j > nτj,i, then firm j will not consent to form a link with firm i even if the costs

of forming the link, f , is very low. In other words, while the cost of link formation acts like a

participation constraint, the formation of the link ij will not depend on the benefits associated

with this link but on the difference of benefits associated with this link. If this difference is

too important in favor say of i, then the link ij will decrease the equilibrium quantity, and

the equilibrium profit (gross of the cost of forming links) of firm j, and the latter firm will

never have an incentive to form this link. By contrast, in a framework where heterogeneity

concerns the costs associated with the formation of the link ij, the cost margin or the differ-

ence between fi,j and fj,i does not play any role in the formation of ij. Indeed, in that case,

since τi,j = τj,i = 1, the formation of the link ij will always increase the equilibrium quantity,

and the equilibrium profit (gross of the cost of forming links) of both firms i and j. Moreover,

this increase for firm i for instance will not depend on the identity of j; it will depend on the

30



number of links formed by i and the total number of links formed by other firms. Therefore,

firms i and j will act in the usual way and compare the additional benefits associated with

the additional link with the cost of a link. Firm i will not take into account relative costs or

consider the cost firm j will incur when it forms the link ij.

To sum up, our framework allows us to account for the fact that firm i chooses specific

firms for creating collaborative links. Indeed, firm i knows that if the collaborative link ij

succeeds, then it will not obtain the same benefits from this successful link depending on the

choice of its partner j. If j is able to improve its competitiveness too much relative to the

improvement obtained by i because of link ij, then i will not consent to form the collaborative

link ij. A framework with only cost heterogeneity and no uncertainty cannot account for such

important and realistic considerations.

Appendix

Meaning of (P2). Property (P2) states that the strict convexity of ϕ in its first argument

has to be sufficiently high to compensate for differences between the probabilities of success of

the collaborative links that exist in g. Indeed, we have:

ζ−i ({ijk+1}, gijk) = ρijk+1

ϕ(Ui(gijk),U(gijk−i ))− ϕ(Ui(gijk+1),U(gijk−i ))

ρijk+1

Due to the strict convexity of ϕ in its first argument, Φi(g
ijk) = [ϕ(Ui(gijk),U(gijk−i ))−

ϕ(Ui(gijk+1), U(gijk−i ))]/ρijk+1
is strictly increasing. It follows that Φi(g

ijk) > Φi(g
ijk+1). More-

over, by construction, ρi,jk < ρi,jk+1
for all k ∈ {1, . . . ,m}. To sum up, (P2) means that the

difference between Φi(g
ijk) and Φi(g

ijk+1) compensates the difference between ρi,jk and ρi,jk+1
.

Obviously, when ρi,j = ρ for all i, j ∈ N , (P2) is satisfied.

Additional explanations for Example 1. We set H = {12, 13, 45}. First, it is clear

that only the links formed in g or g′ can be formed in a pair-wise equilibrium network. Sec-

ond, we establish that no link has to be removed in g: we have ϕ(1.8, 0.9) − ϕ(0, 0.9) − f >

ϕ(0.9, 1.8) − ϕ(0, 1.8) − f ' 2.8 × 10−6. Moreover, firms 2 and 3 have no incentive to
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form a link together in g: ϕ(0.9 + ρ′, 1.8) − ϕ(0.9, 1.8) − f = −2.31 × 10−6. We now es-

tablish that firms 2 and 3 have an incentive to form a link in g when each link in H has

a probability equal to κρ: ϕ(κρ + ρ′, 2κρ) − ϕ(κρ, 2κρ) − f ' 1.5 × 10−5. Finally, given

that the link 23 is formed, we establish that firm 4 has an incentive to remove the link 45:

ϕ(κρ, 2κρ+ ρ′)− ϕ(0, 2κρ+ ρ′)− f ' −0.31.
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