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Doubts

Knowledge would be fatal, it is the uncertainty that charms
one. A mist makes things beautiful.

Oscar Wilde, The Picture of Dorian Gray, 1891

Our doubts are traitors,
And make us lose the good
we oft might win,
By fearing to attempt.

William Shakespeare, Measure for Measure, act 1, scene 4



Uncertainty

• What is it?

• Why do we care?

• How do we represent it?

• How do we measure it?

• Who confronts it?

• How does it affect equilibrium concepts?

• What does it do to

• quantities?
• prices?

• How does it affect design of good government policies?



What is it?

Fear of model misspecification.



A model = a stochastic process

A model is a probability distribution over a sequence.



Digression on rational expectations

• A rational expectations model is shared by every agent inside a
model, by nature, and by the econometrician.

• The ‘sharing with nature’ part precludes concerns about model
misspecification (along with belief heterogeneity).



Why do we care?

Two distinct reasons:

• Ellsberg experiments make Savage axioms dubious.

• It is difficult statistically to distinguish alternative models from
samples of the sizes of typical macroeconomic data sets.

I will emphasize the second reason.



How do we represent it?

As a decision maker who has a set of models.



How do we manage it?

• Construct bounds on value functions.

• Our tool for constructing bounds on value functions: min-max
expected utility.

• Two-player zero-sum game.
• A minimizing player helps a maximizing player to compute bounds on

value functions and to evaluate fragility of decision rules.



How do we measure it?

• Relative entropy.
• An expected log likelihood ratio.
• A statistical measure of model discrepancy.
• It tells how difficult it is to distinguish two models statistically.
• It bounds rates of statistical learning as sample size grows.



Entropy

When Shannon had invented his quantity and consulted von
Neumann on what to call it, von Neumann replied: ‘Call it
entropy. It is already in use under that name and besides, it will
give you a great edge in debates because nobody knows what
entropy is anyway.’ Quoted by Georgii, “Probabilistic Aspects
of Entropy,” 2003.



How do we measure it?

Size of set of decision maker’s statistical models, as measured by relative
entropy.



Who confronts it?

• We the model builders do. So do . . .

• Agents inside our models.
• Private citizens.
• Government policy makers.



How does it affect equilibrium concepts?

We want:

• An equilibrium concept as close as possible to rational expectations.

• A common approximating model for all agents in model.

• An extension of either
• A recursive competitive equilibrium.
• Nash or subgame perfect equilibrium.
• Self-confirming equilibrium.



Belief heterogeneity

• Common approximating model for all agents in model, but . . .

• Diverse interests and min-max expected utility give rise to ex post
heterogeneity of (worst-case) models.

• A disciplined model of belief heterogeneity.



What it does to quantities

• An increase in model uncertainty operates like an increase in the
discount factor.

• Observational equivalence results (∃ a β − θ ridge).

• There is a form of precautionary saving differing from the usual kind
based on convexity of the marginal utility of consumption.



What it does to prices

• Makes a potentially volatile ‘preference shock’ multiply the ordinary
stochastic discount factor.

• Portfolio holders’ worst-case beliefs affect state contingent prices.

• That gives rise to a ‘market price of model uncertainty’.

• Helps attain Hansen-Jagannathan asset pricing bounds by increasing
volatility of stochastic discount factor under the common
approximating model.



Does uncertainty aversion resemble risk aversion?

• Yes, in some ways, but . . .

• It activates attitudes about the intertemporal distribution of
uncertainty that distinguish it from risk aversion.



Can small amounts of uncertainty aversion substitute for
large amounts of risk aversion?

• Pratt experiment for calibrating magnitude of risk aversion.

• Anderson-Hansen-Sargent measures of statistical discrepancies
between alternative statistical models for calibrating magnitude of
uncertainty.



How does it affect government policy design problems?

• Portfolio holders’ worst-case beliefs show up in state contingent
prices.

• This can make a disciplined form of purposeful belief manipulation
concern a Ramsey planner.

• Alternative ways to configure model uncertainties. (Massimo and
Fabio and Simone and Pieropaolo’s new paper on uncertainty and
self-confirming equilibria)



Why not learn your way out?

• Some specifications are statistically difficult to distinguish (e.g., low
frequency attributes where laws of large numbers and central limit
theorems ask for patience).

• How do you learn when you don’t have a single model?

• A Bayesian knows the correct model from the beginning.
• Bayesian learns by conditioning in light of a single model (i.e., a

probability distribution over a sequence).
• How do you learn when you don’t have a single model?

• Massimo, Simone, Fabio, and Luigi’s new paper extending de
Finetti’s fundamental theorem of statistics.



What it does to public policy

In a dynamic game or a competitive equilibrium with a government, there
are various things to be uncertain about.



Multiple uncertainties

Four configurations of uncertainties between a government or Ramsey
planner with model(s) x and a private sector with model(s) o.

• Type 0: Ramsey planner trusts its approximating model (x),
knowing private agents (o) don’t trust it.

• Type I: Ramsey planner has set of models (x) centered on an
approximating model, while private sector knows a correct model (o)
among Ramsey planner’s set of models x.

• Type II: Ramsey planner has set of models (x) surrounding its
approximating model, which private sector trusts (o).

• Type III: Ramsey planner has single model (x) but private sector
has another model in an entropy ball around (x).



Multiple uncertainties
Type 0 Type I

Type II Type III

Figure: Type 0, top left: Ramsey planner trusts its approximating model (x),
knowing private agents (o) don’t trust it. Type I, top right: Ramsey planner
has set of models (x) centered on an approximating model, while private sector
knows a correct model (o) among Ramsey planner’s set of models x. Type II,
bottom left; Ramsey planner has set of models (x) surrounding its
approximating model, which private sector trusts (o). Type III, bottom right:
Ramsey planner has single model (x) but private sector has another model in
an entropy ball around (x).



Densities and ratios

• A random variable c

• A probability density f (c)

• Another ‘nearby’ probability density f̃ (c)

• A likelihood ratio

g(c) =
f̃ (c)

f (c)

• Evidently
f̃ (c) = g(c)f (c)

Eg(c) =

∫
g(c)f (c)dc = 1



Entropy

• Entropy is an expected log-likelihood ratio

ent =

∫
log(g)f̃ dc

ent =

∫
log(g)gfdc ≥ 0



How do we represent it?

Constraint preferences:

min
g≥0

∫
U(c)g(c)f (c)dc

subject to ∫
gfdc = 1∫

log(g)gfdc ≤ η



How do we represent it?

Multiplier preferences:

min
g≥0

∫ [
U(c) + θ log(g(c))

]
g(c)f (c)dc

subject to ∫
gfdc = 1 (1)



How do we represent it?

Minimizing distortion g :

ĝ(c) ∝ exp

(
U(c)

−θ

)

ĝ(c) =

exp

(
U(c)
−θ

)
∫

exp

(
U(c)
−θ

)
dc

Bucklew (2004, p. 27) calls this a statistical version of Murphy’s law:

“The probability of anything happening is in inverse ratio to its
desirability.”



How do we represent it?

Risk-sensitive operator:

TU(c)
.

= min
g≥0

∫ [
U(c)g(c) + θ log(g(c))

]
g(c)f (c)dc

subject to ∫
gfdc = 1 (2)

Indirect utility function:

T(U) = −θ log E exp

(
U(c)

−θ

)



Relationship among preferences

• Constraint and multiplier preferences differ.

• Constraint preferences are more natural.

• Multiplier preferences are easier to work with.

• Fortunately, for the purposes of asset pricing, their indifference
curves are tangent at a given allocation.



Indifference curves

• Expected utility:
dc2
dc1

= −π1
π2

u′(c1)

u′(c2)

• Constraint and ex post Bayesian preferences:

dc2
dc1

= − π̂1
π̂2

u′(c1)

u′(c2)

where π̂1, π̂2 are the minimizing probabilities computed from the
worst-case distortions.

• Multiplier and risk-sensitive preferences:

dc2
dc1

= −π1
π2

exp(−u(c1)/θ)

exp(−u(c2)/θ)

u′(c1)

u′(c2)



State prices

The state prices are

qi = πi ĝiu
′(c̄i ) = πi

(
exp(−u(c̄i )/θ)∑
j πj exp(−u(c̄j)/θ)

)
u′(c̄i ).

The worst-case likelihood ratio ĝi operates to increase prices qi in
relatively low utility states i .



Indifference curves
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Figure: Indifference curves through point (c1, c2) = (3, 1) for expected
logarithmic utility (less curved smooth line), multiplier (more curved line),
constraint (solid line kinked at 45 degree line), and ex post Bayesian (dotted
lines) preferences. The worst-case probability π̂1 < .5 when c1 = 3 > c2 = 1
and π̂1 > .5 when c1 = 1 < c2 = 3.



How do we represent it?

• E exp
(
−u(c)/θ

)
=
∫

exp
(
−u(c)/θ

)
f (c)dc is a moment generating

function for u(c).

• h(θ−1)
.

= log
∫

exp
(
−u(c)/θ

)
f (c)dc is a cumulant generating

function.

• h(θ−1) =
∑∞

j=1 κj
(−θ−1)

j

j! , where κj is the jth cumulant of u(c).

• Thus, Tu(c) = −θh(θ−1) = −θ
∑∞

j=1 κj
(−θ−1)

j

j! .



How do we represent it?

• When θ < +∞, Tu(c) depends on cumulants of all orders.

• For the particular case u(c) ∼ N (µu, σ
2
u), κ1 = µu, κ2 = σ2

u ,and
κj = 0 ∀j ≥ 3, so that Tu(c) = µu − 1

2θσ
2
u, or

Tu(c) = E (u)− 1

2θ
var(u)

• Tu(c) becomes expected utility µu when θ−1 = 0.

• Duffie and Epstein’s stochastic differential utility.



Robustness bound

∫
g(c)u(c)f (c)dc ≥ Tθu(c)− θ

∫
g(c) log g(c)f (c)dc .



Robustness bound
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Dynamics

F (x t) joint density over x t = (xt , xt−1, ..., x0). Factor it:

F (x t) = f (xt |x t−1)F (x t−1)

Distorted joint density

F̂ (x t) = G (x t)F (x t)

where G (x t) is a likelihood ratio. Factor it:

G (x t) = g(xt |x t−1)G (x t−1)

E
[
g(xt |x t−1)|x t−1

]
= 1⇒

EG (x t)|x t−1 = G (x t−1)

The likelihood ratio G is a martingale under F .



Dynamics

g(xt |x t−1) distorts f (xt |x t−1)

f̂ (xt |x t−1) = g(xt |x t−1)f (xt |x t−1)

In our applications, worst-case distortion is

ǧ(xt |x t−1) ∝ exp

(
−V (x t)

θ

)



Bellman equation

Ordinary:
U(x t) = u(x t) + βEtU(x t+1)

Multiplier preferences:

V (x t) = u(x t) + βTt(V (x t+1))

or

V (x t) = u(x t)− βθ log Et

[
exp

(
−V (x t+1)

θ

)]



Bellman equation, multiplier preferences

V (x t) = u(x t) + βEt(ǧ(xt+1|x t)V (x t+1))

+βθEt

[
log ǧ(xt+1|x t)ǧ(xt+1|x t)

]
ǧ(xt+1|x t) ∝ exp

(
−V (x t+1)

θ

)



Attitude toward timing
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Figure: Plan A has early resolution of uncertainty. Plan B has late resolution of
uncertainty.



Attitude toward persistence
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Figure: Plan C has i.i.d. risk. Plan D has persistent risk.



Punch line

Person with multiplier preferences:

• Likes early resolution of uncertainty.

• Dislikes persistence of uncertainty.

Expected utility person is indifferent to both.



Optimism and pessimism

With θ < +∞, aversion to persistence of risk implies worst-case model
asserts:

• Good news is temporary.

• Bad news is persistent.

This is a possible definition of a pessimist.



Optimism and pessimism

• The probability choosing minimizing agent uses his entropy budget
wisely by distorting low-frequency, difficult to detect features of the
stochastic dynamics.

• This has a beautiful interpretation in terms of a frequency domain
representation of quadratic objective functions.



Disciplining θ

F (xt) - model A
F̂ (xt) = G (x t)F (x t) - model W, depends on θ

Detection error probability:
Probability that a likelihood ratio model selection test gives the wrong
answer.
(Likelihood ratio is a random variable.)



Detection error probabilities

Form the log likelihood ratio log (G (x t)) = log
(

F̂ (xt)
F (x t)

)
if F (x t) generated the data, log (G (x t)) should be negative

if F̂ (x t) generated the data, log (G (x t)) should be positive

Frequency of mistakes: where I is indicator function,

E [I (log (G (x t) > 0)] under model F

E [I (log (G (x t) < 0)G (x t)] under model F̂

Assemble these frequencies to get average detection error probability
(under models F and F̂ ).



Punch line

When it comes to explaining ‘risk premium puzzles’, can a small or
moderate amount of model uncertainty substitute for a large amount of
risk aversion?

Yes.



Cost of aggregate fluctuations
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Figure: Lucas’s experiment – shut down σ2
ε.



Cost of aggregate fluctuations

Tallarini’s formula:

c0 − cd =

(
β

1− β

)
γσ2

ε

2



Costs of business cycles

No one has found risk aversion parameters of 50 or 100 in the
diversification of individual portfolios, in the level of insurance
deductibles, in the wage premiums associated with occupations
with high earnings risk, or in the revenues raised by
state-operated lotteries. It would be good to have the equity
premium resolved, but I think we need to look beyond high
estimates of risk aversion to do it. Robert Lucas, Jr.,
“Macroeconomic Priorities,” 2003.



But . . .

See recent empirical work by Levon Barseghyan and co-authors before
accepting Lucas’s statement about insurance deductibles.



Uncertainty
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Figure: Model uncertainty.



Uncertainty elimination

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Random Walk Model, P(θ) = 0.1

lo
g(

co
ns

um
pt

io
n)

 

 

c∞

cwc

cbc

c

Figure: Elimination of model uncertainty but not risk (reduce θ−1 to zero).



Costs of uncertainty
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Figure: Proportions c0 − cd0 of initial consumption that a representative
consumer with model-uncertainty averse (multiplier) preferences would
surrender not to confront risk (dotted line) and model uncertainty (solid line)
for random-walk model of log consumption growth, plotted as a function of
detection error probability.



Specification differences
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Learning

F (x∞, s∞) - joint distribution over states and signals
x∞ - states
s∞ - signals
Filtering: F (x∞|st)
Robust Filtering - response to not trusting F (x∞|st)



Markov Setting

xt ∼ hidden state
ξ - sufficient statistics for f (xt |st)
hidden Markov model - value function V (ξt)
evolution of sufficient statistic

ξt+1 = v(ξt , st+1)



T2 operator

V (xt) ∼ value function that depends on hidden state replace
EV (xt) =

∫
v(xt)f (xt |ξt)dxt with

T2V (xt) = −θ log

(
E

[
exp

(
−V (xt)

θ2

)])
worst case likelihood ratio

h(xt) ∝ exp

(
−V (xt)

θ

)
distorts density of xt conditional on st .



Orientations toward exponential twisting

• Decision making is forward-looking.

• Estimation is backward-looking.



A frontier: uncertainty and incomplete markets

• General equilibrium theory with state-contingent trading.

• Work by Aloisio Araujo and co-authors. Here model uncertainty can
attenuate or shut down some markets.

• Story hinges on ex post heterogeneity of beliefs that emerges with
multiple priors models. ‘There is too much disagreement (or
caution) about probability distributions to trade some
state-contingent claims.

• A promising model of endogenous incomplete markets.



Another frontier

• Self-confirming equilibrium is an appealing concept for macro policy
design questions – SCE are the only possible limit points of adaptive
systems.

• There are exciting new ideas in Pierpaolo Battigalli, Simone
Cerreia-Vioglio, Fabio Maccheroni, and Massimo Marinacci, 2011,
“Self confirming Equilibrium and Uncertainty,” Working Papers 428,
IGIER (Innocenzo Gasparini Institute for Economic Research),
Bocconi University.

• These ideas are even more exciting for macroeconomic applications
because here the off-equilibrium-path beliefs of the government are
so important in affecting outcomes on an equilibrium path.


