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Abstract

We provide a framework to evaluate whether or not a seller can increase his

revenue in interacting with a privately informed buyer by using money-back guar-

antees (MBGs). The buyer�s value for the good exhibits �t risk and his type is

multidimensional giving the probability of �t as well as the value in case of �t. We

restrict attention to mechanisms that do not o¤er partial MBGs. We reformulate

the optimal mechanism design problem and show that typically the optimal mech-

anism o¤ers MBGs to some subset of types. Furthermore, choosing the optimal

mechanism is tantamaount to choosing two prices: (i) a discount price at which no

MBG is o¤ered and (ii) a regular (higher) price which comes with a MBG. We also

analyze two limit scenarios where private information is one-dimensional. If the

seller knows the probability of �t but not its value, then MBGs are not useful. If,

on the other hand, the value of �t is commonly known but its probability is buyer�s

private information, then MBGs can be used to extract full surplus from the buyer.
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1 Introduction

A seller is interested in selling a product to a buyer. If the product meets the requirement

of the buyer then he gets a valuation v. Otherwise, the product is of no use to him. Before

purchase, he believes that the product will meet his requirement with some probability

p. In such situations, the buyer faces �t risk. These risks are widely prevalent. An agent

who has a �ight from one location to another through a connecting hub, may not be

able to make it to a meeting on time due to bad weather in the city where the hub is

located. Ex ante, the �ight is of value to him only if he is able to make it to the meeting

on time. A retailer, buying inventory from a whole-seller, is able to generate pro�ts only

if he is able to sell. For him, �t risk arises due to uncertainty in local demand. A piece

of furniture which looks good in a store may not look good in one�s living room due to

di¤erent lighting conditions. Buying a gift for one�s spouse generates pleasure only if the

spouse were to like the gift. In this paper we study how money-back guarantees (MBGs)

facilitate transactions in the presence of �t risk.

An MBG is a guarantee that refunds the full price to the buyer if the buyer were to re-

turn the product.1 Heiman et al. (2002) explicitly observe that retailers and manufactur-

ers provide MBGs to help resolve �t risk. Product returns are an enormous phenomenon

in the US market, exceeding $100 billion annually in the US (Stock et al. 2002). Over

95% of retailers in a survey in Illinois o¤ering some form of MBG (Sales and Marketing

Management, 1994). The impact of MBGs on purchase decisions can vary greatly by

product category, consumer type and distribution channel. For example, Anderson et al.

(2009) found that for one catalog retailer, average product return rates were 23%, 14% and

29% for women�s tops, men�s tops and women�s footwear respectively, and that o¤ering

MBGs increased demand by 16%, 9% and 53% respectively in these same categories. For

the computer electronics industry, where between 11% and 20% of products are returned,

Sprague et al. (2007) found that only 5% of returned products were defective. Two-thirds

of customers returned their computers because "they did not meet expectations," while

a quarter of the computers were returned because of "buyer�s remorse."

Our concern in this paper is not for the 5% of returns made due to product defects�

1Even though partial money-back guarantees are easy to conceptualize and potentially interesting

to analyze, our restriction to full money-back guarantees is rooted in FTC guidelines. In some cases,

retailers charge a small restocking fee which we shall ignore.
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these are generally covered by warranties and consumes have some legal protection for

these occurrences. Rather, our focus is on the remaining 95% of returns which are subject

to voluntary retailer discretion in the US. For example, in California retailers can avoid

accepting returns of non-defective items from customers if they explicitly notify customers

in a prominent location that products cannot be returned, or if they indicate "all sales

�nal" on items not covered by MBGs. In our context, MBGs re�ect the fact that in

o¤ering this guarantee the retailer publicly agrees to fully refund the purchase price to a

dissatis�ed customer even when the product is not defective.

A common theoretical explanation for MBGs is that they help signal quality. In these

models, consumers are uncertain about quality, and the better quality �rm gains consumer

trust by o¤ering costly MBGs as a show of con�dence in their own product (e.g., Mann

and Wissink, 1990; Moorthy and Srinavasan, 1995). The other traditional explanation for

MBGs is that it provides insurance to risk averse consumers that do not know whether

they will be satis�ed with the product or not. In this case a risk neutral seller can gain

from o¤ering the MBG as insurance to the risk averse consumer (e.g., Heal, 1977; Che,

1996). More recently, researchers have suggested that MBGs can arise when the seller

has a higher salvage value for the returned product than does the dissatis�ed customer

(Davis et al., 1995 and McWilliams, 2012). In this framework, sellers only o¤er MBGs

if the di¤erence in the salvage value between the seller and customer is greater than the

sum of the costs they incur in returning the product. This can explain the fact that some

products with low marginal costs (and therefore low salvage value for the seller), such as

computer software, have shorter MBGs (in terms of the time period under which it is to

be returned) than products with higher marginal costs such as appliances.

We propose that MBGs help screen buyer types. To eliminate salvage value as a

possible explanation, we assume zero production and zero return costs, while modeling

consumers as risk neutral eliminates the standard insurance motivation. Whereas the

signaling models assume that the seller has private information (about the quality of

the good) and consumers are partially informed, we assume the reverse. In our model,

consumers are privately informed while the seller is partially informed.

We provide three results regarding the use of MBGs as part of an optimal mechanism.

The �rst result is derived in an environment where the buyer is privately informed about

both him valuation v, in the case of a �t, as well as the probability p of �t. In this

environment, under very mild restrictions, we show that it is optimal for a seller to always
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o¤er someMBG. In the majority of product purchasing environments where retailers face a

heterogeneous customer base, neither the probability of �t nor the valuation of the good is

common knowledge. Here the standard practice in the US is for retailers to o¤er customers

MBGs on a regular basis, and eliminate the MBG during sales events where prices are

reduced. Big retailers, on the other hand, almost always o¤er MBGs. Our �rst result

sheds light on both these business practices. The second result pertains to an environment

where v is commonly known and p is the buyer�s private information. Interactions between

whole-sellers and retailers could probably be captured by such models. Many whole-sellers

determine both retail and whole-sale prices. Thus, the pro�t per unit of the product would

be commonly known. The retailer, however, may be better informed about local demand

�uctuations. In this environment, we show that it is optimal for the seller to charge one

single price and o¤er full MBG.2 In the third scenario we show that, when p is commonly

known but v is privately known to the buyer then it is optimal not to o¤er MBGs. This

environment could well exist in the sale of customized products and services, where MBGs

are usually not o¤ered.3

There are several papers which, like us, highlight the pure screening role of MBGs.

While all of them take a mechanism design approach, they di¤er in the details of the

environments, for example in allocation sets and the buyer type spaces. In essence then,

these papers address di¤erent kinds of MBGs appropriate for di¤erent product markets.

All these papers, including ours, are modi�cations of the well-known problem introduced

by Myerson (1981).

In Myerson�s model an uninformed seller has to decide on whether or not to provide a

good to a buyer who is privately informed about him valuation (a one dimensional type).

An allocation indicates whether the good changes hands. The seller also has to decide on

a price. Both these decisions are contingent on the buyer�s type. Since type is unknown,

the seller�s decision needs to be such that it is in the interest of the buyer to reveal him

true type. That is, the sellers decision has to satisfy incentive compatibility. The decision

rule also needs to ensure that the buyer willingly trades. That is, the decision rule has

2That manufacturers commonly provide MBGs in such contexts is documented in Padmanabhan and

Png (1997). They propose that o¤ering MBGs to retailers ensure that su¢ cient inventory is carried.
3In standard services provided by hotels, �t risk should be common knowledge. Though MBGs are

usually not provided by hotels, Hampton Inn hotels is an exception. They explicitly state that a customer

can ask for their money back if they are unsatis�ed with the hotel experience for whatever reason.
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to satisfy individual rationality. In the class of all such rules, the optimal rule turns out

to be quite simple. All types above a cut-o¤ are o¤ered the good and types below aren�t.

All types who are o¤ered the good pays a price equal to the cut-o¤ and types who are

not o¤ered the good pay nothing.

Matthews and Moore (1987), though related, is more about warranties than MBGs.

The risk averse buyer�s type is one dimensional. Provision of the good along with dif-

ferent quality warranties make the allocation set multi-dimensional. Warranties serve as

insurance and di¤erent kinds of warranties are used to screen the types.

Courty and Li (2000), consider a model where the buyer does not know the valuation

of the product till after it is bought. Buyer�s types are distributions over an interval of

valuations. Thus types are unidimensional but complex. They allow buyers to have only

two types. One type�s distribution stochastically dominates the other and hence is more

informed. Alternately, both distributions have the same mean but di¤erent variances. The

allocation set consists of the provision of the good and di¤erent amounts of money refund.

The more informed buyer type gets a refund equal to the sellers �xed cost of production

(zero in our case), while the less informed buyer can get a refund greater than, equal to

or less than the cost (depending on the functional form of the distribution). In the second

part of the paper, like us, they consider a continuum of types. The allocation set, however,

does not have any refunds. To reduce complexity, they only consider a class of examples

where the distribution and the realized value are a function of a common parameter.

Thus, they essentially reduce their analyses to one dimensional (albeit complex) types.

Screening is achieved by providing or not providing the good (cut-o¤s) and charging

di¤erent prices.

Matthews and Persico (2005) show that refunds (above cost) could only arise if the

seller is a monopolist. That too, only in particular situations. There are two types of

buyers, those who know their valuations for sure and those who do not. The latter type,

like in Courty and Li have a distribution over their valuation. But this distribution is

common knowledge. Buyers who know their valuation, of course do not need refunds, the

latter type may. The relative proportion of these two types then determine whether or

not refunds are provided.

We believe that our paper is closest to that of Myerson. Unlike in Myerson, in our

�rst environment, the buyer is privately informed about his two dimensional type. Our

type space is constructed to capture �t risk. If the product �ts, the buyer gets a value v.
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Otherwise he gets a value 0. The product �ts with probability p. The tuple (v; p) 2 [0; 1]2

is privately known to the buyer. The good is deterministically provided (or not) and a

full refund (MBG) is deterministically o¤ered (or not) as a function of reported types.

Payments, as usual, are a function of reported types. Incentive compatibility, individual

rationality and the restriction that refunds equal the price paid, partitions our buyer�s

type space into three parts. Buyers with low valuations and high �t risk do not receive

the good and pay no price. Buyers with high valuations and low �t risk receive the good

with no MBG at some constant price. Buyers with high valuation and high �t risk receive

both the good and MBG. The price is equal to the MBG and is (weakly) higher than the

price charged to buyers who are not o¤ered the MBG.

Explicitly deriving the optimal mechanism in two (or more) dimensional type spaces

is non-trivial (Armstrong, 1996; Rochet and Chone, 1998; Manelli and Vincent, 2007).

However, we show under very mild restrictions on the seller�s prior, that in general the

optimal mechanism will always o¤er an MBG to some set of buyer types. We also o¤er an

analytically tractable reformulation of the optimal mechanism design problem, in which

the seller chooses, depending on his prior regarding type distribution, two parameters

which de�ne the mechanism. The two parameters are essentially prices: a discount price

which goes without a MBG and a high price with which a full MBG is o¤ered. Using this

reformulation, we provide examples of optimal mechanisms when the seller�s prior over the

buyer�s type space is uniform. We then go on to show that restricting the dimensionality

of the type space to two is without loss of generality. Our qualitative results survive when

the buyer is privately informed about his �t risk p, his valuation when there is a �t vH
and his valuation when there is no �t vL: We only require that vH is not less than vL.

As mentioned earlier, we provide two additional results in the two dimensional set-

ting. When �t risk is common knowledge but the buyer is privately informed about him

valuation, then the optimal mechanism is the same as that in Myerson. When �t risk is

privately known and the buyer�s valuation is common knowledge then the optimal mech-

anism extracts all the surplus from the buyer. This result is interesting in its own right.

To our knowledge, no other model achieves full surplus extraction in the case of a single

buyer.
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2 Environment and main results

A seller of an indivisible good is interacting with a privately informed buyer. The seller

has no cost. The good has a random value to the buyer in the sense of exhibiting the

following form of �t risk: with probability p it �ts the buyer�s needs and its value is v > 0,

otherwise, with probability 1� p, there is no �t and its value is 0. Whether the good �ts
or not is only observed by the buyer after purchase. However the pair (p; v) is buyer�s

private information at the time of interaction, i.e., his type. The type takes values in

T = (0; 1)2 with a strictly positive density f .

The interaction results in an outcome (�; 
; �) where � 2 f0; 1g indicates sale or no
sale, 
 � 0 is a money-back guarantee (MBG), and � � 0 is the price. If the good does
not change hands, i.e., if � = 0, then there is no payment and no MBG, i.e., 
 = � = 0.

Hence the outcome belongs to the set

C = f(�; 
; �) 2 f0; 1g � <+ �<+ : � = 0) 
 = � = 0g:

Given (�; 
; �) 2 C, the payo¤s are determined as follows. Both parties receive zero
payo¤ if � = 0. If � = 1, the buyer pays the seller �. Next he observes the �t of the

good and returns the good if and only if the MBG exceeds its value. Returning the

good is costless. The resulting expected payo¤ of the buyer, depending on the outcome

(�; 
; �) and type (p; v), is �(pmaxfv; 
g+(1�p)
)��. The seller receives the payment
� and pays the MBG 
 if the good is returned. Hence his expected payo¤ is given by

� � (1� p)�
 if 
 � v and � � �
 if 
 > v. Note that if there is no MBG, i.e., if 
 = 0;
we specialize to the textbook scenario with the buyer value equal to the expectation pv.

We are interested in using mechanism design to analyze the role of MBGs in the

optimal mechanism for the seller. A mechanism maps types (p; v) into contracting out-

comes (�; 
; �). Abusing notation, we will denote a mechanism by a triple of functions

(�; 
; �) : T ! C. The following two conditions are the classical incentive constraints in

mechanism design.

F1: Incentive compatibility (IC): for any two types (p; v) and (p0; v0)

�(p; v)(pmaxfv; 
(p; v)g+ (1� p)
(p; v))� �(p; v)
� �(p0; v0)(pmaxfv; 
(p0; v0)g+ (1� p)
(p0; v0))� �(p0; v0):
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F2: Individual rationality (IR): for any type (p; v)

�(p; v)(pmaxfv; 
(p; v)g+ (1� p)
(p; v))� �(p; v) � 0:

These two conditions say that (1) the buyer cannot gain by misreporting to the mechanism,

and (2) the truthful report earns the buyer a payo¤ at least equal to his outside option,

which we assume is zero. We will next introduce a key condition to rule out partial MBGs.

F3: For any type (p; v), 
(p; v) > 0 implies 
(p; v) = �(p; v).

F3 requires any positive MBG to be a full reimbursement of the price of the good.

Note, importantly, that F3 does not impose that a MBG be o¤ered by the seller. Our

imposition of F3 is inspired by the following guideline of the Federal Trade Commission:

A seller... should use the term "Money Back Guarantee"... only if the seller

refunds the full purchase price ... at the purchaser�s request. (Our italics;

citation needed.)

Despite having a strong foundation in actual business practice, F3 is an important

restriction in mechanism design. In principle it may be desirable for the seller to o¤er

only a partial MBG. The possibility of partial MBGs brings about a host of interesting

potential policies for the seller and makes mechanism design signi�cantly more challenging.

For any mechanism (�; 
; �) which satis�es F1, F2 and F3, and any type (p; v) let

R(�;
;�)(p; v) be the seller�s ex post payo¤ when the buyer type is (p; v), i.e.,

R(�;
;�)(p; v) =

(
�(p; v)� (1� p)�(p; v)
(p; v) if 
(p; v) � v,
�(p; v)� �(p; v)
(p; v) if 
(p; v) > v:

We are interested in the following optimal mechanism design problem:

max
(�;
;�):T!C

Z 1

0

Z 1

0

R(�;
;�)(p; v)f(p; v)dpdv

s.t. F1, F2 and F3. (P1)

Problem P1 is that of maximizing the expected payo¤ of the seller by choosing a mech-

anism which satis�es the three feasibility constraints above. We will call a mechanism

optimal if it solves P1.
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In principle, the seller could o¤er a high enough MBG which will induce the buyer to

return the good regardless of its �t. If this is true for some type (p; v), under F3, the

buyer�s payo¤ is 
(p; v) � �(p; v) = 0. Correspondingly, the seller�s ex post payo¤ from
interacting with this type is �(p; v)� 
(p; v) = 0 as well. Our �rst observation is that the
seller will never �nd o¤ering such a high MBG pro�table.

Lemma 1 Suppose (�; 
; �) satis�es F1, F2 and F3. If 
(p0; v0) > v0 for some (p0; v0),

then there exists a mechanism (~�; ~
; ~�) which satis�es F1, F2, F3 such that for every

(p; v); ~
(p; v) � v and R(�;
;�)(p; v) = R(~�;~
;~�)(p; v).

Proof. Fix (�; 
; �) in satisfaction of F1, F2 and F3. De�ne (~�; ~
; ~�) as follows:

(~�(p; v); ~
(p; v); ~�(p; v)) =

(
(�(p; v); 
(p; v); �(p; v)) if 
(p; v) � v,
(0; 0; 0) if 
(p; v) > v.

Clearly ~
(p; v) � v for all (p; v) and (~�; ~
; ~�) satis�es F3. Furthermore R(~�;~
;~�)(p; v) =

R(�;
;�)(p; v) for all (p; v) as whenever 
(p; v) > v, R(�;
;�)(p; v) = 0 by F3.

Note that for every (p; v)

~�(p; v)(pmaxfv; ~
(p; v)g+ (1� p)~
(p; v))� �(p; v)
= �(p; v)(pmaxfv; 
(p; v)g+ (1� p)
(p; v))� �(p; v).

This is trivially true if 
(p; v) � v as (~�(p; v); ~
(p; v); ~�(p; v)) = (�(p; v); 
(p; v); �(p; v)).

(p; v) > v, on the other hand both sides are zero. F2 directly follows from this observa-

tion.

Also note that if (p0; v0) 6= (p; v)

�(p0; v0)(pmaxfv; 
(p0; v0)g+ (1� p)
(p0; v0))� �(p0; v0)
� ~�(p0; v0)(pmaxfv; ~
(p0; v0)g+ (1� p)~
(p0; v0))� �(p0; v0).

As before this is trivially true if 
(p0; v0) � v0. If 
(p0; v0) > v0, on the other hand, the left-
hand side is p(maxfv; 
(p0; v0)g � 
(p0; v0)) � 0 while the right-hand side is 0. Combining
the inequalities in the last two displays and using the hypothesis that (�; 
; �) satis�es

F1, we conclude that (~�; ~
; ~�) satis�es F1 as well.

Let us formulate the condition that the good be returned to the seller for a MBG only

if it is not a �t, as a feasibility condition.
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F4: For any type (p; v), 
(p; v) � v.

Restricting attention to mechanisms satisfying this condition simpli�es the seller�s

payo¤and, by Lemma 1, is without loss of generality in solving for the optimal mechanism.

In other words, in order to �nd the optimal mechanism which solves P1 the seller need

only solve

max
(�;
;�):T!C

Z 1

0

Z 1

0

[�(p; v)� (1� p)�(p; v)
(p; v)]f(p; v)dpdv

s.t. F1, F2, F3 and F4. (P2)

Next we introduce a class of mechanisms which are feasible in P2.

De�nition 1 Let 0 � k � m � 1. A mechanism (�; 
; �) is a (k;m) mechanism if

(�(p; v); 
(p; v); �(p; v)) =

8><>:
(1;m;m) if v � m and p � k

m
,

(1; 0; k) if p > k
m
and pv � k,

(0; 0; 0) otherwise.

The (k;m) class contains three kinds of mechanisms as illustrated below, depending

on whether MBGs are o¤ered at all, or o¤ered to some types and not to others. If

0 < k < m = 1, as in the �rst diagram, the seller does not o¤er MBGs to any type.

The mechanism allocates the good to the agent if his expected value pv � k at the price
� = k. This is exactly the case where multidimensionality of the consumer�s type (p; v)

is inconsequential and the mechanism divides di¤erent types with respect to the product
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pv.

Figure 1

0 < k < m = 1

Figure 2

0 < k = m < 1

Figure 3

0 < k < m < 1

At the other extreme are mechanisms which give MBGs to all types who receive the

good. These mechanisms have m = k. A typical such mechanism is given in the second

diagram. Mixing of these two policies is also feasible, as in the third diagram, by choosing

0 < k < m < 1. In this case, the mechanism allocates the good to some types at a

discount price k with no MBG and to other types at a higher price m with a full MBG.

It is straightforward to check that any (k;m)mechanism satis�es conditions F1-F4 and

is there fore feasible in problem P2. Next we will show that if a mechanism is feasible in

problem P2 then it is "almost" a (k;m) mechanism. First we record a useful consequence

of conditions F1-F4.

Lemma 2 If (�; 
; �) satis�es F1-F4, then there exists m 2 (0; 1) such that if 
(p; v) > 0,
then 
(p; v) = m.

Proof. Suppose, towards a contradiction, that for two distinct types (p; v) and (p0; v0),
0 < 
(p0; v0) < 
(p; v). Then �(p0; v0) = �(p; v) = 1 and the payo¤ to the (p; v) type from

a truthful report is

pv + (1� p)
(p; v)� �(p; v) = p(v � 
(p; v))

where we use F3 in substituting 
(p; v) for �(p; v). If, instead, the (p; v) type reports

(p0; v0), then his payo¤ would be

pv + (1� p)
(p0; v0)� �(p0; v0) = p(v � 
(p0; v0)):
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F1 requires p(v � 
(p; v)) � p(v � 
(p0; v0)) which implies, since p > 0, 
(p0; v0) � 
(p; v),
a contradiction.

For any mechanism (�; 
; �) satisfying F1-F4, let (T (�;
;�)1 ; T
(�;
;�)
2 ; T

(�;
;�)
3 ) be the

partition of the type space de�ned by

(p; v) 2 T
(�;
;�)
1 , �(p; v) = 1 and 
(p; v) > 0,

(p; v) 2 T
(�;
;�)
2 , �(p; v) = 1 and 
(p; v) = 0

(p; v) 2 T
(�;
;�)
3 , �(p; v) = 0.

Note that all types in T (�;
;�)1 receive the same MBG by Lemma 2. We will say that two

mechanisms are almost identical if they generate the same partitions, except perhaps at

the boundaries. Given our assumption that types have a strictly positive density, almost

identical mechanisms earn the seller the same revenue as they di¤er only on a set of zero

measure.

Proposition 1 Any mechanism which satis�es F1-F4 is almost identical to some (k;m)

mechanism.

Proof. Let (�; 
; �) satisfy F1-F4. The proof relies on Lemma 2 as well as the following
three observations.

Claim 1: If �(p; v) = 1, then �(p0; v0) = 1 for all (p0; v0) such that p0 > p and v0 > v.

Proof of Claim 1: Suppose that �(p; v) = 1 but �(p0; v0) = 0 for some (p0; v0) such that

p0 > p and v0 > v. If 
(p; v) = 0, then

0 � p0v0 � �(p; v) > pv � �(p; v) � 0

where the weak inequalities follow from incentive compatibility. This is clearly impossible.

If 
(p; v) = m > 0, on the other hand, the impossibility follows similarly from incentive

compatibility:

0 � p0(v0 �m) > p(v �m) � 0:

Claim 2: If �(p; v) = �(p0; v0) = 1 and p0 < p, then 
(p0; v0) � 
(p; v).
Proof of Claim 2: Suppose that �(p; v) = �(p0; v0) = 1, p0 < p but 
(p0; v0) < 
(p; v).

Then, by Lemma 2, for some m > 0 
(p; v) = m and 
(p0; v0) = 0. Incentive compatibility

gives

p(v �m) � pv � �(p0; v0) and p0v0 � �(p0; v0) � p0(v0 �m).
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Rearranging we get pm � �(p0; v0) � p0m, which is an impossibility since m > 0.

Claim 3: If 
(p; v) > 0, then 
(p0; v0) = 
(p; v) for all (p0; v0) 2 (0; p)� (
(p; v); 1).
Proof of Claim 3: Suppose 
(p; v) = m > 0, p0 < p and v0 > m. We will �rst show

that �(p0; v0) = 1. If not, incentive compatibility implies 0 � p0(v0 �m), an impossibility.
Now suppose 
(p0; v0) = 0. The incentive compatibility conditions are exactly as in the

proof of Claim 2 and the same contradiction follows.

We can now go back to the proof of Proposition 1. If one of the sets in the partition

(T
(�;
;�)
1 ; T

(�;
;�)
2 ; T

(�;
;�)
3 ) is empty, then the result follows straightforwardly. We will deal

here with the case in which all three sets are nonempty. By Lemma 2, there exists m� > 0

such that for any (p; v) 2 T (�;
;�)3 , 
(p; v) = m�. By Claim 3 above, supfp : 
(p; v) =
1g = supfp : 
(p; v0) = 1g for any v; v0 > m�. Let p� be this supremum and k� = m�p�.

By Claim 1 above, �(p; v) = 1 if p > p� and v > m. It follows that 
(p; v) = 0 for

such (p; v) since p > p�. Clearly k� = inffp0v0 : p > p� and v > mg and if for some
(p; v) such that v � m and pv > k�, �(p; v) = 0, incentive compatibility fails. Hence

(�(p; v); 
(p; v)) = (1; 0) for all (p; v) such that p > p� and pv > k�. By incentive

compatibility and individual rationality �(p; v) = k� for any such type. Hence (�; 
; �) is

a (k;m) mechanism with (k;m) = (k�;m�).

Hence, the seller need only �nd the optimal one among the (k;m) mechanisms, as we

record in the following corollary.

Corollary 1 If the pair (k�;m�) solves

max
k;m

Z 1

m

Z k=m

0

mpf(p; v)dpdv +

Z 1

m

Z 1

k=m

kf(p; v)dpdv +

Z m

k

Z 1

k=v

kf(p; v)dpdv

s.t. 0 � k � m � 1 (P3)

then the (k�;m�) mechanism solves the optimal mechanism design problem P1.

The objective in the reformulated problem P3 in Corollary 1 is precisely the expected

payo¤of the seller at a (k;m) mechanism. The �rst double-integral is over all types which

receive the good at the price m and together with the option of returning the good for

the MBG m. The seller�s revenue at any such type is m � (1 � p)m = pm. The second

13



and third double-integrals give the seller�s expected payo¤ over all types which receive the

good at a discount k but without the MBG. Note that if m = 1, the objective becomesR 1
k

R 1
k=v
kf(p; v)dpdv, the revenue in the mechanism which involves no MBGs (Figure 1

above), and if m = k, the objective becomes
R 1
m

R 1
0
mpf(p; v)dpdv, the revenue in the

mechanism which gives MBGs to all types who receive the good (Figure 2 above).

Before we exhibit the use of this result in computing an optimal mechanism in a

speci�c example, we will show that under general conditions, the optimal mechanism

contains MBGs. In other words, the solution to the reformulated problem P3 has m < 1.

Proposition 2 The optimal mechanism o¤ers money-back guarantee to some types if one
of the following two conditions holds:

1. p and v are independently distributed.

2. The density f is continuously di¤erentiable.

Proof. For any k 2 (0; 1), consider the (k; 1) mechanism. This mechanism o¤ers no

MBGs. We will show that if m 2 (k; 1) is su¢ ciently close to 1, then the seller�s expected
payo¤ is larger in the (k;m) mechanism than it is in the (k; 1) mechanism.

Switching from the (k; 1) mechanism to a (k;m) mechanism entails a loss of expected

revenue for all types (p; v) such that p 2 ( v
m
; k
m
) and v 2 (m; 1). At any such type the (k; 1)

mechanism earns the seller k, the price of the good, whereas the (k; 1) mechanism brings

the expected revenue mp, di¤erence between price m and the expected MBG payment

(1�p)m back to the buyer. Note mp < k for this range of p. The bene�t from said switch

occurs at types (p; v) such that p 2 (0; v
m
), v 2 (m; 1). The (k; 1) mechanism does not

serve these types. The (k;m) mechanism serves these types with the MBG m and earns

the seller mp in expectation. Hence the switch is pro�table if

E[mpjp 2 (0; k
m
), v 2 (m; 1)] > E[kjp 2 ( v

m
;
k

m
), v 2 (m; 1)]:

To establish that this is the case, we will show that for some m 2 (k; 1)

Prfp 2 ( v
m
; k
m
) and v 2 (m; 1)g

E[pjp 2 (0; k
m
), v 2 (m; 1)]

<
m

k
:

14



Since the numerator in the left-hand side converges to 0 as m goes to 1, and since the

right-hand side is larger than 1, and it su¢ ces if the denominator of the left-hand side

has positive limit, i.e.,

lim
m!1

E[pjp 2 (0; k
m
), v 2 (m; 1)] > 0.

Taking the conditional expectation

E[pjp 2 (0; k
m
), v 2 (m; 1)] =

R 1
m

R k
m

0
pf(p; v)dpdvR 1

m

R k
m

0
f(p; v)dpdv

.

Suppose that p and v are independently distributed with strictly positive densities fp and

fv respectively. The conditional expectation becomesR 1
m

R k
m

0
pf(p; v)dpdvR 1

m

R k
m

0
f(p; v)dpdv

=

R 1
m
fv(v)dv

R k
m

0
pfp(p)dpR 1

m
fv(v)dv

R k
m

0
fp(p)dp

=

R k
m

0
pfp(p)dpR k

m

0
fp(p)dp

and

lim
m!1

E[pjp 2 (0; k
m
), v 2 (m; 1)] =

R k
0
pfp(p)dpR k

0
fp(p)dp

> 0

by the positivity of the densities and the number k, as we wanted to show.

If f and p are not independent, we apply L�Hopital�s rule:

lim
m!1

R 1
m

R k
m

0
pf(p; v)dpdvR 1

m

R k
m

0
f(p; v)dpdv

= lim
m!1

d
dm

hR 1
m

R k
m

0
pf(p; v)dpdv

i
d
dm

hR 1
m

R k
m

0
f(p; v)dpdv

i :
De�ne

H(m; v) =

Z k
m

0

pf(p; v)dp, and

G(m; v) =

Z k
m

0

f(p; v)dp.

Since f is continuously di¤erentiable, so are the integrands in these expressions and we
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can use Leibnitz Theorem as follows:

lim
m!1

d
dm

hR 1
m
H(m; v)dv

i
d
dm

hR 1
m
G(m; v)dv

i = lim
m!1

�H(m;m) +
R 1
m

@
@m
H(m; v)dv

�G(m;m) +
R 1
m

@
@m
G(m; v)dv

= lim
m!1

�H(m;m) +
R 1
m

k
m
f( k

m
; v)dv

�G(m;m) +
R 1
m
f( k

m
; v)dv

= lim
m!1

H(m;m)

G(m;m)
:

Now m 7! H(m;m) and m 7! G(m;m) are continuous because f is so. Hence

lim
m!1

H(m;m)

G(m;m)
=
H(1; 1)

G(1; 1)
=

R k
0
xf(x; 1)dxR k

0
f(x; 1)dx

= Prfpjp < k and v = 1g > 0,

which is what we needed to show.

In the simple scenario studied in the following example, all types who receive the good

are also o¤ered the MBG, in other words k = m < 1.

Example 1 Suppose that p and v are independently and uniformly distributed. The
expected payo¤ of the seller in a (k;m) mechanism isZ 1

m

Z k=m

0

mpdpdv +

Z 1

m

Z 1

k=m

kdpdv +

Z m

k

Z 1

k=v

kdpdv:

Maximizing the expression with respect to (k;m) we �nd that the optimal mechanism is

the (k;m) mechanism with k = m = 1
2
. Hence the optimal mechanism o¤ers MBGs to all

types who receive the good at the price of 1
2
. The corresponding expected revenue of the

seller is 1
8
.

3 Limit cases: one-dimensional private information

We next analyze two special cases in which the seller knows one of the two dimensions

of the buyer�s type (p; v). In these limit cases, without resorting to an analog of F4, we

can more directly analyze the optimal mechanism design problems. Surprisingly, we �nd

that F3 is trivially satis�ed by the optimal mechanisms in both cases, but the nature of

optimal mechanisms are quite di¤erent.
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Scenario 1: v is private information and p is common knowledge. Suppose that

v is buyer�s private information, i.e., him type, taking values in (0; 1), while p 2 (0; 1)
is common knowledge. The following de�nitions are direct adaptations of those given

for the multidimensional model earlier and they will apply, with the appropriate domain

modi�cation, in the second scenario below as well. A mechanism is a map (�; 
; �) :

(0; 1) ! C associating an outcome (�(v); 
(v); �(v)) with every type v. A mechanism

(�; 
; �) is incentive compatible if for every v; v0 2 (0; 1), �(v)[pv + (1� p)
(v)]� �(v) �
�(v0)[pv+(1�p)
(v0)]��(v0). A mechanism (�; 
; �) is individually rational if for every v 2
(0; 1), �(v)[pv+(1�p)
(v)]��(v) � 0. If a mechanism (�; 
; �) is incentive compatible and
individually rational, it earns the seller the expected pro�t

R 1
0
[�(v)�(1�p)�(v)
(v)]f(v)dv

where f is the distribution of v. The revelation principle (Myerson, 1981) that the pro�t

maximizing selling strategy is given by the mechanism which maximizes this expected

payo¤ within the class of incentive compatible and individually rational mechanisms.

Hence the optimal mechanism design in this scenario is :

max
(�;
;�)

Z 1

0

[�(v)� (1� p)�(v)
(v)]f(v)dv

s.t. IC and IR. (P4)

The following result indicates that in this scenario, the seller has no incentive to use

MBGs.

Proposition 3 There is a solution to problem P4 which involves no money-back guaran-
tees.

Proof. Let (�; 
; �) be incentive compatible and individually rational with 
 6= 0, i.e.,

some type receives MBG. Consider the alternate mechanism (�; 
0; �0) where


0(v) = 0, and

�0(v) = �(v)� (1� p)�(v)
(v)

for all v. Suppose that the buyer�s type is v and he reports v0 to the mechanism (�; 
0; �0).

His payo¤ is

�(v0)pv � �0(v0) = �(v0)pv � �(v0) + (1� p)�(v0)
(v0)
= �(v0)[pv + (1� p)
(v0)]� �(v0)
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which is exactly his payo¤ from reporting v0 to the mechanism (�; 
; �) when his type is

v. Hence (�; 
0; �0) is incentive compatible and individually rational because (�; 
; �) is

so. Furthermore the two mechanisms generate the same revenue for the seller ex post at

every type v. Hence in order to solve P4 it su¢ ces to maximize seller�s expected pro�t by

selecting an incentive compatible and individually rational mechanism from among those

that involve no MBGs.

The intuition behind Proposition 3 is that the part of buyer�s payo¤ from a nonzero

MBG, �(1 � p)
, is type-independent, just like his utility for money in this quasilinear
framework. Hence the seller can substitute a strictly positive 
 with a lower �, with-

out changing incentive properties of the mechanism, while keeping his ex post revenue

constant.

Scenario 2: p is private information and v is common knowledge Suppose

now that the buyer�s type is p which takes values in (0; 1), while v 2 (0; 1) is common
knowledge between the buyer and the seller. The de�nition of a mechanism remains the

same as above, except that the argument of �, 
 and � is p rather than v. The optimal

mechanism design problem is

max
(�;
;�)

Z 1

0

[�(p)� (1� p)�(p)
(p)]dF (p)

s.t. IC and IR. (P5)

Note now, as opposed to Scenario 1, that the buyer�s payo¤ from a MBG depends on

his type p, which opens the possibility that MBGs can be used to increase seller revenue.

Proposition 4 There is a solution to problem P5 which o¤ers full money back guarantees
and leaves the buyer with zero payo¤ regardless of his type.

Proof. Consider the mechanism (��(p); 
�(p); ��(p)) = (1; v; v) for all p. First note that

this mechanism is incentive compatible, as it is constant in the type p. Next note that it is

individually rational as the payo¤to truthful reporting is ��(p)(pv+(1�p)
�(p))���(p) =
0 for all p. To show that it is optimal for the seller, take any other incentive compatible

and individually rational mechanism (�; 
; �). For any type p, the payo¤ of the seller
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from (��; 
�; ��) is

��(p)� (1� p)��(p)
�(p) = pv

� �(p)pv

� �(p)� (1� p)�(p)
(p)

where the �rst inequality is by �(p) 2 f0; 1g and the second is by the individual rationality
of (�; 
; �). Note that the last expression is the payo¤ of the seller from the mechanism

(�; 
; �) when the buyer�s type is p. Hence (��; 
�; ��) earns a weakly larger payo¤ to the

seller compared to (�; 
; �) at every type. This completes the proof.

We would like to point out that if MBGs are not admissible, then Scenarios 1 and

2 are identical. With the possibility of MBGs, however, they lead to two very distinct

outcomes. Whereas in Scenario 1 MBGs do not improve the seller�s pro�t, in Scenario

2 it becomes feasible through MBGs to extract the buyer�s full surplus. In other words

the optimal mechanism identi�ed in Proposition 4 serves all buyer types and leave each

buyer type zero information rent. This is noteworthy, especially because full surplus

extraction occurs in a single-agent framework. In contrast, Cremer and McLean (1988)

show that the seller can extract full surplus in a multiagent problem with interdependent

values, using a mechanism which is not ex post individually rational. We would also

like to emphasize that the optimal mechanism of Proposition 2 does not rely on any

distributional assumptions regarding the buyer�s type.

4 Conclusion

A seller can screen buyers who are privately informed about their valuation and �t risk

through MBGs. When �t risk is common knowledge, MBGs are not useful in optimally

screening buyers. This is not to say that MBGs are of no use. MBGs can still be used to

signal quality or enhance competition amongst sellers, issues that we do not consider in

this paper.

We would like to conclude by highlighting two possible extensions of our results.

We consider full MBGs only in this paper, an assumption that has support in actual

business practice. This restriction signi�cantly simpli�es our analysis since, by Proposition

1, we can identify the class of mechanisms that o¤er only full MBGs fairly easily. If partial
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MBGs are possible, then the class of feasible mechanisms for the seller enlarges. However

if one were to come up with a tractable description of this class, one could analyze under

what conditions full MBGs dominate partial MBGs, and vice versa.

A second possible extension pertains to the nature of private information. We assume

that if a good does not �t then the buyer�s value for it is zero, which is common knowledge.

It would also be interesting to study the role of MBGs when non-�t value is also a part

of the buyer�s private information.
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