
ON GROUP STRATEGYPROOF OPTIMAL MECHANISMS

CONAN MUKHERJEE
DEPARTMENT OF ECONOMICS, LUND UNIVERSITY, SWEDEN

AND DEPARTMENT OF HSS, IIT BOMBAY, INDIA

ABSTRACT. We consider a two agent, single indivisible good allocation problem. We focus
on reasonable mechanisms that are continuous and satisfy agent sovereignty. In particular,
we study optimal group strategyproof mechanisms. We provide an explicit characterization
of the strategyproof mechanisms and show that there are non-affine maximizer mechanisms
that do not belong to the class characterized by Roberts [15]. Further, there are no budget bal-
anced or strong group strategyproof mechanisms in this class. Accordingly, we completely
characterize the class of feasible strategyproof mechanisms satisfying a mild individual ra-
tionality axiom. We also provide a class of weak group strategyproof mechanisms. Finally,
we obtain a strong negative result with respect to existence of optimal mechanisms that
maximize expected transfers.
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1. INTRODUCTION

We consider the standard good allocation model where a single indivisible good is allot-
ted to a set of agents who have a private independent non-negative valuation for the good
and quasi-linear preferences over the good and money. Such a model has several practi-
cal applications where the good could be a license, a house, a plot of land or an airport
landing right. We focus on reasonable mechanisms that are continuous and satisfy agent
sovereignty. Our paper considers the simplest two agent case, and finds remarkably sharp
results.

In particular, we provide an explicit complete characterization of the strategyproof mech-
anisms. However, unlike Roberts [15], this class contains non-affine maximizer mecha-
nisms. This is clearly because in the present setting there are only two alternatives and the
domain of valuations is restricted. Unlike most contemporary papers, in line with Jack-
son [6], we use budget balance as a yardstick for efficiency and look for strategyproof and
budget balanced mechanisms. However, we find no mechanisms that are budget balanced
as well as strategyproof. Hence, we completely characterize the class of feasible strate-
gyproof mechanisms that satisfy a mild individual rationality condition. We then, look
for stronger notions of non-manipulability, in terms of strong and weak (pairwise) group
strategyproofness, that eliminate group level incentives to misreport. We find that there
are no strong group strategyproof mechanisms. Instead, we provide a class of mechanisms
that are weak group strategyproof. To the best of our knowledge, there are no papers that
characterize group strategyproof mechanisms in the present setting.

This is a preliminary draft.
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Finally, we look for optimal mechanisms (in terms of maximizing expected transfers for
the good), in the class of feasible strategyproof mechanism that satisfy the aforementioned
mild individuality condition. We fins a strong negative result. That is, there does not
exist an optimal mechanism in this class, for any continuous (and possibly non-identical)
distribution of valuations over any sub-domain of the positive orthant of the real number
line.

The papers that are closest to the present one are Marchant and Mishra [7] and Mishra
and Quadir [8]. The former paper investigates strategyproof allocation rules in a two al-
ternative framework with quasi-linear utilities. Their results are applicable to the present
paper when the number of agents is two. However, our characterization is independent
of theirs. The latter paper provides characterization of strategyproof and non-bossy allo-
cation rules in a similar setting where objects may remain unallocated and agents have
strictly positive valuations. In comparison to these papers, our results provide clear func-
tional properties of strategyproof mechanisms.

2. MODEL

Consider a 2 agent model with set of agents N = {1, 2} and an indivisible good. Each
agent i has an independent private valuation vi ≥ 0 for the good. A mechanism µ is a
tuple (d, τ) such that at any reported profile of valuations v ∈ RN

+ , each agent i is allocated
a transfer τi(v) ∈ R and a decision di(v) ∈ {0, 1}. di(v) = 1 implies that agent i gets a
good, while di(v) = 0 stands for i not getting the good. We assume that ∑i∈N di(v) = 1
for all v ∈ RN

+ . Define w(v) to be the agent getting the good at any profile v.1 The utility
to agent i with a true valuation of vi at any reported profile v′ ∈ RN

+ , from the mechanism
µ is given by u(di(v′), τi(v′); vi) = vidi(v′) + τi(v′). Let ∀ i ∈ N, ∀ S ⊆ N, ∀ v ∈ RN

+ ,
v−i := (v1, . . . , vi−1, vi+1, . . . , vn), v−S := (vi)i∈N\S and vS := (vi)i∈S.

Note that, a priori, a mechanism may have a peculiar allocation decision rule that gives
the good to some agent j, whenever she reports some value v j, irrespective of what the
other agent i 6= j bids. It could also be that the good is given to i, whenever j reports
v j, irrespective of what i bids. In other words, the mechanism treats some agent i ∈ N
as a dictator, whenever j reports v j. In this paper, we exclude such arbitrary mechanisms
from our purview of study. Instead, we focus on mechanisms that satisfy agent sovereignty
in the following manner: every agent i can change the allocation decision by unilaterally
changing her report, if the other agent j reports a positive value. That is, every agent
can exert some influence on the mechanism allocation decision, irrespective of what other
agents are bidding.2

Definition 1. A mechanism µ = (d, τ) satisfies agent sovereignty if for all i 6= j ∈ N and all
v ∈ RN

+ ,
v j > 0 =⇒ ∃ v′i ≥ 0 such that d(v) 6= d(v′i, v j)

Further, we impose a mild technical restriction of continuity, on the mechanisms we
study. It requires that across any convergent sequence of profiles, if the good allocation
decision remains unchanged, then either the same decision holds at the limit profile or the

1We often refer to this agent w(v) as the winner at profile v in the text.
2This axiom has been used in similar settings by Marchant and Mishra [7] and Moulin and Shenker [10].



ON GROUP STRATEGYPROOF OPTIMAL MECHANISMS 3

transfer assigned to the winner i (that is, the agent getting the good in each of the profiles
of the sequence) and some other agent j, at the limit profile, is such that both are indifferent
between getting the good and not getting the good.

Definition 2. A mechanism (d, τ) is continuous if for all i ∈ N and all {vn} ⊆ RN
+ such that

{vn} → v̄ and di(vn) = 1 for all n,

di(v̄) = 1 =⇒ ∀ k ∈ {i, w(v̄)}, u(1, τk(v̄); v̄k) 6= u(0, τk(v̄); v̄k)

Let Γ be the class of mechanisms that satisfy non-dictatorship at all profiles and conti-
nuity. In this paper, we focus our attention on the mechanisms in Γ .

We start by defining the popular strategic axiom of strategyproofness, which eliminates
any incentive to misreport on an individual level. It is defined as follows.

Definition 3. A mechanism µ = (d, τ) satisfies strategyproofness (SP) if ∀ i ∈ N, ∀ vi, v′i ∈
R+, ∀ v−i ∈ RN\{i}

+ ,

u(di(vi, v−i), τi(vi, v−i); vi) ≥ u(di(v′i, v−i), τi(v′i, v−i); vi)

A strategyproof mechanism guarantees that revealing the true valuation is a weakly
dominant strategy for each agent. But there remains the possibility of agents forming
groups and misreporting together. Ideally a mechanism should also be immune to such
group misreporting. Hence, we study a stronger version of strategyproofness.3 First, we
introduce the following notation. For any v, v′ ∈ RN

+ ; v′ is an S-profile of v if ∀ i 6∈ S, vi =
v′i, for any non-empty S ⊆ N.

Definition 4. A mechanism µ = (d, τ) satisfies strong pair-wise group strategyproofness
(SPGS) if ∀ v ∈ RN

+ , @ S ⊆ N such that |S| ≤ 2 and

u(di(v), τi(v); vi) ≤ u(di(v′), τi(v′); vi), ∀ i ∈ S

and u(d j(v), τ j(v); v j) < u(d j(v′), τ j(v′); v j) for some j ∈ S
where v′ is an S-profile of v.

Definition 5. A mechanismµ = (d, τ) satisfies weak pair-wise group strategyproofness (WPGS)
if ∀ v ∈ RN

+ , @ S ⊆ N such that |S| ≤ 2 and

u(di(v), τi(v); vi) < u(di(v′), τi(v′); vi), ∀ i ∈ S

where v′ is an S-profile of v.

Therefore, SPGS requires that any misreporting pair of agents either have no member
strictly better off, or have at least one member strictly worse off. WPGS requires that any
misreporting pair of agents have at least one member who is not strictly better off. It can
easily be seen that SPGS implies WPGS, which in turn implies strategyproofness.

The following definition qualifies the participation of the agents in the mechanism.
Specifically, it requires that no agent with zero valuation for the good, should get a nega-
tive utility by participating in the mechanism. Since this is a weaker version of the popular
individual rationality axiom, we call it minimal individual rationality.

3This stronger notion of strategyproofness has also been studied by Bogomolnaia and Moulin [4], Bar-
bera, Berga and Moreno [2], Hatsumi and Serizawa [5], Mitra and Mutuswami [9], Barbera and Jackson [3],
Serizawa [16].
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Definition 6. A mechanism (d, τ) satisfies minimal individual rationality (MIR) if for all i ∈
N and all v−i ∈ RN\{i}

+ ,
u(di(0, v−i), τi(0, v−i); 0) ≥ 0

Finally, no mechanism should entail a wastage of resources. The following two defini-
tions embody this idea. The first describes budget balanced mechanisms where the sum of
transfers is required to be zero. The latter is a weaker condition where the sum of transfers
need only be non-positive.

Definition 7. A mechanism µ = (d, τ) satisfies budget balance (BB) if for all v ∈ RN
+ ,

∑
i∈N

τi(v) = 0

Definition 8. A mechanism µ = (d, τ) satisfies feasibility (F) if for all v ∈ RN
+ ,

∑
i∈N

τi(v) ≤ 0

3. RESULTS

We start by stating the following well-known characterization of strategyproof mecha-
nisms.

Result 1. Any mechanism µ = (d, τ) satisfies SP if and only if ∀ i ∈ N and ∀ v−i ∈ RN\{i}
+ ,

there exist real valued functions Kµ
i : RN\{i}

+ 7→ R and Tµ
i : RN\{i} 7→ R such that

di(v) =
{

1 if vi > Tµ
i (v−i)

0 if vi < Tµ
i (v−i)

and τi(v) =
{

Kµ
i (v−i)− Tµ

i (v−i) if di(v) = 1
Kµ

i (v−i) if di(v) = 0

Proof: The results follow from Proposition 9.27 in Nisan [14] and Lemma 1 in Mukher-
jee [12]. �

Note that this result allows for arbitrary tie-breaking in allocation decision of the good
at any profile v ∈ RN

+ ; such that there exist i 6= j ∈ N with vi = Tµ
i (v−i), v j = Tµ

j (v− j) and
vk ≤ Tµ

k (v−k) for all k ∈ N \ {i, j}. In this paper, without loss of generality, we assume a
lexicographic tie-breaking rule (as in Sprumont [17]) where the linear order 1 � 2 � . . . �
n is used to break ties among the agents. That is, for any profile v, if vk ≤ Tµ

k (v−k) for all
k ∈ N, then for all i ∈ N,

di(v) = 1⇐⇒ i � j for all j ∈ N such that v j = Tµ
j (v− j)

The following proposition establishes a two particular properties of Tµ
i (.) functions for

any continuous and strategyproof mechanism µ ∈ Γ .

Proposition 1. If a mechanism µ = (d, τ) ∈ Γ satisfies SP, then
(1) For all i ∈ N, Tµ

i (.) is a non-decreasing continuous function.
(2) For all x, y ≥ 0, x = Tµ

1 (y)⇐⇒ y = Tµ
2 (x)

Proof: To prove (1), fix y, y′ such that 0 ≤ y < y′. If Tµ
1 (y′) < Tµ

1 (y), then for any
x ∈ (Tµ

1 (y′), Tµ
1 (y)) consider the profiles (x, y) and (x, y′). By Result 1, d2(x, y′) = 0

and d2(x, y) = 1, which contradicts Result 1 itself. Arguing similarly for agent 2, we get
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that Tµ
i (.) is a non-decreasing function for both i ∈ N. Therefore, these functions must

either be continuous or have jump discontinuities. W. l. o. g. consider the function Tµ
1 (.)

and suppose that there exists a y ≥ 0 such that Tµ
1 (y) < limz→y+ Tµ

1 (y). Choose an
x ∈

(
Tµ

1 (y), limz→y+ Tµ
1 (y)

)
and consider the sequence of profiles {(x, yr)} such that for

all r, yr > y and {yr} → y. By Result 1, d(x, yr) = (0, 1) for all r, but d(x, y) = (1, 0).
Since, µ ∈ Γ and hence, continuous, we have x = Tµ

1 (y). This contradicts our choice of x
and so, (1) follows.
To prove (2), fix any x, y ≥ 0. There are two possibilities: (i) d1(x, y) = 1 or (ii) d2(x, y) = 1.
If case (i) holds, then by Result 1, x ≥ Tµ

1 (y) and y ≤ Tµ
2 (x). If x > Tµ

1 (y) and y = Tµ
2 (x),

then choose ν > 0 such that x > Tµ
1 (y + ν) (by (1) above, such a ν exists). By Result 1,

d1(x, y + ν) = d2(x, y + ν) = 1 and hence, a contradiction. Similarly, if x = Tµ
1 (y) and

y < Tµ
2 (x), then choose ν > 0 such that y < Tµ

2 (x− ν). As before, Result 1 implies that
d1(x−ν, y) = d2(x−ν, y) = 0 and hence, a contradiction. Arguing in similar manner, we
can establish a contradiction in case (ii), and so, the result follows. �

Proposition 2. Any mechanism µ = (d, τ) ∈ Γ satisfies SP if and only if there exist func-
tions, Kµ

i : RN\{i}
+ 7→ R and Tµ

i : RN\{i}
+ 7→ R, such that

(1) For all i ∈ N, if di(v) = 1, then i ∈ argmax j∈N(v j − Tµ
j (v− j)).

(2) For all i ∈ N, τi(v) =
{

Kµ
i (v−i)− Tµ

i (v−i) if di(v) = 1
Kµ

i (v−i) if di(v) = 0
(3) For all x ≥ 0, Tµ

1 (T
µ
2 (x)) = Tµ

2 (T
µ
1 (x)) = x.

(4) For all i ∈ N, Tµ
i is a strictly increasing continuous function.

(5) For all i ∈ N, Tµ
i (0) = 0.

Proof:
Proof of Only If: (2) and (3) follow directly from Result 1 and Proposition 1, respectively.
Further, Result 1 and (3) imply that Tµ

i (.) must be strictly monotonic and so, (4) follows
from Proposition 1. Further, Result 1 and (4) imply (1). Finally, if Tµ

1 (0) > 0, then by (3),
0 > Tµ

2 (0) and so, by (4), there exists ν > 0 such that 0 > Tµ
2 (ν). By Result 1, this implies

that d2(ν, y) = 1 for all y ≥ 0, and hence, a contradiction to the fact that µ ∈ Γ . Arguing
similarly for Tµ

2 (.), (5) follows. �

Proof of If: By Result 1, (1)-(5) imply that µ is strategyproof and satisfies agent sovereignty.
To show continuity, consider without loss of generality, a sequence of profiles {vr} con-
verging to v̄ such that d(vr) = (1, 0) for all r. Therefore, by Result 1, vr

1 ≥ Tµ
1 (v

r
2) and

vr
2 ≤ Tµ

2 (v
r
1) for all r. By (4), v̄1 ≥ Tµ

1 (v̄2) and v̄2 ≤ Tµ
2 (v̄1) and so, if d(v̄) = (0, 1)

then v̄1 = Tµ
1 (v̄2) and v̄2 = Tµ

2 (v̄1). This implies that for both j ∈ N, u(0, τ j(v̄); v̄ j) =
u(1, τ j(v̄); v̄ j). Hence, continuity of µ follows and so µ ∈ Γ . �

Remark 1. Note that a special class of strategyproof mechanisms is one, where Tµ
i (x) = x

for all x ≥ 0 and all i ∈ N. This is the the popular class of VCG mechanisms that have an
efficient (welfare maximizing) decision rule.4 However, the class of mechanisms character-
ized in Proposition 2, allows for a mechanism µ such that Tµ

1 (x) = x2 and Tµ
2 (x) = +

√
x.

4A mechanism µ = (d, τ) is a VCG mechanism if ∀ v ∈ RN
+ , ∀ i ∈ N,

di(v) = 1 =⇒ vi ≥ v j



6 CONAN MUKHERJEE

Note that this mechanism is an example of non-affine maximizer mechanism. This rein-
forces the popular concept that Robert’s theorem (Roberts [15]) does not hold in the present
restricted domain setting.

The following corollary states that there does not exist any reasonable mechanism in the
present setting that satisfies SPGS.

Corollary 1. There is no continuous mechanism µ = (d, τ) ∈ Γ that satisfies SPGS.

Proof: The result trivially follows from Result 1 and (4) in Proposition 2. �

This impossibility with respect to SPGS, was also noted by Mitra and Mutuswami [9]
and Mukherjee [12],[11]. However, in all these papers, authors were looking for mecha-
nisms satisfying SPGS, that also satisfy some notion of decision efficiency. In comparison,
Corollary 1 establishes non-existence of any reasonable mechanism satisfying SPGS, deci-
sion efficient or otherwise. The following proposition provides a class of mechanisms that
satisfy WPGS.

Proposition 3. A mechanism µ = (d, τ) ∈ Γ satisfies WPGS if for all i ∈ N such that for all
x ≥ 0,

Kµ
i (x) = Ci + min{Tµ

i (x), η}
where Ci ∈ R for all i ∈ N and either η = ∞ or η ∈ {x ≥ 0|Tµ

i (x) = x, ∀ i ∈ N}.

Proof: There can be only two types of deviations by the pair {1, 2}: (i) decision preserving
deviations where the allocation decision remains same before and after deviation and (ii)
decision changing deviations where the allocation decision changes after deviation. Note
that for all i ∈ N and all z ≥ 0, if η = 0 (which is possible because Proposition 2 states that
Tµ

i (0) = 0 for all i ∈ N), then Kµ
i (z) = Ci; and if η = ∞ then Kµ

i (z) = Ci + Tµ
i (z). In each

of these cases, it is easy to see that no {1, 2}-deviation, whether decision preserving or not,
can violate WPGS. Hence, we focus on a finite η ∈ (0, ∞) such that Tµ

i (η) = η for all i, and
show the sufficiency with respect to each possible kind of deviation as a separate case.

Case(i): Suppose there exists a decision preserving deviation from (x, y) to (x′, y′) that
violates WPGS. If d(x, y) = d(x′, y′) = (1, 0), then 0 ≤ y′ ≤ y ≤ Tµ

2 (x) < η < Tµ
1 (y) ≤

x ≤ x′. However, by Proposition 2 and the fact that Tµ
i (η) = η for all i ∈ N; it follows

from Tµ
2 (x) < η < Tµ

1 (y) that x < η < y and hence, contradiction. Further, if d(x, y) =
d(x′, y′) = (0, 1), then 0 ≤ x′ ≤ x < Tµ

1 (y) < η < Tµ
2 (x) ≤ y ≤ y′. As before, by

Proposition 2 and the fact that Tµ
i (η) = η for all i ∈ N; it follows from Tµ

1 (y) < η < Tµ
2 (x)

that y < η < x, and hence, a contradiction again. Therefore, there can be no decision
preserving {1, 2}-deviation that can violates WPGS.

Case(ii): Suppose there exists a decision changing deviation from (x, y) to (x′, y′) that vio-
lates WPGS. Without loss of generality, suppose that d(x, y) = (1, 0) and d(x′, y′) = 1. De-
fine ∆1 := u1(d1(x, y), τ1(x, y); x)−u1(d1(x′, y′), τ1(x′, y′); x) and ∆2 := u2(d2(x, y), τ2(x, y); y)−

and

τi(b) = ∑
j 6=i

(d j(v)− d j(v−i))v j + hi(v−i) where hi : RN\{i}
+ 7→ R is an arbitrary function of v−i.
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u2(d2(x′, y′), τ2(x′, y′); y). By supposition, ∆i < 0 for all i ∈ N. However, if ∆1 =
x + Kµ

1 (y) − Tµ
1 (y) − Kµ

1 (y′) < 0, then by Result 1, y′ > y, Tµ
1 (y) < η and x < η. By

Proposition 2 and the fact that Tµ
2 (η) = η, Tµ

2 (x) < η and so, Kµ
2 (x) = Tµ

2 (x) + C2. Now,
if x′ ≤ η, then by Proposition 2 and the fact that Tµ

2 (η) = η, Kµ
2 (x′) = Tµ

2 (x′) + C2. So,
by Result 1, ∆2 = Kµ

2 (x) − {y + Kµ
2 (x′) − Tµ

2 (x′)} ≥ 0, which implies a contradiction to
our supposition. On the contrary, if x′ > η, then arguing as before, Tµ

2 (x′) > η and so
Kµ

2 (x′) = η+ C2. Therefore, by Result 1, ∆2 = (Tµ
2 (x)− y) + (Tµ

2 (x′)− η) ≥ 0 and so, a
contradiction to our supposition. Thus, there can be no decision changing {1, 2}-deviation
that can violates WPGS. �

Now, we study the efficient mechanisms in the class characterized by Proposition 2.
However, contrary to contemporary literature, we use the notion of budget balance instead
of decision efficiency. Our motivation for doing so is on the lines of Jackson [6], where he
argues that in absence of Pareto efficiency, budget balance should be treated as an equally
important yardstick of efficient mechanisms, as decision efficiency. In fact, there is no
paper in our knowledge that looks at budget balanced and strategyproof mechanisms in
the present setting.5 As the following corollary shows, there are no reasonable mechanisms
that are budget balanced and strategyproof.

Corollary 2. There is no mechanism µ = (d, τ) ∈ Γ that satisfies SP and BB.

Proof: Suppose there exists a mechanism µ that is budget balanced and strategyproof.
Therefore, from Result 1, it follows that ∀ (x, y) ≥ 0,

Kµ
1 (y) + Kµ

2 (x) = Tµ
1 (y) if d(x, y) = (1, 0)

Kµ
1 (y) + Kµ

2 (x) = Tµ
2 (x) if d(x, y) = (0, 1)

By Proposition 2, Tµ
i (0) = 0 for all i ∈ N. Therefore, by Result 1, d(z, 0) = (1, 0) and

d(0, z) = (0, 1), for all z > 0. Hence, the equations above imply that for all z > 0, Kµ
i (z)

is constant for all i. Therefore, Tµ
i (z) is constant for all z > 0 and all i, and hence, a

contradiction to Proposition 2. Thus, the result follows. �
Since Corollary 2 shows that there are no reasonable mechanisms that are strategyproof

and budget balanced, in the following proposition, we look at feasible strategyproof mech-
anisms that are fair in the sense that; any agent with zero valuation must not get a negative
utility by participating in the mechanism. We first define a class of pairs of functions:

F :=
{
( f , g) f (.), g(.) are strictly increasing continuous bijections over domain [0, ∞) such

that f (0) = g(0) = 0 and f (g(x)) = g ( f (x)) = x for all x ≥ 0.

}
Proposition 4. A µ = (d, τ) ∈ Γ satisfies SP, MIR and F, if and only if for all i ∈ N and all
v ∈ RN

+ ,
di(v) = 1 =⇒ i ∈ argmax j∈N(v j − Tµ

j (v− j))

and

τi(v) =
{
−Tµ

i (v−i) if di(v) = 1
0 if di(v) = 0

where
(
Tµ

1 (.), Tµ
2 (.)

)
∈ F .

5In comparison, there are several papers like Ashlagi and Serizawa [1] and Mukherjee [12], that charac-
terize the strategyproof and decision efficient mechanisms in the present setting.
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Proof: The proof of sufficiency is easy to check. We prove necessity by showing Kµ
i (z) = 0

for all z ≥ 0 in the following manner. We begin by noting that Result 1 implies that(
Tµ

1 (.), Tµ
2 (.)

)
∈ F . Further, it follows from Result 1 and MIR that Kµ

i (z) ≥ 0 for all
i ∈ N and all z ≥ 0. Therefore, by Proposition 2, feasibility at profile (0, 0) implies
that: 0 ≤ Kµ

1 (0) + Kµ
2 (0) ≤ 0. Thus, Kµ

i (0) = 0 for all i ∈ N. Now, consider a profile
(x, Tµ

2 (y)) where x > y ≥ 0. By Result 1, d(x, Tµ
2 (y)) = (1, 0). Therefore, by feasibility,

0 ≤ Kµ
1 (T

µ
2 (y)) − Tµ

1 (T
µ
2 (y)) + Kµ

2 (x) ≤ 0. Further, by Proposition 2, 0 ≤ Kµ
1 (T

µ
2 (y)) +

Kµ
2 (x) ≤ y. Note that this equation holds for all y ∈ [0, x) and so, by Proposition 2,

limTµ
2 (y)→0 Kµ

1 (T
µ
2 (y)) + Kµ

2 (x) = 0. Recall that for all z ≥ 0 and all i ∈ N, Kµ
i (z) ≥ 0.

Hence, limTµ
2 (y)→0 Kµ

1 (T
µ
2 (y)) ≥ 0 and so, Kµ

2 (x) = 0. Arguing similarly, for the profile
(Tµ

1 (y), x), we get that Kµ
1 (x) = 0. Thus, the result follows. �

Corollary 3. If µ = (d, τ) ∈ Γ satisfies SP, MIR and F, then it satisfies WPGS.

Proof: The proof easily follows from Proposition 3. �

The following proposition studies optimal (expected revenue maximizing) strategyproof
mechanisms satisfying MIR in the class Γ , under the distributional assumption that: val-
uation of each agent i, vi is distributed according to a differentiable distribution function
Fi(.) over the interval [0, ∞). Note that we allow for stochastically dependent distribu-
tions. The proposition shows there are no optimal strategyproof mechanisms satisfying
MIR in Γ .6

Proposition 5. In the class of mechanisms µ = (d, τ) ∈ Γ satisfying SP and MIR, there
exists no mechanism that is optimal.

Proof: Fix any y > 0 and define θy := Tµ
1 (y). Note that by MIR, Kµ

i (y) ≥ 0 for all
i. Further, it is obvious from Result 1 that the exact functional form of Kµ

i (.) functions
does not affect the strategyproofness of mechanisms. Therefore, an optimal mechanism
must set Kµ

i (y) = 0 for all i. Also, Result 1 implies that θy := in f {x ≥ 0|d(x, y) = (1, 0)}.
Therefore, by Proposition 1, if agent 2 bids x then seller’s expected revenue, for a particular
value of θy, is θy(1− F1(θy)) +

∫ θy
0 Tµ

2 (y) f1(x)dx. Hence, seller’s objective is to maximize
this expression by choosing θy. The first order necessary condition for maximum implies
that

θy = Tµ
2 (y) +

1− F1(θy)

f1(θy)

and so, an optimal mechanism should it exist, must have for all y ≥ 0,

Tµ
1 (y) = Tµ

2 (y) +
1− F1(T

µ
1 (y))

f1(T
µ
1 (y))

However, Proposition 2 requires that Tµ
1 (0) = 0 = Tµ

2 (0) and so, it must be that 1−F1(0)
f1(0)

=

0, which is impossible7 and hence, we have a contradiction. �

6It can be shown that non-existence result continues to hold if the lower bound of the support of distribu-
tion, is positive.

7This is impossible because f1(0) < ∞ and F1(0) < 1.
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Remark 2. Unlike Myerson [13], we look at optimal mechanisms that are truthful in the
sense of dominant strategy incentive compatibility. Proposition 5 shows that the candi-
dates for optimal strategyproof mechanisms satisfying MIR (which is a weaker version
of the individual rationality axiom used in Myerson [13]) must be those not belonging to
Γ . That is, such mechanisms must either be discontinuous or allow the good to be allo-
cated dictatorially at some profile of reported valuations. Note that this impossibility may
also be a result of the restriction implicit in present setting, which requires that the good
must be allocated at all profiles. This rules out usage of reserve prices that were shown by
Myerson [13] to be essential components of the optimal strategyproof and individually ra-
tional mechanism. Are there any optimal strategyproof mechanisms satisfying some form
of individual rationality, if goods are not allocated at all profiles? This appears to be an
interesting area of future research.
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