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Abstract

I augment the standard Tullock contest by adding a first stage in which each of the potential
contestants has the option of contributing some resources to a public defender or government.
In the subsequent subgame, if one of the contestants attacks the other, then the government
contributes its resources to the defence of the agent that is attacked. I show that, if the resource
distribution is not too unequal, agents make positive contributions to government in equilib-
rium and there is no fighting. The deterrence equilibria are pareto superior to the corresponding
equilibria of the pure Tullock contest. The Rawlsian criterion yields the most efficient equilib-
rium for each given resource distribution, hence progressive taxation is efficient in this model.
Finally, for a range of very unequal resource distributions, the equilibrium size of government is
too large.

∗I thank the Department of Economics at Boston University for its exceptional hospitality in 2014-15, and Pahana
Prasada Dickwella-Vidanage for discussions.
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1. Introduction

The question of how stable property rights emerge out of a state of anarchy has exercised
social thinkers from the very earliest times.

In contemporary economic literature, a construct that has been widely used to investigate
this question is the rational contest model, in which agents can use resources in their possession
to engage in production, or to wrest away resources from other agents. The contest model is
similar to constructs that been used to analyse lobbying contests and patent races. Consequences
of verious formulations of the nature of contest and the form of the contest success function
are explored in a number of papers by Hirshleifer (1991) Hirshleifer (1995), Skaperdas (1992),
Grossman and Kim (1995), as well as several others.

Many of these papers investigate conditions under which, in the absence of an external
enforcer, the potential cotestants will enter into active conflict, and conditions under which they
will coexist in peace. In Hirshleifer’s formulation resources that are devoted to conflict can be
used both for aggression and defence, thus an investment to dissuade the adversary may also
tun out to provide incentive for aggression. Grossman and Kim consider investments that are
earmarked for aggression (e.g., cannons) or defence (e.g., fortification) and obtain equilibria in
which peace may sometimes prevail.

One conclusion that emerges from most of these models is that conflict is more likely when
there is high inequality between the agents, and in these cases the poorer agent is more likely
to be the aggressor.

Surprisingly, however, very few contributions explore the possibility that the potential con-
testants, in anticipation of the possible destructiveness of conflict, may enter into cooperation
to create such an enforcement mechanism as a public good. An exception is McBride, Milante,
and Skaperdas (2011), who explore a model in which contestants can invest in a state, which
is able to protect from conflict a fraction of all resources; the fraction being determined by the
total investment (see also McBride and Skaperdas, 2007).

In this paper I use a simpler construction. As in McBride, Milante, and Skaperdas (2011)
the two potential contestants choose to make contributions to enable a public defender. In the
subsequent subgame each contestant has a choice to attack the other. If one of the contestants
chooses to be an offender (and the other does not), then the defender contributes its resources
to the defence of the victim.

I find that peace prevails (though at a cost) except in cases where inequality is extreme, when
agents no longer contribute to public defence in equilibrium. For a large range of parameter
values there are multiple equilibria, with the richer agent contributing a larger or smaller fraction
of the public defence. With appropriate investments, peace becomes incentive compatible for
two reasons; first, resources inveted in public defence are no longer available as conflict payoffs to
the contestants, and secondly the same defence investment reduces the expected conflict payoff
for both contestants.

Two additional results are of interest. First, when there are multiple equilibria, the most
efficient equilibrium is always the one in which the richer agent makes the largest contribution
consistent with equilibrium. If we interpret these contributions as taxes determined by a par-
ticipatory government, then the efficient taxation scheme is the most progressive scheme that is
consistent with peace. Secondly, we find that there is a range wher inequality is high (but not
sufficiently extreme for government to break down) where a contest would in fact be more effi-
cient than a peace equilibrium. An interpretation is that, when inequality is high, government
is inefficiently large.

Beviá and Corchón (2010), which is in some ways close to this paper, consider the possibility
that the richer agent may transfer some of her wealth to the poorer in order to avoid conflict.
Such transfers reduce inequality and therefore the likelihood of conflict. However, when we
introduce this option in the present model, we find that contributions to public defence is more



attractive to the richer agent than transfers to the poorer.

The next section lays out the canonical context model in its simplest form, and derives the
equilibrium outcome. Section 3 describes the model with investment in public defence. Section
4 establishes the equilibria. Section 5 discusses efficiency concerns to find the most efficient
equilibria, and also to show that the worst peace equilibria are more efficient than the pure
contest outcomes. The main results are summarised in this section. In conclusion, Section 6
lists some further questions that can be addressed using this model.

2. Background: pure contest

2.1. Setting

We adopt a simple version of the standard model (e.g., Hirschleifer). There is one unit of
resources distributed between two agents, 1 and 2.

R1 + R2 = 1, 0 < R1 ≤ R2

Each agent i can devote some or all of his resources xi ≤ Ri as arms to fight. Investments
are made simultaneously.

If at least one agent chooses to fight (or attack) then they fight. If they fight then the
remaining resources are redistributed between the agents in proportion to their arms

Πi(R, x,war) =
xi

xi + xj
[1− (xi + xj)]

If neither agent chooses to fight then each retains his remaining resources

Πi(R, x, peace) = Ri − xi

.
Each agent maximizes his payoff Πi.

2.2. Solution

SPNE is the natural solution concept.

In the last stage, i will attack if

Πi(R, x,war) > Πi(R, x, peace) ⇒ xi

Ri
>

xj

Rj

If i attacks, he will choose xi to maximize

max
xi

Πwar
i ⇒ xi = min{√xj − xj , Ri}

Similarly, to defend j will choose xj = min{√xi − xi, Rj}

Note that
√
xj − xj reaches a maximum of 1

4 when xj = 1
4 , which is also a fixed point of

y =
√
x− x.

First, note that in equilibrium each player invests positive amounts in arms.

• If 1
4 ≤ R1 ≤ R2, then each invests xi = 1

4 and gets payoff Π1 = Π2 = 1
4 .

• If R1 < 1
4 < R2 then investments are x1 = R1, x2 =

√
R1 − R1, and payoffs are Π1 =√

R1(1−
√
R1), Π2 = (1−

√
R1)2.
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Figure 1: Optimal attack and defence in pure contest

• There is war except in the case R1 = R2.

We will denote the equilibrium outcomes of pure contest by the superscript C, i.e., xC
1 , x

C
2 ,Π

C
1 ,Π

C
2 .

3. Investing in public defence

We augment this game by adding a first decision stage before the players choose their in-
vestments in arms.

• First, each player simultaneously chooses to invest an amount gi to endow a public defender
(”government”).

• Next investments in private arms are chosen, and then attack decisions are made.

• If both attack, then the government stands aside. A pure contest occurs using only private
arms to divide the remaining resources.

• If neither attacks then there is peace and each consumes his remaining resources.

3



	
  

	
  

Figure 2: Contest payoffs plotted against endowment

• However, if agent i chooses to attack and agent j does not, then the government adds its
resources to the defence of j.

3.1. The game

We start with R1 + R2 = 1 0 < R1 ≤ R2.

• Stage 1 (game Γ): Agents simultaneously choose the amount gi each will contribute to
public defence, subject to gi ≤ Ri.

– A pair (g1, g2) is a contribution profile (or contribution).

– Let g = g1 + g2 and g = (g1, g2).

– Define wi = Ri − gi, and w = (w1, w2).

• Stage 2 (subgame Γ2): Agents observe g and simultaneously choose their arms investments
xi ≤ wi.

– A pair (x1, x2) is an arms profile (or arms).

– Let x = x1 + x2, and x = (x1, x2).
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• Stage 3 (subgame Γ3): Agents observe x. Then they simultaneously choose ai ∈ {0, 1}. [0
is ”defend”, 1 is ”attack”.]

– A pair (a1, a2) is an attack profile. Let a = (a1, a2).

We use z = [g,x,a] to denote the sequence of decisions in a play of the game.

3.2. Payoffs

• If (a1, a2) = (0, 0), then
Πi(z) = Ri − gi − xi, i = 1, 2.

• If (a1, a2) = (1, 1) then

Πi(z) =
xi

xi + xj
[1− x− g]

• If ai = 1 and aj = 0, then

Πi(z) =
xi

xi + xj + g
[1− x− g]

Πj(z) =
xj + g

xi + xj + g
[1− x− g]

3.3. Aggression and deterrence

We say that a player i is aggressive in stage 2 if, given g and xj = 0, his payoff is higher
when he invests optimally in arms and attacks than when he does not attack.

wi <

{
(1−√g)2 if wi ≥ 1

4
1

2
− g if wi <

1
4

(1)

To see this, note that given g and xj = 0, if player i attackes his optimal choice of xi is
min{√g − g, wi}. This follows from the optimal choice of arms in pure contest discussed in
Section 2. The resulting payoff to i conditional on wi appears on the right-hand-side of (1). The
player will prefer to attack if his wealth in stage 2 is less than his expected gain from attacking
optimally.

A contribution profile g is a full deterrent if neither player is aggressive in the subgame
following g.

It follows that to ensure full deterrence it is sufficient to deter the player who has the smaller
remaining resource endowment after contributions.

Lemma 1 A contribution profile g is a full deterrent if g ≥ ĝ(w), where

ĝ(w) =

{
(1−

√
min{w1, w2})2 if min{w1, w2} ≥ 1

4
1

2
−min{w1, w2} if min{w1, w2} < 1

4

4. Deterrence equilibria

We look for subgame-perfect Nash equilibria of the game Γ. The following observations are
self-evident:

Observation 1 :
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(i) Let g not be full deterrent. Then in the equilibrium of the subgame Γ2 we must have x 6= 0
and a 6= 0.

(ii) If z∗ is an equilibrium outcome with g∗ > 0, then a∗ 6= (1, 1).

(iii) If z∗ is an equilibrium outcome with a∗i = 1, then g∗i = 0.

Proposition 1 If z∗ is an equilibrium outcome, then either (i) g is a full deterrent with x =
(0, 0) and a∗ = (0, 0), or (ii) Π(R, z∗) = ΠC(R, xC ,war).

Intuition: If g is full deterrent, then neither player has an incentive to arm and attack if the
other does not. If g is not full deterrent, then one of the agents will attack in the subgame,
hence he will not contribute. The other agent will at most contribute the resources he would
spend in defence.

4.1. Minimal full deterrence investment

From Proposition 1 it follows that in equilibrium, agents will either together contribute
enough to ensure full deterrence, or they will not invest in public defence at all. In the former
case, we must have g = ĝ(w), the minimum contribution required for full deterrence. Additional
contribution is costly to the contributor and does not produce additional payoff.

By Lemma 1 the minimum full-deterrence contribution g is uniquely determined by the
smaller of the two remaining resource endowments. Hence we can identify the vectors w that
are compatible with full deterrence. Corresponding to Lemma 1 there are two cases:

Observation 2 (i) Let min{w1, w2} = w1 ≥ 1
4 . Then we must have g = ĝ(w1) = (1−√w1)2.

Hence w2 must equal

w2 = 1− [w1 + (1−
√
w1)2] = 2(

√
w1 − w1)

It can be checked that w2 ≥ w1 provided w1 ≤ 4
9 . When w1 = 4

9 , we have w1 = w2, and
ĝ(w1) = 1

9 .

(ii) If w1 < 1
4 then g =

1

2
− w1 and w2 =

1

2
.

This defines the full-deterrence frontier, summarized in the following proposition and mapped
in Figure 3.

Proposition 2 Consider the subgame Γ2 with initial post-contribution allocation (w1, w2) and
associated total public defence contribution 1− (w1 +w2). If the following conditions hold, then
the equilibrium in this subgame is (x,a) = (0, 0), i.e., peace with no expenditure on private arms.

Wlog let w1 = min{w1, w2}.

w2 ≤
{ 1

2 if w1 < 1
4

2(
√
w1 − w1) if w1 ∈ [ 14 ,

4
9 ]

(2)

There are no peace equilibria in subgame Γ2 when min{w1, w2} > 4
9 .

Figure 3 shows the consumption pairs that are attainable with full deterrence. The line
joining (1, 0) and (0, 1) plots the possible distributions of initial resources. We restrict attention
to the section of this line lying above the 45-degree line, where R1 ≤ R2. The analysis of the
complementary segment is symmetrical.
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Figure 3: Payoff frontier with full deterrence

The curved frontier is the limit of the consumption pairs (w1, w2) that are consistent with
full deterrence.1 To see that allocation below the frontier also induce full-deterrence, note that
in an allocation such as A, the public contribution is larger than in B, but min{w1, w2} = w1 is
unchanged. Thus since B is compatible with full-deterrence so is A. A similar argument applies
to C relative to D.

4.2. Deterrence contributions

Next we determine the vectors g that are candidates for contributions in equilibria with full
deterrence. Note that this implies minimal full deterrence, i.e., g = ĝ(w).

Proposition 3 Let Z(R) be the set of minimal full-deterrence outcomes corresponding to initial
resource allocation R. then the set attainable consumptions for Player i in outcome z ∈ Z(R)

1Since full-deterrence implies x = 0 in the subgame, wi is indeed the consumption of i in the equilibrium of the
subgame.
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are:

wi



= Ri if Ri ≤ 1
4

∈ [ 14 , Ri] if Ri ∈ ( 1
4 ,

1
2 ]

∈ [ 12{1 +
√

(2R2 − 1)}, 1
2 ] if Ri ∈ ( 1

2 ,
5
9 ]

∈ [2{
√

1−R2 − (1−R2)}, 1
2 ] if Ri ∈ ( 5

9 ,
3
4 ]

= 1
2 if Ri >

3
4

(3)

In figure 4 we plot the lower and upper bounds for the payoffs for player 2 that remain after
contributions that are compatible with minimal full deterrence (with complementary contribu-
tions by player 1), corresponding to each endowment of resources. Note that the curvature of
the full deterrence frontier in the range R1 ∈ ( 1

4 ,
1
2 ) implies that the contributions of the two

players are imperfect substitutes; a reduction in g2 must be compensated by a more than equal
increase in g1.

	
  

	
  

Figure 4: Maximum and minimum payoffs with full deterrence
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5. Equilibria and efficiency

Proposition 3 describes the contribution profiles that are candidates for full detrrence equi-
libria. Observe that the richer player must always contribute to a full deterrence outcome. The
poorer player may not contribute, and will indeed not contribute at all when his initial resource
endowment is less than 1

4 . In order for a contribution profile that results in full deterrence to
be an equilibrium outcome, it is necessary that each player that contributes has a payoff under
full deterrence that is no less than the payoff he would obtain under pure contest.

Figure 5 superimposes the full deterrence payoffs on the pure contest payoffs for a given
player. The pure contest payoffs are strictly greater than full deterrence payoffs for Ri ∈ (0, 1

4 ),

and in Ri ∈ (
√

2 − 1

2
, 1]. In the lower range, player i cannot decide on full deterrence, only

the richer player contributes. But in the upper range, it is the richer player that makes the
entire contribution, hence the choice between conflict and deterrence is his to make. It follows

that if max{R1, R2} ∈ (
√

2 − 1

2
, 1], then the richer player will not invest in deterrence, and

the equilibrium outcome will be pure conflict. For max{R1, R2} ∈ (
1

2
,
√

2 − 1

2
], on the other

hand, deterrence is weakly preferred if the richer player makes the maximum contribution, and
strictly preferred if the poorer player makes any contribution at all, hence full deterrence is the
equilibrium outcome.

This estalbishes the equilibria corresponding to the different resource endowments, sum-
marised in the following proposition.

Proposition 4 If R1, R2 ∈ [ 32 −
√

2,
√

2 − 1

2
] then all equilibria are full-deterrence. If initial

endowments are outside these limits then in the equilibrium outcome there is war, and payoffs
are equal to the pure contest payoffs for those endowments.

Each equilibrium is pareto-optimal, since under minimal full deterrence the contributions
of the two players are (imperfect) substitutes for each other. However, for a given initial dis-
tribution of resources, the total consumption in the economy in an equilibrum differs with the
allocation of contributions between the two players. A possible measure of aggregate efficiency
is total consumption in the economy:

c = 1− g − x.

We can compute c in the pure conflict outcome corresponding to each distribution of resources.
In full deterrence equilibria x = 0, so c = 1− g, hence the most efficient equilibrium is the one
that minimizes g. But since g = ĝ(min{w1, w2}, this is equivalen to maximizing min{w1, w2}.
This can be restated as:

Proposition 5 For resource distributions that accommodate multiple full deterrence equilibria,
the Rawlsian criterion provides the most efficient allocation of public defense contributions.

Another interpretation is that, for these distributions, efficiency requires the richer agent to
make the maximum contribution consistent with full deterrence. If contributions were allocated
as taxes by a public authority, then Proposition 5 leads to the following:

Corollary 2 Suppose that when full deterrence is mutually incentive compatible, a public au-
thority raises public defense contributions through taxes. Then the most efficient taxation scheme
is one that is most progressive subject to incentive-compatibility.

Specifically, the efficient contribution profiles are given by:

• For 4
9 < R1, R2 < 5

9 the efficient equilibrium outcome is w1 = w2 = 4
9 , g = 1

9 .
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Figure 5: Comparison of payoffs under pure contest and full deterrence

• For 5
9 ≤ R2 ≤ 3

4 the efficient equilibrium outcome is w1 = R1, g = (1 − √w1)2, w2 =
R2 − g.

• For 3
4 ≤ R2 ≤

√
2− 1

2
, the unique equilibrium outcome is w1 = R1, g =

1

2
−R1, w2 =

1

2
.

Finally we note that full deterrence is not efficient over the entire range in which it is an

equilibrium. there is a range to the left of R2 =
√

2− 1

2
where the pure contest outcome is more

efficient than the equilibrium outcome, but the equilibrium is full deterrence. This is because in
this range the richer player unilaterally pays for deterrence, and for him the deterrence payoff
is larger than the conflict payoff.

Proposition 6 In the range R1 ∈ ( 3
2 −
√

2, 1 −
√
3
2 ), the equilibrium is full deterrence where

conflict would yield a more efficient outcome.

The proof follows by comparing the sum of the equilibrium consumptions with those that would
obtain under pure conflict, as can be found in Section 2.

Thus when income distributions are very unequal (but not sufficinetly unequal for public
defense to become non-viable) the equilibrium outcome is deterrence through public defense,
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but this is inefficient. In other words, for resource distributions in this range, the government
is too large.

6. Conclusion

To be written.
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A. Proofs

Proof of Proposition 3.
We focus on the case R1 ≤ R2. The analysis for the complementary case is symmetrical.
First suppose that R1 < 1

4 . Then the post-contribution allocation must have min{w1, w2} <
1
4 , and hence full deterrence requires g = 1

2 −min{w1, w2}. Hence contributions by i s.t. wi =
min{w1, w2} do not alter the contribution required by j 6= i, so the only incentive compatible
contribution from i is gi = 0, and j must contribute gj = Rj − 1

2 . It follows that when R1 < 1
4 ,

the only contribution profile that is a candidate for equilibrium is (g1, g2) = (0, R2 − 1
2 ), which

yields the consumption profile (R1,
1
2 ).

Next consider 1
4 ≤ R1 ≤ 1

2 ≤ R2. For each R1 In this range there are multiple configurations
g that are consistent with minimal full deterrence. Recall that in this case the equilibrium
conflict payoff for each player is 1

4 , which is the upper bound on the payoff that either player
can attain in subgame Γ2 if public contributions in stage 1 do not attain full deterrence. It
therefore follows that the maximum contribution i is willing to make is gi ≤ (Ri − 1

4 ).
First consider R1 ∈ [ 14 ,

4
9 ] ⇒ R2 ∈ [ 59 ,

1
4 ]. We know from Observation 2 that player

2 can unilaterally ensure full deterrence by contributing (1 −
√
R1)2 , which leaves him with

consumption w2 = 2(
√
R1 − R1) ≥ w1. Since 1 does not contribute, w1 = R1 = 1 − R2, the

resultant consumption vector is (R1, 2[
√

1−R2 − (1−R2)]).
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For R1 ∈ ( 4
9 ,

1
2 ], if player 2 contributes sufficiently to deter player 1, this leaves him with

w2 < w1. Hence to ensure full deterrence with no contribution from player 1, he must deter
himself. This implies g2 = (1−√w2)2. Since g2 +w2 = R2, This leaves player 2 a consumption

of [ 12{1 +
√

(2R2 − 1)}]2, which ranges from w2 = 4
9 when R2 = 5

9 to w2 = 1
4 when R2 = 1

2 .
The payoffs for the complementary range can be found symmetrically. �
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