
MAXIMAL POSSIBILITY AND MINIMAL DICTATORIAL

COVERS OF DOMAINS ∗

Gopakumar Achuthankutty †1 and Souvik Roy1

1Economic Research Unit, Indian Statistical Institute, Kolkata

Abstract

In line with the works of Serizawa (1995), Barberà et al. (1999) and Ching and Serizawa

(2001), we introduce and characterize the notion of maximal possibility cover of different ver-

sions of single peaked domain of preferences - a maximal domain of preferences which in-

cludes the single peaked domain of preferences while ensuring the existence of a strategy-

proof and unanimous social choice function. Further we characterize an allied dictatorial

domain, which we call the minimal dictatorial cover of different versions of single peaked do-

main of preferences - a minimal set of preferences which is dictatorial and contains the single

peaked domain of preferences. Lastly, we prove that a generalized version of the circular

domain (Sato (2010)) - which we call generalized circular domain - to be a dictatorial domain.
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1 Introduction

In the wake of the celebrated Gibbard-Satterthwaite (Gibbard (1973),Satterthwaite (1975)) im-

possibility result, researchers are persistently interested in ways of evading such an impossibil-

ity result. It is well known that restricting the domain of admissible preferences leads to both

impossibility (Kim and Roush (1980), Aswal et al. (2003), Sato (2010), Pramanik (2014) etc.) and

possibility (Moulin (1980)) results. Thus there is a trade-off between the degree of manipulabil-

ity admissible in the society and the existence of unanimous, strategy-proof and non-dictatorial

rules. In this paper, we take an extreme view of this trade-off by looking at the maximal do-

main of preferences that guarantee the existence of rules that are unanimous, strategy-proof and

non-dictatorial.

In this paper, we introduce the notion of a maximal possibility cover (MPC) of a domain D of

preferences as the maximal domain of preferences which includes the domain D while ensuring

the existence of a strategy-proof and unanimous social choice function. We characterize the

MPCs of an immensely popular possibility domain - the domain of single peaked preferences

where the generalized median rules (Moulin (1980), Weymark (2011)) are the only rules that

are unanimous and strategy-proof. Further we introduce the notion of the minimal dictatorial

cover of a domain D of preferences as the minimal set of preferences which is dictatorial and

contains the domain D and provide a characterization of the MDCs of the domain of single

peaked preferences. We also characterize the MPCs and the MDCs of the domain of minimally

rich (?) single peaked preferences.

It is essential to contrast our work with related literature. An early seminal work of Serizawa

(1995) looks at a related problem of finding the maximal domain of preferences that makes vot-

ing by committees strategy-proof. In a later work, Barberà et al. (1999) characterizes the maxi-

mal domain of preferences preserving strategy-proofness of generalized median rules in multi-

dimensional social choice setting. In a more recent work, Ching and Serizawa (2001) prove that

a weakly single peaked domain is the unique maximal domain of preferences that ensure the ex-

istence of strategy-proof, anonymous and unanimous social choice functions. Our work can be

thought of as the next step in this direction as we drop the assumption of anonymity of the social

choice rule when characterizing such maximal domains.

On a different note, we provide an interesting generalization of the dictatorship result in Sato

(2010). We introduce a new restricted domain of preferences - which we call the generalized circu-
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lar domain and prove that the generalized circular domain is a dictatorial domain. The general-

ized circular domain, except for two preferences in the boundary domain, relaxes the requirement

of a circular domain that there must be two preferences with the same alternative at the top and

places the alternatives adjacent to its top alternative either at the second rank or the last rank.

The rest of the paper is organized as follows. We describe the usual social choice framework

in the Section 2. In Section 3, we introduce the notion of a maximal possibility cover of a domain

and characterize the MPCs of the single peaked domain. In Section 4, we introduce the notion of

a minimal dictatorial cover of a domain and characterize the MDCs of the single peaked domain.

In Section 5, we generalize the dictatorship result in Sato (2010) and the last section concludes

the paper.

2 The Model

Let N = {1, ..., n} be the set of agents, who collectively have to choose an element from a finite

set X of alternatives with |X| = m ≥ 3. In what follows, we will consider the elements in the

set X to be indexed as x1 < x2 < . . . < xm. Consider an admissible domain of preferences D.

An alternative x ∈ X is called the kth ranked alternative in a preference P ∈ D if rk(P) = x.

The better than set of an alternative x ∈ X with respect to a preference P ∈ D is defined as

B(x, P) = {y ∈ X|yPx}. Similarly the worse than set of an alternative x ∈ X with respect to a

preference P ∈ D is defined as W(x, P) = {y ∈ X|xPy}. Mention the notion of the rank in a

preference.

Definition 2.1. A social choice function (SCF) f is a mapping f : D|N| → X where D is any

admissible domain of preferences.

Definition 2.2. A SCF f is manipulable (MAN) if there exists an individual i, an admissible pro-

file P = (Pi)i∈N ∈ Dn and an admissible ordering P
′
i such that f (P

′
i , P−i)Pi f (P). A SCF f is

strategyproof (SP) if it is not manipulable.

Definition 2.3. A SCF f is unanimous (UN) if f (P) = aj whenever aj = r1(Pi) for all i ∈ N.

Definition 2.4. A SCF f is dictatorial if there exists an individual i ∈ N such that for all profiles

P, f (P) = r1(Pi).
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All throughout this paper, all our analysis would be restricted to a class of admissible domain

of preferences known as regular domains.

Definition 2.5. A domain D is regular if, for all x ∈ X, ∃Pi ∈ D such that r1(Pi) = x.

Definition 2.6. A domain D of preferences is non-dictatorial if there exists an SCF f that satisfies

unanimity, strategy-proofness and non-dictatorship.

A non-dictatorial domain is sometimes called a possibility domain and we will use these terms

interchangeably.

Definition 2.7. A domain D of preferences is dictatorial if there every SCF f that satisfies una-

nimity and strategy-proofness is dictatorial.

The following proposition comes handy whenever we attempt to show that a particular do-

main is dictatorial as it reduces the problem from n players to 2 players.

Proposition 2.1. Let D be a regular domain. Then, the following two statements are equivalent:

(i) f : D2 → X is strategyproof and satisfies unanimity⇒ f is dictatorial.

(ii) f : Dn → X is strategyproof and satisfies unanimity⇒ f is dictatorial, n ≥ 2.

Proof. See Aswal et al. (2003) for a proof of this proposition. �

Definition 2.8. The domain of left-extreme single peaked preferences, denoted as Sl, is the sub-

domain of single peaked domain given by Sl = {P ∈ S|xj < r1(P1) < xk ⇒ xjPxk}. Similarly,

the domain of right-extreme single peaked preferences, denoted as Sr, is the sub-domain of single

peaked preferences given by Sr = {P ∈ S|xj < r1(P1) < xk ⇒ xkPxj}.

Definition 2.9. The domain of minimally rich single peaked preferences is the sub-domain of

single peaked preferences given by Sm = Sl ∪ Sr.

Definition 2.10. A single peaked preference ordering of agent i on X is a complete, reflexive,

transitive and antisymmetric binary relation Pi on X satisfying the following property: there

exists τ(Pi) ∈ X, called the peak of Pi such that for all x, y ∈ A, if x < y ≤ τ(Pi) or x > y ≥ τ(Pi)

then yPix. Let S denote the set of all single peaked preferences on X.
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3 Maximal Possibility Cover of Domains

Definition 3.1. The maximal possibility cover (MPC) D̄ of a possibility domain D is a largest pos-

sibility domain that contains D, i.e., it is a possibility domain such that D̄ ( D′ implies D′ is a

dictatorial domain.

Lemma 3.1. The domain D̄ is MPC of a domain D for a society with 2 players iff D̄ is MPC of a domain

D for a society with n players.

Proof. Since D̄ is MPC of a domainD for a society with 2 players, this implies that for any Q /∈ D̄

D̄ ∪Q is dictatorial for a society with 2 players. Using Proposition 2.1, we can claim that D̄ ∪Q

is dictatorial for a society with 2 players then D̄ ∪Q is dictatorial for a society with n players as

well. Similarly, D̄ is non-dictatorial for a society with 2 players then D̄ is non-dictatorial for a

society with n players as well. Therefore, D̄ is MPC of the domain D for a society with n players

as well. �

With Lemma 3.1 in place, we can focus our analysis to the case of a society with two players.

Theorem 3.1. A domain S̄ is a MPC of the single peaked domain S iff S̄ = {P ∈ U|r1(P) = x1 ⇒

r2(P) = x2} or S̄ = {P ∈ U|r1(P) = xm ⇒ r2(P) = xm−1}.

Proof. We will use a forthcoming result i.e., the dictatorship result in Theorem 4.3, to prove this

theorem. First we prove the necessity part. Observe that for any preference Q /∈ S̄ , S̄ ∪ {Q} ⊃

S̃m and hence is dictatorial.

Now we proceed to prove the sufficiency part. Let S̄1 = {P ∈ U|r1(P) = x1 ⇒ r2(P) = x2}

and S̄2 = {P ∈ U|r1(P) = xm ⇒ r2(P) = xm−1}. Consider another MPC of the single peaked

domain S , D, where D 6= S̄1 and D 6= S̄2. In other words, there exists P̄ ∈ D \ S such that

either P̄ /∈ S̄1 \ S or P̄ /∈ S̄2 \ S . Observe that (S̄1 \ S)∪ (S̄2 \ S) = (U \ S). Therefore, it cannot

be the case that P̄ /∈ S̄1 \ S and P̄ /∈ S̄2 \ S . First suppose P̄ ∈ S̄1 \ S and P̄ /∈ S̄2 \ S . This

means that r1(P̄) = xm and r2(P̄) 6= xm−1. Since D is an MPC, it cannot be the case that D ⊃ S̃ .

Therefore, P′ /∈ D for any P′ ∈ U with r1(P′) = x1 and r2(P′) 6= x2. This means that any P′ ∈ D

with r1(P′) = x1 implies r2(P′) = x2 and hence we have D ⊆ S̄1. Similarly if we assume that

P̄ /∈ S̄1 \ S and P̄ ∈ S̄2 \ S then using similar arguments we can establish that D ⊆ S̄2. �

REMARK. The MPCs of the domain of minimally rich single peaked preferences are the same

as the MPCs of the single peaked domain.
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4 Minimal Dictatorial Cover of Possibility Domains

We introduce the notion of minimal dictatorial cover of a possibility domain.

Definition 4.1. The minimal dictatorial cover of a possibility domain D, denoted by D̃, is a dicta-

torial domain that satisfies the following properties:

• D̃ ⊃ D.

• @D′ with D ⊂ D′ ⊂ D̃ such that D′ is dictatorial.

For convenience, we label r2(Q) as xl and r2(Q
′
) as xr. Note that xl 6= x1, x2 and xr 6= xm, xm−1.

We will use the following ramification result to reduce the dimension of the problem from n

players to 2 players.

Theorem 4.1. A domain S̃ is the minimal dictatorial cover of the domain S of single peaked preferences

iff S̃ = S ∪ {Q, Q
′} such that r1(Q) = x1, r2(Q) 6= x2, r1(Q

′
) = xm and r2(Q

′
) 6= xm−1.

Proof. We will prove the necessary part of theorem in two steps:

1. S̃ is a dictatorial domain.

2. Any D with S ⊂ D ⊂ S̃ then D is not dictatorial.

STEP 1: A forthcoming theorem, Theorem 4.3, proves that the domain S̃m = Sm ∪ {Q, Q′} is

dictatorial. Observe that S̃ ⊃ S̃m and hence is a dictatorial domain.

STEP 2: Consider any D with S ⊂ D ⊂ S̄ . It is clear that either preferences of the form Q /∈ D or

preferences of the form Q′ /∈ D. Without loss of generality assume that Q /∈ D. This means for

any P1 ∈ D with r1(P1) = x1 implies r2(P1) = x1. Therefore, the following non-dictatorial rule is

unanimous and strategy-proof when defined over D:

f (P1, P2) =


x1 if r1(P1) = x1, x1P2x2

x2 if r1(P1) = x1, x2P2x1

r1(P1) otherwise

Clearly, player 1 fails to be a dictator at a preference which places x1 at the top. This proves

that D is a non-dictatorial domain.

Now we prove the sufficiency part. Consider any other MDC D′. By definition, D′ 6⊃ S̃

but D′ ⊃ S . This means that either preferences of the form Q /∈ D′ or preferences of the form
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Q′ /∈ D′. Without loss of generality assume that Q /∈ D. This means for any P1 ∈ D with

r1(P1) = x1 implies r2(P1) = x1. Again the rule f given in the necessary part of the proof is

unanimous, strategy-proof and non-dictatorial when defined over D′ and therefore, any such

D′ is non-dictatorial. Hence no other domain D′ forms an MDC of the domain of single peaked

preferences S . �

We also characterize the MDCs of the minimally rich single peaked domain Sm as stated in

Theorem 4.2.

Theorem 4.2. A domain S̃m is a MDC of the minimally rich single peaked domain Sm iff S̃m = Sm ∪

{Q, Q
′} where r1(Q) = x1, r2(Q) 6= x2, r1(Q

′
) = xm and r2(Q

′
) 6= xm−1.

Proof. We will prove the necessary part of theorem in two steps:

1. S̃m is a dictatorial domain.

2. Any D with Sm ⊂ D ⊂ S̄m then D is not dictatorial.

STEP 1: A forthcoming theorem, Theorem 4.3, proves that the domain S̃m is dictatorial.

STEP 2: In the proof of Theorem 4.1, we have already proved that any domainDwith S ⊂ D ⊂ S̃

is a possibility domain. Then clearly any domain D′ with Sm ⊂ D′ ⊂ S̃m is also a possibility

domain as D′ ⊂ D (D′ ⊂ S̃m ⊂ S ⊂ D).

The proof of the sufficiency part of this theorem involves arguments similar to the ones used

in the proof of the sufficiency part of Theorem 4.1. �

All of the above theorems crucially depends on the following theorem which proves that the

domain S̃m = Sm ∪ {Q, Q′} is dictatorial.

Theorem 4.3. The domain S̃m = Sm ∪ {Q, Q′} is a dictatorial domain.

With Proposition 2.1 in place, we only need to prove that S̃m is dictatorial in the case of two

players, i.e., N = {1, 2}.

We prove Theorem 4.2 via a series of lemmas.

Lemma 4.1. The following statements hold:

(i) If xk+1 ∈ O1(P2) for some P2 ∈ S̃m with r1(P2) = xk then xk+1 ∈ O1(P2) for all P2 ∈ S̃m with

r1(P2) = xk where 2 ≤ k ≤ m− 1.
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(ii) If xk−1 ∈ O1(P2) for some P2 ∈ S̃m with r1(P2) = xk then xk−1 ∈ O1(P2) for all P2 ∈ S̃m with

r1(P2) = xk where 2 ≤ k ≤ m− 1.

Proof. We provide a proof of statement (i) and statement (ii) can be proved using analogous

arguments. Consider P2 with r1(P2) = xk and r2(P2) = xk−1 and P′2 with r1(P′2) = xk and

r2(P′2) = xk+1. Suppose xk+1 ∈ O1(P2) and xk+1 /∈ O1(P′2). Consider P1 such that r1(P1) =

xk+1 and r2(P2) = xk. Then f (P1, P2) = xk+1 and f (P1, P′2) = xk which means that player 2

manipulates at (P1, P2) via P′2. A similar argument applies in the case where xk+1 ∈ O1(P2) and

xk+1 /∈ O1(P′2). �

Lemma 4.2. Consider P2 ∈ S̃m \ {Q, Q′} such that r1(P2) = xk. Then the following statements hold:

(i) For any i < k− 1, xi ∈ O1(P2) means xi+1 ∈ O1(P2).

(ii) For any j > k + 1, xj ∈ O1(P2) means xj−1 ∈ O1(P2).

Proof. We prove statement (i) and an analogous argument applies in the case of statement (ii).

Assume to the contrary that for some i < k − 1, xi ∈ O1(P2) and xi+1 /∈ O1(P2). Consider

P1 ∈ S̃m \ {Q, Q′}with r1(P1) = xi+1 and r2(P1) = xi. Observe that f (P1, P2) = xi. Now consider

any P′2 ∈ S̃m \ {Q, Q′} with r1(P′2) = xi+1. Clearly f (P1, P′2) = xi+1 and player 2 manipulates at

(P1, P2) via P′2. �

Lemma 4.3. The following statements hold:

(i) Consider P2 ∈ S̃m such that r1(P2) = xl.

(a) If xl+1 ∈ O1(P2) then O1(P2) = X.

(b) If xl−1 ∈ O1(P2) then O1(P2) = X.

(ii) Consider P2 ∈ S̃m such that r1(P2) = xr.

(a) If xr+1 ∈ O1(P2) then O1(P2) = X.

(b) If xr−1 ∈ O1(P2) then O1(P2) = X.

Proof. We prove statement (i) and statement (ii) can be proved using analogous arguments.

PROOF OF PART (a): Consider P2 with r1(P2) = xl and r2(P2) = xl+1 and P′2 with r1(P′2) = xl and

r2(P′2) = xl−1. By Lemma 4.1, xl+1 ∈ O1(P2) iff xl+1 ∈ O1(P′2).
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We claim that xl+1 ∈ O1(P′2) implies xl ∈ O1(P̂2) where P̂2 such that r1(P̂2) = x2 and r2(P̂2) =

x1. By Lemma 4.2, it is enough to prove that xl+1 ∈ O1(P′2) implies xl+1 ∈ O1(P̂2). Suppose

xl+1 ∈ O1(P′2) and xl+1 /∈ O1(P̂2). Consider P1 such that r1(P1) = xl+1 and r2(P1) = xl. Then

f (P1, P′2) = xl+1 and f (P1, P̂2) ∈ {x2, . . . , xl} which means that player 2 manipulates at (P1, P′2)

via P̂2.

We claim that x1 ∈ O1(P̂′2) where P̂′2 such that r1(P̂′2) = x2 and r2(P̂′2) = x3. By Lemma 4.1, it

is enough to prove that x1 ∈ O1(P̂2). Suppose not. Consider P̂1 with r1(P̂1) = x1 and r2(P̂1) = xl.

Observe that f (P̂1, P̂2) = xl and player 2 manipulates at (P̂1, P̂2) via any preference with top x1.

Therefore, x1 ∈ O1(P̂′2) and hence x1 ∈ O1(P2). If not, f (P̂′1, P̂′2) = x1 and f (P̂′1, P2) ∈ {x2, . . . , xl}

where P̂′1 such that r1(P̂′1) = x1 and r2(P̂′1) = x2. This means that player 2 will manipulate

at (P̂′1, P̂′2) via P2 and we prove that x1 ∈ O1(P2). By a similar argument, we can prove that

x1 ∈ O1(P̄2) where P̄2 such that r1(P̄2) = xm and r2(P̄2) = xm−1 and x1 ∈ O1(P̃2) where P̃2

such that r1(P̃2) = xm−1 and r2(P̃2) = xm−2. Using Lemma 4.2 and the fact that x1 ∈ O1(P̄2),

O1(P̄2) = X.

We claim that xk ∈ O1(P̃2) any xk ∈ X where 1 ≤ k ≤ m− 1 and P̃2 with r1(P̃2) = xm−1 and

r2(P̃2) = xm. By unanimity, xm−1 ∈ O1(P2). Now we claim that xi ∈ O1(P̃2) then xi−1 ∈ O1(P̃2)

for 1 ≤ i ≤ m− 1. Suppose xi ∈ O1(P̃2) and xi−1 ∈ O1(P̃2) for some i. Observe that f (P̃1, P̃2) = xi

and f (P̃1, P̄2) = xi−1 where such that r1(P̃1) = xi−1 and r2(P̃1) = xi. This means that player 2

manipulates at (P̃1, P̃2) via P̄2. Since r 6= m, m− 1, xr ∈ O1(P̃2). We now claim that xm ∈ O1(P̃2).

If not f (P̃′1, P̃2) = xr where P̃′1 such that r1(P̃′1) = xm and r2(P̃′1) = xr and player 2 manipulates

at (P̃′1, P̃2) via any preference with xm at the top. By Lemma 4.1, xm ∈ O1(P̃′2).

Now we claim that xm ∈ O1(P′2). If not, f (P̃′′1 , P̃′2) = xm and f (P̃′′1 , P′2) ∈ {xl, . . . , xm−1} where

P̃′′1 such that r1(P̃′′1 ) = xm and r2(P̃′′1 ) = xm−1. This means that player 2 will manipulate at

(P̃′′1 , P̄′2) via P′2 and we prove that xm ∈ O1(P′2). From the above arguments, we have proved that

x1 ∈ O1(P2) and xm ∈ O1(P′2). With unanimity and Lemma 4.2 in place, O1(P2) = O1(P′2) = X.

PROOF OF PART (b): The proof for part (b) is similar to the proof for part (a) for the case l− 1 ≤ r.

Hence we prove part (b) when l − 1 > r. Consider P2 with r1(P2) = xl and r2(P2) = xl−1 and

P′2 with r1(P′2) = xl and r2(P′2) = xl+1. By Lemma 4.1, xl−1 ∈ O1(P2) iff xl−1 ∈ O1(P′2). In what

follows, we will prove that if xl−1 ∈ O1(P2) then xl+1 ∈ O1(P2) and then we are done by using

arguments in the proof of part (a).

We claim that xl−1 ∈ O1(P2) implies xl ∈ O1(P̂2) where P̂2 with r1(P̂2) = xm and r2(P̂2) =
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xm−1. By Lemma 4.2, it is enough to prove that xl−1 ∈ O1(P2) implies xl−1 ∈ O1(P̂2). Sup-

pose not. Consider P1 with r1(P1) = xl−1 and r2(P1) = xl. Observe that f (P1, P2) = xl−1 and

f (P1, P̂2) = {xl, . . . , xm}. This means that player 2 will manipulate at (P1, P2) via P̂2.

Now we claim that xl ∈ O1(P̂2) implies xl ∈ O1(P̂′2) where P̂′2 with r1(P̂′2) = xm and r2(P̂′2) =

xr. Suppose not. Consider P′1 with r1(P′1) = xl and r2(P′1) = xl+1. Observe that f (P′1, P̂2) = xl

and f (P1, P̂2) = {xl+1, . . . , xm}. This means that player 2 will manipulate at (P1, P̂2) via P̂′2.

Consider P̄2 with r1(P̄2) = xr and r2(P̄2) = xr−1. Suppose xj ∈ O1(P̄2) where j < r. By Lemma

4.2, xr−1 ∈ O1(P̄2). This means that xr−1 ∈ O1(P′2). If not, f (P̄1, P̄2) = xr−1 and f (P̄1, P′2) =

{xr, . . . , xl−1} where P̄1 such that r1(P̄1) = xr−1 and r2(P̄1) = xr which means that player 2 will

manipulate at (P̄1, P̄2) via P′2. Since l − 1 > r, xr ∈ O1(P′2) due to Lemma 4.2. Now we claim that

xm ∈ O1(P′2). Consider P̄′1 such that r1(P̄′1) = xm and r2(P̄′1) = xr. Observe that f (P̄′1, P′2) = xr

and player 2 manipulates at (P̄′1, P′2) via some preference with xm at the top. Thus we prove that

xm ∈ O1(P′2) and hence by Lemma 4.2, xl+1 ∈ O1(P′2). Repeating the arguments in the proof of

part (a), we can prove that O1(P2) = O1(P′2) = X.

In view of the arguments in the previous paragraphs, we now assume that xj ∈ O1(P̄2) where

j ≥ r. We have to consider two cases here. Firstly, let us assume that x1 ∈ O1(P̂′2). Consider P̂1

with r1(P̂1) = x1 and r2(P̂1) = x2. Then f (P̂1, P̂′2)) = x1. If f (P̂1, P̄2)) = xr then player 2 will

manipulate at (P̂1, P̂′2)) via P̄2. If f (P̂1, P̄2)) = xj where j > r then player 2 manipulates at (P̂1, P̄2)

via any preference with x1 at the top. Next assume that x1 /∈ O1(P̂′2). From the arguments in

an earlier paragraph, we know that xl /∈ O1(P̂′2). Consider P̂′1 with r1(P̂′1) = x1 and r2(P̂′1) = xl.

Then f (P̂′1, P̂′2)) = xl. If f (P̂′1, P̄2)) = xr then player 2 will manipulate at (P̂′1, P̂′2)) via P̄2. If

f (P̂′1, P̄2)) = xj where j > r then player 2 manipulates at (P̂′1, P̄2) via any preference with x1 at

the top. �

Lemma 4.4. Let P2 be such that r1(P2) = xl and P′2 be such that r1(P′2) = xr. Then O1(P2) = {xl} iff

O1(P2) = {xr}.

Proof. We prove this lemma in two cases.

CASE 1 (l − 1 ≤ r): For this case, we only prove the sufficiency part as the necessary part can

be proved using analogous arguments. Consider P2 such that r1(P2) = xl and P′2 be such that

r1(P′2) = xr. Assume on the contrary that O1(P′2) = {xr} and O1(P2) 6= {xl}. An immediate

consequence of Lemma 4.2 is that if O1(P2) 6= {xl} then either xl+1 ∈ O1(P2) or xl−1 ∈ O1(P2).

First consider the case where xl+1 ∈ O1(P2). Due to Lemma 4.1, assume without loss of
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generality that r2(P2) = xl−1. We claim that xl+1 ∈ O1(P̄2) where r1(P̄2) = x2 and r2(P̄2) = x1.

Suppose not. Consider P1 with r1(P1) = xl+1 and r2(P1) = xl. Observe that f (P1, P2) = xl+1

and f (P1, P̄2) ∈ {x2, . . . , xl} which means that player 2 manipulates at (P1, P2) via P̄2. Therefore,

xl+1 ∈ O1(P̄2) and by Lemma 4.2, xl ∈ O1(P̄2). Next we claim that x1 ∈ O1(P̄2). Consider

P′1 with r1(P′1) = x1 and r2(P′1) = xl. Observe that f (P1, P̄2) = xl which means that player 2

manipulates at (P1, P̄2) via any preference that places x1 at the top. By Lemma 4.1, x1 ∈ O1(P̄′2)

where r1(P̄′2) = x2 and r2(P̄′2) = x3. Consider P′2 with r1(P′2) = xr and r2(P′2) = xr+1. Notice

that we have assumed in the begining that O1(P′2) = {xr}. Lastly we claim that x1 ∈ O1(P′2).

Suppose not. Consider P′′1 with r1(P′′1 ) = x1 and r2(P′′1 ) = x2. Observe that f (P′′1 , P̄′2) = x1 and

f (P′′1 , P′2) = xr which means that player 2 manipulates at (P′′1 , P̄′2) via P′2. This is a contradiction

to our assumption that O1(P′2) = {xr}.

Next consider the case where xl−1 ∈ O1(P2). Due to Lemma 4.1, assume without loss of

generality that r2(P2) = xl+1. Recall that we start by assuming that O1(P′2) = {xr}. This means

that f (P1, P2) = xl−1 and f (P1, P′2) = xr where r1(P1) = xl−1. Since l − 1 ≤ r, xrP2xl−1. Then

player 2 manipulates at (P1, P2) via P′2.

CASE 2 (l − 1 > r): For this case, we only prove the necessary part as the sufficiency part can

be proved using analogous arguments. Consider P2 such that r1(P2) = xl and P′2 be such that

r1(P′2) = xr. Assume on the contrary that O1(P2) = {xl} and O1(P′2) 6= {xr}. As argued in the

earlier case, if O1(P′2) 6= {xr} then either xr+1 ∈ O1(P′2) or xr−1 ∈ O1(P′2).

First consider the case where xr+1 ∈ O1(P′2). Due to Lemma 4.1, assume without loss of

generality that r2(P′2) = xr−1. We claim that xr+1 ∈ O1(P̄2) where r1(P̄2) = x1 and r2(P̄2) = x2.

Suppose not. Consider P1 with r1(P1) = xr+1 and r2(P1) = xr. Observe that f (P1, P′2) = xr+1

and f (P1, P̄2) ∈ {x1, . . . , xr} which means that player 2 manipulates at (P1, P′2) via P̄2. Therefore,

xr+1 ∈ O1(P̄2) and by Lemma 4.2, x2 ∈ O1(P̄2). Next we claim x2 ∈ O1(P̄′2) with r1(P̄′2) = x1

and r2(P̄′2) = xl. Suppose not. Consider P′1 with r1(P′1) = x2 and r1(P′1) = x1. Observe that

f (P′1, P̄2) = x2 and f (P′1, P̄′2) = x1 which means that player 2 will manipulate via (P′1, P̄2) via

P̄′2. Now consider P′′1 with r1(P′′1 ) = xl. Observe that f (P′′1 , P̄′2) = x2 and f (P′′1 , P2) = xl which

means that player 2 will manipulate at (P′′1 , P̄′2) via P2. Therefore, x2 ∈ O1(P2) which contradicts

our initial assumption.

Next consider the case where xr−1 ∈ O1(P2). Due to Lemma 4.1, assume without loss of

generality that r2(P2) = xr+1. Recall that we start by assuming that O1(P2) = {xl}. This means
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that f (P1, P′2) = xr−1 and f (P1, P2) = xl where r1(P1) = xr−1. Since l − 1 > r, xlP′2xr−1. Then

player 2 manipulates at (P1, P′2) via P2 which is a contradiction to our initial assumption. �

Lemma 4.5. Let P2 be such that r1(P2) = xl and P′2 be such that r1(P′2) = xr. Then O1(P2) = {xl} or

O1(P′2) = {xr} implies O1(P̄2) = {xk} for any P̄2 ∈ S̃m with r1(P̄2) = xk.

Proof. Consider P2 be such that r1(P2) = xl and P′2 be such that r1(P′2) = xr. First observe that

by Lemma 4.4, O1(P2) = {xl} iff O1(P′2) = {xr}. Therefore, we can assume without loss of

generality that O1(P2) = {xl}. We prove the theorem only for the case l ≤ r. An analogous

argument can be used for the case l > r. We prove this in three parts.

PART (A)(k < l): Consider P̄2 with r1(P̄2) = xk where k = l − 1. Recall that we started by

assuming that O1(P2) = {xl} where r1(P2) = xl. Assume to the contrary that O1(P̄2) 6= {xl−1}.

Let r2(P̄2) = xl−2. We claim that xl ∈ O1(P̄2). Using Lemma 4.1, it is enough to prove that

xl ∈ O1(P̄′2) with r1(P̄′2) = xl−1 and r2(P̄′2) = xl. In fact, we will prove that O1(P̄′2) = {xl−1, xl}.

Suppose not, i.e., xi ∈ O1(P̄′2) where i 6= l − 1, l. Consider P1 with r1(P1) = xi. Observe that

f (P1, P̄′2) = xi and f (P1, P2) = xl which means that player 2 manipulates at (P1, P̄′2) via P2.

We claim that xl ∈ O1(P̃2) where r1(P̃2) = x1 and r2(P̃2) = x2. Suppose not. Consider P′1 with

r1(P′1) = xl and r2(P′1) = xl−1. Observe that f (P′1, P̄2) = xl and f (P′1, P̃2) = {x1, x2, . . . , xl−1}

which means that player 2 manipulates at (P′1, P̄2) via P̃2. Therefore, x2 ∈ O1(P̃2) using Lemma

4.2. Next we claim that x2 ∈ O1(P̃′2) with r1(P̃′2) = x1 and r2(P̃′2) = xl. Suppose not. Consider P̄1

with r1(P̄1) = x2 and r2(P̄1) = x1. Observe that f (P̄1, P̃2) = x2 and f (P̄1, P̃′2) = x1 which means

that player 2 manipulates at (P̄1, P̃2) via P̃′2. Therefore, x2 ∈ O1(P̃′2). Observe that f (P̄1, P̃′2) = x2

and f (P̄1, P2) = xl which means that player 2 manipulates at (P̄1, P̃′2) via P2.

Now we use induction on the set of alternatives {xl−1, xl−2, . . . , x1}. Assume that O1(P̂2) =

{r1(P̂2)} for any P̂2 with r1(P̂2) = xi for some i such that k ≤ i ≤ l and k > 1. In particular we

assume that O1(P̂′2) = {xk} for any P̂′2 with r1(P̂′2) = xk. Then we claim that O1(
¯̄P2) = {r1(

¯̄P2)}

for any ¯̄P2 with r1(
¯̄P2) = xk−1. Let r2( ¯̄P2) = xk−2. We claim that xk ∈ O1(

¯̄P2). Using Lemma

4.1, it is enough to prove that xk ∈ O1(
¯̄P′2) with r1(

¯̄P′2) = xk−1 and r2( ¯̄P′2) = xk. In fact, we will

prove that O1(
¯̄P′2) = {xk−1, xk}. Suppose not, i.e., kxj ∈ O1(

¯̄P′2) where j 6= k − 1, k. Consider

P̄′1 with r1(P̄′1) = xj. Observe that f (P̄′1, ¯̄P′2) = xj and f (P̄′1, P̂′2) = xk which means that player 2

manipulates at (P̄′1, ¯̄P′2) via P̂′2.

We claim that xk ∈ O1(P̃2) where r1(P̃2) = x1 and r2(P̃2) = x2. Suppose not. Consider P̂1 with

r1(P̂1) = xk and r2(P̂1) = xk−1. Observe that f (P̂1, ¯̄P2) = xk and f (P̂1, P̃2) = {x1, x2, . . . , xk−1}
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which means that player 2 manipulates at (P̂1, ¯̄P2, P̄2) via P̃2. Therefore, x2 ∈ O1(P̃2) using

Lemma 4.2. Using arguments in an earlier paragraph, this implies x2 ∈ O1(P̃′2) with r1(P̃′2) = x1

and r2(P̃′2) = xl. Observe that f (P̄1, P̃′2) = x2 and f (P̄1, P2) = xl which means that player 2

manipulates at (P̄1, P̃′2) via P2.

PART (B)(l < k < r): Consider P̄2 with r1(P̄2) = xk where k = l + 1. Recall that we started by as-

suming that O1(P2) = {xl}where r1(P2) = xl. Assume to the contrary that O1(P̄2) 6= {xl+1}. Let

r2(P̄2) = xl. We claim that xl ∈ O1(P̄2). Using Lemma 4.1, it is enough to prove that xl ∈ O1(P̄′2)

with r1(P̄′2) = xl+1 and r2(P̄′2) = xl. In fact, we will prove that O1(P̄′2) = {xl, xl+1}. Suppose not,

i.e., xi ∈ O1(P̄′2) where i 6= l + 1, l. Consider P1 with r1(P1) = xi. Observe that f (P1, P̄′2) = xi and

f (P1, P2) = xl which means that player 2 manipulates at (P1, P̄′2) via P2.

We claim that xl ∈ O1(P̃2) where r1(P̃2) = xm and r2(P̃2) = xm−1. Suppose not. Con-

sider P′1 with r1(P′1) = xl and r2(P′1) = xl+1. Observe that f (P′1, P̄2) = xl and f (P′1, P̃2) =

{xl+1, xl+2, . . . , xm} which means that player 2 manipulates at (P′1, P̄2) via P̃2. Therefore, xm−1 ∈

O1(P̃2) using Lemma 4.2. Next we claim that xm−1 ∈ O1(P̃′2) with r1(P̃′2) = xm and r2(P̃′2) = xr.

Suppose not. Consider P̄1 with r1(P̄1) = xm−1 and r2(P̄1) = xm. Observe that f (P̄1, P̃2) = xm−1

and f (P̄1, P̃′2) = xm which means that player 2 manipulates at (P̄1, P̃2) via P̃′2. Therefore, xm−1 ∈

O1(P̃′2). Recall that O1(P′2) = {xr} where r1(P′2) = xr. Observe that f (P̄1, P̃′2) = xm−1 and

f (P̄1, P′2) = xr which means that player 2 manipulates at (P̄1, P̃′2) via P′2.

Now we use induction on the set of alternatives {xl+1, xl+2, . . . , xr}. Assume that O1(P̂2) =

{r1(P̂2)} for any P̂2 with r1(P̂2) = xi for some i such that l ≤ i ≤ k and k < r. In particular we

assume that O1(P̂′2) = {xk} for any P̂′2 with r1(P̂′2) = xk. Then we claim that O1(
¯̄P2) = {r1(

¯̄P2)}

for any ¯̄P2 with r1(
¯̄P2) = xk+1. Let r2( ¯̄P2) = xk+2. We claim that xk ∈ O1(

¯̄P2). Using Lemma

4.1, it is enough to prove that xk ∈ O1(
¯̄P′2) with r1(

¯̄P′2) = xk+1 and r2( ¯̄P′2) = xk. In fact, we will

prove that O1(
¯̄P′2) = {xk, xk+1}. Suppose not, i.e., xj ∈ O1(

¯̄P′2) where j 6= k, k + 1. Consider P̄′1
with r1(P̄′1) = xj. Observe that f (P̄′1, ¯̄P′2) = xj and f (P̄′1, P̂′2) = xk which means that player 2

manipulates at (P̄′1, ¯̄P′2) via P̂′2.

We claim that xk ∈ O1(P̃2) where r1(P̃2) = xm and r2(P̃2) = xm−1. Suppose not. Con-

sider P̂1 with r1(P̂1) = xk and r2(P̂1) = xk+1. Observe that f (P̂1, ¯̄P2) = xk and f (P̂1, P̃2) =

{xk+1, xk+2, . . . , xm} which means that player 2 manipulates at (P̂1, ¯̄P2, P̄2) via P̃2. Therefore,

xm−1 ∈ O1(P̃2) using Lemma 4.2. Using arguments in an earlier paragraph, this implies xm−1 ∈

O1(P̃′2) with r1(P̃′2) = xm and r2(P̃′2) = xr. Observe that f (P̄1, P̃′2) = xm−1 and f (P̄1, P2) = xr
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which means that player 2 manipulates at (P̄1, P̃′2) via P2.

PART (C)(k > r): For this case, we can use arguments similar to the ones used in PART (B) to

establish our claim. �

Lemma 4.6. Consider any P2 such that r1(P2) = xl and any P′2 be such that r1(P′2) = xr. Then

O1(P2) = X or O1(P′2) = X implies O1(P̄2) = X for any P̄2 ∈ S̃m.

Proof. Assume that O1(P2) = X where for any P2 with r1(P2) = xl. We can use similar arguments

if we start with the assumption O1(P′2) = X where for any P′2 with r1(P′2) = xr. Consider P̂2 with

r1(P̂2) = xl and r2(P̂2) = xl+1. By our assumption, we know O1(P̂2) = X. In particular, we

know that xm ∈ O1(P̂2). We claim that xm ∈ O1(P̄2) for any P̄2 ∈ Sm. Suppose not. Consider

P1 with r1(P1) = xm and r2(P1) = xm−1. Let r1(P̄2) = xk. Observe that f (P1, P̂2) = xm and

f (P1, P̄2) ∈ {xk, xk+1, . . . , xm−1} which means that player 2 will manipulate at (P1, P̂2) via P̄2.

Using similar arguments, one can prove that x1 ∈ O1(P̄2) for any P̄2 ∈ Sm as x1 ∈ O1(P̂′2) where

r1(P̂′2) = xl and r2(P̂′2) = xl−1. Now using Lemma 4.2, one can claim that O1(P̄2) = X for any

P̄2 ∈ Sm.

Now we claim that O1(Q2) = X where r1(Q2) = x1 and r2(Q2) = xl. Using the arguments in

the above paragraph, O1(P̃2) = X where r1(P̃2) = x1 and r2(P̃2) = x1. Observe that x1 ∈ O1(Q2)

due to unanimity. First we claim that x1 ∈ O1(Q2) implies x2 ∈ O1(Q2). Suppose not. Consider

P′1 with r1(P′1) = x2 and r2(P′1) = x1. Observe that f (P′1, P̃2) = x2 and f (P′1, Q2) = x1 which

means that player 2 will manipulate at (P1, P̃2) via Q2. Now we use induction to complete the

proof. Assume that xk ∈ O1(Q2). We claim that xk ∈ O1(Q2) implies xk+1 ∈ O1(Q2). Suppose

not. Consider P̄1 with r1(P̄1) = xk+1 and r2(P̄1) = xk. Observe that f (P̄1, P̃2) = xk+1 and

f (P̄1, Q2) = xk which means that player 2 will manipulate at (P̄1, P̃2) via Q2. Thus, we have

proved that O1(Q2) = X where r1(Q2) = x1 and r2(Q2) = xl. Using similar arguments, one can

prove that O1(Q′2) = X where r1(Q′2) = xm and r2(Q′2) = xr. �

Proof of Theorem 4.3. Consider P2 with r1(P2) = xl. Using Lemma 4.2-4.3, we know that O1(P2) =

{xl} or X. If O1(P2) = {xl} then by Lemma 4.5, we know that O1(P′2) = {r1(P′2)} for any

P′2 ∈ S̃m. This means that player 1 is the dictator. Now suppose that O1(P2) = X. By Lemma 4.6,

we know that O1(P′2) = X for any P′2 ∈ S̃m. This means that player 2 is the dictator. Therefore,

the domain S̃m is dictatorial. �
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5 Generalized Circular Domain

In this section, we generalize the idea of a circular domain.

Definition 5.1. A regular domain C is a generalized circular domain if:

1. ∃P, P′ ∈ C such that r1(P) = x1, r2(P) = x2 and rm(P) = xm and r1(P′) = x1 and r2(P′) =

xm.

2. ∃P′′, P′′′ ∈ C such that r1(P′′) = xm, r2(P′′) = xm−1 and rm(P′′) = x1 and r1(P′′′) = xm and

r2(P′′′) = x1.

3. ∃P̄, P̃ ∈ C such that r1(P̄) = xk, r2(P̄) = xk+1 and xmP̄xk−1 and r1(P̃) = xk, r2(P̃) = xk−1

and x1P̃xk+1 for k 6= 1, m.

Theorem 5.1. The generalized circular domain C is a dictatorial domain.

We will consider an example that would aid us to intuitively understand the generalized

circular domain.

Example 5.1. Consider X = {a, b, c, d, e, f , g} and the generalized circular domainD = {P1, P2, P3, P4,

P5, P6, P7, P8, P9, P10, P11, P12, P13, P14} as illustrated below:

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

a a b b c c d d e e f f g g

b g c a d b e c f d g e a f

c d e f g f g a b a c a e d

f e g e f a a g c c b g c b

d c d d e e b b g b d d d e

e f a g a g f f a g a b b c

g b f c b d c e d f e c f a

Explain the example.

Definition 5.2. Consider any admissible domain D. A social choice function f : Dn → X is

monotone if for any two profiles PN and P
′
N ∈ Dn with B( f (PN), Pi) ⊇ B( f (P′N), Pi)∀i ∈ N, we

have f (PN) = f (P
′
N).
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Proposition 5.1. A SCF f is strategy-proof only if f is monotone.

Proof. See Reny (2001) for a proof of this proposition. �

Now we proceed to prove Theorem 5.1. Our first step in the proof, Proposition 2.1, reduces

the dimension of the problem from an arbitrary number of individuals to two individuals and is

of independent interest.

The following lemmas would aid us in proving this theorem.

Lemma 5.1. Consider P2 ∈ C such that r1(P2) = xk. Then for all l ∈ {k − 1, k + 1}, xl ∈ O1(P2)

implies xl ∈ O1(P′2) for all P′2 ∈ C with r1(P′2) = xk.

Proof. Assume for contradiction that there exists P2, P′2 ∈ C with r1(P2) = r1(P′2) = xk such that

xl ∈ O1(P2) and xl 6∈ O1(P′2) for some l ∈ {k− 1, k + 1}. Consider P1 ∈ C such that r1(P1) = xl

and r2(P1) = xk. Then f (P1, P2) = xl and f (P1, P′2) = xk. This means player 2 manipulates at

(P1, P2) via P′2. �

Lemma 5.2. Let P2, P′2 be such that r1(P2) = x1 and r1(P′2) = xm. We show O1(P2) = {x1} implies

O1(P′2) = {xm}.

Proof. Assume for contradiction that O1(P2) = {x1} and O1(P′2) 6= {xm}. Consider P̂2, P̄2 such

that r1(P̂2) = x1, r2(P̂2) = xm and r1(P̄2) = xm, r2(P̄2) = x1. Note that O1(P2) = {x1} implies

O1(P̂2) = {x1}, and O1(P′2) 6= {xm} implies O1(P̄2) 6= {xm}. We claim O1(P̄2) = {x1, xm}. It is

enough to show that xj 6∈ O1(P̄2) for all j 6= 1, 2. Assume to the contrary that xj ∈ O1(P̄2) for

some j 6= 1, m. Consider P1 such that r1(P1) = xj. Then f (P1, P̄2) = xj and f (P1, P̂2) = x1 which

means player 2 manipulates at (P1, P̄2) via P̂2.

Next we claim that xm−1 ∈ O1(P̃2) with P̃2 such that r1(P̃2) = xm and rm(P̃2) = xm−1. Suppose

not. By Lemma 5.1, x1 ∈ O1(P̃2). Let P′1 be such that r1(P′1) = xm−1 and rm(P′1) = xm. Observe

that f (P′1, P̃2) ∈ X \ {xm, xm−1}. This means that player 2 will manipulate at (P′1, P̃2) via any

preference with xm−1 at the top.

By Lemma 5.1, xm−1 ∈ O1(P̄2) which contradicts our initial assumption. �

Lemma 5.3. Consider P2 ∈ C such that r1(P2) = x1, r2(P2) = x2 and rm(P2) = xm, or r1(P2) = xm,

r2(P2) = xm−1 and rm(P2) = x1. Then the option set O1(P2) is either {r1(P2)} or X

Proof. We prove this lemma for the case where r1(P2) = x1, r2(P2) = x2 and rm(P2) = xm. The

proof for the case where r1(P2) = xm, r2(P2) = xm−1 and rm(P2) = x1 is analogous.
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Take P̄2 ∈ C with r1(P̄2) = x1 and r2(P̄2) = xm. Suppose O1(P̄2) is not {x1}. We show

xm ∈ O1(P̄2). Assume for contradiction that xm 6∈ O1(P̄2). Consider P1 ∈ C such that r1(P1) = xm

and rm(P1) = x1. Then f (P1, P̄2) = xj for some xj 6= x1, xm. Now consider P′2 ∈ C such that

r1(P′2) = xm. By unanimity f (P1, P′2) = xm which means player 2 manipulates at (P1, P̄2) via P′2.

Now we show xm ∈ O1(P2). Suppose to the contrary that xm 6∈ O1(P2). Consider P1 such that

r1(P1) = xm and r2(P2) = x1. Then f (P1, P2) = x1 and f (P1, P̄2) = xm where P̄2 is as defined in

the above paragraph. This means player 2 manipulates at (P1, P̄2) via P2.

By virtue of Lemma 5.2, O1(P̄2) is not {x1} means O1(P′2) is not {xm} where r1(P′2) = xm and

rm(P′2) = x1. By an analogous argument in the previous paragraph, x1 ∈ O1(P′2).

We finally show that O1(P2) = X. We show this by induction. Assume that xk+1 ∈ O1(P2)

where k 6= 1, m. We show that xk ∈ O1(P2). First consider P̂2 such that r1(P̂2) = xk+1 and

r2(P̂2) = xk. We show xk ∈ O1(P̂2). Suppose not. As x1 ∈ O1(P′2) and x1 = rm(P′2), monotonicity

implies that x1 ∈ O1(P̂2). Consider P1 ∈ C such that r1(P1) = xk and x1P1xk+1. Then f (P1, P̂2) ∈

B(x1, P̂2) (observe that xk+1 /∈ B(x1, P̂2)). However then player 2 manipulates at (P1, P̂2) via

some preference that has xk at the top. Now we show that xk ∈ O1(P2) as well. Suppose not.

Consider P′1 such that r1(P′1) = xk+1 and r2(P′1) = xk. Then f (P′1, P2) = xk+1 and f (P′1, P̂2) = xk,

which means player 2 manipulates at (P′1, P̂2) via P2. �

Lemma 5.4. Suppose O1(P2) = {xk} for all P2 with r1(P2) = xk for some k such that 1 < k < m. Then

O1(P′2) = {xk+1} for P′2 such that r1(P′2) = xk+1 for some k ∈ {1, 2, . . . , m− 1}.

Proof. Assume for contradiction that O1(P2) = {xk} and O1(P′2) 6= {xk+1}. Using arguments

similar to Lemma 5.2, we have O1(P̄2) = {xk, xk+1} where r1(P̄2) = xk+1 and r2(P̄2) = xk. This

means that xk ∈ O1(P̂2) where P̂2 is such that r1(P̂2) = xk+1 and xmP̂2x1. Now consider P̃2 where

r1(P̃2) = xm and r2(P̃2) = x1. By Lemma 5.2, O1(P̃2) = {xm}. Let P1 be such that r1(P1) = xk and

xmP1x1. Then f (P1, P̂2) = xk and f (P1, P̃2) = xm. But this means player 2 manipulates at (P1, P̂2)

via P̃2. �

Proof of Theorem 5.1. Consider P2 where r1(P2) = x1 and r2(P2) = x2. By Lemma 5.3, we have

O1(P2) is singleton or X. Suppose O1(P2) is singleton. Then due to Lemma 5.2 it follows O1(P′2)

is singleton for all P′2 ∈ C and player 2 is a dictator.

Now suppose O1(P2) = X. We claim O2(P1) is singleton where r1(P1) = xm. Assume for

contradiction that xk ∈ O2(P1) for some k 6= m. Take P̄2 such that r1(P̄2) = xk. Then f (P1, P2) =
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xm and f (P1, P̄2) = xk which means player 2 manipulates at (P1, P2) via P̄2. Using symmetric

argument this means O2(P1) is a singleton for all P1 ∈ C implying that player 1 is a dictator. �

6 Conclusion

In this paper, we introduce the notions of a maximal possibility cover (MPC) of a domain and a min-

imal dictatorial cover (MDC) of a domain. We characterize the MPCs and MDCs of a celebrated

possibility domain of preferences - the domain of single peaked preferences. We also generalize

the dictatorship result in Sato (2010) by introducing the notion of a generalized circular domain

and by proving that it is a dictatorial domain. Further we are working on characterizing the

MPCs and MDCs of other popular domains of preferences such as the domain of single-dipped

preferences and the domain of single-crossing preferences. The paper poses several open ques-

tions for future research. A very challenging but intriguing question would be to provide a

general characterization of the MPCs and MDCs of any given domain of preferences. It is worth-

while to note that there is only one rule that is unanimous, strategy-proof and non-dictatorial in

each of the MPCs of the single peaked domain. An interesting question to ask would be that

whether, in general, can we claim that there is only one unanimous, strategy-proof and non-

dictatorial rule in the MPC of a domain? We plan to tackle these issues in future research.
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Appendix

Appendix A - Novelty of our results

6.1 Novelty of our result

6.1.1 β-domain

Closely related to our work, Pramanik (9) offers a generalization of the linked domain - β-

domain.

Definition 6.1. A pair of alternatives xj, xk is weakly connected, denoted by xj
w∼ xk, if there

exists A ⊂ X (possibly empty) and Pi, P̄i, P
′
i , P

′′
i such that:

1. r1(Pi) = r1(P̄i) = xj and r1(P
′
i ) = r1(P

′′
i ) = xk.

2. A = M(xj, xk, Pi) and A ⊂W(xk, P̄i).

19



3. A = M(xk, xj, P
′
i ) and A ⊂W(xk, P

′′
i ).

Here W(xk, Pi) = {y ∈ X|xkPiy} and M(xj, xk, Pi) = {y ∈ X|xjPiyPixk}.

Definition 6.2. Let B ⊂ A and let xj /∈ B. Then xj is linked to B if there exists xk, xr ∈ B such that

xj
w∼ xk and xj

w∼ xr.

Definition 6.3. A domain D is a β-domain if there exists a one-to-one function σ : {1, . . . , m} →

{1, . . . , m} such that:

1. xσ(1)
w∼ xσ(2).

2. xj is linked to {xσ(1), . . . , xσ(j−1)}.

Definition 6.4. A pair of alternatives xj, xk is strongly connected, denoted by xj ≈ xk, if xj
w∼ xk

and for all xr 6= xj, xk, there exists Pi, P
′
i such that:

1. r1(Pi) = xj and xrPixk.

2. r1(P
′
i ) = xk and xrP

′
i xj.

Fix a domain D. Construct the graph Ḡ(D) with the set of vertices in Ḡ(D) is X and there is

an edge {xj, xk} iff xj ≈ xk.

Definition 6.5. A domain D is a γ domain if Ḡ(D) is connected.

The following example illustrates that the generalized circular domain is not a β-domain.

Example 6.1. Consider X = {a, b, c, d, e} and the domainD = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10}

as illustrated below:

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

a a b b c c d d e e

b e c a d b e c d a

c d d c e a c b c d

d c e d b d b a b c

e b a e a e a e a b

It is easy to verify that D is a generalized circular domain. If D is a β-domain then a w∼ b,

b w∼ c but a 6w∼ c (there doesn’t exist a set A according to the Definition 6.1). Therefore, D is
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not a β-domain and hence not a linked domain as well (as β-domain generalizes the notion of a

linked domain). Also observe that for d, e ∈ X there doesn’t exist preferences inDwhich satisfies

conditions 1-2 in Definition 6.4. Hence D is not a γ-domain as well.

6.1.2 Dictatorial Tops Only Domains

It is well known that dictatorial domains are tops-only domains but the converse is not always

true. In the case of two agents, Chatterji and Sen (3) identifies a necessary property - which they

call Property T - as necessary for a domain to be tops-only. They identify an additional property

- Property T′ - which makes a tops-only domain dictatorial.

The central notion behind their characterization is the notion of connections as introduced in

Aswal et al. (1).

Definition 6.6. Fix a domain D. We say that alternatives x, y ∈ X are connected if there exist Pi ,

P′i ∈ D such that x = r1(Pi) = r2(P′i ) and y = r2(Pi) = r1(P′i ).

According to the definition x and y are connected if there exists an admissible ordering where

x and y are ranked first and second respectively and another ordering where y and x are ranked

first and second respectively. If x and y are connected, we denote it by x ∼ y.

Definition 6.7. The domain D satisfies Property T if ∀Pi ∈ D and x ∈ X \ r1(Pi) there exists

y ∈ X \ x such that yPix and y ∼ x.

Property T requires the following. For any alternative in an admissible order (which is not the

most preferred alternative of that order) there must exist another alternative which is better than

it and to which it is connected. Now we turn to strengthening Property T to obtain impossibility

results.

Definition 6.8. Let B ⊂ A such that m > |B| > 1 and let x ∈ B. The domain D satisfies Property

T′ if there exists Pi, P′i ∈ D and y, z ∈ A such that

1. y ∈ B, z ∈ A \ B and y ∼ z

2. r1(Pi) = r1(P′i ) = x, yPiz and zP′i y

Property T′ expresses a reversality property. Pick a partition (B, A \ B) of the set A such that

B has at least two elements and A \ B at least one and let x ∈ B. Then, there exists y ∈ B and
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z ∈ A \ B which are connected and for which an appropriate reversal exists; in particular, there

exists admissible orderings which have x as the peak and for which the preferences for y and z

are reversed. Informally, every non-trivial partition of A must have a reversal.

Chatterji and Sen (3) states and proves the following result.

Theorem 6.1. The domain that satisfies property T and property T′ is a dictatorial domain.

The following example illustrates that our result is independent from their characterization.

Example 6.2. Consider X = {a, b, c, d, e} and the domainD = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10}

as illustrated below:

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

a a b b c c d d e e

b e c a d b e c d a

d c e d b d b a b c

c d d c e a c b c d

e b a e a e a e a b

One can quickly observe that D is a generalized circular domain. The domain D violates

Property T at all the preferences except for P5 and P6 in the case of the third ranked alternative.

For instance, in the preference P4 the third ranked alternative d is not connected to the first

ranked alternative b as well as the second ranked alternative a. This means that our domain is

an exception to their characterization of tops-only domains.
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