
Strategic Experimentation with Competition and

Private Arrival of Information ∗

Kaustav Das †

September 19, 2015

Abstract

This paper considers a two-armed bandit problem with one safe arm and

one risky arm. The risky arm if good, can potentially experience two kinds of

arrivals. One is publicly observable and the other is private to the agent who

experiences it. The safe arm experiences publicly observable arrivals according

to a given intensity. Private arrivals yield no payoff. Only the first publicly

observed arrival(in any of the arms) yields a payoff of 1 unit. Players start with

a common prior about the quality of the risky arm. It has been shown that in

a particular kind symmetric equilibrium, conditional on no arrival players tend

to experiment too much along the risky arm if they start with too high a prior

and experiment too less if they start with a low prior.
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1 Introduction

This paper addresses the non-cooperative behaviour of players in a game of strate-

gic experimentation with two armed bandits when there is competition between the

agents and private arrival of informations.

The trade-off between exploration and exploitation is faced by economic agents

in many real life situations. The two-armed bandit model has been extensively used

in the Economics literature to formally address this issue. This stylized model de-

picts the situation when an economic agent repeatedly chooses between alternative

avenues(which are called arms in the formal analysis) to experiment along, with the

ultimate objective to maximize the discounted expected payoff. In course of experi-

menting along an arm, the agent upgrades the likelihood it attributes to the arm being

capable of generating rewards. In the present work, I study a variant of the standard

exponential two-armed bandit model (with one safe and one risky arm) which has

both informational externalities and competition and we have private learning along

the risky arm. In this two-armed bandit model, an agent not only learns from his

own experimentation, but also learns from the experimentation experiences of oth-

ers. This gives rise to informational externalities. On the other hand, in the model

considered in this paper, only the first player to experience a reward can successfully

convert it into a meaningful payoff. In addition to these, the model of this paper

has the property of private learning by agents along the risky arm. This means that

when an agent experiments along a good risky arm, then apart from experiencing the

reward(which is publicly observable), it also experiences private signals. A private

signal does not yield any payoff, but it completely resolves the uncertainty to the

player who experiences it. This is because private signals can be experienced only

along a good risky arm. With these features in this model, I show that compared

to a full information benchmark (a social planner’s problem who observes everything

and controls the actions of both the players), in a particular kind of non-cooperative

equilibrium, conditional on no arrival there is too much experimentation along the

risky arm if the players start with too high prior(probability that the risky arm is

good) and too little experimentation if they start off with a low prior.

The setting is a modified version of the now-canonical two armed exponential

bandit model of experimentation(Keller, Rady and Cripps (2005)[8]). We have two

homogeneous players, both of whom can access a common two-armed exponential
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bandit in continuous time. One of the arms is safe(S) and the other one is risky(R). A

risky arm can either be good or bad. Throughout the paper, we will be concerned with

two kinds of arrivals. One, is the arrival of reward which is publicly observable. From

now on we will call it as the publicly observable arrival. The other is an informational

arrival, which is only observable to the player who experiences it. Suppose a player

is experimenting along the risky arm. If the risky arm is good then the player can

experience two kinds of arrivals. First is the publicly observable arrival which follows

a Poisson process with intensity π2 > 0. The other one is an informational arrival,

which follows a Poisson process of intensity π1 > 0. If the risky arm is bad, the player

experiences no arrival. On the other hand, if a player is experimenting along the safe

arm then he experiences publicly observable arrivals according to a Poisson process

with intensity π0 with π2 > π0. Only the first publicly observable arrival yields a

positive payoff of 1 unit. Each player can observe the action of the other. They

start of with a common prior p, the probability with which the risky arm is good,

and update their beliefs as per their own private arrival and the publicly observable

arrivals and the action of the opponents.

We first obtain the efficiency benchmark or the full information optimal of this

model, i.e when both the players are controlled by a social planner, who can observe all

arrivals experienced. Hence, both the players and the planner share a common belief

about the state of the risky arm. The planner at each instant allocates each player to

an arm. As soon as there is a publicly observable arrival, the experimentation ends.

If any of the players experiences an informational arrival, then all uncertainties are

resolved and both the players thereon are allocated to the risky arm( which, in fact

is now found to be good). The solution is of threshold type. There exists a threshold

belief p∗ such that conditional on no arrival, both players are allocated to the risky

arm if p > p∗ and to the safe arm otherwise.

Next, we turn our attention to the non-cooperative game. We restrict ourselves

to symmetric markovian equilibria. This implies that on the equilibrium path, given

same information, actions will be identical across players. Hence, if the players start

with a common prior, then on the equilibrium path both players would be experi-

menting along the risky arm if the prior exceeds a threshold p∗N . If initially a player

starts experimenting along the risky arm then conditional on observing nothing, it

switches to the safe arm if the posterior is less than or equal to p∗N . Since the players

are homogeneous and their actions are identical on the equilibrium path, players’
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posterior, although private, will be identical across them. If a player, while exper-

imenting along the risky arm experiences an informational arrival, then it keeps on

experimenting along the risky arm as long the game continues. As stated, if initially

a player starts experimenting along the risky arm and gets no arrival till the belief

hits p∗N , then it switches to the safe arm. However, if it observes that its competitor

has not switched, then it reverts back to the risky arm again. This is because the

action of the competitor gives the player a signal that an informational arrival has

been experienced at the risky arm and thus it is good. If such an event occurs and

the competitor switches to the safe arm after some time, then the player who had

reverted back to the risky arm would also follow suit, conditional on experiencing no

informational arrival in between. This actually deters a player to not to switch to the

safe arm when it is supposed to. We establish the existence of a unique equilibrium

as described.

Having described the full information optimal and a non-cooperative equilibrium,

we try to analyse the nature of inefficiency. We observe that p∗N > p∗. However,

this will not help us to determine the nature of inefficiency in the non-cooperative

interaction, if there is any. This is because in the benchmark case, the beliefs are

public and in the non-cooperative case the beliefs are private. Moreover, the belief

updating processes are different. In the non-cooperative game, movement of beliefs

are sluggish. Hence, to determine the nature of inefficiency, we adopt a different

method as follows

First of all, for each initial prior, at which the planner would have allocated both

the players to the risky arm, we try to calculate the duration for which the players

are made to experiment along the risky arm, conditional on no observation. Then we

compare this with the duration for which the firms would be in the risky arm in the

equilibrium described above for the non-cooperative game, given the same prior.

It is trivially true that if the prior is in the range (p∗, p∗N), in the non cooperative

game, the duration for which the players experiment along the risky arm (which is

actually 0) is less than that a planner would have wanted. Then we establish the

existence of a threshold belief p0∗ ∈ (p∗N , 1), such that if the initial prior is higher

(lower) than this threshold, then the duration for which the players experiment along

the risky arm in the equilibrium of the non-cooperative game is higher (lower) than

that a planner would have wanted. Hence, too much optimism results in excessive

experimentation along the risky arm.
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To cite an example which would motivate this research, consider the world of

academia. Often two researchers try to solve the same problem independently. Who-

ever solves the problem first, gets a disproportionately higher payoff (say a very good

publication) than the subsequent researcher solving the problem. In this situation, it

is very likely that one of them may get an interim result earlier. This individual now

has two options: Either to reveal this interim discovery or to conceal it. Revealing

might give an instantaneous payoff(say a publication in a relatively low ranked jour-

nal). However, this also increases the probability of the competing researcher solving

the final problem earlier. This shows that a researcher will not always have incentive

to reveal his interim success. In particular, in the absence of any interim payoff a

researcher will never reveal any interim result. In the present paper we consider an

environment where there is no payoff from revealing the interim result.

Related Literature: This paper contributes to the Strategic Bandit literature.

Most of the literature on two-armed bandit, have considered models where all arrivals

are publicly observable. In most of them there is absence of payoff externalities and

they in general have obtained the result that non-cooperative equilibrium is inefficient

and inefficiency is in form of too little experimentation due to free-riding ([8], [9],

[11], [10]). In this paper we have payoff externalities between the players in form of

competition. Other works which have considered payoff externalities in the strategic

bandit literature are [3], [4] and [14].

One of the key features of the present paper is that there is private arrival of

information along the good risky arm. To the best of my knowledge, there are only

two papers which have analysed this issue.

The first one is the work by Akcigit and Liu ([1]). They analyse a two-armed

bandit model with one risky and one safe arm. The risky arm could potentially

lead to a dead end. Inefficiency arises from the fact that there is wasteful dead-

end replication and an early abandonment of the risky project. The present work

also incorporates the issue of private arrival of information. The private information

is in the form of good news about the risky arm, unlike their work where private

information is in the form of bad news. However, the present work shows that there

can still be early abandonment of the risky project, if to start with players are not

too much optimistic about the quality of the risky line. Further, in the present work

we have learning even when there is no information asymmetry.
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The other work is the one by Heidhues, Rady and Strack ([7]). They analyse a

model of strategic experimentation where there are private payoffs. They take a two

armed bandit model with a risky arm and a safe arm. Players observe each other’s

behaviour but not the realised payoffs. They communicate with each other via-cheap

talk. The present paper differs from their work in the following ways. Firstly, we have

private arrivals of information only. Secondly, players are rivals against each other.

The rest of the paper is organised as follows. Section 2 discusses the Environment

formally and the full information optimal solution. Section 3 discusses the non-

cooperative game and the nature of inefficiency. Finally, section 4 concludes the

paper.

2 Environment

Two players (1 and 2) face a common continuous time two-armed exponential bandit.

Both players can access each of the arms. One of the arms is safe(S) and the other one

is risky(R). A player experimenting along a safe arm experiences publicly observed

arrivals according to a Poisson process with commonly known intensity π0 > 0. A

risky arm can either be good or bad. A player experimenting along a good risky arm

can experience two kinds of arrivals. One of these is publicly observable and it arrives

according to a Poisson process with intensity π2 > π0. The other kind of arrival is

only privately observable to the player who experiences it. It arrives according to a

Poisson process with intensity π1 > 0. Only the first public arrival (along any of the

arms) yields a payoff of 1 unit to the player who experiences it.

Players start with a common prior p0, which is the likelihood they attribute to

the risky arm being good. Players can observe each other’s actions. Hence at each

time point players update their beliefs on the basis of the public history (publicly

observable arrivals and the actions of the players).

We start our analysis with the benchmark case, the social planner’s problem. The

planner is benevolent and can observe all the arrivals experienced by the players.

Hence this can also be called the full information optimal.
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2.1 The planner’s problem: The full information optimal

In this sub-section we discuss the optimisation problem of a benevolent social planner

who can complete control the actions of the players and can observe all the arrivals

experienced by them. This is intended to be the efficient benchmark of the model

described above. Before we move on to the formal analysis, we demonstrate the

process of belief updating in this situation.

The action of the planner at time point t is defined by kt(kt = 0, 1, 2). kt is the

number of players the planner makes to experiment along the risky arm. kt(t ≥ 0) is

measurable with respect to the information available at the time point t.

Let pt be the prior at the time point t. Then if there is no arrival over the time

interval ∆ > 0, it must be the case that none of the players who were experimenting

along the risky arm experienced any arrival. This is because the planner can observe

all arrivals experienced by the players. Hence using Bayes’ rule we can posit that the

posterior pt+∆ at the time point (t+ ∆) will be given by

pt+∆ =
pt exp−kt(π1+π2)

pt exp−kt(π1+π2) +1− pt

The above expression is decreasing in both ∆ and k. Longer the planner has

players experimenting along the risky arm without any arrival, more pessimistic they

become about the likelihood of the risky arm being good. Also, higher is the number

of players experimenting along the risky arm without any arrival, higher is the extent

to which the belief is updated downwards.

Let dt = ∆. As ∆→ 0, the law of motion followed by the belief will be given as

( we do away with the time subscript from now on):

dpt = −k(π1 + π2pt(1− pt)

As soon as the planner observes any arrival at the risky arm, the uncertainty is

resolved. If it is an arrival which would have been publicly observable in the non-

cooperative game, then the game ends. For the other kind of arrival, the planner gets

to know for sure that it is a good risky arm and makes both the players to experiment

along it then on, until any first kind of arrival is observed.

Let v(p) be the value function of the planner. Then along with k, it should satisfy
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v(p) = max
k∈{0,1,2}

{(
2− k

)
π0 dt+ kp

[
π2 dt+ π1

2π2

r + 2π2

dt
]

+
(
1− r dt

)(
1− (2− k)π0 dt− kp(π1 + π2) dt

)(
v(p)− v′(p)kp(1− p)(π1 + π2) dt

)}
By ignoring the terms of the order o( dt) and rearranging the above we obtain the

following Bellman equation

⇒ rv = max
k∈{0,1,2}

{
(2−k)[π0(1−v)]+kp

[
π2+π1

2π2

r + 2π2

−(π1+π2)v−(π1+π2)(1−p)v′
]}
(1)

The solution to the planner’s problem is summarised in the following lemma.

Lemma 1 There exists a threshold belief p∗ = π0

π2+
2π1{π2−π0}

r+2π2

, such that if the belief p at

any point is strictly greater than p∗, the planner makes both the players to experiment

along the risky arm and if the belief is less than or equal to p∗, the planner makes

both the players to experiment along the safe arm.

Proof of Lemma.

The Bellman equation given by (1) is linear in k. Hence we can posit that at the

optimal either k = 0 or k = 2. If k = 0, then v = 2π0
r+2π0

. If k = 2 then v satisfies the

following first order O.D.E:

v
′
+

[r + 2(π1 + π2)p]

p(1− p)2(π1 + π2)
v =

2π2{r + 2(π1 + π2)}
(r + 2π2)2(π1 + π2)

1

(1− p)

This is derived from (1) by putting k = 2. The solution to this O.D.E is

v =
2π2

(r + 2π2)
p+ C(1− p)[Λ(p)]

r
2(π1+π2) (2)

where C is the integration constant and Λ(p) = (1−p)
p

.

Let p∗ be the belief at which the planner makes both players to switch to the safe

arm from the risky arm. For p = 1, the planner will make both players to experiment

along the risky arm. For any p ∈ (0, 1), belief can change in leftward direction only.

Thus left continuity of v(p) can always be assumed. This implies that for p in the

ε− neighbourhood of 1 the planner will still make both players to experiment along

the risky arm. We need to determine the threshold belief p∗ at which the planner
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will switch both the players to the safe arm. This is obtained by solving the optimal

stopping problem of the planner.

Since at p = 0, the planner makes both players to experiment along the safe arm,

we must have p∗ ∈ (0, 1). Thus v(p) at p∗ should satisfy the value matching and

smooth pasting condition.

From the value matching condition at p∗ we have

C =
2π0
r+2π0

− 2π2
r+2π2

p∗

(1− p∗)[Λ(p)]
r

2(π1+π2)

Smooth pasting condition at p∗ implies v
′
(p∗+) = 0. From (2) we have

v
′
=

2π2

r + 2π2

− C[Λ(p)]
r

2(π1+π2) [1 +
r

2(π1 + π2)

1

p
]

Substituting the value of C and imposing the smooth pasting condition at p∗, we

obtain
2π2

r + 2π2

=
2π0
r+2π0

− 2π2
r+2π2

p∗

(1− p∗)
[1 +

r

2(π1 + π2)

1

p∗
]

⇒ p∗ =
π0

π2 + 2π1{(π2−π0)}
(r+2π2)

(3)

This completes the proof of the lemma.

Das(2013)([4]) solves similar social planner’s problem with the absence of any

arrival of information. In terms of the parameters of the present model, the threshold

belief in that case is π0
π2

. Hence by comparing this threshold with the one obtained in

the present model we can conclude that arrival of information induces the planner to

experiment along the risky arm for larger range of belief, which confirms our intuition.

The next section describes the non-cooperative game and a symmetric equilibrium.

3 The non-cooperative game

In this section we consider the non-cooperative game between the players in the envi-

ronment specified above. Players can observe each others’ actions. The informational

arrival is only privately observable to the player who experiences it. The other kind

of arrival is publicly observable. Only the first publicly observable arrival yields a
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payoff of 1 unit to the player who experiences it. We assume that players start with a

common prior p0. Since in the present model not all arrivals are publicly observable,

belief of each individual will be private to him. Each player chooses a posterior such

that if their private belief exceeds that then they choose to experiment along the

risky arm, else they experiment along the safe arm. In the present work, we discuss

a particular kind of equilibrium as described in the following subsection.

3.1 Equilibrium

In this subsection we discuss the nature of the equilibrium we intend to describe for

the non-cooperative game described above. It is assumed that players start with a

common prior. The equilibrium we describe is of symmetric markovian kind. In

the current set-up markovian implies that given the common prior, each player first

chooses to experiment along an arm. If a player chooses the risky arm initially then

he also chooses a threshold such that conditional on no observation the player would

switch to the safe arm if the posterior(which is private in this case) is less than or

equal to this threshold. By symmetric we mean that this threshold is same for both

the players. Hence although the beliefs are private, conditional on no arrival players

will always have the same posterior on the equilibrium path.

Assuming the existence of an equilibrium as described above, suppose p∗N is the

common threshold where both players switch to the safe arm, conditional on no

arrival1. Then, consider a situation when both players have a common belief p > p∗N .

Then according to the conjectured equilibrium, both players should be experimenting

along the risky arm. If over a time interval ∆ > 0, a player does not observe anything

then he infers that none of the players have experienced any publicly observable

arrival and he himself has not experienced any informational arrival. Thus the private

posterior at t + ∆ will be (since players are symmetric, this will also be the private

posterior of the other player) given by

pt+∆ =
pte
−(π1+2π2)∆

pte−(π1+2π2)∆ + (1− pt)

This is because during the time interval [t, t + ∆], conditional on the risky arm be-

ing good, probability that a player does not experience any informational arrival or

publicly observable arrival is e−(π1+π2)∆ and the probability that the opponent does

1or observation by any of the players, since any arrival is observed by either of the players
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not experience any publicly observable arrival is e−(π2)∆. Hence probability that the

risky arm is good and the player does not observe anything is pe−(π1+2π2)∆. Then, by

applying Bayes’ rule we obtain the above expression.

As ∆ → 0, in the proposed equilibrium players’ common posterior for p ≥ p∗N

satisfies the following law of motion

dpt = −(π1 + 2π2)pt(1− pt) dt

Suppose the common prior the players start with is strictly greater than p∗N . Ac-

cording to our conjectured equilibrium, both players will choose to experiment along

the risky arm. Conditional on no observation, a player would switch to the safe arm

as the belief hits the point p∗N . If a player at p∗N observes that the opponent has not

switched to the safe arm, then it instantaneously switches back to the risky arm and

follows his opponent then on, conditional on not experiencing any informational ar-

rival. This is because on the equilibrium path, at the switching point if a player is not

switching, then it must be the case that he has experienced an informational arrival.

We make an assumption that it is possible for a player to instantaneously(costless)

switch between the arms. Further, If a player has deviated by not switching to the

safe arm at the belief p∗N , then conditional on not experiencing an informational

arrival, it immediately switches to the safe arm as soon as the belief is less than p∗N .

We will explain the significance of these off the equilibrium path behaviour later, after

describing the equilibrium.

The following lemma establishes that if an equilibrium as described above exists,

then the common belief p∗N where both players would switch to the safe arm should

never be greater than a particular threshold.

Lemma 2 If an equilibrium as described above exists, then the common threshold

belief for players to switch to the safe arm from the risky arm should satisfy

p∗N ≤ π0

π2 + π1
r+2π2

(π2 − π0) r
r+π0

Proof of Lemma.

Suppose there exists a symmetric markovian equilibrium as conjectured above and

p∗N is the common belief where conditional on no observation players switch to the

safe arm from the risky arm. Let the action of player i (i = 1, 2) be denoted by ki.
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ki ∈ {0, 1}. ki = 0(1) implies that the player is choosing to experiment along the

safe(risky) arm. On the equilibrium path, for p > p∗N both players experiment along

the risky arm. Let v1 be the optimal value function of player i (i = 1, 2). Hence given

k2, v1 along with k1 should satisfy

v1 = max
k1∈{1,0}

{
(1− k1)π0 dt+ k1p

[
π2 dt+ π1

π2

r + 2π2

dt
]
+

(1−r dt)
[
1−(2−k1−k2)π0 dt−[k1(π1+π2)p dt+k2π2p dt]

][
v1−v

′

1p(1−p)[k1(π1+π2)+k2π2] dt]

+k2p dtπ1
π2

r + 2π2

}
Since to player 1 k2 is given, by ignoring the term of the order 0( dt) and rear-

ranging the above we can say that v1 along with k1 satisfies the following Bellman

equation

rv1 = max
k1∈{0,1}

{
(1−k1)

[
π0(1−v1)

]
+k1p

[
(
π2(r + π1 + 2π2)

r + 2π2

)−(π1+π2)v1−v
′

1(1−p)(π1+π2)
]}

− (1− k2)π0v1 − k2

[
pπ2v1 + π2p(1− p)v

′

1

]
+ k2pπ1

π2

r + 2π2

(4)

Define Bs(p) and Br(p) as

Bs(p) =
[
π0(1− v1)

]
(5)

Br(p) = p
[
(
π2(r + π1 + 2π2)

r + 2π2

)− (π1 + π2)v1 − v
′

1(1− p)(π1 + π2)
]

(6)

Thus Bs(p) (Br(p)) is the benefit of experimenting along the safe arm (risky arm) at

the belief p. From (4) it is clear that if at a particular p it is optimal for player 1 to

experiment along the risky (safe) arm, then we shall have Br(p) ≥ (≤)Bs(p).

According to the conjectured equilibrium, given player 2’s strategy, player 1 finds

it optimal to switch to the safe arm at p = p∗N . Hence at p = p∗N we must have

Bs(p) ≥ Br(p)⇒ π0

(
1−v1

)
≥ p
[
(
π2(r + π1 + 2π2)

r + 2π2

)−(π1 +π2)v1−v
′

1(1−p)(π1 +π2)
]

In the conjectured equilibrium, both players switch to S at p = p∗N . This implies

that in equilibrium, the left derivative of v1 at p∗N is zero. Given k2, if player 1
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remains at the risky arm at p = p∗N , then conditional on there being no arrival, belief

can change only in the leftward direction. Hence at p = p∗N , if player 1 decides to

deviate and not switch to the safe arm, then the left derivative will be relevant. This

implies

π0

(
1− v1(p∗N)

)
≥ p∗N

[
(
π2(r + π1 + 2π2)

r + 2π2

)− (π1 + π2)v1(p∗N)
]

Since belief can change only in the leftward direction, left continuity of v1 can always

be assumed. Hence v1 would satisfy value matching condition at p∗N . This implies

v1(p∗N) = π0
r+2π0

. Thus we shall have

π0
(r + π0)

(r + 2π0)
≥ p∗N

π2(r + 2π2)(r + π0) + rπ1(π2 − π0)

(r + 2π2)(r + 2π0)

⇒ p∗N ≤ π0

π2 + π1
r+2π2

(π2 − π0) r
r+π0

This concludes the proof of the lemma

In equilibrium, both players experiment along the risky arm for p > p∗N . Thus v1

should satisfy the following O.D.E

v
′

1 +
v1[r + (π1 + 2π2)p]

p(1− p)(π1 + 2π2)
=

π2p[r + 2π1 + 2π2]

(r + 2π2)p(1− p)(π1 + 2π2)

This is obtained by putting k1 = 1 and k2 = 1 in (4). Solving this O.D.E we obtain

v1 =
π2

r + 2π2

[
r + 2π1 + 2π2

r + π1 + 2π2

]p+ C(1− p)[Λ(p)]
r

π1+2π2 (7)

where C and Λ(.) are as defined before. The derivative of (7) with respect to p is

then given by

v
′

1 =
π2

r + 2π2

[
r + 2π1 + 2π2

r + π1 + 2π2

]− C[Λ(p)]
r

π1+2π2 [1 +
r

π1 + 2π2

1

p
] (8)

We are now in a position to prove that if an equilibrium as conjectured above

exists then it is unique, that is the common belief p∗N can take a single value. The

following lemma describes this
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Lemma 3 If an equilibrium as conjectured above exists, then it must be unique with

p∗N =
π0

π2 + π1
r+2π2

(π2 − π0) r
r+π0

Proof of Lemma. We begin the proof of this lemma by first proving the following

claim.

Claim. If an equilibrium as conjectured exists with a common switching point p∗N ,

then it is never possible to have v
′
1(p) < 0 for p = p∗N + ε, ε > 0 and ε is arbitrarily

small.

Proof of the claim. From (6) we have

Br(p) = p
[
(
π2(r + π1 + 2π2)

r + 2π2

)− (π1 + π2)v1 − v
′

1(1− p)(π1 + π2)
]

⇒ Br(p) = p[
π2(r + 2π1 + 2π2)

r + 2π2

− (π1 + 2π2)v1(p)− (π1 + 2π2)v
′

1(p)(1− p)]

+π2pv1 −
π1π2

r + 2π2

p+ π2p(1− p)v
′

1

From the O.D.E which v1 satisfies when p > p∗N , we can conclude that

Br(p) = rv1 + π2pv1 −
π1π2

r + 2π2

p+ π2p(1− p)v
′

1 (9)

whenever p > p∗N .

Consider p = p∗N + ε, such that ε > 0 and ε is arbitrarily small. Since v1 is left

continuous and satisfies the value matching condition at p∗N , v1 ≈ π0
r+2π0

. This implies

Bs(p) ≈ r
π0

r + 2π0

+
π2

0

r + 2π0

Now suppose v
′
1(p∗N+) < 0. Then

Br(p) < rv1 + π2pv1 ≈ r
π0

r + 2π0

+ π2p
π0

r + 2π0

Since p∗N ≤ π0
π2+

π1
r+2π2

(π2−π0) r
r+π0

< π0
π2

, we can conclude that

r
π0

r + 2π0

+ π2p
π0

r + 2π0

< r
π0

r + 2π0

+
π2

0

r + 2π0

= Bs(p)

14



Thus we have Br(p) < Bs(p). This is not possible in equilibrium. Hence our suppo-

sition that v
′
1(p) < 0 leads us to contradiction. Hence v

′
1(p) ≥ 0. In fact we can say

from the above that we should have v
′
1(p) > 0 for p = p∗N + ε, ε > 0 and ε arbitrarily

small. This proves the claim.

Using the above claim, we shall now show that p∗N = π0
π2+

π1
r+2π2

(π2−π0) r
r+π0

.

Suppose it is the case that p∗N < π0
π2+

π1
r+2π2

(π2−π0) r
r+π0

. Then from our previous

analysis we know that Br(p
∗N) < Bs(p

∗N). Since both players switch to the safe arm

from the risky arm at p = p∗N , The left derivative of v1 at p∗N should be equal to 0.

Since we have Bs(p
∗N) > Br(p

∗N), this implies

π0(1− v1) > p∗N [
π2(r + π1 + 2π2)

r + 2π2

− (π1 + π2)v1]

Since v1 is left continuous, the above inequality will hold strictly for p = p∗N + ε,

ε > 0 and ε arbitrarily small. We have already proved that v
′
1(p∗N + ε) > 0. Hence

π0(1− v1) > p∗N [
π2(r + π1 + 2π2)

r + 2π2

− (π1 + π2)v1 − v
′

1(1− p)(π1 + π2)]

⇒ Bs(p) > Br(p)

This is not possible in equilibrium. Hence we must have Bs(p
∗N) = Br(p

∗N). This

implies that p∗N is unique and is equal to π0
π2+

π1
r+2π2

(π2−π0) r
r+π0

. This concludes the

proof of the lemma.

The above two lemmas have described that if a symmetric markovian equilibrium

as described above exists then it must be unique. We now establish the existence of

such an equilibrium in the following proposition.

Proposition 1 An equilibrium as described above always exists.

Proof.

We begin the proof of this proposition by first proving the following claim.

Claim. If for p > p∗N = π0
π2+

π1
r+2π2

(π2−π0) r
r+π0

, v
′
i(p) > 0 (i = 1, 2) and both players

are experimenting along the risky arm, then given that one player is experimenting

along the risky arm, the other player will have no incentive to switch to experiment

along the safe arm.

15



Proof of the claim.

Suppose the claim is not true. That is, let v
′
1(p) be strictly greater than 0 for

all p > p∗N , if both players are experimenting along the risky arm. Let player

2’s strategy be to keep experimenting along the risky arm and conditional on no

observation remain there until the belief is higher than p∗N . Then suppose there

exists some p̃ ∈ (p∗N , 1) such that player 1 finds it beneficial to switch to the safe arm

at that belief. Now we can say that if player 1 finds it optimal to switch to the safe

arm from the risky arm at the belief p̃, then he would still find it optimal to keep

experimenting along the safe arm for any belief p < p̃. This is because for p < p̃, the

prospects from the risky arm (given player 2’s strategy)is lower than that it would

have been at p = p̃. Hence p̃ must be an interior solution of the optimal stopping

problem of player 1, given that player 2 is experimenting along the risky arm. This

implies that v1 should satisfy the smooth pasting condition at p = p̃. If player 2

is experimenting along the risky arm and player 1 is experimenting along the safe

arm then player 1’s value function’s derivative with respect to p would be negative.

This is because higher is p, higher is the probability of player 2 being the first one to

experience a publicly observable arrival, and hence the more adverse it is for player

1. Since v1 is continuously differentiable (smooth pasting) at p̃, both the right and

left derivative of v1 should be negative at p̃. However this is a contradiction since the

right derivative is positive(by hypothesis) and the left derivative is negative. This

proves the claim.

Next, we prove that if both players are experimenting along the risky arm if their

common prior exceeds a certain threshold and conditional on no observation they

switch at a common threshold belief, then the right derivative of the value function

at the switching point is strictly positive if the switching point is p∗N .

Suppose both players are experimenting along the risky arm when p > p̄. Hence

v1 will be given by (7) and v
′
1 by (8). Since v1 would satisfy the value matching

condition at p̄, from (7) we obtain

C =
π0

r+2π0
− π2

r+2π2
[ r+2π1+2π2
r+π1+2π2

]p̄

(1− p̄)[Λ(p̄)]
r

π1+2π2

16



Then from (8), we have

v
′

1 =
π2

r + 2π2

[
r + 2π1 + 2π2

r + π1 + 2π2

]− [
π0

r+2π0
− π2

r+2π2
[ r+2π1+2π2
r+π1+2π2

]p̄

(1− p̄)
][1 +

r

π1 + 2π2

1

p̄
]

=

π2
r+2π2

[ r+2π1+2π2
r+π1+2π2

](1− p̄)− [ π0
r+2π0

− π2
r+2π2

[ r+2π1+2π2
r+π1+2π2

]p̄][1 + r
π1+2π2

1
p̄
]

(1− p̄)
The numerator of the above term is

π2(r + 2π1 + 2π2)

(r + 2π2)(r + π1 + 2π2)
(1− p̄)− π0

r + 2π0

+
π2(r + 2π1 + 2π2)

(r + 2π2)(r + π1 + 2π2)
p̄

− π0r

(r + 2π0)(π1 + 2π2)

1

p̄
+

π2(r + 2π1 + 2π2)

(r + 2π2)(r + π1 + 2π2)

r

(π1 + 2π2)

=
π2(r + 2π1 + 2π2)

(r + 2π2)(π1 + 2π2)
− π0

(r + 2π0)
[
r + (π1 + 2π2)p̄

(π1 + 2π2)p̄
]

v
′
1(p̄) is positive if

π2(r + 2π1 + 2π2)

(r + 2π2)(π1 + 2π2)
− π0

(r + 2π0)
[
r + (π1 + 2π2)p̄

(π1 + 2π2)p̄
] > 0

⇒ p̄[
π2(r + 2π1 + 2π2)

(r + 2π2)
− π0

r + 2π0

(π1 + 2π2)] >
rπ0

(r + 2π0)

⇒ p̄[
π2(r + 2π1 + 2π2)(r + 2π0)− π0(π1 + 2π2)(r + 2π2)

(r + 2π2)(r + 2π0)
] >

rπ0

(r + 2π0)

⇒ p̄[
rπ2(r + 2π2) + rπ1(2π2 − π0) + 2π0π1π2

(r + 2π2)
] > rπ0

⇒ p̄ >
π0

π2 + π1
r+2π2

[2π2 − π0] + 2π0π1π2
(r+2π2)r

≡ p
′

clearly p∗N > p
′
.

Hence if both players experiment along the risky arm for p > p∗N , the derivative

of the value function of each player with respect to p will be strictly positive for all

p > p∗N . From the claim proved at the beginning of the proof of this proposition,

we can posit that no player will have any incentive to switch to the safe arm at any

p > p∗N .

Next, we argue that if a player has actually deviated by not switching to the safe
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arm at p = p∗N , then the behavior described above constitute optimal behaviour

on the player’s part. Suppose the player has deviated. Then the opponent would

instantaneously switch back to the risky arm. Now suppose at p = p∗N the deviating

player has observed nothing. Thus belief would be falling below p∗N . The deviating

player knows that as soon as it would switch back to the safe arm, the opponent

would follow him. Hence the players would be switching back to the safe arm at

the same belief. Since p < p∗N , from our above analysis know that for the deviating

player, switching to the safe arm constitutes optimal behaviour Hence the conjectured

equilibrium exists and as proved in the previous lemma, it is unique. This concludes

the proof of this proposition.

Having described the unique equilibrium in the class of symmetric markov equi-

libria, we would now like to compare the outcome of the equilibrium with that of

the benchmark case. First of all observe that p∗ < p∗N . Hence there might be some

distortion in the non-cooperative equilibrium.

At this juncture, it must be stated that by just comparing the threshold proba-

bilities of switching (p∗ in the planner’s case and p∗N in the non-cooperative case)

we cannot infer whether there is too much or too-little experimentation along the

risky arm in the non-cooperative equilibrium. This is because in the non-cooperative

equilibrium, the informational arrival along the good risky arm is only privately ob-

servable and hence if the prior is greater than p∗N then same action profile would give

rise to different system of beliefs. In the non-cooperative equilibrium the beliefs are

private (although same across individuals) and in the benchmark case it is public. In

the present work, we determine the nature of inefficiency in the following manner.

For each prior, we first determine the duration of experimentation along the risky

arm, conditional on no arrival for both the benchmark case and the non-cooperative

equilibrium. Then, we say that there is excessive (too little) experimentation in

the non-cooperative equilibrium if starting from a prior, conditional on no arrival,

the duration of experimentation along the risky arm is higher (lower) in the non-

cooperative equilibrium.

The following proposition describes the nature of inefficiency in the non-cooperative

equilibrium.

Proposition 2 The non-cooperative equilibrium involves inefficiency. There exists a

p0∗ ∈ (p∗N , 1) such that if the prior p0 > p0∗, then conditional on no arrival we have

excessive experimentation and for p0 < p∗0 we have too little experimentation. By
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excessive experimentation we mean that starting from a prior the duration for which

players experiment along the risky arm is more than that a planner would have liked

to.

Proof. Let tnp0 be the duration of experimentation along the risky line by the firms

in the non-cooperative equilibrium described above when they start from the prior

p0. From the non-cooperative equilibrium described above we know that of the firms

start out from the prior p0 then they would carry on experimentation along the risky

line until the posterior reaches p∗N . From the dynamics of the posterior we know that

dpt = −(π1 + 2π2)pt(1− pt) dt⇒ dt = − 1

(π1 + 2π2)

1

pt(1− pt)
dpt

tnp0 = − 1

(π1 + 2π2)

∫ p∗N

p0

[
1

pt
+

1

(1− pt)
] dpt

⇒ tnp0 =
1

(π1 + 2π2)
[log[Λ(p∗N)]− log[Λ(p0)]]

Let tpp0 be the duration of experimentation along the risky line a planner would have

wanted if the firms start out from the prior p0. Then from the equation of motion of

pt in the planner’s problem we have

dpt = −2(π1 + π2)pt(1− pt) dt⇒ dt = − 1

2(π1 + π2)

1

pt(1− pt)
dt

⇒ tpp0 =
1

(2π1 + 2π2)
[log[Λ(p∗)]− log[Λ(p0)]]

We have excessive experimentation when tnp0 > tpp0 . This is the case when

1

(π1 + 2π2)
[log[Λ(p∗N)]− log[Λ(p0)]] >

1

(2π1 + 2π2)
[log[Λ(p∗)]− log[Λ(p0)]]

⇒ π1 log[Λ(p0)] < 2(π1 + π2) log[Λ(p∗N)]− (π1 + 2π2) log[Λ(p∗)]

Let π1 log[Λ(p0)] ≡ τ(p). Since logarithm is a monotonically increasing function and

Λ(p) is monotonically decreasing in p. Hence τ(p) is monotonically decreasing in p.

First, observe that τ(1) = −∞.
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The R.H.S can be written as

π1 log[Λ(p∗N)]− (π1 + 2π2)[log[Λ(p∗)]− log[Λ(p∗N)]]

Since [log[Λ(p∗)]− log[Λ(p∗N)]] > 0, we have

R.H.S < π1 log[Λ(p∗N)] = τ(p∗N)

Also since p∗ ∈ (0, 1) and log[Λ(p∗)] is finite we have the R.H.S satisfying

2(π1+π2) log[Λ(p∗N)]−(π1+2π2) log[Λ(p∗)] > 2(π1+π2) log[Λ(1)]−(π1+2π2) log[Λ(p∗)] = −∞

These imply that

τ(1) < R.H.S and τ(p∗N) > R.H.S

Hence ∃ a p∗0 ∈ (p∗N , 1) such that for p0 > p∗0, τ(p0) < R.H.S and for p0 < p∗0,

τ(p0) > R.H.S. Hence if the prior exceeds p∗0, then there is excessive experimentation

along the risky arm and if it is below the threshold there is too little experimentation

along the risky arm in the non-cooperative equilibrium.

This concludes the proof of this proposition

In the non-cooperative equilibrium, distortion arises from two sources. One, is

what we call the implicit free-riding effect. This comes from the fact that if a player

experiences a private arrival of information, then the benefit from that is also reaped

by the other competing player. This is possible here because of instantaneous costless

switching back to the risky arm. In fact, if information arrival to firms would have

been public, then the non-cooperative equilibrium would always involve free-riding.

This follows directly from ([8]). Thus this implicit free riding effect tends to reduce

the duration of experimentation along the risky arm.

The other kind of distortion arises from the fact that information arrival is private

and the probability that the opponent player has experienced an arrival of information

is directly proportional to the belief that the risky arm is good. Conditional on no

observation, this makes the movement of the belief sluggish. This results in an increase

in the duration of experimentation along the risky arm. The effect of distortion from

the second (first) source dominates, if the prior to start with is higher(lower). This

intuitively explains the result obtained in the above proposition.
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4 Conclusion

This paper has analysed a tractable model to explore the situation when there can

be private arrival of information. We show that there can be a non-cooperative

equilibrium where depending on the prior we can have both too much and too lit-

tle experimentation along the risky line. This result has been obtained under the

assumption that players can switch between arms without incurring any cost (revo-

cable switching). It will be interesting to see how the results change if a player after

switching to the safe arm is unable to revert back to the risky arm immediately. Hence

switching back to the risky arm is costly. In addition to it, once we introduce payoff

from revealing informational arrival, then there might be situations where a player

would have incentive to reveal a private observation. These issues will be addressed

in my near future research.
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