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1 Introduction

Bargaining models of multilateral exchange must contend with the possibility that a part of
a proposed multilateral deal for a set of parties may still be a feasible and consensual deal
for some of the parties. This possibility is nonexistent in a bilateral deal because a deal by
its definition needs a minimum of two parties to consent.

To facilitate collective decision making, institutions have evolved that are sparse in terms
of the criteria needed to conclude multilateral deals. The criteria is set in terms of the
number of parties who consent to the deal. Two arrangements at the extreme ends of such a
criteria are dictatorship which requires consent of just one party and veto power to everyone
(unanimity) that requires consent of every party. In between such extremes are majority
rules. A veto power given to parties in a bilateral deal is equivalent to individual consent.
In a multilateral deal, however, a veto power given to any party is more than individual
consent. It is the power to encroach over the consent of other parties, irrespective of their
number. It is also the power to block voluntary and mutually beneficial deals that may be
struck by other parties.

Often there are no institutionalized negotiation rules like majority voting that are legally
enforceable on the parties. Sovereign debt renegotiation is a prominent example. As doc-
umented in Hornbeck (2010) and Alfaro (2014), Argentina, after defaulting in 2002, on its
legally incurred sovereign debt, went in for negotiations with its private creditors for debt
restructuring. The negotiation process for sovereign debt restructuring is not legally enforce-
able. After failing to agree on the terms, Argentina made a unilateral take-it-or-leave-it offer
to settle in the 2005 Bond Exchange. 76% of the creditors accepted the offer. The 2010 Bond
Exchange took the acceptance to 91.3%. This has created two coalitions of bondholders: the
exchange bondholders who have consented to the restructured deal and the holdouts who
have not and are litigating in an attempt to get their full face value. In 2012, US Court of
Appeals for Second Circuit, interpreting pari passu clause, prohibited Argentina from paying
one class of creditors while others receive nothing, effectively giving a huge leverage to hold-
outs. In 2014, US Supreme Court declined to hear Argentina’s appeal against the ruling1.
In theoretical terms, the court has ruled in favor of an extreme criteria among a spectrum of
criteria possible to conclude a deal. It has effectively given veto power in the hands of every
creditor and the ruling is being widely seen as an impediment to restructuring deals.

Our objective, in this paper, is not to study the specific setting of sovereign debt renegotia-
tion, but rather to take existing models of multilateral bargaining and relax any enforceable
institutional requirement like veto power or majority rule for conclusion of deals. Thus the
bargaining power of various parties will be determined endogenously by their ability to create
value and their threat positions. Some parties will endogenously get veto power, others will
not. The upshot is that relative to existing models, strategic incentives are better aligned to
support efficiency.

1http://www.nytimes.com/2014/06/20/business/economy/ruling-on-argentina-gives-investors-an-upper-
hand.html?rr = 0
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Our environment is an n-person coalitional game with transferable utility for which a well
developed solution concept is the Core. The stability requirements imposed on allocations
in the definition of the Core is the primary reason for its theoretical appeal. The Core
emerges exactly as the set of stationary equilibrium outcomes of the n-person bargaining
model (without discounting) of Perry and Reny (1994) 2. Moldovanu and Winter (1995) also
find the Core emerging as the set of payoffs of their order-independent equilbria of a family
of undiscounted bargaining games. 3

The n-person pure bargaining game (where the only possible outcomes are complete cooper-
ation of all players or complete breakdown of cooperation) has been studied independently
for which a well developed solution concept is the Nash Bargaining Solution. It was ax-
iomatically derived for bilateral case by Nash Jr (1950) and later shown by Binmore et al.
(1986) to be the limiting (as δ → 1) equilibrium outcome of two-person bargaining model of
Rubinstein (1982). A similar limiting result was shown by Krishna and Serrano (1996) for
the n-person case. Britz et al. (2010) and Britz et al. (2014) are two recent contributions
that offer noncooperative support to the weighted Nash Bargaining Solution for the n-person
case.

The central question of our concern is: What payoff outcomes can we expect in n-person
coalitional games when parties do not have recourse to legally enforceable rules, for instance,
majority rule or universal veto power, for concluding multilateral deals in negotiations. In
this paper, we only give a limited answer to this question. We find there is a class of n-person
coalitional games which may be analyzed essentially as n-person pure bargaining games. For
this class, the Nash Bargaining Solution remains a limiting equilibrium outcome. More
interestingly, there is a class of n-person coalitional games which cannot be analyzed as their
associated n-person pure bargaining games but the pure bargaining games play a critical
role for payoff outcomes. Thus for this class, both Core and Nash Bargaining Solution are
important for a limiting equilibrium outcome.

We focus on studying two settings that have been studied before. One class, S, is that
of strictly supermodular games 4. It has the property that players are complements for
coalition formation. The other class of games, G, have the property that per capita value
is increasing as a coalition adds to its members. For either class, an efficient outcome has
immediate formation of grand coalition. The class of games G and S are unrelated in that
neither is a subset of the other. However both have nonempty cores 5. An example of a
strictly supermodular setting is a production partnership game 6. The problem to be studied
in this environment is to determine the coalitional structure i.e. which coalitions form and

2The environment in Perry and Reny (1994) is a totally balanced TU game.
3The environment in Moldovanu and Winter (1995) is a strictly superadditive NTU game that has

nonempty core for each of its component games.
4They are traditionally called strictly convex games.
5The necessity of nonempty core for existence of efficient stationary equilibria is a result that holds in a

variety of mechanisms studied and holds in the mechanism studied here as well.
6Each player owns some factors of production (like land or labor). Players have access to a (convex)

production technology that displays increasing marginal productivity. Players only make participation de-
cisions. A coalition S by cooperating can pool their factors of production and generate a value that is just
the production output. See Rosenmüller (1981) and Example 18.A.A.6 in Mas-Colell et al. (1995).
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for each such coalition formed, how is the surplus that accrues to that coalition shared among
its members.

We now describe our mechanism recursively. Suppose the state of the game is such that
players in S are still negotiating while the rest have left the game with some agreements
reached in some fashion. At this point, a player in S is randomly chosen to be the proposer
with probability 1/|S| 7. The proposer makes a proposal which is a coalition T ⊂ S and
a distribution xT of surplus of that coalition. Responders in T then move sequentially in
some order saying Yes or No. After everyone has responded, the proposer decides whether
to partially implement his offer with all, some or none of the responders who have accepted
the offer. When a proposer decides to implement his offer with TI (which if not empty
necessarily includes the proposer), he gives each responder j in TI what he offered to him i.e.
xj and he gets the residual of the surplus. The state then changes to one in which S \ TI is
the set of players still negotiating in the game 8. There is discounting when a new proposer
is chosen. Players are expected utility maximizers. The notion of equilibrium is stationary
subgame perfect equilibrium (SSPE).

Our mechanism embodies a proposer’s ability to make noncontingent offers- even if some
responder in his proposed coalition has rejected it, he has a choice to implement it with a
subset of responders who have accepted it. In strictly supermodular environments, this abil-
ity to walk away with a subcoalition makes the proposer more powerful in that it potentially
gives him access to a threat. It turns out this is enough for getting efficiency with probability
1. We will elaborate it further after stating our results.

The main result in this paper is to show for all games in G ∪ S, for all sufficiently high
discount factors, there exists an efficient pure strategy SSPE whose limiting outcome is
the core-constrained Nash Bargaining Solution 9. For games in G, the Core does not act
as a binding constraint on the Nash Bargaining Solution. For games in S, the Core is a
binding constraint on the Nash Bargaining Solution. We give a constructive proof describing
a recursive algorithm for computing the proposals made by the players to the grand coalition
in this SSPE. Also, efficient SSPE are payoff-equivalent in the limit as δ → 1. This limit
value is the core-constrained Nash Bargaining Solution.

The ideas behind our constructive existence proof are properties of strictly supermodular
environments. These are- a result due to Compte and Jehiel (2010) about nested structure
of coalitions for which the core constraints are binding at any core allocation, the algorithmic
characterization of the core-constrained Nash Bargaining Solution for supermodular games
shown by Dutta and Ray (1989) and a further monotonicity result about such allocation
shown in Dutta (1990). In the equilibrium we construct, the set of coalitions for which
the core constraints bind at the core-constrained Nash Bargaining Solution are precisely
those that constitute credible coalitional threats. First we partition the players by using the
result of Compte and Jehiel (2010). Our description of equilibrium proposals is a result of

7Chatterjee et. al.(1993) mechanism differs at this point in that it has a fixed player chosen.
8Compte and Jehiel (2010) do not allow the rest of the players to continue bargaining once a coalition

has formed.
9Compte and Jehiel (2010) call it the Coalitional Nash Bargaining Solution.
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two recursive algorithms. The first algorithm inductively describes what will be coalitional
threats and veto-demands of players in the equilibrium. It turns out that the limit (as
δ → 1) of the vector of veto-demands of players in our equilibrium is the core-constrained
Nash Bargaining Solution. A responder who is not a member of a coalitional threat that a
proposer uses must be willing to lower his demand relative to what he would have demanded
if he had veto power over the offer. This responder can therefore be compensated with less
than his veto-demand. An interesting feature of the equilibrium is that the proposer is forced
to concede this responder more than what he demands. This is the cost he has to pay in
order to maintain the credibility of his coalitional threat. This is the primary difference
in strategic incentives owing to noncontingent offers that supports efficiency. The purpose
of the second algorithm is to describe the how much more do players get as proposers 10

and how much less do players get as non-veto players relative to their veto-demand. This
is done by inductively using the equilibrium condition and the feasibility condition on the
offers.

The idea of the proof for uniqueness of the limit allocation in any SSPE efficient with
probability 1 starts with the observation that limit value of any such equilibrium is a core
allocation. It is then shown that coalitional threats must be the ones for which the core
constraints are binding. Claim D of Compte and Jehiel (2010) yields the nested structure of
the threats. This generates a partition of players. In the next step, we argue that all players
in any block of partition get the same payoff in the limit. The last step characterizes the
coalitional threats and the limit allocation based on individual optimization in equilibrium.
This unravels the coalitional threats as well as the limit allocation inductively. This inductive
characterization is the same that characterizes the core-constrained Nash Bargaining Solution
of strictly supermodular games as showed in Dutta and Ray (1989).

The plan of the paper is as follows. After discussing the literature in Section 2, we describe
the model in Section 3 and state the results in Section 4. The proof of the existence result is
described in Section 5 and is exposited as follows. The candidate equilibrium is described in
Sections 5.1, 5.2, 5.3 both for a restricted model in which only one coalition is permitted to
form as well as the model without this restriction. The reason why we exhibit the equilibrium
for a restricted model first is that we only have to deal with the game with all players in it.
There are no subgames with a smaller population. Also, the acceptance-rejection strategies
are simple for the restricted model. Optimality of the strategies is discussed in Section
5.4. A monotonicity property of core-constrained Nash Bargaining Solution for strictly
supermodular games shown in Dutta (1990) then assures us that the strategies so constructed
can be supported as an SSPE in our model for all sufficiently high discount factors. We
discuss the equilibrium construction in a simple 3-player example in Section 5.5 and contrast
the efficiency implication with the other mechanisms that have been studied. The uniqueness
of limit allocation for any efficient (with probability 1) equilibrium is discussed in Section 6.
We conclude in Section 7.

10proposer’s advantage
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2 Related Literature

The literature on noncooperative analysis of coalitional games was pioneered by Selten (1980)
and Harsanyi (1974). Since then, the literature can be classified along several dimensions.
Selten (1980), Moldovanu and Winter (1994) and Compte and Jehiel (2010) study bargaining
protocols that terminate as soon as the first coalition is formed. Chatterjee et. al.(1993),
Okada (1996) and Moldovanu and Winter (1995) study bargaining protocols that allow the
possibility of multiple agreements.

The works of Chatterjee et. al.(1993), Okada (1996) and Compte and Jehiel (2010) are
closest to ours. A common feature of all these papers is that they give veto power to every
responder towards whom the offer is directed. This embodies a constraint on the proposer’s
ability to implement offers- he cannot implement his offer if some responder rejects it. Put in
a different way, the offers made by the proposer are contingent offers - their implementation
is contingent on acceptance by everyone to whom the offer is directed. Indeed, the reason for
inefficiency in these models is that when you give veto power to every responder, it increases
their demands and so it gets costly for some players to propose to the grand coalition. They
would rather propose to a smaller coalition and satisfy their veto-demands than propose to
the grand coalition and satisfy everyone’s veto-demands.

These papers differ in the way they define efficiency of an equilibrium. Okada (1996) defines
an equilibrium in pure strategies to be subgame efficient if in every subgame, every player
proposes the full coalition of players who are still negotiating. He further defines limit
subgame efficient equilibrium to be one that is subgame efficient along a sequence of δ going
to 1. His main result is that there exists a limit subgame efficient equilibrium if and only if
the coalitional game has increasing returns per capita (i.e. the game is in G).

Chatterjee et.al.(1993) do not insist on efficiency in every subgame. They find that efficiency
obtains for all order of proposers if and only if the game is in G. For strictly supermodular
games (games in S) and for all sufficiently high δ, efficiency obtains only for a particular
choice of the player who makes the first offer when the game is played.

Compte and Jehiel (2010) work with the notion of asymptotic efficiency which they define
to be efficiency in the limit and not necessarily along a sequence of δ going to 1. In other
words, efficiency is approximated better as players get more patient. They obtain asymptotic
efficiency for a class of games that includes G ∪ S. It is pertinent to emphasize that if we
were to insist on efficiency with probability 1, the equilibrium in Compte and Jehiel (2010)
for games in S would be inefficient except for δ = 1.

In this paper, we take the bargaining mechanism studied by Okada (1996) but do away
with the feature that every responder has veto power. A proposer now has the choice to
implement his offer with a subset of responders who have accepted it. In this sense, the offer
is noncontingent- it’s implementation is not contingent on acceptance by everyone in the
proposed coalition. In a companion paper Chaturvedi (2013b), we embed this feature in the
mechanism studied by Chatterjee. et. al. (1993). We work with the notion of efficiency with
probability 1 (the same notion that is used in Okada (1996)) and our result is that for all
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sufficiently high δ, there exists an efficient (wp 1) equilibrium in pure stationary strategies
for games in G ∪ S.

3 The Model

3.1 The Coalitional Game

LetN = {1, . . . , n} be the set of all players. Let (N, v) be a coalitional game with transferable
utility. Any coalition, S ⊂ N has a nonnegative worth, v(S) ≥ 0. We will denote the set
of all coalitions of N by C . When a coalition agrees to a payoff allocation, it can fully
commit to it and there are no enforcement problems in implementing that agreement. We
now describe some coalitional environments that have been studied in the literature.

(N, v) is strictly superadditive if

∀S, T ⊂ N, S ∩ T = ∅, v(S ∪ T ) > v(S) + v(T )

(N, v) has increasing returns per capita as a coalition adds to its members if

∀S, T ⊂ N, S ⊃ T,
v(S)

|S|
>
v(T )

|T |

(N, v) is strictly supermodular if

∀i ∈ N, ∀S, T ⊂ N \ i, S ⊃ T, v(S ∪ {i})− v(S) > v(T ∪ {i})− v(T )

Let G denote the class of games that has increasing returns per capita. Let S denote the
class of strictly supermodular games. For both these environments, the economy splitting
up into coalitions is an inefficient coalitional structure. The only efficient structure is the
formation of the grand coalition. Also supermodular environments are superadditive as well.
The following definition will be useful to us.

For stating our results, we will need the following definition.

Definition 1. Core-constrained Nash Bargaining Solution is the payoff allocation that max-
imizes the Nash product among all payoff allocations in the core. For any (N, v) with a
nonempty core, this is uniquely defined as the core is a convex set and the Nash product is
a strictly quasiconcave function.

max
x∈Rn

∏
i∈N

xi

subject to x(N) = v(N)

∀S ( N, x(S) ≥ v(S)

8



3.2 The Bargaining Mechanism

In any period t = 1, 2, . . ., let S be the set of active players still in the game. A player from
S is randomly chosen to be the proposer. Draws are independent and each player has an
equal chance 1/ |S| of being chosen. A proposer makes an offer (T, xT ) where i ∈ T ⊂ S and∑

i∈T xi = v(T ). Players in T \ i then respond sequentially according to some given order
φ. Suppose TA ⊂ T accept the offer. Then player i can either choose to implement his offer
(T, xT ) with a coalition TI ⊂ TA, i ∈ TI or choose ’DELAY’. If i implements (T, xT ) with
some TI , then coalition TI exits the game 11. Every player j in TI \ i gets xj and i gets the
residual v(TI) −

∑
j∈TI\i xj. The game continues next period with the set of active players

S \ TI . If i chooses DELAY, the game continues next period with the set of active players
unchanged at S. The offers made to each prospective coalition partner are noncontingent in
the sense that they are not contingent on acceptance by everyone in the proposed coalition.
Preferences are linear in the share and intertemporal preferences are just discounted utility
preferences with a common discount factor δ. Players are expected utility maximizers.

The concept of equilibrium we will use is that of a stationary subgame perfect equilibrium
(SSPE) which we now define 12 for the model.

Definition 2. A strategy profile is a stationary subgame perfect equilibrium (SSPE) of the
bargaining model G(N, v) described above if it is a subgame perfect equilibrium with the
property that for every t = 1, 2, . . ., the period-t strategy of every player depends only on
the set of players still negotiating in the game and the history of the game within period-t.

For any SSPE σ of the extensive form game G(N, v) described above, let u(S, σ) ∈ RS be
expected payoff vector at a chance node when S is the set of players still in the game. Let
u?(S, σ) = limδ→1 u(S, σ). Let b(S, σ) := δu(S, σ) be the discounted value vector of σ. The
payoff bj(S, σ) has the following interpretation- it is the demand that player j would make
if he had veto power over an offer to which he must respond. We’ll often refer to bj(S, σ) as
the veto-demand of player j in the SSPE σ in subgame G(S, v) because it is informative in
this sense.

We’ll refer to the environment and the mechanism described above as the unrestricted model.
This is the object of our study and our results pertain to the unrestricted model. However,
for expositional purposes, we find it convenient to work with a version of the mechanism
where the bargaining terminates as soon as one coalition forms. We refer to this version
as the restricted model. As noted in the last paragraph of the introduction, we exposit
the strategies for the restricted model only. However, we do point out, what will be the
corresponding strategies in the unrestricted model. Again when we discuss optimality of
strategies, we carry out the proof for the restricted model. But we do point out what
ensures perfection in the unrestricted model.

11In the event that other responders reject i’s offer, i has the choice to exit the game forming the singleton
coalition {i}.

12cf. Okada (1996)
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4 Results

Proposition 1 is an existence result whose proof is constructive and illuminates how threats
work in the model. Proposition 2 is a uniqueness (in the limit) result that is weak in so far
as it applies only to SSPE that are efficient with probability 1.

Proposition 1. For all games in G ∪ S and for all sufficiently high discount factors, there
exists a pure strategy SSPE that is efficient with probability 1 and whose limiting outcome
is the core-constrained Nash Bargaining Solution.

Proposition 2. For all games in G ∪ S, all SSPE efficient with probability 1 are payoff-
equivalent in the limit as δ → 1. This limit value is the core-constrained Nash Bargaining
Solution.

The remainder of the paper is devoted to proving these two results.

5 Proof of Proposition 1

The equilibrium that we construct requires that we first develop a particular partition of the
set of players.

Definition 3. Suppose b? is a core allocation for a game (N, v). Then we say S ⊂ N is a
binding coalition with respect to b? if b?(S) :=

∑
i∈S b

?
i = v(S).

Given a strictly supermodular (N, v), let {N1, . . . , NL} be the partition of the set of players
N induced by the core-constrained Nash Bargaining Solution. We know this partition can
be provided because of the following known result.

Claim D. Compte and Jehiel (2010). For (N, v) strictly supermodular, the set of binding
coalitions S with respect to a core allocation u? is nested. That is S is of the form
{S1, S1∪S2, . . . , S1∪ . . .∪SL} where N = S1∪ . . .∪SL 13. This naturally induces a partition
{S1, S2, . . . , SL} of players.

Dutta and Ray (1989) characterize the core-constrained Nash Bargaining Solution for su-
permodular games as the unique egalitarian allocation in the core. They provide an al-
gorithm that computes this solution by generating a partition of the set of players. We
remark here that our partition may differ from theirs. An example that illustrates this is
v(N) = 1, v(12) = 0.7, v(1) = 0.35 and v(S) = 0 for all other S. For this strictly supermod-
ular game, Dutta and Ray (1989) would give the partition {{12}, {3}} while our partition
will be {{1}, {2}, {3}}. Also note that for games in G, there is no partition of players i.e.

13Compte and Jehiel (2010) do not include the grand coalition N in the set of binding coalitions but in
order to generate a partition we do.

10



L = 1. When we describe the equilibrium construction, the strategies for games in G can
be read out accordingly keeping this in mind.

5.1 Proposal Strategy

Consider the gameG(N, v) with the full setN as the population of players and an equilibrium
σ. If i could veto an offer made by some player j in which he is a prospective coalition partner,
then j must compensate i with i’s discounted value of the game bi(N, σ). Put differently,
j must compensate i with his veto-demand bi(N, σ). Player i can get more than his veto-
demand only as a proposer and we call that addition as proposer’s advantage. Player i can
get less than his veto-demand only as a responder when he does not hold a veto power over
the offer made by some proposer. When this happens, we say that the proposer has taken i
as a hostage and we term i’s loss relative to his veto-demand as hostage’s disadvantage.

We now describe the proposal strategies in terms of players’ veto-demands, proposer’s advan-
tage and hostage’s disadvantage. Whenever i ∈ N makes a proposal, he offers (N, u(N, i))
where for i ∈ Nk, for j ∈ Nk+1 and for l ∈ N \ (Nk+1 ∪ {i})

ui(N, i) = bi(N, σ) + ai(N, σ)

uj(N, i) = bj(N, σ)− hj(N, σ)

ul(N, i) = bl(N, σ)

N1 N2 N3 NL−1 NL

Figure 1: Equilibrium Structure of "Hostages"

Figure 1 depicts the structure of hostages in the equilibrium that we construct. For any
k < L, any player in Nk takes all the players in Nk+1 as his hostages. It’s fruitful now to
define what we mean by a coalitional threat of a player as a proposer.

As remarked in the introduction, the key feature that no responder has veto power and
that the proposer has a choice to implement his offer with some players who have consented
implies that inherent in his proposal and implementation strategy is a threat that he can
walk away with a subcoalition. The concept of a coalitional threat formalizes this idea.

Definition 4. COALITIONAL THREAT. For an equilibrium σ of the bargaining game
G(N, v), let (S, u(S, i)) be i’s offer in in the subgame G(S, v). Then a coalition T ( S is a
coalitional threat for i if
(i) i compensates his coalition partners in T with their veto-demands i.e.

∀j ∈ T \ i, uj(S, i) = bj(S, σ)

11



(ii) i’s implementation strategy is to implement his offer with T .
(iii) it is locally optimal for i to implement his offer with T . In other words, T solves the
following constrained optimization problem

max
i∈T ′⊂S

[
v(T ′)−

∑
j∈T ′\i

bj(S, σ)
]
≥ bi(S, σ)

Our description of equilibrium offers is a result of two recursive algorithms. The first algo-
rithm inductively describes what will be the coalitional threats and veto-demands of players
in equilibrium. We will see that the limit (as δ → 1) of the vector of veto-demands of play-
ers in our equilibrium is the core-constrained Nash Bargaining Solution. A responder who
is not part of a coalitional threat that a proposer uses must be willing to budge from his
veto-demand. This responder can therefore be held hostage and suffer a disadvantage at the
hands of this proposer. Care needs to be exercised at this point in deciding which players
are held hostages by which players i.e. the assignment of hostages to proposers. We do this
in a natural way suggested by the hierarchical nature of partition of players. The purpose of
the second algorithm is to describe the proposer’s advantage and the hostage’s disadvantage.
This is done by inductively using the equilibrium condition and the feasibility condition.

RECURSIVE ALGORITHM TO COMPUTE COALITIONAL THREATS AND
VETO-DEMANDS

We now describe a simple recursive algorithm that gives coalitional threats 14 and computes
veto-demands. The computation is based on three features. First, the set of coalitional
threats is precisely {N1, N1 ∪N2, . . . , N1 ∪ . . .∪NL}. Owing to the way we have partitioned
the set of players, this means the set of coalitional threats is precisely the set of coalitions
for which the core constraints are binding at the core-constrained Nash Bargaining Solution.
Thus the only players who do not have a coalitional threat are those in the last block of
partition, NL. The second feature can be described as symmetry. Players in the same block
of partition (because of the first feature, this means they have the same coalitional threat)
have the same veto-demands. Lastly, a player who has a coalitional threat is indifferent
between implementing this threat and choosing DELAY.

Step 1. For i ∈ N1, his coalitional threat is N1. The symmetry and indifference feature
immediately give i’s veto-demand bi(N, σ).

v(N1)− (|N1| − 1)bi(N, σ) = bi(N, σ)

which gives

bi(N, σ) =
v(N1)

|N1|
Suppose the coalitional threats and veto-demands have been computed for i ∈ N1, . . . , i ∈
Nk−1.

14Of course, this needs to be verified after we have presented the full equilibrium.
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Step k. For i ∈ Nk, his coalitional threat is ∪ka=1Na. Note for j < k and l ∈ Nj, l’s
veto-demand bl(N, σ) has already been computed in Step j. The symmetry and indifference
feature immediately give

v(∪ka=1Na)−
∑
j<k

∑
l∈Nj

bl(N, σ)− (|Nk| − 1)bi(N, σ) = bi(N, σ)

which gives

bi(N, σ) =
v(∪ka=1Na)− v(∪k−1a=1Na)

|Nk|

Step L. For i ∈ NL, set

bi(N, σ) =
δv(N)− v(∪L−1a=1Na)

|NL|
The full construction of proposals will justify the above assignment.

The equilibrium we construct has the feature that for L ≥ 2, for k < L, for i ∈ Nk, if player
i is the proposer, then players in Nk+1 are hostages of i.

Table 1 below is a summary description of coalitional threats for various players.

Table 1: Coalitional Threats of Players in Equilibrium

Player in Coalitional Threat

N1 N1

N2 N1 ∪N2

. . . . . .
NL−1 N1 ∪ . . . ∪NL−1

RECURSIVE ALGORITHMTO COMPUTE PROPOSER’S ADVANTAGE AND
HOSTAGE’S DISADVANTAGE

In what follows, for a player i ∈ Nk, ai will denote his proposer’s advantage when he is the
proposer and hi will denote his disadvantage when he is held a hostage (this happens when
some player in Nk−1 is a proposer). The computation has the feature that players in the
same block of partition have the same disadvantage.

Step 1. For i ∈ N1, set his proposer advantage as

ai(N, σ) =
( |N |
δ
− |N |

)
bi(N, σ)

This is derived by writing the equilibrium condition. If L = 1, then there’s nothing more to
describe since there are no hostages in this case. Stop. If L ≥ 2, move to the next Step.
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Step k for k ≤ L. This is the inductive step in the Algorithm. There are two substeps.

Step k.1. For i ∈ Nk, his disadvantage as a hostage, hi(N, σ) is determined from the feasi-
bility condition of the proposal made by j ∈ Nk−1 and by noting that b(N) = δv(N):

bj + aj + (|Nk−1| − 1)bj + |Nk| (bi − hi) +
∑

m∈N\(Nk∪Nk−1)

bm = v(N)

hi(N, σ) =
aj(N, σ)− (1− δ)v(N)

|Nk|

Step k.2. For i ∈ Nk, his proposer’s advantage, ai is determined from equilibrium condi-
tion

ai(N, σ) =
( |N |
δ
− (|N | − |Nk−1|)

)
bi − |Nk−1| (bi − hi)

=
( |N |
δ
− |N |

)
bi(N, σ) + |Nk−1|hi(N, σ)

where hi(N, σ) has already been computed in Step k.1.

The construction carried out above fully describes the proposal strategies in the restricted
version of the model where only one coalition may form. This is because there are no sub-
games with a smaller population. For the model as we have described, in any subgame
G(S, v) with the set of players being S, the proposal strategies are computed as outlined
above with the algorithms being carried out over (S, v). The reduced game (S, v) is also
strictly supermodular and hence the same procedure carries over.

Remark. 1. For any player, his proposer’s advantage and his hostage’s disadvantage is
continuously and monotonically decreasing in δ and vanishes in the limit as δ → 1. 15

15For a player jk ∈ Nk, it is easy to arrive at formulas for

daj1
dδ

= −|N |
δ2

v(N1)

|N1|
< 0

dhj2
dδ

= − |N |
|N2|

( v(N1)

δ2 |N1|
− v(N)

|N |

)
< 0

For k > 2

dhjk
dδ

= −
|N |

∑k−1
a=1 |Na|

|Nk−1| |Nk|

( v(∪k−1a=1Na)

δ2
∑k−1

a=1 |Na|
− v(N)

|N |

)
< 0

The inequalities follow because the expressions in the parentheses are always positive for strictly supermod-
ular games by Claim 4.1 in Appendix A. For k ≥ 2, from Step k.2 of Algorithm

dajk
dδ

< 0
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2. For any i ∈ N , the limiting (as δ → 1) payoff vector in i’s offer is core-constrained
Nash Bargaining Solution. We know this from the algorithmic characterization of the core-
constrained Nash Bargaining Solution for supermodular games shown by Dutta and Ray
(1989).

5.2 Implementation Strategy

Consider the game G(N, v) with the full set N as the population of players. Fist consider
the equilibrium-offers. Suppose i ∈ Nk, the k-th block of partition of players. If k = L,
the last block of partition, then i has no coalitional threat. In this case i’s implementation
strategy is as follows

(a) If noone in N rejects the offer, then implement the offer with N .
(b) If someone in N rejects the offer, then choose DELAY.

If k < L, then i’s implementation strategy is as follows.

(a) If noone in N rejects the offer, then implement the offer with N .
(b) If someone in i’s coalitional threat ∪ka=1Na rejects the offer, then choose DELAY.
(c) If someone rejects the offer but everyone in i’s coalitional threat ∪ka=1Na accepts, then i
implements the offer with his coalitional threat.

For off-equilibrium offers, i implements a coalition which gives him the maximum payoff
provided this payoff is at least as great as the payoff he gets by choosing DELAY. If no such
coalition exists, he chooses DELAY.

This describes the implementation strategies of players in the restricted version of the model
where only one coalition may form. For the unrestricted version as we have described, for any
subgame G(S, v) with S as the population of players, the corresponding partition is (Sa)a.
Players follow the implementation strategies as described above with this change.

5.3 Acceptance-Rejection Strategy

Consider j’s response node in the game G(N, v) where Q is the set of players who have
accepted or proposed the standing offer (S, xS) made by i so far. Since the responders move
in a pre-determined order φ, anyone of them while contemplating accepting or rejecting the
offer has to consider the effect of his decision on the decisions of the responders following
him. The ARSs of responders are defined inductively, first for the last responder according
to φ, then for the penultimate responder and so on backwards in order.

Let Yj ⊂ S \(Q∪{j}) be the set of responders who will accept the proposal (S, xS) according
to their respective ARSs if j rejects it. For the last responder in S, Yj = ∅. The ARS of j
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is conditioned on whether in the event of j’s rejection, i would implement his offer with a
coalition SI ⊂ Q ∪ Yj or choose DELAY.

For equilibrium offers,
(a) If i’s implementation strategy is to choose DELAY in the event of a rejection by j (i.e.
j holds a veto-power over i’s offer), then j accepts the offer if it gives him at least his veto-
demand bj(N, σ) and rejects otherwise.
(b) If i’s implementation strategy is to implement his offer with a coalition in the event of a
rejection by j (i.e. j does not have a veto over i’s offer), then j accepts the offer if it gives
him at least δv(j) and rejects otherwise.

For off-equilibrium offers,
(a) If i’s implementation strategy is to choose DELAY in the event of a rejection by j, then
j accepts the offer if it gives him more than his veto-demand bj(N, σ) and rejects otherwise.
(b) If i’s implementation strategy is to implement his offer with a coalition in the event
of a rejection by j, then j accepts the offer if it gives him more than δv(j) and rejects
otherwise.

Note for the equilibrium proposal, responders resolve any indifference by accepting while
for any off-equilibrium proposal, they resolve it by rejecting. This describes the acceptance-
rejection strategies of players in the restricted version of the model where only one coalition
may form. For the unrestricted version as we have described, for any subgame G(S, v)
with S as the population of players, the corresponding partition is (Sa)a. Players follow
the acceptance-rejection strategies as described above with this change keeping in view that
when a proposer threatens to form a subcoalition T ( S, the responders while making their
decision look forward to their payoff in the continuation game G(S \ T, v). We omit writing
it here.

5.4 Optimality

Again for ease of exposition, we only show that the strategies described constitute an SSPE
for the restricted model. The proof consists of verifying that the constructed strategies
are unimprovable and can be found in Appendix A. The equilibrium is sustained by the
following expectations. Any deviation by a proposer in which he tries to unilaterally gain at
the expense of players outside his coalitional threat (outsiders) will be met by a rejection by
players inside his coalitional threat (insiders). A rejection by insiders is a best response since
they are indifferent between rejecting and accepting. Any deviation by a proposer in which
he tries to gain at the expense of outsiders by bribing insiders will be met by a rejection
by outsiders since the act of bribing insiders renders the threat incredible. Outsiders call
it a bluff and anticipating this response, the insiders reject it as well since they realize the
sweetened offer to them is just a mirage which is never going to materialize.

It is instructive to discuss the strategic incentives of players in our mechanism as they
compare to incentives in Chatterjee et. al.(1993), Okada (1996) and Compte and Jehiel
(2010).
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In Chatterjee et. al.(1993) mechanism, a player who was not in the last block of partition
when chosen as a proposer did not make an efficient offer. The reason was that since the
responders had veto power over the offer, equilibrium offers must compensate the players
in the proposed coalition with their veto-demands. The veto-demands of players were high
enough that the proposer preferred to make an inefficient offer to a smaller coalition than
an efficient offer to the grand coalition. Similar incentives are present in pure strategies
in Okada (1996). Compte and Jehiel (2010) while maintaining the institutional feature of
veto power consider equilibria in behavioral strategies. A player’s veto-demand is calculated
under the expectation that there is a probability of his exclusion. A chance of exclusion
serves as a randomized threat that brings a reduction in veto-demands of players compared
to the what they would be in a pure strategy efficient equilibrium (if it exists). Yet every
player who is part of the proposed coalition must be compensated with his veto-demand. As
a result, Compte and Jehiel (2010) are only able to approximate efficiency off the limit and
get efficiency only at the limit δ = 1. Since our mechanism gives a proposer the choice to
implement his offer with a subcoalition of consenting responders, he can carry out his threat
without incurring the cost of delay. Players inside the coalitional threat of a proposer are
veto players while those outside are non-veto players for the proposer’s equilibrium offer.
Non-veto players must lower their demands relative to their veto-demands (i.e. discounted
value of equilibrium). This incentivizes each player in that he prefers to make an offer to
the grand coalition.

For the unrestricted model as we have described, the corresponding strategies described
constitute an SSPE as well. This follows because the limit allocation, the core-constrained
Nash Bargaining Solution satisfies a monotonicity property shown in Dutta (1990). For
stating this property, let u?(N, v) denote the core-constrained Nash Bargaining Solution for
the coalitional game (N, v). For a vector y ∈ RN , let yS denote the projection of y along the
axes of players in S.

Dutta (1990). Suppose (N, v) is strictly supermodular. For any S ( N , u?S(N, v) > u?(S, v)
where the strict inequality is for all coordinates.

The result above ensures that in any subgame G(S, v), for all sufficiently high δ, every
responder agrees to the proposal no matter who proposes. Thus in every subgame G(S, v),
the entire coalition S is formed immediately. Thus we have shown Proposition 1.

5.5 Example

Consider a 3-player example that will illustrate the equilibrium construction and contrast it
with the other mechanisms that have been studied.

Example 1. Consider the following 3-player strictly supermodular coalitional game.
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S v(S) S v(S) S v(S)

{1} 0 {2} 0 {3} 0
{1,2} 0.7 {1,3} 0.2 {2,3} 0.2
{1, 2, 3} 1 ∅ 0

Remark. 1. The core-constrained NBS in this game is the allocation u? = (0.35, 0.35, 0.3).
2. The set of coalitions for which the core constraints are binding is Sb = {{1, 2}, {1, 2, 3}}.
3. For the Chatterjee et. al.(1993) mechanism, if Player 1(or 2) is the initial proposer, he
proposes to {1, 2} in the unique SSPE and the limiting outcome is (0.35, 0.35, 0).
4. For the Okada (1996) mechanism, a pure strategy SSPE does not exist.
5. For the Compte and Jehiel (2010) mechanism, there is an SSPE in behavior strategies for
δ > 3

√
57−9
16

in which players 1 and 2 make an offer to the grand coalition N with probability
x = 9−13δ+8δ2

2δ(3−δ) and to coalition {1, 2} with probability 1− x while player 3 makes an offer to
the grand coalition N with probability 1. Note that efficiency with probability 1 does not
obtain along a sequence of δ going to 1. It only obtains in the limit when δ = 1.

It may be verified that for δ ≥ 0.7, the following proposal strategies are supported as an
SSPE with players 1 and 2 having coalition {1, 2} as a coalitional threat and player 3 having
no coalitional threat.

Proposal Strategies. Player i makes an offer u(N, i) to the grand coalition N . The offers are:

u(N, 1) = (b1 + a1, b2, b3 − h3)
u(N, 2) = (b1, b2 + a2, b3 − h3)
u(N, 3) = (b1, b2, b3 + a3)

where

b1 = 0.35 b2 = 1.5 b3 = δ − 0.7

a1 =
(3

δ
− 3
)
b1 a2 = a1 h3 = a1 − (1− δ)

a3 =
(3

δ
− 3
)
b3 + 2h3

6 Proof of Proposition 2

The following result says that for strictly superadditive coalitional environments, no SSPE
can exhibit delay in any subgame. The proof can be found in Appendix B.

Lemma 1. Suppose (N, v) is strictly superadditive. For an SSPE σ, for every S ⊂ N , every
player i ∈ S must make an acceptable offer in every subgame G(S, v).
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The proof of Lemma 1 does not involve any new ideas. It is reminiscent of Okada (1996) who
gets this result for the mechanism he studies. We next turn to a conditional characterization
of players’ coalitional threats for a given vector of veto-demands.

Lemma 2. Given the vector of veto-demands b(N, σ) in an SSPE σ of the game G(N, v),
players’ coalitional threats {Si}i∈N are solutions to the following constrained optimization
problems

∀i ∈ N, max
i∈Si⊂N

[
v(Si)−

∑
j∈Si\i

bj(N.σ)
]
≥ bi(N, σ)

Proof. The constrained optimization problem for player i expresses the local optimality of
his choice at his implementation node in the subgame G(N, v, i) with full population N of
players and when he is the proposer. By definition of a coalitional threat for player i, all
members other than imust be compensated with their veto demands. The inequality denotes
the credibility constraint for a coalitional threat: implementing the offer with the coalitional
threat must be better for i than choosing ’DELAY’. The max operator ensures that i must
choose a coalitional threat optimally. Q.E.D.

We need a definition that will be useful to state our next lemma.

Definition 5. ∆-core (N, v) 16 is the core of the coalitional game (N, v′) where v′(N) =
v(N)−∆ and for every subcoalition S, v′(S) = v(S). Formally

∆-core (N, v) = {x ∈ Rn
+ :
∑
j∈N

xj = v(N)−∆;∀S ( N,
∑
j∈S

xj ≥ v(S)}

Define ∆(δ) := v(N) −
∑

j∈N bj(N, σ). Our next result is that the vector of veto-demands
b(N, σ) in an efficient SSPE σ of a strictly superadditive coalitional game must lie in
∆(δ)-core of (N, v).

Lemma 3. Define ∆(δ) := v(N)−
∑

j∈N bj(N, σ). If (N, v) is strictly superadditive and σ
is an SSPE that is efficient with probability 1, then b(N, σ) ∈ ∆(δ)-core (N, v).

Proof. See Appendix B. Q.E.D.

Corollary. If (N, v) is strictly superadditive and σ is an SSPE that is efficient with proba-
bility 1 for all sufficiently high δ, then limδ→1 b(N, σ) ∈ core (N, v).

Proof. Observe that in any such SSPE, limδ→1 ∆(δ) = 0. Q.E.D.

16The definition is different from the definition that Compte and Jehiel (2010) work with. They define
∆-core (N, v) to be the core of the coalitional game (N, v′) where v′(N) = v(N)−∆ and for every subcoalition
S, v′(S) = v(S)−∆.
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Lemma 3 also yields an immediate sharper characterization of coalitional threats in efficient
SSPE of strictly superadditive games that is summarized in the next lemma.

Lemma 4. If (N, v) is strictly superadditive and σ is an SSPE that is efficient with proba-
bility 1, then players’ coalitional threats {Si}i∈N are solutions to the following constrained
optimization problems

∀i ∈ N, max
i∈Si⊂N

[
v(Si)−

∑
j∈Si\i

bj(N.σ)
]

= bi(N, σ)

We know turn to the proof of Proposition 2 which is carried out in three steps. In the first
step, Lemma 4 and Claim D of Compte and Jehiel (2010) yield a conditional characterization
of coalitional threats given b(N, σ). Lemma 4 tells us that the coalitional threats must be
the ones for which the core constraints are binding and Claim D of Compte and Jehiel
(2010) yields the nested structure of the threats. This generates a partition of players. In
the next step, we argue that all players in any block of partition get the same payoff in
the limit. The last step characterizes the coalitional threats and limδ→1 b(N, σ) based on
individual optimization in equilibrium. This unravels the coalitional threats as well as the
limit allocation inductively.

Proof of Proposition 2. Step 1. Fix an SSPE σ that is efficient with probability 1 for
all sufficiently high δ. Let b(N, σ) be the vector of veto-demands in σ. Lemma 4 gives the
set of coalitional threats, S , in σ. By Lemma 4 and Claim D of Compte and Jehiel (2010),
we know that wlog S has the structure {S1, S1 ∪ S2, . . . ∪L−1a=1 Sa}. This naturally generates
a partition of players {S1, . . . , SL−1, SL} where SL = N \ ∪L−1a=1Sa. Then b(N, σ) must satisfy
the system of equations:

∑
j∈S1

bj(N, σ) = v(S1)∑
j∈S1

bj(N, σ) +
∑
j∈S2

bj(N, σ) = v(S1 ∪ S2)

. . .∑
j∈S1

bj(N, σ) + . . .+
∑

j∈SL−1

bj(N, σ) = v(∪L−1a=1Sa)∑
j∈S1

bj(N, σ) + . . .+
∑
j∈SL

bj(N, σ) = δv(N)

where the last equation is by definition of b(N, σ) as the vector of discounted values to players
of the game G(N, v).

The system of equations may be rewritten as linear constraints that the vector of veto-
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demands (bj(N, σ))j∈Sk
for every block Sk must satisfy.∑
j∈S1

bj(N, σ) = v(S1)∑
j∈S2

bj(N, σ) = v(S1 ∪ S2)− v(S1)

. . .∑
j∈SL−1

bj(N, σ) = v(∪L−2a=1Sa ∪ SL−1)− v(∪L−2a=1Sa)∑
j∈SL

bj(N, σ) = δv(N)− v(∪L−1a=1Sa)

Step 2. In this step, we seek to characterize for every block of partition k = 1, . . . , L, the limit
vector of veto-demands for that block limδ→1(bj(N, σ))j∈Sk

. Let a(N, σ) be the proposer’s
advantage that i ∈ Sk earns as a proposer in subgame G(N, v, i). Then limδ→1 a(N, σ) = 0.
For each block k = 1, . . . , L, define the coalitional game (Sk, vk) by

vk(T ) = v(∪k−1a=1Sa ∪ T )− v(∪k−1a=1Sa) +
∑
i∈Sk

a(N, σ)1{T=Sk}

Then for every player i ∈ Sk, the sequence as δ → 1 of the restriction (uj(N, i))j∈Sk
of

i’s efficient offer u(N, i) in σ to Sk is a sequence of efficient and contingent offers 17 that
constitutes an equilibrium offer in G(Sk, vk, i). Put differently, the restriction σ|Sk

of the
SSPE σ of G(N, v) constitutes an SSPE of G(Sk, vk) (with discounted value, say, e(Sk, σ))
that is efficient wp 1 for all sufficiently high δ and in which all offers are contingent offers.
The problem is to determine limδ→1(bj(N, σ))j∈Sk

.

We study the limit payoff vector of a different yet related game. Denote by O, Okada (1996)’s
bargaining mechanism that has the institutional feature that every responder has veto-power
over an offer directed to him. In other words, players can only make contingent offers. Fix
an SSPE β of O(Sk, vk) that is efficient wp 1 for all sufficiently high δ. Then it can be shown
18 that β has a unique vector of veto-demands c(Sk, β) ∈ RSk

+ given by

∀j ∈ Sk, cj(Sk, β) =
δ

|Sk|
[
v(∪k−1a=1Sa ∪ Sk)− v(∪k−1a=1Sa) + a(N, σ)1{k<L}

]
It is now evident that the vectors (bj(N, σ))j∈Sk

, e(Sk, σ) and c(Sk, β) must be equal in the
limit. i.e.

∀k = 1, . . . , L; ∀j ∈ Sk; lim
δ→1

bj(N, σ) = lim
δ→1

ej(Sk, σ)

= lim
δ→1

cj(Sk, β)

=
v(∪k−1a=1Sa ∪ Sk)− v(∪k−1a=1Sa)

|Sk|
17i compensates every player j ∈ Sk \ i with his veto-demand bj(N, σ).
18See proof of Theorem 3 in Okada (1996)
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Step 3. The characterization of coalitional threats and limit vector of veto-demands limδ→1 bj(N, σ)
can now be obtained by observing that in equilibrium σ, given other’s choices of coali-
tional threats, every player i must choose his coalitional threat so as to maximize his payoff
from playing the game or what amounts to the same thing, maximize his veto-demand
bi(N, σ). Given our characterization of limδ→1 bj(N, σ) in Step 2, this leads to a series of
inductive optimization problems that unravel the coalitional threats {N1, N1 ∪N2, . . . ∪L−1a=1

Na} and limit vector limδ→1(bj(N, σ))j∈Na inductively. By the inductive characterization
of the core-constrained Nash Bargaining Solution of supermodular games in Dutta and
Ray (1989), we know limδ→1 bj(N, σ) is the core-constrained Nash Bargaining Solution of
(N, v). Q.E.D.

7 Concluding Remarks

In the classical environment of coalitional game with transferable utility, the efficiency im-
plications of relaxing veto power in a bargaining model was examined. An equilibrium
efficient with probability 1 in pure strategies was displayed for strictly supermodular coali-
tional games for all sufficiently high discount factors, a result that does not obtain in the
models of Chatterjee et al. (1993), Okada (1996) and Compte and Jehiel (2010). The limiting
outcome of this equilibrium is found to be the core-constrained Nash Bargaining Solution.
Stationary subgame perfect equilibria that are efficient with probability 1 for all sufficiently
high discount factors are shown to be payoff equivalent in the limit. That limit is the limit
of the efficient equilibrium displayed i.e. the core-constrained Nash Bargaining Solution. An
attractive feature of the model is that players who get to have veto power over an offer made
by a proposer are endogenous and they constitute a coalitional threat for a proposer which
permits the demand reduction of non-veto players.

The efficiency implications of noncontingent offers are underscored by similar result we find
when we embed this feature in Chatterjee et al. (1993) mechanism where the rule governing
the selection of proposers is taken to be a fixed protocol and the first rejector becomes the
new proposer. Such an exercise is undertaken in Chaturvedi (2013b). Studying the set of
SSPE outcomes and the efficiency implications of the mechanism for coalitional games wider
than those studied here are avenues for future work.

22



Appendices

Appendix A

Claim 4.1. Suppose (N, v) is strictly supermodular. Then ∀k = 1, . . . , L− 1

v(∪ka=1Na)∑k
a=1 |Na|

≥ v(N)

|N |

Proof. Step 1. Let N0 = ∅. Given (N, v), for k = 1, . . . , L(v), define inductively the re-
stricted game (N \∪k−1a=0Na, vk) by vk(S) = v(∪k−1a=0Na∪S)−v(∪k−1a=0Na). In this step, we show
a property of supermodular games that may be called the ’principle of cascading averages’.
It says that the average values of restricted (in the sense defined above) games of a super-
modular game are ordered in a decreasing fashion. We show the following statement is true:

∀k ∈ {1, . . . , L− 1}, v(N)− v(∪k−1a=0Na)∣∣N \ ∪k−1a=0Na

∣∣ ≥ v(N)− v(∪ka=0Na)∣∣N \ ∪ka=0Na

∣∣
Suppose to the contrary that for some k

v(N)− v(∪k−1a=0Na)∣∣N \ ∪k−1a=0Na

∣∣ <
v(N)− v(∪ka=0Na)∣∣N \ ∪ka=0Na

∣∣ (1)

Since k 6= L, Nk ( N \ ∪k−1a=0Na is a maximizer at Step k of our algorithm for generating
partitions. So

v(N)− v(∪k−1a=0Na)∣∣N \ ∪k−1a=0Na

∣∣ ≤ v(∪ka=0Na)− v(∪k−1a=0Na)

|Nk|
(2)

By strict supermodularity of (N, v), v(N)− v(∪k−1a=0Na) > 0. Adding (1) and (2),

∣∣N \ ∪ka=0Na

∣∣+ |Nk|∣∣N \ ∪k−1a=0Na

∣∣ <
[v(N)− v(∪ka=0Na)] + [v(∪ka=0Na)− v(∪k−1a=0Na)]

v(N)− v(∪k−1a=0Na)

So we have

1 =

∣∣N \ ∪k−1a=0Na

∣∣∣∣N \ ∪k−1a=0Na

∣∣ < v(N)− v(∪k−1a=0Na)

v(N)− v(∪k−1a=0Na)
= 1

a contradiction.
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Step 2. By Step 1, we get ∀k ∈ {1, . . . , L− 1}

v(N)

|N |
≥ v(N)− v(∪ka=1Na)∣∣N \ ∪ka=0Na

∣∣∣∣N \ ∪ka=0Na

∣∣
|N |

≥ v(N)− v(∪ka=1Na)

v(N)

v(∪ka=1Na)∑k
a=1 |Na|

≥ v(N)

|N |

Q.E.D.

Claim 4.2. Suppose (N, v) is strictly supermodular. Let u? be the core-constrained Nash
Bargaining Solution for (N, v). Then for every S ⊂ N such that S 6= ∪ka=1Na for some
k = 1, . . . , L, we have

∑
j∈S u

?
j > v(S).

Proof. This is because u? is in the core of (N, v) and by definition the set of all coalitions
that are binding at u? is precisely {N1, N1 ∪N2, . . . , N1 ∪ . . . ∪NL}. Q.E.D.

Proof of Proposition 1 (ctd.) Optimality of Implementation Strategy

For off-equilibrium offers, the optimality of implementation strategy is clear from its def-
inition. For equilibrium offers, it can be verified from the choice-payoff tables below that
the strategies described are unimprovable. Suppose i ∈ Nk, the k-th block of partition of
players. If k = L, the last block of partition, then i has no coalitional threat. In this case
i’s feasible choices and payoffs as follows

(a) If noone in N rejects the offer

i’s choices i’s payoffs
implement with N bi + ai

DELAY bi
implement with a subcoalition T v(T )−

∑
j∈T\i bj < bi

(b) If someone in N rejects the offer

i’s choices i’s payoffs
DELAY bi

implement with a subcoalition T v(T )−
∑

j∈T\i bj < bi

If k < L, then i’s feasible choices and payoffs as follows

(a) If noone in N rejects the offer
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i’s choices i’s payoffs
implement with N bi + ai

DELAY bi
implement with

(i) i’s coalitional threat ∪ka=1Na bi

(ii) any other subcoalition T v(T )−
∑

j∈T\i uj(N, i)
δ→1→ v(T )−

∑
j∈T\i bj < bi

(b) If someone in i’s coalitional threat ∪ka=1Na rejects the offer

i’s choices i’s payoffs
DELAY bi

implement with a subcoalition T 6= ∪ka=1Na v(T )−
∑

j∈T\i uj(N, i)
δ→1→ v(T )−

∑
j∈T\i bj < bi

(c) If someone rejects the offer but everyone in i’s coalitional threat ∪ka=1Na accepts

i’s choices i’s payoffs
implement with ∪ka=1Na bi

DELAY bi

implement with a subcoalition T 6= ∪ka=1Na v(T )−
∑

j∈T\i uj(N, i)
δ→1→ v(T )−

∑
j∈T\i bj < bi

In all the choice-payoff tables, the assertion that as δ → 1, v(T )−
∑

j∈T\i uj(N, i)→ v(T )−∑
j∈T\i bj is by construction while the assertion that for a subcoalition T that is not i’s

coalitional threat, v(T )−
∑

j∈T\i bj < bi is due to Claim 4.2.

Optimality of Acceptance-Rejection Strategy follows from its definition.

Optimality of Proposal Strategy

We first show that the equilibrium offer is accepted no matter who proposes. Suppose i ∈ Nk.
Consider the last responder in ∪ka=1Na who finds himself in a situation where every other
responder in ∪ka=1Na has already accepted the proposal. j knows that if he rejects, then
i will choose DELAY as per his implementation strategy i.e. j has a veto power over i’s
offer. Since the offer compensates j with his veto-demand bj(N, σ), he accepts as per his
acceptance-rejection strategy. By induction on the number of responders in ∪ka=1Na \ j who
have not yet responded to the proposal, it follows for any responder j ∈ ∪ka=1Na that if every
other responder in ∪ka=1Na \ j who has already responded to the proposal has accepted it,
then it is optimal for j to accept it.

Consider a responder j ∈ N \ ∪ka=1Na. If all players in ∪ka=1Na who have already responded
before him have accepted the proposal, then j knows by the arguments of the preceding
paragraph that the other players in ∪ka=1Na who will follow him will accept the proposal as
well. Since i’s implementation strategy is to implement the offer with ∪ka=1Na, j does not
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have a veto-power over i’s offer. Since the offer compensates him with uj(N, i) > δv(j), he
accepts the offer as per his acceptance-rejection strategy.

Deviations from equilibrium offer. Suppose i ∈ Nk.

Case 1. k < L. Classify deviations as:

(1) (N, d) where ∀j ∈ ∪ka=1Na \ i, dj = uj(N, i),∀j ∈ N \ ∪ka=1Na, dj ≤ uj(N, i) and ∃j ∈
N \∪ka=1Na such that dj < uj(N, i). This is a deviation where the proposer i tries to further
gain unilaterally at the expense of players outside ∪ka=1Na. A unanimous rejection of this off
equilibrium offer is obtained in what follows.
Consider the last responder j in ∪ka=1Na who finds himself in a situation where every other
responder in ∪ka=1Na has already rejected the proposal. j knows that if he rejects, then
i will choose DELAY as per his implementation strategy i.e. j has a veto power over i’s
offer. Since the offer compensates j with his veto-demand bj(N, σ), he rejects as per his
acceptance-rejection strategy. The argument is easily extended now by induction on the
number of responders in ∪ka=1Na \ j who have not yet responded to the proposal to say
that for any responder j ∈ ∪ka=1Na, if every other responder in ∪ka=1Na \ j who has already
responded to the proposal has rejected it, then it is optimal for j to reject it.
Since all responders in ∪ka=1Na reject this off-equilibrium proposal, any responder j ∈ N \
∪k+1
a=1Na knows that i’s threat to implement ∪ka=1Na is an empty threat. Since the offer

does not compensate j with more than bj(N, σ), he rejects as per his acceptance-rejection
strategy.

(2) (N, d) where ∀j ∈ ∪ka=1Na \ i, dj ≥ uj(N, i),∃j ∈ ∪ka=1Na \ i, dj > uj(N, i),∀j ∈ N \
∪ka=1Na, dj ≤ uj(N, i) and ∃j ∈ N \ ∪ka=1Na such that dj < uj(N, i). This is a deviation
where the proposer i tries to gain at the expense of players outside his coalitional threat and
offers to share the gains with some players inside ∪ka=1Na. A unanimous rejection of this
off-equilibrium offer is obtained in what follows.
Consider the last responder j ∈ N \∪ka=1Na who finds himself in a situation where every other
responder in N \ ∪ka=1Na has already rejected the proposal. Now j knows that if he rejects,
i would choose DELAY rather than implement the offer with ∪ka=1Na. This is because

v(∪ka=1Na)−
∑

j∈∪ka=1Na\i

dj < v(∪ka=1Na)−
∑

j∈∪ka=1Na\i

uj(N, i)

= v(∪ka=1Na)−
∑

j∈∪ka=1Na\i

bj(N, σ)

= bi(N, σ)

Since the offer compensates j with dj ≤ uj(N, i) ≤ bj(N, σ), he rejects as per his acceptance-
rejection strategy. Argue by induction on the number of responders in N \∪ka=1Na who have
not yet responded to the proposal to say that for any responder j ∈ N \ ∪ka=1Na, if every
other responder in (N \ ∪ka=1Na) \ j who has already responded to the offer has rejected it,
then it is optimal for j to reject it.
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Since all responders in N \∪ka=1Na reject this off-equilibrium offer, any responder j in ∪ka=1Na

knows that i’s sweetened offer is just a "mirage" because even if everyone in ∪ka=1Na accepts,
i will choose DELAY. So j rejects the offer as well.

(3) (S, d) where S = ∪ka=1Na and ∀j ∈ S \ i, dj = uj(δ,N, i) + ε for ε > 0. The payoff for i
from such an offer is

di = v(∪ka=1Na)−
∑

j∈∪ka=1Na\i

dj

= v(∪ka=1Na)−
∑

j∈∪ka=1Na\i

uj(N, i)−
( k∑
a=1

|Na| − 1
)
ε

= v(∪ka=1Na)−
∑

j∈∪ka=1Na\i

bj −
( k∑
a=1

|Na| − 1
)
ε

= bi −
( k∑
a=1

|Na| − 1
)
ε

< bi + ai = ui(N, i)

Thus i cannot gain by this deviation.

(4) (S, d) where S 6= ∪ka=1Na. The payoff for i from such an offer is arbitrarily close to
v(S)−

∑
j∈S\i u

?
j while the payoff from the equilibrium strategy is arbitrarily close to u?i as δ

gets high enough where u? is the core-constrained Nash Bargaining Solution. By Claim 4.2,
i cannot gain by this deviation.

Case 2. k = L. It suffices to realize that in any deviation (S, d) there cannot be a subcoalition
T ⊂ S such that i ∈ T , dj ≥ uj(N, i) and v(T ) −

∑
j∈T\i dj = bi. In other words, no T

can be coalitional threat for i. This is essentially because T was not a coalitional threat
for the equilibrium offer as well. Formally v(T ) −

∑
j∈T\i dj ≤ v(T ) −

∑
j∈T\i uj(N, i) <

bi. Q.E.D.

Appendix B

Proof of Lemma 1 Step 1. Suppose an SSPE σ involves a player i ∈ S making an
unacceptable offer in some subgame G(S, v). We construct a profitable deviation (S, d) for
i. Let d the payoff distribution defined by ∀j ∈ S \ i, dj = bj(S, σ) + ε where 0 < ε <
(v(S)−

∑
j∈S bj(S, σ))/(|S| − 1). Then d will be unanimously accepted since any responder

does worse by rejecting. i gets di = v(S)−
∑

j∈S\i(bj(S, σ) + ε). By making an unacceptable
offer, i’s payoff at his proposal node in G(S, v) is bi(S, σ). It is then easy to see by the choice
of ε that di > bi(S, σ) i.e. v(S) >

∑
j∈S bj(S, σ) + (|S| − 1)ε.

Step 2. We now show that we can always choose such an ε. In other words, v(S) −∑
j∈S bj(S, σ) > 0. Let uj(δ, S, i) be the payoff to j in a unanimously acceptable offer
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(T i, u(S, i)) made by i where T i ⊂ S. If either j /∈ T i or i makes an unacceptable offer, then
uj(S, i) = 0. Now

∑
j∈S

bj(S, σ) =
∑
j∈S

δ

|S|

[∑
k∈S

uj(S, k)
]

=
δ

|S|

[∑
j∈S

uj(S, i) +
∑
j∈S

∑
k∈S\i

uj(S, k)
]

=
δ

|S|
∑
k∈S\i

∑
j∈S

uj(S, k)

Now ∀k ∈ S \ i

∑
j∈S

uj(S, k) =


0 if k makes an unacceptable offer

v(T k) if k makes an acceptable offer to T k ⊂ S
v(S) if k makes an acceptable offer to S

By strict superadditivity,

∀k ∈ S \ i,
∑
j∈S

uj(S, k) ≤ v(S)

∑
j∈S

bj(S, σ) ≤ δ

|S|
(|S| − 1)v(S)

< v(S)

Thus we have shown a profitable deviation by i. This contradicts the premise that σ ∈
E.

Q.E.D.

Proof of Lemma 3 Fix an SSPE σ that is efficient with probability 1. By definition of
∆(δ), ∑

j∈N

bj(N, σ) = v(N)−∆(δ)

Suppose by way of contradiction that for some S ( N , v(S) >
∑

j∈S bj(N, σ). Fix i ∈ S.
By Lemma 2, i has a coalitional threat, say Si in σ such that

v(Si)−
∑
j∈Si\i

bj(N, σ) > bi(N, σ)
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Step 1. We first show there exists a player k ∈ N \ Si such that i compensates k with
more than bk(N \ Si, σ) i.e. uk(N, i) > bk(N \ Si, σ). The following deductions about i’s
equilibrium offer in G(N, v, i) are a direct consequence of subgame perfection.

∀j ∈ Si \ i, uj(N, i) = bj(N, σ)

∀j ∈ N \ Si, uj(N, i) ≥ bj(N \ Si, σ)

Since Si is a coalitional threat for player i, i must compensate players in Si \ i with their
veto-demands in the game G(N, v). Since any player j ∈ N \ Si does not have veto power
over i’s offer, he must be willing to accept any payoff at least as much as bj(N \ Si, σ) (j’s
discounted equilibrium payoff in G(N \Si, v)).

Suppose to the contrary that ∀j ∈ N \ Si, uj(N, i) = bj(N \ Si, σ). Then∑
j∈N

uj(N, i) =
∑
j∈Si

uj(N, i) +
∑

j∈N\Si

uj(N, i)

≤ v(Si) + v(N \ Si)
< v(N) Strict Superadditivity of (N, v)

Thus i’s offer is inefficient. This contradicts the premise that σ is efficient with probability
1 proving the claim made in this step.

Step 2. Suppose η(δ) = v(Si)−
∑

j∈Si bj(N, σ) > 0. We construct a profitable deviation for
i. Construct a feasible deviation (N, d) where

∀j ∈ Si, dj = uj(δ,N, i) +
ε

|Si|
0 < ε < η(δ)

dk = uk(δ,N, i)− ε
∀j ∈ N \ {k ∪ S}, dj = uj(N, i)

For this deviation, the credibility of i’s threat to implement Si is preserved. The requirement
for this is

v(S)−
∑
j∈Si\i

dj > bi(N, σ)

↔ v(S) >
∑
j∈Si

bj(N, σ) +
|Si| − 1

|Si|
ε

↔ η(δ) >
|Si| − 1

|Si|
ε

which is true. So the deviation (N, d) in which i by bribing Si \ i enlists their support in
further taking advantage of k is not deterred as the credibility of i’s threat to implement Si
is unaffected by this deviation. This contradicts the premise that σ is an SSPE. We have
proved that ∀S ( N,

∑
j∈S bj(N, σ) ≥ v(S). Q.E.D.
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