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Abstract

A finite set of agents N , endowed with heterogeneous abilities, compete for a share

of the reward K. Agents receive a reward share determined by their individual abilities:

higher is the agent’s relative position in N , in terms of ability, greater is the agent’s

share. If agents form coalitions, the cooperation increases the abilities of all members,

over their endowed ability. Thus, forming a coalition is mutually beneficial to all its

members, although they are competitors. Such coalitions are self-enforcing: every pair

of members mutually agree to cooperate with each other. The optimisation problem

that agents face is forming coalitions to maximise their own ability while minimising

the increase in their competitors’ ability. Representing the model in a n-dimensional

Euclidean space and assuming perfect rationality, I analyse (1) The existence and type

of equilibria attained (2) The necessary conditions for movement from the initial state

(3) The effect of coalition formation on its members’ abilities and payoff. Section 4 of

the paper develops an algorithmic process of coalition formation (APCF) to simulate

an evolutionary mechanism of attaining equilibrium for agents lacking foresight.

1 Introduction

A set of agents N , endowed with abilities, compete for the share of a reward. The agents’

abilities determine their individual reward shares or payoffs: greater is the relative position
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of an agent’s ability in N , more is his payoff. Cooperation between them facilitates learning

that improves individual ability, over the endowed ability. Learning displays a diminishing

marginal rate: Agents with higher abilities have lesser scope to learn compared to agents

with lower abilities. A group of agents mutually agreeing to cooperate with each other is a

coalition. The agreements are non-binding as agents cooperate out of mutual benefit. Agents

strategically form coalitions to maximise their payoff. However, the more an agent’s payoff is,

lesser is the portion of the reward left for other agents. As the payoff depends on ability, the

optimisation problem for agents is: forming coalitions to maximise their own ability while

minimising the improvement in other agents’ abilities. Assuming complete information, each

agent chooses a set of agents he is willing to cooperate with. This set of agents is called a

strategy and the set of strategies played by all agents is a strategy set.

Given a strategy set, I develop an algorithm to segregate agents into a partition. The

partition determines the learning of agents and thus, their final abilities. The final abilities

(sum of the endowed ability and total learning) determines the payoff to every agent in N .

Hence, the payoff to agents is a function of the strategy set played. Therefore, the equilibrium

concept is defined for the strategy set. A strategy set where no individual agent benefits

by playing any other strategy is a Nash equilibrium and no group of individuals benefit by

simultaneously playing any other strategy is a Strong Nash equilibrium. Perfectly rational

agents always play a Strong Nash equilibrium. However, in spite of perfect rationality, it is

possible that no pure strategy Nash equilibrium exists. In that case, agents play strategies

depending on the beliefs they have over the strategies other agents play.

I analyse the model by representing it in an n-dimensional Euclidean Space. The initial

state - a state from which agents begin game play - is the state of no coalitions: the finest

refinement of N . Agents are better-off if their payoff is greater and worse-off if lesser than

at the initial state. Every imputation is pareto-optimal: at least one agent is worse-off by

moving to a partition that results in a different imputation. The necessary condition to

attain an equilibrium that is a coarser than the initial state is that at least two agents must

be better-off and both must be members of the same coalition.

Agents in this model receive their payoff directly. However, this model can also be viewed

as a two-step reward apportioning mechanism. In the first step, the reward is apportioned

according to the payoff function among coalitions depending on the aggregate ability of

coalitions. This is the coalition’s worth. The coalitional worth is then further apportioned

among its members by the same payoff function with the reward being the coalition’s worth.

This two-step mechanism, resulting in identical payoffs from the direct mechanism, is an

alternate way of looking at the model. Due to the assumption of diminishing marginal

rate of learning the member with highest endowed ability learns the least and learning

progressively increases with decrease in endowed ability within a coalition. If a coalition
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is isolated from the effects of the strategies of its non-members, the payoff decreases with

increase in endowed ability. Thus, in a grand coalition, the agent with the highest endowed

ability must be worse-off and the agent with the least ability must be better-off.

Next I place an assumption on the agents’ rationality: agents lack foresight (I explain

this concept in the next paragraph). These agents reach equilibrium by an evolutionary

procedure modelled through the Algorithmic Process of Coalition Formation (APCF). In

the first round, agents randomly choose a strategy that includes all agents with abilities

higher than themselves and simultaneously submit it to an auctioneer. The auctioneer then

runs the algorithm and declares a coalition structure. Agents that benefit from deviating

from their assigned coalition resubmit new strategies in the next round. The auctioneer

retains the history of strategies played and replaces the strategies of agents resubmitting

new strategies. The new strategy set leads to a different coalition structure. Agents continue

resubmitting strategies as long as they benefit from deviation. The APCF terminates if no

agent resubmits a strategy in a round. Agents begin cooperating only after the APCF

terminates. Proposition 3 derives a condition for a cyclic APCF: at evey round at least

one agent benefits from resubmitting a strategy. A cyclic APCF is non-terminating as it

runs for infinite rounds without converging to any equilibrium. Acyclic APCFs terminate in

finite rounds and converge to a Nash equilibrium. As the initial strategy set is pre-defined,

a unique Nash equilibrium results if APCF is acyclic. If agents reach the Nash Equilibrium,

their lack of foresight prevents them from coordinating their strategies to attain a Strong

Nash equilibrium (in case a Strong Nash exists). However, depending on the game, they

may happen to land at the Strong Nash equilibrium through an APCF. If the reward is

discounted after every round then agents evaluate the payoff from their current strategy

against the present value of the payoff from resubmitting a new strategy in the next round.

Small values of the discount factor may stop a cyclic APCF, while for large values of the

discount factor (values tending to 1) the cyclic APCF stops when the the reward becomes

zero at infinity.

At the end of a round agents lacking foresight cannot predict strategies that other agents

may resubmit, in spite of complete information. Their computational ability is limited

to calculating the self-benefit of deviation, given the strategies played in that round. On

the other hand, perfectly rational agents predict the final outcome in the first round and

play the equilibrium strategy. However, considering the complexity of this model, assuming

agents with perfect foresight is far fetched. The APCF simulates this behaviour through an

evolutionary mechanism.

Among the two main approaches in coalition formation: bargaining and blocking, dis-

cussed in Ray and Vohra (1997) and (1999), the approach here is closer to the blocking

approach. However, the coalition formation here does not occur through the process of coali-
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tional deviations, but through a stable allocation mechanism that is based on the strategies

agents play. This mechanism is brought about by the means of an algorithm discussed in

Section 2. Morelli and Park (2015) study a model where agents’ payoff depends on their rank

in the coalition, the power of the coalition and inequality within the coalition. This idea

is similar to Example 3 in Section 2 where agents’ payoffs are determined by their absolute

rank. Roketskiy (2014) studies a network model where the agents’ utilities are dependent

on their relative and absolute ranks. The competing agents’ abilities in his model also im-

prove through cooperation. However, there is no coalition formation there as agents form

links based on bilateral agreements. Works by Goyal and Moranga (1990) and Goyal and

Joshi (2001) have also studied similar network models. These papers have applications of

the theory discussed here, with considerable variation. However, the setup of the game in

this paper - formation of coalitions to maximise individual payoffs that sum to a constant -

is to my knowledge not studied previously.

This paper is structured in the following manner: Section 2 develops the model. In

Section 3, I analyse the model in a n-dimensional Euclidean space. I discuss a process of

coalition formation in Section 4. I discuss the possible implications of the concepts developed

in Section 5

2 The General Model

Let N = {1, 2..., n} be a finite set of agents. Each agent i ∈ N is born with an endowed

ability āi ∈ R+. By forming a coalition S ⊆ N agents learn from one another and increase

their ability. This learning is a function of the endowed ability of members in S, self included,

given by q : R|S|+ → R+ ∀ i ∈ S. Agent i’s learning in coalition S is additive: q(āi, ā−S(i)) =∑
j∈S

q(āi, āj) where the term ā−S(i) refers to the ability of all agents in coalition S except

agent i. The final ability of agent i is the sum of his endowed ability and learning: ai =

āi + q(āi, ā−S(i)). The function q(.) is a continuous and homogeneous. There is no self-

learning: q(āi, āi) = 0. I assume that the learning function q(.) decreases with increase in an

agent’s own endowed ability: (
∂q(āi,ā−S(i))

∂āi
) < 0 and increases with increase in endowed ability

of all other members of an agent’s coalition: (
∂q(āi,ā−S(i))

∂āj
) > 0 ∀ i, j ∈ S, i 6= j. This implies

that with an increase in ability, agents’ learning from others diminishes at a marginal rate.

All agents in N compete for a share of the reward K. The payoff to any agent i ∈ N ,

denoted by Ui, is a fraction of the reward K such that
n∑

i=1

Ui = K. The reward is split

among some or all agents in N and are non-decreasing with increase in ability: ∂Ui

∂ai
≥ 0.

The payoff is a function of an agent’s own ability and the ability of all other agents in N :

Ui = w(ai, a−i), where w(.) is a homogeneous function. I assume complete information in
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the model: each agent in N knows the elements in the set (āi)i∈N and the functions q(.) and

w(.).

Note that the function w(.) is not necessarily continuous. Examples of continuous and

discontinuous payoff functions are given below:

Example 1: Fractional Payoff

A pie of size K is split into n pieces. The size of agent i’s piece is directly proportional to

fraction of the agent i’s ability to the aggregate ability of all agents in N . The payoff to

agent i is:

Ui =
aiK
n∑

j=1

aj

∀ i ∈ N

Ui is continuous and the sum of payoffs add to the size of the pie:

n∑
i=1

Ui = K

The learning of agent i ∈ S is:

q(āi, ā−S(i)) =
∑

j∈S,i6=j

āj
āi

Agent i’s final ability, that determines payoff, is:

ai = āi +
∑

j∈S,i6=j

āj
āi

Example 2: Relative Rank

Agent i’s payoff is the relative position of his ability in N termed as relative rank:

Ui =
n∑

j=1

(ai − aj) ∀ i ∈ N

The relative rank is a continuous function that adds to zero when summed across all agents

n∑
i=1

Ui =
n∑

i=1

(
nai −

n∑
j=1

aj

)
= 0

Note that Ui > Uj if and only if ai > aj for any i, j ∈ N . This implies that an higher payoff

means a higher ability.

Example 3: Absolute Rank
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If the rewards are apportioned by the absolute rank of an agent’s ability in N , agent i’s

payoff is

Ui =
n∑

j=1

IR+(ai − aj)

where IR+ : R→ {0, 1} is the indicator function

IR+(ai − aj) =

1 if (ai − aj) > 0

0 if (ai − aj) ≤ 0

Absolute Rank is a discontinuous payoff function and the sum of the payoffs is:

n∑
i=1

Ui =
n(n− 1)

2

Agents play strategies xi from a strategy space χi to form coalitions. A strategy xi ∈ χi

is a set of agents agent i is willing to cooperate with to form a coalition. A strategy set,

X ∈
n∏

i=1

χi, is a set of strategies played by all agents in N . For example, xi = {i, j, k} means

agent i will form a coalition with agents j, k. There is no preference ordering between choices

in a strategy. Agents’ strategies includes themselves. Agents cooperate only under mutual

agreements. The necessary condition for agents i and j to cooperate is i ∈ xj and j ∈ xi.
A coalition S is formed only if all agents in S mutually agree to cooperate with each other

and no super set of S satisfying this property exists. Formally, a coalition is defined as:

Definition 1: A coalition S is an element of a partition of N that satisfies

Condition 1 : i ∈ xj ∀ i, j ∈ S
Condition 2 : There exists no set S ′ such that i ∈ xj ∀ i, j ∈ S ′ and S ⊂ S ′

A partition π is a subset of 2N (the power set of N) such that
m⋃
j=1

Sj = N and
m⋂
j=1

Sj = ∅

where S1, S2..., Sm ∈ 2N . Thus, agents cannot be part of multiple coalitions. Also, all agents

within a coalition must agree to cooperate with each other to form a coalition.

The following algorithm translates a strategy set X = {x1, x2..., xn} into a partition π.

Algorithm 1:

Step 1: Let s be an element of the power set of N : s ⊆ 2N .
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Step 2: A possible coalition, ρ(s), is an element of 2N that satisfies condition 1 of defi-

nition 1.

ρ(s) =
⋂
i∈s

ηi ∀ i ∈ s

where ηi = xi ∩ s ∀ i ∈ s

Step 3: The set of possible coalitions is given by

P = {ρ(s)|s ⊆ 2N}

Step 4: The elements in P satisfying conditions 2 of Definition 1 are termed potential

coalitions, given by the set

ϕ = {ρ(s) | there exists no ρ(s′) ∈ P such that ρ(s) ⊂ ρ(s′), s 6= s′}

Step 5:If ρ(s) ∩ ρ(s′) 6= ∅ ∀ ρ(s′) ∈ ϕ, then ρ(s) ∈ π

Step 6: If ρ(s) ∩ ρ(s′) 6= ∅ for some ρ(s′) ∈ ϕ, then {ρ(s), ρ(s′)/(ρ(s) ∪ ρ(s′))} ∈ π or

{ρ(s′), ρ(s)/(ρ(s) ∪ ρ(s′))} ∈ π with equal probability.

Algorithm 1 ends here. Given a strategy set, the coalitions in partition π satisfy both

conditions defined in Definition 1. Refer Appedix A for a example of the algorithm’s proce-

dure.

This algorithm translates a given strategy set X = {x1, x2..., xn} into a partition π =

{S1, S2..., Sm}. The coalitions in the partition determine each agents ability ai = āi +

q(āi, ā−S(i)) where i ∈ S, S ∈ π. The resulting ability set {a1, a2..., an} determines the payoff

to every agent, Ui = w(ai, a−i) for all i ∈ N . Hence, the payoff to agent i is a function of

the strategy set:

Ui = w(ai, a−i)

= w(āi + q(āi, ā−S(i)), ā−i + q(ā−i, ā−S(−i)))

= ui(xi, x−i)

= ui(X) (1)

The algorithm is introduced into this model through an auctioneer. The role of the

auctioneer is to partition agents into coalitions based on the strategies they submit. Based

on the strategy set, the auctioneer chooses elements from the power set of N that satisfy

the first condition required for a coalition: members of a coalition must all mutually agree

to cooperate with each other. The auctioneer then chooses the coarsest partition from this
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set in order to satisfy the second condition of a coalition: no superset of mutually agreeing

members exists. If multiple partitions form, the auctioneer chooses one of those partitions

with equal probability. Given the strategies agents play, no agent benefits from deviating -

assuming deviation is feasible - to another coalition. Agents play strategies that are optimal

to a decision rule determined by the amount of rationality they posses. I distinguish between

perfectly rational agents and agents lacking foresight: perfectly rational agents posses infinite

computing capacity and can foresee the action of every other agent in the economy. While,

agents lacking foresight cannot foresee the actions of other agents. For a detailed explanation

refer Remark 4.1.

I use two equilibrium concepts here: Nash and Strong Nash equilibrium. The equilibrium

concept used depends on the rationality assumptions imposed on the agents.

A strategy set X̄ is a Nash equilibrium if no agent benefits by a unilateral deviation. The

formal definition is

Definition 2: The strategy set X̄ = {x̄1, x̄2..., x̄n} is a Nash Equilibrium if

ui(x̄i, x̄−i) ≥ ui(xi, x̄−i) ∀ xi ∈ χi, i ∈ N

A Strong Nash Equilibrium is a Nash equilibrium with the additional condition that no

subset of agents can jointly deviate to achieve a higher payoff.

Definition 3: The strategy set X̄ = {x̄1, x̄2..., x̄n} is a Strong Nash Equilibrium if

ui(x̄i, x̄−i) ≥ ui((xj)j∈S, (x̄k)k∈N/S) ∀ S ⊆ N, i ∈ S,N

Note that the deviating coalition is not necessarily a subset of a coalition in Nash Equi-

librium; agents may deviate from multiple coalitions. For example: suppose the strategy set

X leads to a unique partition π = {S1, S2, S3} and is a Nash Equilibrium. However, if agent

i ∈ S1 and j ∈ S2 jointly deviate to S3, then they achieve a higher payoff. The strategy

set X ′ corresponding to the partition π′ = {{S1/i}, {S2/j}, {S3 ∪ {i, j}}} is a strong Nash

Equilibrium where agents deviate from multiple coalitions in a Nash Equilibrium.

Perfectly rational agents foresee the outcome of every conceivable strategy set and play

the strategy that maximises their payoff accordingly. Thus, if an equilibrium exists, it is a

Strong Nash equilibrium. The reasoning is the following: Suppose agents plan on playing

strategies that are a Nash Equilibrium. If a subset of agents benefit from playing different

strategies, they foresee it. As all agents in that subset benefit and all agents are aware of

the perfect rationality other agents possess, they will play strategies to reach a Strong Nash

Equilibrium. However, multiple Strong Nash equilibrium may exist as multiple strategy sets

may translate into identical partitions and hence, identical payoff vectors.
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Remark 2.1: In spite of perfectly rational agents, they may not reach an equilibrium.

An equilibrium does not exist if there always exists subset of agents that can beneficially

deviate. As the strategy set space χn is finite, agents must deviate in a manner that a cycle

of strategy sets in created.

To show the non-existence of equilibrium, I show that a “cycle” occurs for a specific

ordering of the payoffs to agents i and j. Suppose that xi, x
′
i are two strategies played by

agent i and xj, x
′
j are played by agent j. Assuming that the strategies of the remaining

agents remains unchanged irrespective of the four combinations played by agents i and j.

Let the set of strategies played by the agents except i and j be represented by Y .

The payoff to agent i is as follows:

fi(xi, xj, Y ) > fi(x
′
i, x
′
j, Y ) > fi(xi, x

′
j,M) > fi(x

′
i, xj, Y )

The payoff to agent j is as follows:

fj(x
′
j, xi, Y ) > fj(xj, x

′
i, Y ) > fj(xj, xi,M) > fj(x

′
j, xi, Y )

For the payoff ordering we infer:

If agent i plays xi, agent j plays x′j
If agent j plays x′j, agent i plays x′i
If agent i plays x′i, agent j plays xj

If agent j plays x′j, agent i plays xi

At the last step, the cycle begins. Here the cycle is shown for preferences of two agents, but

it could occur for more than two agents. Thus, in case a cycle occurs, then an Equilibrium

does not exist.

If no equilibrium exists, the outcome depends on the beliefs agents have over the strategies

the other agents play and reach an mixed strategy Strong Nash Equilibrium. I conclude

the brief discussion for the case of non-existence of equilibrium and focus on the case where

equilibrium exists. In the next section I analyse the necessary conditions for perfectly rational

agents to form coalitions.

3 Analysis: Perfect Rationality

The game in strategic form is
(
N, (xi)i∈N , (ui(.))i∈N

)
. I represent this game in an n-

dimensional Euclidean space and analyse for the case when equilibrium exists.

9



The imputation corresponding to the strategy set X is given by the function Z :
n∏

i=1

χi →

Rn

Z(X) = (u1(X), u2(X)..., un(X)) = (U1, U2..., Un)

Note that the function Z(.) is non-injective and non-surjective: multiple strategy vectors X

can cause the same payoff vector and not all vectors in Rn have a corresponding strategy

vector.

Remark 3.1: For every strategy set X ∈
n∏

i=1

χi there exists a unique imputation Z(X).

If a strategy set leads to a unique partition, the uniqueness of the imputation is straight

forward. In the case where a strategy set leads to multiple partitions, one of the partition is

chosen with equal probability1. The imputation is the expected value of payoffs that result

from each partition.

The imputation Z(X) is represented in Rn: an n-dimensional Euclidean space. Let ∆n(K) ∈
Rn where

∆n(K) = {(U1, U2..., Un) ∈ Rn|
n∑

i=1

Ui = Kand Ui ≥ 0 ∀ i ∈ N}

Observe that ∆n(1) is the standard n-simplex. For values of K > 0, except for the linear

expansion (or contraction), the properties of the space remains the same. As the payoff in

the model always adds to K, Z(X) ∈ ∆n(K) for all X ∈
n∏

i=1

χi. The indifference curve,

λi(K −K ′), of agent i is a set of vectors, (U1, U2..., Un) ∈ ∆n(K), such that the payoff to all

agents other than agent i adds to a constant value K ′:

λi(K −K ′) = {(U1, U2..., Un) ∈ ∆n(K) |
n∑

j 6=i

Uj = K ′and 0 ≤ K ′ ≤ K ∀ i, j ∈ N and i 6= j}

If agent i lies on the indifference curve λi(K − K ′), his payoff is Ui = K − K ′ for all

imputations in λi(K −K ′).
Agents begin game play from the initial state of no coalitions: the finest refinement of

N . The imputation at the initial state is ZI = (U I
1 , U

I
2 ..., U

I
n). Note that ZI does not

correspond to any strategy set as agents play strategies after this point. However, strategy

sets X ∈
n∏

i=1

χn exist such that Z(X) equals the imputation at initial state. Let the set of

these strategy sets be represented by Y such that Z(X) = ZI = (U I
1 , U

I
2 ..., U

I
n) ∀ X ∈ Y

Let Z(X) ∈ λi(K1), then agent i is better-off if K1 > U I
i and worse-off if K1 < U I

i . The

set of indifference curves where agent i is always better-off (worse-off) is called the better-off

1Refer step 6 in Algorithm 1.
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set (worse-off set). The better-off and worse-off sets are respectively denoted by:

Bi(U
I
i ) = {λi(K1) | K1 > U I

i }

Wi(U
I
i ) = {λi(K1) | K1 < U I

i }

The better-off (worse-off) sets are with respect to payoff at the initial state. If an imputation

is neither in the better-off or worse-off set of agent i then it must lie on the indifference curve

λi(U
I
i ). Agents play strategies to achieve the highest possible indifference curve.

Proposition 1: For every strategy X ∈
n∏

i=1

χi and X /∈ Y , Z(X) ∈ Wi(U
I
i ) for at least

one i ∈ N .

Proof. is by way of a contrapositive:

Suppose there exists a subset S ⊂ N such that Z(X) ∈ Bi(U
I
i ) ∀ i ∈ S and Z(X) ∈

Bj(U
I
j ) ∀ j ∈ N/S. This implies Z(X) ∈

⋂
i∈S

Bi(U
I
i ). and Z(X) ∈

⋂
j∈N/S

λj(U
I
j )

By the definition Ui > U I
i ∀ i ∈ S and Uj = U I

j ∀ j ∈ N/S. Adding then for all agents in N ,
n∑

i=1

Ui >
n∑

i=1

Ūi

n∑
i=1

Ui > K

However, by definition we have
n∑

i=1

Ui = K and hence strategy X cannot exist. The payoff

sums to K only when some agents j ∈ N/S are worse-off such that the gain by agents in S

is offset by agents in N/S.

This implies that all imputations Z(X) ∈ ∆n(K) are Pareto-Optimal. If agents move

to a equilibrium X̄ /∈ Y , then at least one agent is better-off and one worse-off. However,

if only one agent is made better-off by this movement, then the rest would play strategies

to remain at the initial state. Also, if more than one agents benefit, but are in different

coalitions, then too the rest of the agents can play strategies to remain at the initial state.

This leads us to the second proposition.

Proposition 2: The necessary conditions for X̄ /∈ Y to be an equilibrium are (1) Z(X̄) ∈
Bi(Ui) ∪Bj(Uj) for some i, j ∈ N (2) i, j ∈ S where S ∈ π(X)

Proof. In the first part of the proof I show that at least two agents must be better-off.

Proof is by way of a contrapositive:

Suppose that by playing the strategy set X̄, only one agent i is better-off: Z(X̄) ∈ Bi(U
I
i ).

By Proposition 1, there exists a non-empty subset T ⊂ N such that Z(X̄) ∈ Wj(U
I
j ) ∀ j ∈ T .

Assume that the rest of the agents, N/(T ∪ i), are neither better-off nor worse-off by playing

11



strategy set X̄. I assume agents prefer to not participate if they do not benefit by participa-

tion. Thus, by playing the strategies xj = {j} ∀ j ∈ T and xk = {k} ∀ k ∈ N/(T ∪ i) they

arrive at the initial state of no coalitions irrespective of the strategy played by agent i.

The second part of the proof is based on similar reasoning. If two agents, say a and b

are better-off by strategy set X̄, but a /∈ xb and b /∈ xa, then the other agents take the same

action as above to arrive at the initial state.

The necessary condition to attain an equilibrium coarser than the initial state, is that the

resultant imputation must lie in the better-off set of at least two agents and both agents must

be a part of the same coalition. If either of the two conditions is not satisfied, the rest of the

agents play strategies that leads to the partition at the initial state: the finest refinement of

N . In other words, agents equilibrate to a coarser partition only if the necessary conditions

are satisfied. Needless to state that while equilibrating to a coarser partition more than two

agents can be better-off and also lie in different coalitions.

The reward apportioning mechanism discussed till this point is direct: agents directly

receive a share based on their individual ability. However, this mechanism can also be viewed

as as a two-step indirect apportioning mechanism. The coalitional worth is the share a coali-

tion receives based on its aggregate ability. The coalitional worth is then divided among

the members of the coalition based on their abilities. As long as the division rule for ap-

portioning the reward among coalitions is identical to that for apportioning the coalitional

worth among it members, the model being analysed is the same. Just that this is a different

perspective. Using the fractional payoff function discussed in Example 1, I use an example

to explain this concept.

Example 4:

The coalitional worth is the share of reward K that coalition S ∈ π receives: v(S) =

∑
i∈S

ai

n∑
j=1

aj

K

where ai = āi + q(āi, ā−S(i)) ∀ i ∈ S
The share of agent k ∈ S is Uk = ak∑

i∈S
ai
v(S)

Thus,

Uk =
ak∑

i∈S
ai

∑
i∈S

ai

n∑
j=1

aj

K

=
ak
n∑

j=1

aj

K
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This is the individual fractional payoff function in Example 1. A similar conclusion can be

reached for any payoff function w(.)

I now analyse the effects of coalition formation on the payoff of its members. The as-

sumption of diminishing marginal rate of learning causes unequal benefits to agents within

a coalition. The following proposition proves that within a coalition, an agent with a higher

ability always benefits lesser than agents with lower abilities.

Proposition 3: For coalition S = {1, 2...,m}, if āi > āj for some i, j ∈ S, then q(āj, ā−S(j)) >

q(āi, ā−S(i)).

Proof. To prove: q(āj, ā−S(j))− q(āi, ā−S(i)) > 0 ∀ i, j ∈ S.

Learning from others is assumed to be superadditive: q(āi, ā−S(i)) =
m∑
k=1

q(āi, āk)

Note that there is no self-learning: q(āi, āi) = 0.

As
∂q(āi,ā−S(i))

∂āi
< 0 and āi > āj, we have

m∑
k 6=j

q(āi, āk) <
m∑
k 6=i

q(āj, āk) (2)

We now have to compare the terms q(āi, āj) and q(āj, āi). Assume the abilities of the agents

differ by an infinitesimally small amount h such that āi = ā+ h, āj = ā.

Thus,

q(āj, āi)− q(āi, āj) = q(ā, ā+ h)− q(ā+ h, ā)

= h(
z(ā, ā+ h)

h
− z(ā+ h, ā)

h
) (3)

As h→ 0

q(āj, āi)− q(āi, āj) = h(lim
h→0

q(ā, ā+ h)− q(ā, ā)

h
− lim

h→0

q(ā+ h, ā)− q(ā, ā)

h
)

= h(
∂q(āi, āj)

∂āj
− ∂q(āi, āj)

∂āi
)

By assumption
∂q(āi,āj)

∂āj
> 0 and

∂q(āi,āj)

∂āi
< 0, therefore q(āi, āj) < q(āj, āi).

Thus,
m∑
k=1

q(āi, āk) <
m∑
k=1

q(āj, āk)

q(āj, ā−S(j)) > q(āi, ā−S(i))

13



Think of a coalition S in isolation; unaffected by the strategies of agents outside S.

As the effects of the coalitions formed by agents outside S affect the payoff to agents in S

independently, I isolate S to analyse the effects of its formation of the abilities of its members.

It may be easier to understand the concept by applying the reasoning to a grand coalition N

first and then extend the reasoning to a coalition S ⊂ N . For a continuous payoff function

u(.), the agent with the highest ability - within an isolated coalition - is always worse off

and one with least ability is always better-off when compared to the initial state. The agent

with the highest ability learns the least. Agents’ learning progressively increases as ability

decreases. As a result, the relative position of the agent with the highest ability decreases.

Similarly, the relative position of the agent with the lowest ability increases.

4 The Algorithmic Process of Coalition Formation (APCF)

I develop an algorithmic process of coalition formation (APCF) to simulate an evolutionary

approach of attaining equilibrium2 for agents lacking foresight3. All agents begin by playing

strategies

x1
i = {j | āj ≥ āi}

Agents want to cooperate with all agents with abilities greater than themselves because by

Proposition 3 cooperating with an agent with higher ability increases payoff. Agents simul-

taneously submit them to an auctioneer. By Algorithm 1, the auctioneer chooses a coarsest

partition from all possible partitions with equal probability. The process of submission of

strategies and coalition formation constitutes a round. If every agent plays x1
i , the partition

at the end of round 1 is the finest refinement of N .

Let the strategy set played in the round r ≥ 1 be Xr = {xr1, xr1..., xrn}. At the end of

round r, agent i evaluates if other strategies yield higher payoffs, given the strategies of other

agents in round r. Agent i resubmits a new strategy xr+1
i in the next round, r + 1, if

ui(x
r+1
i , xr−i) > ui(x

r
i , x

r
−i) for some i ∈ N where xr+1 6= xr

Multiple agents may similarly change strategies in round r + 1. In spite of complete infor-

mation, agents in round r cannot predict the strategies other agents will resubmit in round

r + 1. Thus, an agent’s resubmitted strategy, xr+1
i , is in response to strategies played in

round r: xr−i. This is a limitation imposed on the rationality of the agents.

2I discuss how APCF simulates an evolutionary mechanism in Section 5.
3Agents lacking foresight cannot foresee the actions of other agents and play strategies without accounting

for the changes other agents would make. For a detailed discussion on the rationality assumption refer Remark

4.1
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The auctioneer replaces the resubmitted strategies in round r + 1 and retains the rest

from round r, forming a new strategy set4, Xr+1. A new partition is formed by Algorithm 1.

The APCF progresses from round r (to r+1) if at least one agent benefits from resubmitting

a different strategy. The APCF progresses for infinite rounds if at least one agent changes

his strategy in each round and terminates if no agent changes his strategy in a round.

Agents cooperate (within coalitions) only after the APCF terminates. This implies that

all agents evaluate their payoff based on the initial ability. The abilities improve only after

agents begin cooperation.

Let the history of the strategy sets played at round r be Hr = {Xr−1, Xr−2..., X1}.

Proposition 3: At round r + 1, if Xr+1 ∈ Hr, then APCF is cyclic: APCF progresses

from every round r ≥ 1.

Proof. Let Xr+1 ∈ Hr

Xr+1 ∈ {Xr−1, Xr−2..., X1}
Xr+1 = Xr−m for some 1 ≤ m ≤ r − 1

From Hr+1 we know that the APCF progresses from round r−m to r+ 1. Thus, the APCF

will progress from r + 1 to r +m+ 2 where

Xr+1 = Xr−m

Xr+2 = Xr−m+1

...

Xr+m+2 = Xr+1

Thus, H∞ contains a recurring subset of Hr+1.

The history of strategy sets, Hr, is a progression of rounds. A round progresses only if at

least one agent benefits from resubmitting a strategy. If strategy set Xr+1 is already present

in Hr, then there always exists a progression to every round in the APCF. Thus, this cycle

continues infinitely: the APCF is non-terminating.

If an APCF is acyclic, then Xr+1 /∈ Hr for all rounds r > 1. In a round, if no agent

benefits by deviating from his existing coalition, no agent resubmits a strategy. As the set
n∏

i=1

χi has finite strategy sets, an acyclic APCF terminates after a finite number of rounds rT .

4Note: Xr+1 6= Xr as at least one element xr+1
i ∈ Xr+1 and xr+1 /∈ Xr. However, it is possible for

Xr = Xr+m for all m 6= {−1, 1}.
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The terminal strategy set XrT is a Coalitional Equilibrium. The coalitional equilibrium at-

tained for an acyclic APCF depends on the strategy set played in the first round. For initial

strategy described above, the is not necessarily a Strong Nash. As agents lacking foresight

cannot coordinate strategies without communication, they may be stuck at a Coalitional

equilibrium which is not a strong-Nash equilibrium, although a Strong-Nash is achievable.

On the other hand, agents with perfect foresight can always predict other’s strategies and

coordinate without communication to attain the strong Nash equilibrium.

Remark 4.1: The APCF implicitly imposes an assumption on the rationality of the agents.

Agents in this model are lack foresight. At the end of round r agents evaluate the ben-

efit resubmitting a new strategy xr+1
i , given strategies of other agents played in round r.

Although they have complete information, at the end of a round they cannot predict the

strategies that other agents may resubmit. Perfectly rational agents predict the strategies

that other agents will resubmit and play a strategy taking it into account. Thus, perfectly

rational agents play the equilibrium strategies in the first round. Considering the complexity

of this model, assuming perfectly rational agents is far fetched. Agents in the real world,

mostly, would have a degree of rationality. At one extreme is perfect rationality and the

other is a lack of foresight. Agents with a degree of foresight between the extremes will play

strategies based on some predictions. The APCF for such agents terminates in lesser rounds

than that taken for agents lacking foresight. However, this paper only discusses the extremes.

In the case of cyclic APCF, the agents keep resubmitting strategies for infinite rounds. As

agents cooperate within coalitions only after the APCF stops, the agents in a cyclic APCF

never form coalitions at all. In the case of perfectly rational agents, agents have beliefs about

the strategies of other agents. However, in an APCF beliefs play no role as strategies are

resubmitted in the subsequent round. Such cycles may stop if the reward is discounted after

each round by δ ∈ (0, 1). If the APCF stops at round r, the reward available to be split is

δr−1K. Agents evaluate the preset value of their payoff against the the future value of payoff

before resubmitting a different strategy, given the strategy of others.

If ui(x
r
i , x

r
−i) < ui(x

r+1
i , xr+1

−i ), but δrui(x
r
i , x

r
−i) > δr+1ui(x

r+1
i , xr+1

−i ), then agent i does

not resubmit strategy xr+1
i in round r+ 1. However, if the discount value is large (near to 1)

such that δ >
ui(x

r
i ,x

r
−i)

ui(x
r+1
i ,xr+1

−i )
∀ i ∈ N , then the cycle will continue till the reward becomes zero.

For smaller values of δ the cycle may stop. Thus, for large discount values, agents lacking

foresight land up having nothing instead of settling for a compromise in the initial rounds

to receive something.
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5 Discussion

I analyse a game where agents compete for a share of a reward. Their payoff - the fraction of

reward received - depends on the relative position of their ability. As cooperation increases

agent’s endowed ability because of the learning, agents form coalitions. The game described

is a direct mechanism: agents directly receive a share of the reward. However, the game can

be thought as a two step mechanism. First, the reward is apportioned to coalitions based

on their aggregate ability. Second, the reward received by a coalition is further apportioned

among its members based on individual ability. The direct mechanism and the two-step

mechanism is the same game, only viewed differently. The two-step mechanism is a more

intuitive way of modelling it. For example, firms producing identical goods compete for a

market share. The profits are distributed among a firm’s employees based on ability.

The algorithmic process of coalition formation (APCF) introduced in Section 4 implicitly

assumes agents to lack foresight. The procedure simulates a evolutionary mechanism and

could be applied without an auctioneer. Suppose agents first form coalitions based on their

priors. After a period of time, they figure out which deviations are beneficial. Assuming

that these deviations are feasible, agents deviate to form a new partition. They reach a

coalitional equilibrium when no agent benefits from deviation. The simplifying assumption

in this model is that agents cooperate only after APCF terminates. This implies that agents’

ability improves from cooperation only after attaining equilibrium. All evaluations in the

APCF are based on the endowed ability of the agents. If agents are allowed to cooperate after

every round, their abilities will improve. Thus, the benefit of deviating must be evaluated

based on improved abilities. This problem becomes non-tractable for a sizeable set N .

It is interesting to think of the cyclic APCF with respect to the real world. In a cyclic

APCF, agents deviate without figuring out the cycle and continue such movement endlessly.

While in the real world, agents may eventually figure out the presence of small cycles, for

large cycles the agents may never become aware of the cycle. For the case where the reward

is discounted, agents may stop the cycle for small values of the discount factor. However,

for large values the agents stop when the reward is reduced to zero. It shows that although,

compromising and not making a beneficial move makes agents better-off, their myopic vision

prevents them from seeing this. In the bargain, they are left with no payoff. Also, if the

effect of cooperate on abilities is accounted for at every round, the changed abilities may

cause them to step out of the cycle.

The assumption placed on the rationality of agents (lacking foresight) may lead to an

outcome different from what agents with perfect foresight attain. Agents lacking foresight

may not reach a Strong Nash equilibrium, where agents with perfect foresight always attain

it. Thus, the rationality assumption changes the outcome.
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6 Appendix A

Suppose the economy consist of the following set of agents

N = {a, b, c}

and the strategy of each agent is

xa = {a, b}, xb = {a, b}, xc = {a, b, c}

Step 1:

2N = {{a}, {b}, {c}, {ab}, {ac}, {abc}}

Step 2: A representative step:

s = {ac}
η(a) = {a}, η(b) = {a}, η(c) = {a, c} (4)

ρ(s) = η(a) ∩ η(b) ∩ η(c)

ρ(s) = {a}

Step 3: P = {{a}, {b}, {c}, {ab}}}

Step 4: ϕ = {{ab}{c}}}

Step 5: As ρ(ab) ∩ ρ(c) = ∅, the partition is

π = {{ab}, {c}}

For the same example if x(b) = {a, b, c}, then Steps 1 and 2 are the same as above.

Step 3: P = {{a}, {b}, {c}, {ab}, {ac}}}

Step 4: ϕ = {{ab}{bc}}}

Step 5: As ρ(ab) ∩ ρ(bc) = b, agent b is indifferent to coalition {ab} and {bc}

Step 6: The partition π1 = {{ab}, {c}} is formed with half probability and π2 = {{bc}, {a}}
is formed with half probability. If the strategy set was a Coalitional Equilibrium, then we

have multiplicity of equilibrium.
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