
SUFFICIENCY OF WEAK MONOTONICITY FOR IMPLEMENTABILITY

IN MAX DOMAIN ∗

Satish Agarwal1 and Souvik Roy2

1Total SA, Reservoir Engineering Department, La defence, France

2Economic Research Unit, Indian Statistical Institute, Kolkata

Abstract

We consider implementation of a deterministic allocation rule using transfers in quasi-linear private values

environments. We show that in a domain where the valuation of a set of objects is given by the maximum valuation

in that set, an allocation rule is implementable if and only if it satisfies a familiar and simple condition called weak

monotonicity or 2-cycle monotonicity.

1 Introduction

A classical problem in mechanism design is to investigate conditions which are necessary and sufficient for im-

plementing an allocation rule. We investigate this question in private value and quasi-linear utility environment

when the set of alternatives is finite and the allocation rule is deterministic (i.e not random). An allocation rule in

such an environment is implementable if there exists a payment rule such that truth telling is a dominant strategy

for the agents in the resulting mechanism. Our main result is that in a Max Domain, weak monotonicity implies

K-cycle monotonicity. The weak monotonicity condition requires the following: given the types of other agents, if

the alternative chosen by the allocation rule is a when agent i reports its type to be t and the alternative chosen by

the allocation rule is b when agent i reports its type to be s, then it must be that

t(a)− t(b) ≥ s(a)− s(b).

One of the earliest papers to identify the necessary and sufficient conditions for implementability was Rochet

(1987), who proved that a condition called cycle monotonicity was needed for implementability in any type space.

Myerson (1981) formally establishes that in a single object auction set up, where the type is single dimensional,

weak monotonicity is necessary and sufficient condition for implementation. When the type space is multidimen-

sional, if the set of alternatives is finite and the type space is convex, weak monotonicity implies cycle monotonic-

ity (Bikhchandani et al. (2006), Saks and Yu (2005), Ashlagi et al. (2010)). Though convexity is a natural geometric

∗The authors would like to gratefully acknowledge Debasis Mishra for his insightful comments.

1

property satisfied in many economic environments, it excludes many interesting type spaces. Recently, it has been

shown that in Single Peaked Type Spaces, which is a non-convex domain, 2-cycle monotonicity implies higher cycle

monotonicity (Mishra et al. (2014)). Moreover, the dichotomous domain is the only familiar domain known in liter-

ature where weak monotonicity is not sufficient for implementability but 2-cycle and 3-cycle monotonicity together

are sufficient (Mishra and Roy (2013)). Indeed, our Max Domain type space is non-convex. To our knowledge, this

paper is the first to examine the monotonicity of this specific domain. A characterization of implementability (given

by cycle monotonicity) using weak monotonicity is useful because the cycle monotonicity is a difficult condition to

use and interpret. On the other hand, weak monotonicity is a simpler condition. For this reason, 2-cycle monotonic-

ity is often referred to as weak monotonicity (Bikhchandani et al. (2006)) or monotonicity (Ashlagi et al. (2010)).

The next step to show is that weak monotonicity implies cycle monotonicity for a domain where the equality con-

ditions of the max domain are replaced by inequalities, thus giving us Gross Substitution Domain.

2 Model

We consider a set N of n players and a set S = {a1, a2, . . . , am} of m objects. The set of alternatives A is defined as

the set of all subsets of S.

Definition 2.1 (Max Domain). Max domain D over a set S of objects is defined as D = {t ∈ R
2m

: t(X) =

maxa∈X t({a}) ∀X ∈ A}.

Notation. We introduce the following notation: τ(X, ti) = {x ∈ X : ti(x) ≥ ti(y) for all y ∈ X} where X ⊆ S.

Definition 2.2. An allocation rule f is a function from Dn to A.

Definition 2.3. An allocation rule f satisfies k-cycle monotonicity if ∀i ∈ N, ∀t1, t2, . . . , tk ∈ D and ∀t−i ∈ Dn−1,

k

∑
j=1

tj(f (tj, t−i))− tj(f (tj+1, t−i)) ≥ 0

where tk+1 = t1.

Definition 2.4. An allocation rule f is implementable if there exists a payment function p : Dn → R such that

∀i ∈ N, ∀ti, t′i ∈ D, and ∀t−i ∈ Dn−1

ti (f (ti, t−i))− p(ti, t−i) ≥ ti

(

f (t′i, t−i)
)

− p(t′i, t−i).

Definition 2.5. An allocation rule is said to satisfy weak monotonicity if it satisfies 2-cycle monotonicity.

3 Results

In this section we present the main result of this paper. First we present a theorem due to Rockafellar (1970) that

states that k-cycle monotonicity for all k ∈ N is sufficient for implementability.

2

Theorem 3.1 (Rockafellar (1970)). An allocation rule f is implementable if and only if it is k-cycle monotone for all k ∈ N.

We now present the main theorem of this paper. We show that the max domain is weak monotone domain,

meaning that every rule that satisfies weak monotonicity must satisfy k-cycle monotonicity for all k ∈ N and hence

will be implementable.

Theorem 3.2. Weak monotonicity is sufficient for implementability in max domain.

The proof of the theorem follows from the following lemma.

Lemma 3.1. If an allocation rule f defined on max domain satisfies (k − 1)-cycle monotonicity then it satisfies k-cycle mono-

tonicity.

Proof. Suppose not. Then there exists an allocation rule f and k type profiles (tj, t−i); j = 1, . . . k consisting of k types

t1, t2, t3, . . . , tk ∈ D of a player i and a type profile t−i ∈ Dn−1 of all players except i such that f satisfies (k − 1)-cycle

monotonicity for all size (k − 1) subsets of those k type profiles but violates k-cycle monotonicity over those k type

profiles. Suppose f (tj, t−i) = Aj for j = 1, . . . , k. We assume tl(A1) = α ∀l = 1, 2, 3, . . . , k. This is without loss of

generality as cycle monotonicity condition is location invariant. Applying (k − 1)-cycle monotonicity over types

t1, t2, t3, . . . , tk−1 and using assumption t1(A1) = tk−1(A1) we have

t2(A2) + t3(A3) + . . . + tk−1(Ak−1) ≥ t1(A2) + t2(A3) + . . . + tk−2(Ak−1) (1)

Applying (k − 1)-cycle monotonicity over types t2, t3, t4, . . . , tk we have

t2(A2) + t3(A3) + . . . + tk(Ak) ≥ t2(A3) + . . . + tk−1(Ak) + tk(A2) (2)

Since f violates k-cycle monotonicity over t1, t2, t3, . . . , tk and t1(A1) = tk(A1) by our assumption, we have

t2(A2) + t3(A3) + . . . + tk(Ak) < t1(A2) + t2(A3) + . . . + tk−1(Ak) (3)

Note that if

tk(Ak) ≥ tk−1(Ak)

then (1) contradicts (3). Moreover, if

tk(A2) ≥ t1(A2)

then (2) contradicts (3).

Suppose

τ(A2, t1) = τ(Ak, tk−1).

Since this means τ(A2, t1) ∈ Ak, we have t1(Ak) ≥ t1(A2). Similarly we have tk−1(A2) ≥ tk−1(Ak). Now 2-cycle

monotonicity over types t1 and tk gives tk(Ak) ≥ t1(Ak). This along with t1(Ak) ≥ t1(A2) implies tk(Ak) ≥ t1(A2).

Applying (k − 2)-cycle monotonicity over types t2, . . . , tk−1 we have

t2(A2) + t3(A3) + . . . + tk−1(Ak−1) ≥ t2(A3) + . . . + tk−2(Ak−1) + tk−1(A2).

3

Using tk−1(A2) ≥ tk−1(Ak) and tk(Ak) ≥ t1(A2) in the above equation we have

t2(A2) + t3(A3) + . . . + tk−1(Ak−1) + tk(Ak) ≥ t1(A2) + t2(A3) + . . . + tk−1(Ak)

which violates (3).

Now, we consider the following remaining case

tk−1(Ak) > tk(Ak), (4)

t1(A2) > tk(A2), (5)

and

τ(A2, t1) 6= τ(Ak, tk−1). (6)

Take b, c ∈ S such that b 6= c, b ∈ τ(A2, t1) and c ∈ τ(Ak, tk−1). Note that this is possible by assumption (6).

Consider a type tk+1 such that

tk+1({b}) = t1({b})− ǫ,

tk+1({c}) = tk(Ak) + ǫ, and

tk+1({x}) = tk({x}) for all x ∈ S \ {b, c}

where ǫ > 0 is arbitrarily small.

Claim 3.1. For the type tk+1

tk+1(X) ≥ tk(X) for all X ∈ A. (7)

Proof. By the construction of tk+1 it is enough to show that tk+1({b}) > tk({b}) and tk+1({c}) > tk({c}). The

fact that tk+1({c}) > tk({c}) follows from the fact that c ∈ Ak, as then tk(Ak) ≥ tk({c}) and hence tk+1({c}) =

tk(Ak) + ǫ > tk({c}). We now proceed to show that tk+1({b}) > tk({b}). Since b ∈ τ(A2, t1), t1({b}) = t1(A2).

Hence by (5) t1({b}) > tk(A2) ≥ tk({b}). Here the last inequality follows from the fact that b ∈ A2. Since ǫ is

arbitrarily small, tk+1({b}) = t1({b})− ǫ > tk({b}), which completes the proof of the Claim 3.1.

Claim 3.2. It must be that tk+1(A1) = α.

Proof. Note that by the construction of tk+1, tk+1(A1) = tk(A1) = α if b, c 6∈ A1. We first show that b 6∈ τ(A1, tk+1).

If b 6∈ A1 then there is nothing to prove. Suppose b ∈ A1 which means t1(A1) ≥ t1({b}) or, t1(A1) > t1({b}) −

ǫ = tk+1({b}). Since t1(A1) = tk(A1) = α, Claim 3.1 implies tk+1(A1) ≥ tk(A1) > tk+1({b}). This proves that

b 6∈ τ(A1, tk+1).

Now we show c 6∈ τ(A1, tk+1). As before if c 6∈ A1 then there is nothing to prove. Suppose c ∈ A1 which means

tk−1(A1) ≥ tk−1({c}). Since c ∈ τ(Ak, tk−1), we have tk−1({c}) = tk−1(Ak). This implies that tk−1(A1) ≥ tk−1(Ak).

Using (4) this means tk−1(A1) > tk(Ak). Since ǫ is arbitrarily small, we have tk−1(A1) > tk(Ak) + ǫ = tk+1(c).

Moreover, as tk−1(A1) = tk(A1) = α, we have tk(A1) > tk+1(c). Now using Claim 3.1 we get tk+1(A1) ≥ tk(A1) >

4

tk+1({c}). This proves that c 6∈ τ(A1, tk+1). This completes the proof of the Claim 3.2.

We now complete the proof by showing that f violates (k − 1)-cycle or lower cycle monotonicity for every

possible outcome at tk+1. Note that for any alternative X ∈ A,

tk+1(X) = tk(X) if b, c 6∈ τ(X, tk+1),

tk+1(X) = t1(A2)− ǫ or tk(Ak) + ǫ otherwise.

In the following we consider all the above possibilities case by case.

Case 1. Consider an alternative X such that tk+1(X) = tk(X). Suppose f (tk+1, t−i) = X. Note that since c ∈ Ak,

tk+1(Ak) ≥ tk+1({c}) = tk(Ak) + ǫ > tk(Ak). Hence,

tk+1(X) + tk(Ak) < tk(X) + tk+1(Ak),

which means f violates 2-cycle monotonicity over tk and tk+1. Hence f (tk+1, t−i) 6= X.

Case 2. Consider an alternative X such that tk+1(X) 6= tk(X). Then tk+1(X) is either t1(A2)− ǫ or tk(Ak) + ǫ. We

distinguish cases where t1(A2)− ǫ 6= tk(Ak) + ǫ and t1(A2)− ǫ = tk(Ak) + ǫ.

Case 2.1. Suppose t1(A2)− ǫ 6= tk(Ak) + ǫ.

Case 2.1.1. Suppose tk+1(X) = t1(A2) − ǫ. This means b ∈ X. As b ∈ τ(A2, t1), t1(X) ≥ t1(A2). Suppose

f (tk+1, t−i) = X. Then,

tk+1(X) + t1(A1) < t1(A2) + tk+1(A1) ≤ t1(X) + tk+1(A1),

which means f violates 2-cycle monotonicity over t1 and tk+1. Hence f (tk+1) 6= X.

Case 2.1.2. Suppose tk+1(X) = tk(Ak) + ǫ. This means c ∈ X. Using (k − 1)-cycle monotonicity of f over

t2, t3, . . . , tk−1, tk+1 we have

t2(A2) + t3(A3) + . . . + tk−1(Ak−1) + tk+1(X) ≥ tk+1(A2) + t2(A3) + . . . + tk−1(X).

As b ∈ τ(A2, t1) we have tk+1(A2) ≥ tk+1({b}) = t1({b})− ǫ = t1(A2)− ǫ. Moreover as c ∈ X and c ∈ τ(Ak, tk−1),

tk−1(X) ≥ tk−1(c) = tk−1(Ak). Using all these in the above equation we have

t2(A2) + t3(A3) + . . . + tk−1(Ak−1) + tk(Ak) + ǫ ≥ t1(A2)− ǫ + t2(A3) + . . . + tk−1(Ak).

Since ǫ is arbitrarily small, this violates (3). Hence, f (tk+1, t−i) 6= X.

Case 2.2. Suppose that tk+1(X) = t1(A2)− ǫ = tk(Ak) + ǫ. This means either b or c is in X. Hence f (tk+1, t−i) 6= X

by Case 2.1.

It follows from the above consideration that f violates (k − 1)-cycle or lower cycle monotonicity for every pos-

sible outcome at tk+1 which is a contradiction to our initial assumption. This completes the proof of Lemma 3.1.

5

�

Example 3.1. In the following example we show the construction of tk+1 for k = 3. The circled numbers denote the

outcomes at respective types, and ǫ = 0.3 in t4.

a b c max(ab) max(bc) max(ca) max(abc)

t1 1 3 2 3 3 1 3

t2 5 3 2 5 3 5 5

t3 4 1 2 4 2 4 4

t4 4.3 2.7 2 4.3 2.7 4.3 4.3

Table 1: Construction of tk+1 for k = 3

4 Application

In this section we apply our result to a few other interesting domains. Note that in a max domain a set of objects

is evaluated as the most valuable object in that set. A more natural assumption would be that the valuation of a

set of objects is in-between the maximum valuation and the total valuation of all objects. We call such a domain an

intermediate domain. Below we provide the formal definition.

Definition 4.1 (Intermediate Domain). Intermediate domain I is defined as the domain of types t satisfying the

following two conditions: for all X ∈ A

1. t(X) ≥ t(Y) ∀Y ⊆ X and

2. t(X) ≤ ∑a∈X t({a}) .

Definition 4.2. A domain D is convex if t1, t2 ∈ D implies αt1 + (1 − α)t2 ∈ D for all α ∈ [0, 1].

Note that the lower boundary of an intermediate domain gives a max domain, and the upper boundary is

the so called sum domain where the valuation of a set of objects is the total valuation of the objects in that set.

It is known that weak monotonicity is sufficient for implementability in the sum domain. Moreover, using our

result we know that weak monotonicity is also sufficient for the lower bound of intermediate domain, i.e. the

max domain. So, we finally conclude that weak monotonicity is sufficient for implementation for the intermediate

domain. This also follows from the fact that intermediate domain is convex, and weak monotonicity is sufficient for

implementability in convex domain (Saks and Yu (2005)). Moreover, the additional fact that weak monotonicity is

sufficient implementability for both the lower and upper bounds of intermediate domain has serious contribution

in finding the optimal mechanism in the intermediate domain. This is because under some mild assumption, the

optimal mechanisms always lie in the boundary. We formally state all these facts in the following lemmas and

theorems. The proof of the following lemma is left to the reader.

Lemma 4.1. An intermediate domain is a convex domain.

6

We now present a theorem that states that weak monotonicity is sufficient implementability on a convex domain.

The proof of this theorem can be found in Saks and Yu (2005).

Theorem 4.1 (Saks and Yu (2005)). Weak monotonicity is sufficient for implementability in convex domain.

The following corollary follows from both Theorem 3.2 and Theorem 4.1.

Corollary 1. Weak monotonicity is sufficient for implementability in intermediate domain.

5 Conclusion

In this paper we show that weak monotonicity is sufficient for implementability in max domain. The proof strategy

is completely new in this literature and flexible enough to be extended to prove similar results in other domains of

similar structure. One such important domain is the gross substitute domain. We are working on that problem.

References

[1] Itai Ashlagi, Mark Braverman, Avinatan Hassidim, and Dov Monderer. Monotonicity and Implementability.

Econometrica, 78:1749–1772, 2010.

[2] S. Bikhchandani, S. Chatterji, R. Lavi, A. Mualem, N. Nisan, and A. Sen. Weak monotonicity characterizes

deterministic dominant strategy implementation. Econometrica, 74:1109–1132, 2006.

[3] Debasis Mishra and Souvik Roy. Implementation in multidimensional dichotomous domains. Theoretical Eco-

nomics, 8:431–466, 2013.

[4] Debasis Mishra, Anup Pramanik, and Souvik Roy. Multidimensional mechanism design in single peaked type

spaces. Journal of Economic Theory, 153:103–116, 2014.

[5] Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 6:58–73, 1981.

[6] J. C. Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context. Journal of Math-

ematical Economics, 16:191–200, 1987.

[7] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[8] M. E. Saks and L. Yu. Weak Monotonicity Suffices for Truthfulness on Convex Domains. In Proceedings of 7th

ACM Conference on Electronic Commerce, pages 286–293. ACM Press, 2005.

7

	Introduction
	Model
	Results
	Application
	Conclusion

