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Abstract

We derive a collection of generalized envelope theorems for a broad class of pa-
rameterized Lipschitizian optimization problems with both nonsmooth objectives and
constraints applicable to many economic environments where nonconvexities play a key
role.
We first provide suffi cient conditions for the value function to be Lipschitz and ob-

tain bounds for its upper and lower Directional Dini derivatives of this value function.
Next we establish suffi cient conditions for the directional differentiabiliy and/or differ-
entiability of the value function, and show how standard smooth envelope theorems
are special cases of our results.
We then apply our findings to derive new results on the existence and character-

ization of Markov equilibrium in dynamic economies with nonconvexities, dynamic
programming with discrete choices, incentive constrained dynamic programming, and
monotone comparative statics in constrained optimization problems.

1 Introduction

The use of envelope theorems to characterize optimal solutions of constrained optimization
problems is widespread in microeconomic and macroeconomic theory. An envelope is ba-
sically an equality between the derivative of the value function and the derivative of the
objective evaluated at the optimum along a fixed direction ignoring the "indirect" effects
due to changes in the optimal solution. While envelopes of convex unconstrained programs
are derived directly from the objective of the optimization program, in convex constrained
programs they are generally obtained from the Lagrangian, both cases involving the use of
super/subdifferentials.
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In smooth (meaning continuously differentiable) convex programs, envelopes are typically
standard derivatives giving precise information concerning the rate of growth of the value
function in all directions at a given point, and are therefore an essential tool for comparative
statics in static and dynamic models.
Nonconvexities, however, arise in many problems such as dynamic programming with

discrete choices, mechanism design with Lipschitz primitive data, constrained lattice pro-
gramming problems, incentive constrained dynamic programs, "bi-level"/Stackelberg games,
to name a few. And to make matters more diffi cult, objectives and/or constraints are not
even smooth in many of these problems. Clearly one then cannot expect envelopes to be
simple derivatives as many technical diffi culties arise simultaneously: Some constraints may
be active, Lagrange multipliers may not be unique, and the absence of traditional derivatives
(or gradients) mandates the use of some sort of generalized gradients which, typically, are
not singletons.
Progress has been made in many cases but findings are spread out in many places (see,

for instance Amir, Mirman and Perkin [1], Bonnisseau and LeVan [9], Askri and LeVan
[5], Milgrom and Segal [31], Ricon-Zapatero and Santos [40]). We seek in this paper a
comprehensive and unified way to present generalized envelope theorems for a large class of
nonconvex and/or nonsmooth programs.
Fundamentally, we seek a class of programs constructed with continuous functions (ob-

jective and constraints) not necessarily convex and/or continuously differentiable, but with
properties strong enough for the existence of some generalized derivatives. We show that
Lipschitz programs meet this objective and provide a suitable environment for the general-
ization of existing classical envelope theorems.
An important feature of Lipschitz programs is the preservation of the Lipschitz prop-

erty by maximization under relatively weak hypothesis, as demonstrated in Section 2. One
of these hypothesis is a non-smooth constraint qualification related to the work of Hiriart-
Urruty [23] and Auslender [6] and easily checked in applications. Combined with the Lip-
schitz objective and constraints and some geometric conditions on the choice domain used
in Clarke [11], this non-smooth constraint qualification is suffi cient for the value function to
be Lipschitz.
Lipschitz value functions have well defined Dini derivatives, and our first result in Section

3 gives lower and upper bounds for these Dinis, a characterization which may prove useful in
computational work, as well as for establishing the absolute continuity of the value function
(an essential step in the proof of its supermodularity in one of the application later in the
paper). Section 3 then consists in narrowing these bounds to sharpen the characterization
of the rates of growth of the value function in specific directions. Gateaux differentiability
(the existence of directional derivatives) is the next step, since it permits comparative statics
in all directions at a specific point. The addition of Clarke regularity grants more power
to Gateaux derivatives (at one point) who then behave almost like bounds on the rate of
growth of the value function in a neighborhood of that point, just one step short of continuous
differentiability. Clarke regularity also, in some conditions, is preserved under maximization
(e.g. concave functions are lower Clarke regular).
Continuously differentiable functions are Lipschitz, and convex functions are (upper)

Clarke regular, hence classical envelope theorems are just special cases of our more general
results.
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In Section 4 our results are applied to dynamic programming and to a proof of existence
of equilibrium in a large class of dynamic models. Some brief but essential mathematical
definitions and results are gathered in the Appendix.

2 Lipschitz programs

We consider Lipschitz programs of the form:

max
a∈D(s)

f(a, s) (1)

in which f : A×S → R is the objective function, and D : S ⇒ A the feasible correspondence
defined as:

D(s) = {a|gi(a, s) ≤ 0, i = 1, ..., p and hj(a, s) = 0, j = 1, ........, q}.

where gi : A× S → R, i = 1, ..., p and hj : A× S → R, j = 1, ..., n.
The choice set A and the state space (or parameter space) S are both are open subsets

of Rn and Rm respectively. In contrast to standard "smooth" optimization problems in
which constraints and objectives are continuously differentiable (i.e., C1 or "smooth") all
functions f , gi and hj are initially only assumed to be Lipschitz1 at every (a, s) ∈ A × S.
The function V : S → R, defined as V (s) = maxa∈D(s) f(a, s), is the value function, and the
correspondence A∗ : S ⇒ A, defined as A∗(s) = arg maxa∈D(s) f(a, s), is the optimal solution
correspondence. The classical Lagrangian2 associated with the above program is:

L(a, s, λ, µ) = f(a, s)− λg(a, s)− µh(a, s)

where λ, and µ are vectors in Rp and Rq respectively.

2.1 Constraint Qualifications

Recall the definition of a KKT point:

Definition 1 Given s ∈ S, a ∈ D(s) is a Karush-Kuhn-Tucker (KKT) point of Program
(1) if there exists a vector (λ, µ) ∈ Rp+ × Rq such that:

0 ∈ ∂a(f −
p∑
i=1

λigi −
q∑
j=1

µjhj)(a, s)

and λigi(a, s) = 0 for all i = 1, ..., p.

Denoting by K(a, s) the closed and convex (but possibly empty) set of vectors (λ, µ)
satisfying the above "multiplier rule" at (a, s), the role of constraint qualifications is precisely
to guarantee this set is no-empty and bounded. A standard CQ in smooth programs is the
Mangasarian-Fromovitz CQ, defined as follows:

1Lipschitz in the sense of "locally Lipschitz" (see Appendix for definitions and some mathematical results).
2If A is closed, then the abstract constraint a ∈ A induces an additional term in the Lagrangian (see, for

instance, Clarke [11], Chapter 6).
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Definition 2 The Mangasarian-Fromovitz Constraint Qualification (MFCQ) is satisfied at
a∗(s) ∈ A∗(s) if there exists y ∈ Rn such that:

∇agi(a
∗(s), s) · y < 0, i ∈ I(a∗(s), s),

∇ahj(a
∗(s), s) · y = 0 j = 1, ..., q

where I(a∗(s), s) is the set of indexes of the active inequality constraints (those for which
gi(a

∗(s), s) = 0), and the matrix ∇ah(a∗(s), s) has full rank.

Gauvin ([17], Lemma 1) proved that, in smooth programs, MFCQ at a∗(s) is equivalent
to the compactness of K(a∗(s), s). Kyparisis [29] sharpened this result under the following
slightly less general condition which simply treats active inequality constraints for which
multipliers are strictly positive ("binding constraints") as equality constraints.

Definition 3 The Strict Mangasarian-Fromoviz Constraint Qualification (SMFCQ) is sat-
isfied at a∗(s) ∈ A∗(s) if there exists y ∈ Rn such that:

∇agi(a
∗(s), s) · y < 0, i ∈ Is(a∗(s), s)

∇agi(a
∗(s), s) · y = 0, i ∈ Ib(a∗(s), s)

∇ahj(a
∗(s), s) · y = 0 j = 1, ..., q

where Is(a∗(s), s) = {i ∈ I(a∗(s), s), λi = 0}, and Ib(a∗(s), s) = {i ∈ I, λi > 0}, and the
vectors ∇agi(a

∗(s), s), i ∈ Ib(a∗(s), s), ∇ahj(a
∗(s), s), j = 1, ..., q are linearly independent.

Kyparsis ([29], Proposition 1.1) showed that the SMFCQ is both necessary and suffi cient
for K(a∗(s), s) to be a singleton in smooth programs.(see also Bonnans and Shapiro [8],
Remark 4.49).
No classical gradients generically exist in Lipschitz programs, so we rely on a gener-

alization of the MFCQ (referred to as the "Generalized MFCQ", or GMFCQ) introduced
by Hiriart-Urruty [23] and stated in terms of Clarke’s generalized gradients. Denoting by
g(a∗(s), s) the vector of binding inequality constraints at a∗(s), so that g : A × S → Rp
(where p = Card(I(a∗(s), s))), GMFCQ can be stated as follows:

Definition 4 The Generalized Mangasarian-Fromovitz Constraint Qualification (GMFCQ)
is satisfied at a∗(s) ∈ A∗(s) if there exists y ∈ Rn such that:

∀(γa, υa) ∈ ∂a(g, h)(a∗(s), s), γa · y < 0, and υa · y = 0

and ∂ah(a∗(s), s) is of maximal rank.

Hiriart-Urruty ([23],Theorem 4.2) proved that the GMFCQ at some a∗(s) implies the
non-emptiness of K(a∗(s), s).

Remark 5 We note that:

∂ag(a∗(s), s) ⊂
∏

i∈I(a∗(s),s)

∂agi(a
∗(s), s)

so this version of GMFCQ is slightly more general than that of Auslender ([6], Theorem 2.1).
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2.2 Lipschitz value functions

The Lipschitz properties of both objective and constraints in Program (1) are, of course,
not suffi cient for the value function V to even be continuous, and additional restrictions are
therefore needed to insure that V is Lipschitz. We adopt the following general hypothesis
made in Clarke ([11], Hypothesis 6.5.1, page 241):

Criterion 6 (Clarke’s Hypothesis) V (s) is finite and there exists a compact set Λ and a
positive number ε0 such that for all s′ ∈ ε0B(s) for which V (s′) ≥ V (s) − ε0, necessarily
A∗(s′) ∩ Λ 6= ∅.

Although Clarke’s Hypothesis is not expressed in terms of primitive data of the problem,
we show that it is satisfied in three important cases. The first is a simple condition mentioned
by Clarke, the second is the inf-compactness condition used by Bonnans and Shapiro [8] to
derive stability results for differentiable programs, and the third is the uniform compactness
condition central to the work of Gauvin and Dubeau [18].3

Proposition 7 Clarke’s Hypothesis in the following three cases:
(i) (growth condition) ∀r ∈ R, the sets {(a′, s′) ∈ A× S, f(a′, s) ≥ r} are compact;
(ii) (inf-compactness) there exists r ∈ R and a compact set Ω ⊂ A such that for every s′

in a neighborhood of s the set {a′ ∈ D(s′), f(a′, s′) ≥ r} is a nonempty set contained in Ω;
(iii) (uniform compactness) there exists a neighborhood S ′ of s such that cl [∪s′∈S′D(s)]

is compact.

Proof. (i). Given any s ∈ S necessarily there exists some r such that G(s) = {a ∈
A, f(a, s) ≥ r} ∩D(s) 6= ∅; by hypothesis G(s) is compact so A∗(s) = arg maxD(s) f(a, s) =
arg maxG(s) f(a, s) is non-empty and V (s) is finite. Consider s′ ∈ ε0B(s) such that V (s′) ≥
V (s) − ε0. Since A∗(s′) is nonempty and included in the compact (by hypothesis) set Λ =
{(a, s′) ∈ A× S, f(a, s′) ≥ V (s)− 2ε0}, Clarke’s Hypothesis is satisfied.
(ii). By inf-compactness at s, there exists r such that if s′ ∈ ε0B(s) then {a′ ∈ D(s′),

f(a′, s′) ≥ r} is nonempty and included in the compact set Ω. Letting Λ = Ω,∀s′ ∈ ε0B(s)
necessarily A∗(s′) ⊂ Ω and A∗(s′) ⊂ {a′ ∈ D(s′), f(a′, s′) ≥ r} ⊂ Ω and A∗(s′) is nonempty
thus A∗(s) ∩ Λ 6= ∅ hence Clarke’s Hypothesis is satisfied.
(iii). Uniform compactness of D near s implies the existence of a neighborhood S ′ of s

such that cl [∪s′∈S′D(s)] is compact. As a result:

∃ε0 > 0, s′ ∈ ε0B(s) =⇒ D(s′) is compact

since D(s′) is a closed subset of the compact cl [∪s′∈S′D(s)]. This implies that A∗(s′) is
nonempty (the objective f is continuous on the compact D(s′)), and Clarke’s Hypothesis is
satisfied by letting Λ = cl [∪s′∈S′D(s)].
When combined with the GMFCQ, any one of these conditions implies a very power-

ful result analogous to Berge’s maximum theorem on the preservation of continuity under
maximization: The value function is Lipschitz and A∗ is upper hemicontinuous. The upper
hemicontinuity of the optimal correspondence is a very important property, since it implies
that as sn converges to s the maxima of f(., sn) become arbitrarily close to some of the
maxima of f(., s).

3A fourth mild compactness condition is given later in this section.

5



Theorem 8 If the GMFCQ holds at any a∗(s) ∈ A∗(s) and if Clarke’s Hypothesis is satisfied
(hence whenever any of the condition of Proposition 7 is satisfied), V is Lipschitz at s and
A∗ is upper hemicontinuous at s. Moreover:

∂V (s) ⊂ co

 ⋃
a∗(s)∈A∗(s)

⋃
(λ,µ)∈K∗(a∗n(s),s)

∂s(f − λg − µh)(a∗(s), s)


Proof. The Lipschitz property (and therefore continuity) of V and the formula for the
generalized gradient follow directly from Clarke [11] (Corollary 1, page 242). The upper
hemicontinuity of A∗ is established separately for the three conditions of Proposition 7.
(i). Given any sn → s and any sequence {an} such that an ∈ A∗(sn) ⊂ D(sn), V (sn) =

f(an, sn) → V (s) by continuity of V . Given ε′ > 0 there exists N such that ∀n ≥ N ,
f(an, sn) ≥ V (s) − ε′. By the growth condition the sequence {an, sn}n≥N belongs to a
compact set, and therefore has a convergent subsequence to {a, s}. By continuity of f ,
f(an, sn) → f(a, s), hence f(a, s) = V (s), and by closeness of D at s, a ∈ D(s), hence
a ∈ A∗(s).
(ii). Under the inf-compactness condition, there exists r such that the set As = {a′ ∈

D(s′), f(a′, s′) ≥ r} is nonempty for all s′ ∈ δB(s) and is included in a compact set Ω. Thus
there exists N such that ∀n ≥ N , an ∈ A∗(sn) ⊂ As ⊂ Ω and the sequence {(an, sn)}n≥N has
a convergent subsequence to (a, s). By continuity of V and f V (sn) = f(an, sn)→ f(a, s) =
V (s) and closeness of D implies the desired result.
(iii). Since V is continuous at s, the map L : s→ {a, f(a, s)− V (s) ≥ 0} is closed at s.

Under the uniform compactness condition, since A∗(s) = L(s) ∩ D(s), the correspondence
A∗ : s → A∗(s) is the intersection of the closed mapping L with the upper hemicontinuous
(since closed and uniformly compact) mapping D. Consider then sn → s and any an ∈
A∗(sn) = L(sn) ∩D(sn). Since D is upper hemicontinuous at s , there exists a subsequence
of an converging to some a ∈ D(s). Since L is closed at s, the limit a of the subsequence of
an necessarily belong to L(s). Thus, a ∈ A∗(s) = L(s)∩D(s), which proves that A∗ is upper
hemicontinuous at s.
Note again that the continuity of V cannot come from a direct application of Berge’s

maximum theorem since the feasible correspondence D is not necessarily continuous, even
though all constraints are continuous. The correspondence D defined as:

D(s) = {(x, y), x+ y ≤ s and (s− 11)(10− x) ≤ 0}

is not continuous at s = 11.

3 Generalized Envelope Theorems

The same conditions suffi cient for the preservation of the Lipschitz property under max-
imzation in Theorem (8) are shown below to also be suffi cient for the derivation of specific
bounds for the Dini derivatives of the value function. In the rest of this section, we impose
several stronger conditions on the primitive data (such as concavity, differentiability, Clarke
regularity, continuous differentiability) to derive sharper envelope theorems going beyond
the simple existence of bounds all the way to C1 envelopes.
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3.1 A Central Result on Stability Bounds

Under the conditions of Theorem 8 the value function is Lipschitz, so its Dini derivatives exist.
Our first result states specific bounds for these Dini derivatives, obtained as a consequence of
Clarke [11] Corollary 4 (page 243) (see also Tarafdar [44] for an alternative proof independent
of Clarke’s results), and expressed in terms of the primitive data.

Theorem 9 If GMFCQ holds at any a∗(s) ∈ A∗(s) and under Clarke’s Hypothesis, for any
x ∈ Rm:

D+V (s;x) ≤ max
a∗(s)∈A∗(s)

(
sup

λ∈K(a∗(s),s)

(
max

θ∈∂s(f−λg−µh)(a∗(s),s)
{θ · x}

))

and:

max
a∗(s)∈A∗(s)

inf
λ∈K(a∗(s),s)

(
min

θ∈∂s(f−λg−µh)(a∗(s),s)
{θ · x}

)
≤ D+V (s;x)

Proof. Omitting the equality constraints to simplify the proof, the Lipschitz program (1)
becomes:

−V (s) = min−f(a, s) s.t. g(a, s) ≤ 0

and is identical to the "modified program":

−V (s) = min−f(a, a′) s.t.g(a, a′) ≤ 0 and − a′ + s = 0

with its associated Lagrangian:4

Lm((a, a′), s, λ, θ) = −f(a, a′) + λg(a, a′) + θ [−a′ + s]

The two programs have the same set of solutions, in the sense that a∗(s) ∈ A∗(s) if and
only if (a∗(s), s) ∈ A∗m(s), and the same set of multipliers, in the sense that λ ∈ K(a∗(s), s)
if and only if (λ, θ) ∈ Km(a∗(s), s).
By Theorem 6.1.1 in Clarke [11], there exists λ ≥ 0, and θ such that λg(a∗(s), s) = 0

and:

0 ∈ ∂(a,a′)L((a∗(s), s), s, λ, θ)

which implies the existence of (σa + λγa) ∈ ∂a(−f + λg)(a∗(s), s) and of (σa′ + λγa′) ∈
∂a′(−f + λg)(a∗(s), s) such that, for all (u, v) :

0 = (σa + λγa)u+ (σa′ + λγa′)v − θv

As a result, necessarily:

σa + λγa = 0

4The subscript m is used to identify objects relevant to the "modified program".
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and

θ = σa′ + λγa′ ∈ ∂a′(−f + λg)(a∗(s), s)

The assumptions of Corollary 4 in Clarke [11] are satisfied (in Clarke’s notations, if the
GMFCQ holds at each a∗(s) then M0(

∑
) = {0}) hence:

(−V )+(s;x) ≤ inf
(a∗(s),s)∈

∑ sup
(λ,θ)∈M1(a,s)

{θ · x} = inf
a∗(s)∈A∗(s)

sup
λ∈K(a∗(s),s)

sup
θ∈∂a′ (−f+λg)(a∗(s),s)

{θ · x}

and:

(−V )+(s;x) ≥ inf
a∗(s)∈A∗(s)

inf
λ∈K(a∗(s),s)

inf
θ∈∂s(−f+λg)(a∗(s),s)

{θ · x}

Noticing that (−V )+(s;x) = −V+(s;x) and that (−V )+(s;x) = −V +(s;x), we obtain:

V +(s;x) ≤ − inf
a∗(s)∈A∗(s)

inf
λ∈K(a∗(s),s)

inf
θ∈∂s(−f+λg)(a∗(s),s)

{θ · x}

= sup
a∗(s)∈A∗(s)

sup
λ∈K(a∗(s),s)

sup
θ∈∂s(f−λg)(a∗(s),s)

{θ · x}

and in a similar manner:

V+(s;x) ≥ sup
a∗(s)∈A∗(s)

inf
λ∈K(a∗(s),s)

inf
θ∈∂s(f−λg)(a∗(s),s)

{θ · x}

which proves the desired result, noting that both sets ∂s(f − λg)(a∗(s), s) and A∗(s) are
compact valued, so inf and sup become min and max, respectively.

3.2 Differentiability of the Value Function

3.2.1 De-constraining a program

Getting additional characterization of the rate of growth of the value function requires more
than just the Lipschitz structure of both the objective and the constraints. Things would be
simpler in the absence of constraints, so our first results concern Lipschitz programs satisfying
a mild compactness condition which imply that.constraints can be locally (at least) ignored
and that and Clarke’s Hypothesis is automatically satisfied.

Proposition 10 Suppose that there exist a compact set Λ and a neighborhood N(s) of s
such that ∀s′ ∈ N(s), A∗(s′) ⊂ Λ ⊂ D(s′), then V is Lipschitz at s. Furthermore, if f is
upper Clarke regular at s for each a∗(s) ∈ D(s), then V is Gateaux differentiable and:

V ′(s;x) = max
a∗(s)∈A∗(s)

fs(a
∗(s), s;x)

Proof. The hypothesis implies that:

V (s) = max
a∈Λ

f(a, s)
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hence by Berge’s theorem of the maximum, V is continuous at s thus finite. Clarke’s Hy-
pothesis is satisfied by choosing any ε0 > 0 such that εoB(s) ⊂ N(s). Consequently, V is
Lipschitz at s by Theorem 8, and:

∂V (s) ⊂ co
{
∪a∗(s)∈A∗(s)∂sf(a∗(s), s)

}
The additional assumption of Clarke upper regularity permits squeezing together upper

and lower Dini derivatives of V . Indeed, for all a∗(s) ∈ A∗(s) :

lim inf
t↓0

V (s+ tx)− V (s)

t
= lim inf

t↓0

f(a∗(s+ tx), s+ tx)− f(a∗(s), s)

t

≥ lim inf
t↓0

f(a∗(s), s+ tx)− f(a∗(s), s)

t

= fs(a
∗(s), s;x)

the last equality obtained from the Gateaux differentiability of f in s for each a∗(s). In
addition:

lim sup
t↓0

V (s+ tx)− V (s)

t
≤ max

a∗(s)∈A∗(s)
max

ς∈∂f(a∗(s),s)
{ς.x}

= max
a∗(s)∈A∗(s)

f o(a∗(s), s;x)

= max
a∗(s)∈A∗(s)

fs(a
∗(s), s;x)

the last equality from the Clarke upper regularity of f in s for each a∗(s). Upper and lower
Dinis therefore coincide, hence V is Gateaux differentiable and:

V ′(s;x) = max
a∗(s)∈A∗(s)

fs(a
∗(s), s;x)

We note also that −V (s′ − x) ≤ V ′(s;x).

Remark 11 Since continuously differentiable functions are necessarily upper Clarke regular,
V is Gateaux differentiable whenever the compactness condition of Proposition 10 holds and
f is continuously differentiable in s for each a∗(s) ∈ D(s). This is precisely Lemma 3.1 in
Amir, Mirman and Perkins [1].

To generate sharper differentiability properties beyond that of Gateaux differentiability,
one must seek restrictions guaranteeing the preservation of some form of regularity (upper
or lower) of the objective under maximization. One can for instance, follow Clarke [11]
(specifically, Theorem 2.8.2) and impose conditions suffi cient for V to inherit the upper
Clarke regularity of the objective, as done for instance in Askri and LeVan [5].
Alternatively, assuming the choice domain is convex, concavity (which implies lower

Clarke regularity) is preserved under maximization, a property we exploit next by combining
it with differentiability.

Corollary 12 Under the compactness condition of Proposition 10, if f is concave in (a, s)
and differentiable at s for each a, and if graphD is convex, then V is continuously differen-
tiable.
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Proof. Concave functions are lower Clarke regular, and Clarke regular differentiable func-
tions are in fact continuously differentiable (see Appendix) and therefore upper Clarke reg-
ular. Consequently, by Proposition 10 V is Gateaux differentiable and:

−V ′(s;−x) ≤ V ′(s;x)

If graphD is convex, then V is concave hence lower Clarke regular thus for all x:

V −o(s;x) = V ′(s;x) ≤ V o(s;x) = −V −o(s′ − x) = −V ′(s;−x)

and, therefore:

V ′(s;x) = V −o(s;x) = V o(s;x) = −V ′(s;−x)

so V is continuously differentiable at s.

3.2.2 Constrained programs

Next we turn our attention to general Lipschitz programs with continuously differentiable
objective and constraints and for which the SMFCQ guarantees that Clarke gradients are
singletons and the the multiplier is unique. In that case, the value function can be shown to
be at least Gateaux differentiable.

Proposition 13 Under Clarke’s Hypothesis, if the SMFCQ holds at every optimal solution
a∗(s) ∈ A∗(s), and the primitive data is continuously differentiable in s, then V is Gateaux
differentiable at s and:

V ′(s;x) = max
a∗(s)∈A(s)

{Ls(a∗(s), s, λ, µ) · x}

Proof. Follows from Theorem 8 and Theorem 9 given uniqueness of multipliers.
An alternative to SMFCQ is to assume enough concavity to "squeeze" the lower and

upper Dini bounds to obtain directional envelopes, as done in Milgrom and Segal ([31],
Corollary 5). We derive such a result for a less restrictive setting.

Corollary 14 Under Clarke’s hypothesis and if the GMFCQ holds at every a∗(s) ∈ A∗(s),
if the primitive data is continuously differentiable in s, f , and −g concave, h affi ne in a, the
derivatives fs, −gs, hs are upper semicontinuous in a, then V is Gateaux differentiable and:

V ′(s;x) = max
a∗(s)∈A∗(s)

min
(λ,µ)∈K(a∗(s),s)

{Ls(a∗(s), s, λ, µ) · x}

Proof. By Theorem 9:

max
a∗(s)∈K(a∗(s),s)

min
λ∈K(a∗(s),s)

L2(a∗(s), s, λ, µ) ≤ D+V (s;x)

Imposing additional conditions on the primitive data helps tighten the upper bound as
follows. First, choose a sequence {tn} ↓ 0 such that:

lim sup
t↓0

V (s+ tx)− V (s)

t
= lim

n→∞

V (s+ tnx)− V (s)

tn

10



Next, consider a sequence {a∗(s + tnx)} with a∗(s + tnx) ∈ A∗(s + tnx) for all n ∈ N. By
Clarke’s Hypothesis, for n large enough all a∗(s + tnx) belong to a compact set, so without
loss of generality we assume that a∗(s + tnx) converges to some a∗. By closeness of D,
necessarily in a∗ ∈ D(s); by continuity of V , V (s) = f(a∗, s). As a result a∗ ∈ A∗(s) is a
global maxima. By strong duality, the Lagrangian has a global saddle point at (a∗, s, λ, µ)
where (λ, µ) ∈ K(a∗, s). Thus, for any (λ, µ) ∈ K(a∗, s) :

lim
n→∞

V (s+ tnx)− V (s)

tn

= lim
n→∞

L(a∗(s+ tnx), s+ tnx, λn, µn)− L(a∗, s, λ, µ)

tn

where (λn, µn) ∈ K(a∗(s+ tnx), s+ tnx). Consequently for any (λ, µ) ∈ K(a∗, s) :

lim
n→∞

V (s+ tnx)− V (s)

tn

≤ lim
tn→0+

L(a∗(s+ tnx), s+ tnx, λ, µ)− L(a∗, s, λ, µ)

tn

≤ lim
tn→0+

L(a∗(s+ tnx), s+ tnx, λ, µ)− L(a∗(s+ tnx), s, λ, µ)

tn
= Ls(a

∗(s+ tnx), s, λ, µ) · x

The first and the second inequality follows from the fact that (a∗n(s + tnx), s + tnx, λn, µn)
and (a∗, s, λ, µ) are global saddle points of L for any s+ tnx and s respectively.
As a result:

lim sup
t→0+

V (s+ tx)− V (s)

t

≤ min
(λ,µ)∈K(a∗(s),s)

Ls(a
∗(s+ tnx), s, λ, µ) · x

Given that a∗n(s)→ a∗ ∈ A∗(s) and that Ls(.) is upper semicontinuous in its first argument,
the above inequality implies:

D+V (s;x)

≤ max
a∗(s)∈A∗(s)

min
(λ,µ)∈K(a∗(s),s)

Ls(a
∗(s), s, λ, µ) · x

≤ D+V (s;x)

Thus D+V = D+V and the result follows.
Next, in the absence of equality constraints, we show that if the primitive data is jointly

concave and continuously differentiable, and if the SMFCQ hold for every optimal solution,
then the value function is once continuously differentiable.

Corollary 15 Under Clarke’s hypothesis, if the primitive data is continuously differentiable
in (a, s), f , and −g are jointly concave in (a, s), and SMFCQ holds at all a∗(s) in A∗(s),
then V is continuously differentiable and:

V ′(s) = Ls(a
∗(s), s, λ)

for any a∗(s) ∈ A∗(s).

11



Proof. Under SMFCQ, and with continuously differentiable primitives, the multiplier is
unique and by Corollary 14 V is Gateaux differentiable with:

V ′(s, x) = max
a∗(s)∈A∗(s)

{(
fs(a

∗(s), s)− λa∗(s)gs(a∗(s), s)
)
· x
}

in which
{
λa∗(s)

}
= K(a∗(s), s). In addition:

−V ′(s;−x) ≤ V ′(s;x)

The concavity of V (inherited from that of f and −g), together with its Gateaux differen-
tiability implies it is continuously differentiable hence lower Clarke regular therefore:

V ′(s;x) = V −o(s;x) ≤ V o(s;x) = −V −o(s;−x) = −V ′(s;x)

As a result:

V o(s;x) = V −o(s;x)

that is:

max
a∗(s)∈A∗(s)

{(
fs(a

∗(s), s)− λa∗(s)gs(a∗(s), s)
)
· x
}

= min
a∗(s)∈A∗(s)

{(
fs(a

∗(s), s)− λa∗(s)gs(a∗(s), s)
)
· x
}

hence V is continuously differentiable at s and:

V ′(s) = fs(a
∗(s), s)− λa∗(s)gs(a∗(s), s)

for any a∗(s) ∈ A∗(s) and
{
λa∗(s)

}
= K(a∗(s), s).

We note that Corollary 15 does not require the set of optimal solutions to be singleton.
However, any optimal solution along with its associated unique multiplier can be used to
calculate the gradient of the value function.

4 Applications and Extensions

4.1 Lipschitz Dynamic Programming

We extend the results of Laraki and Sudderth [30] and Hinderer [22] on the preservation
of Lipschitz continuity in recursive dynamic programs by weakening the global Lipschitz
conditions on the primitive data to local Lipschitzness.
Consider the following dynamic program:

Vn+1(s) = T (Vn)(s) = max
a∈D(s)

{f(a, s) + βVn(a)}

in which D(s) = {a ∈ A ⊂ Rn, g(a, s) ≤ 0}, s ∈ S ⊂ Rm, and V0 = 0, its corresponding
Lagrangian:

Ln+1(a, s) = f(a, s) + βVn(a)− λg(a, s)

and its solution set A∗n+1(s) = arg maxa∈D(s) f(a, s) + βVn(a). Both functions f and g are
only assumed to be Lipschitz in (a, s), and 0 < β < 1.
Given V0 = 0, the following result is a direct consequence of a repeated application of

Theorem 8.

12



Proposition 16 If the GMFCQ is satisfied for all a∗n+1(s) ∈ A∗n+1(s) for each n, then if
Clarke’s Hypothesis is satisfied (or under any of the conditions in Proposition 7 the sequence
{Vn} is a sequence of Lipschitz functions, with Clarke gradients given by:

∂Vn+1(s) ⊂ co

 ⋃
a∗n+1(s)∈A∗n+1(s)

⋃
λ∈K∗(a∗(s),s)

∂s(f − λg)(a∗n+1(s), s)


In particular, if all constraints are inactive (i.e., g(a∗n+1(s), s) < 0) then GMFCQ is

trivially satisfied and:

∂Vn+1(s) ⊂ co

 ⋃
a∗n+1(s)∈A∗n+1(s)

∂sf(a∗n+1(s), s)


whenever Clarke’s Hypothesis holds.
It is well known that the sequence {Vn} of Lipschitz functions converges uniformly to

the unique continuous function V satisfying V = T (V ). Unfortunately, uniform limits
of sequences of locally Lipschitz functions are not necessarily locally Lipschitz, since the
Weistrass Approximation Theorem asserts that any continuous functions, Lipschitz or not,
may be uniformly approximated by polynomials (which are Lipschitz).
Nevertheless, it is possible to prove that V is Lipschitz (and more) under certain con-

ditions. One can, for instance, demand that a global Lipschitz condition be satisfied, as in
Laraki and Sudderth [30] and Hinderer [22]. Alternatively, one can work impose suffi cient
structure on the primitive data to guarantee that all optimal solutions are located on a com-
pact domain on which the objective is then globally Lipschitz, as in Askri and LeVan [5], in
effect "de-constraining" the program.
Concavity, a feature of many economic models, is an important property since it is pre-

served under pointwise limits, and since concave functions are Lipschitz on the interior of
their domain. We exploit the implications of concavity in dynamic programs next. require-
ment may be suffi cient to guarantee that V ∗ is locally Lipschitz as discussed next.

4.1.1 Concave Dynamic Programming

Much more (than just Lipschitzness) can be revealed concerning the differentiability prop-
erties of the value function in the presence of concavity, providing the primitive data is also
assumed to be differentiable with respect to s. The presence of multiple multipliers is of
course a hindrance, but that too can be set aside if one assumes that the SMFCQ holds.

Proposition 17 Assuming that (i) f and g are Lipschitz and concave in (a, s) as well as
continuously differentiable in s, (ii) the derivatives fs and gs are upper semicontinuous in a,
(iii) the MFCQ is satisfied at every optimal solution, and (iv) Clarke’s Hypothesis is satisfied,
then the Lipschitz value function V is concave and Gateaux differentiable with:

V ′(s, x) = max
a∗(s)∈A∗(s)

min
λ∈K(a∗(s),s)

(Fs(a
∗(s), s)− λgs(a∗(s), s)) · x

13



If, in addition, the SMFCQ is satisfied at every optimal solution, then V is continuously
differentiable and:

V ′(s) = fs(a
∗(s), s)− λa∗(s)gs(a∗(s), s)

for any a∗(s) ∈ A∗(s) and λa∗(s) = K(a∗(s), s).

Proof. V is concave hence Lipschitz and satisfies the Lipschitz program:

V (s) = max
a∈D(s)

{f(a, s) + βV (a)}

Under the MFCQ a direct application of Corollary 14 to this program implies that V is
Gateaux differentiable with:

V ′(s, x) = max
a∗(s)∈A∗(s)

min
λ∈K(a∗(s),s)

(fs(a
∗(s), s)− λgs(a∗(s), s)) · x

but the existence of multiple Lagrange multipliers generically prevents V from being contin-
uously differentiable.
However, assuming next that the SMFCQ is satisfied at each optimal solution, the mul-

tiplier set is a singleton and by Corollary 15:

V ′(s) = fs(a
∗(s), s)− λa∗(s)gs(a∗(s), s)

for any a∗(s) ∈ A∗(s) and λa∗(s).
Our result on the continuous differentiability generalizes Benveniste and Scheinkman [7]

by allowing the inequality constraints to be active at the optimal solution. The cost is
a stronger constraint qualification (SMFCQ), although weaker than the LICQ in Rincon-
Zapatero and Santos [40].

4.1.2 Differentiability of the Pareto Frontier

Consider the model in Kocherlakota and Koeppl (see also Rincon-Zapatero and Santos [40])
of an exchange economy in which two infinitely lived agents receive a stochastic endowment
in each period which they mutually share under limited commitment. As in Koeppl, the
endowment for agent i = 1, 2 in period t is (ω1

s, ω
2
s) which is determined by the realization

of θt. The stochastic process θ = {θ1, θ2, ....} is a sequence of iid random variables, each
having finite support Θ = {1, 2, ..., S}, and . The probability that θt equals s is denoted by
πs = Pr{θt = s ∈ Θ}.
We will assume the following, in which we relax Koeppl’s assumptions of strict monotonic-

ity, strict concavity and C2 utility function.
Assumption 4.1.2: The utility function u : R+ → R is increasing, concave, continuously

differentiable with limc→0+ u
′(c) = ∞, and 0 < β < 1, and for each U0, the feasible set is

uniformly compact.
We characterize the incentive feasible allocations (see Koeppl for details).

V (U0) = max
{cs,us}Ss=1

S∑
s=1

πs [u(ωs − cs) + βV (Us)]
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subject to

U0 −
S∑
s=1

πs [u(cs) + βUs] ≤ 0

u(ω1
s) + βUaut − u(cs)− βUs ≤ 0

u(ωs − ω1
s) + βUaut − u(ωs − cs)− βV (Us) ≤ 0

Us ∈ [Uaut, Umax]

The set of optimal solutions is denoted Y ∗(U0), and a typical element of this set is {c∗s, U∗s }Ss=1;
the KKT multiplier vector takes the form (λ1, {λ2s}, {λ3s}, {λ4s}, {λ5s}) ∈ K({c∗s, U∗s }).
Given assumption 4.1.2, and the joint concavity of the objective and the constraints in
({cs, us}, U0), the hypothesis of Proposition 17 are met. Thus, by Proposition 17, if GMFCQ
is satisfied for every optimal solution (c∗(U0), U∗(U0)) ∈ Y ∗(U0), then V is concave with
directional derivatives given by,

V ′(U0;x) = max
(c∗,U∗)∈Y ∗(U0)

min
λ∈K(c∗s ,U

∗
s )
{−λ1 · x}

Further, if SMFCQ is satisfied for every optimal solution (c∗(U0), U∗(U0)) ∈ Y ∗(U0), then V
is concave and C1 with derivative given by:

∇V (U0) = −λ1

for any (λ1, {λ2s}, {λ3s}, {λ4s}, {λ5s}) ∈ K({c∗s, U∗s }).

4.2 Optimization problems with discrete choice variables

Consider a Lipschitz program in which some of the decision variables (without loss of gen-
erality, a1) is constrained to take only one of r possible values, that is:

max
a∈D(s)

f(a, s) (2)

where D(s) = {g(a, s) ≤ 0, and a1 = bj j = 1, ..., r}.. To apply our reusults, we rewrite the

r equality constraints a1 = bj as the C1 equality constraint h(a, s) =
r∏
j=1

(a1 − bj) = 0. If

a∗(s) ∈ A∗(s), then a∗1(s) must equal some bk, hence: ∇ah(a∗(s), s) = (
∏
j 6=k

(bk−bj), 0, ..., 0) 6=

0.
Associated with the above maximization problem is the Lagrangian:

L(a, λ, µ; s) = f(a, s)− λg(a, s)− µh(a, s)

and a∗(s) = (bk, a
∗
2(s), ..., a∗n(s)) ∈ A∗(s) is a KKT point if there exists λ ≥ 0 and µ ∈ R

such that:

µ∇ah(a∗(s)) ∈ ∂a(f − λg)(a∗(s), s))

Given the expression for ∇ah(a∗(s), s), GMFCQ is defined as follows.
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Definition 18 A feasible point a∗(s) satisfies the GMFCQ if there exists y = (0, y2, ..., yn) ∈
Rn such that:

∀γ ∈ ∂ag(a∗(s), s), γ · ỹ < 0

By a straightforward application of Theorem 9 :

Proposition 19 Under Clarke’s hypothesis, and if the GMFCQ holds for every a∗(s) ∈
A∗(s), then for any direction x ∈ Rm:

lim inf
t→0+

V (s+ tx)− V (s)

t
≥ inf

λ∈K(a∗(s),s)
{ min
θ∈∂s(f−λg)(a∗(s),s)

θ · x}

and:

lim sup
t→0+

V (s+ tx)− V (s)

t
≤ sup

λ∈K(a∗(s),s)
{ max
θ∈∂s(f−λg)(a∗(s),s)

θ · x}

V is locally Lipschitz with Clarke gradient:

∂V (s) ⊂ co

 ⋃
a∗(s)∈A∗(s)

⋃
λ∈K∗(a∗(s),s)

∂s(f − λg)(a∗(s), s)


Sharper characterization of the differentiability properties of V cannot rely on concavity

since the domain is not convex.
Such result directly applies to the finite horizon (N periods) labor-leisure choice problem

in which labor takes only the binary values {0, 1}. Thus we formulate a N period problem
as,

Vn(kn) = max
cn,kn+1,ln

{u(cn, 1− ln) + βVn+1(kn+1)}

subject to

cn + kn+1 − f(kn, ln) ≤ 0

−cn ≤ 0

−kn+1 ≤ 0

ln(1− ln) = 0

for all n ≤ N , and (kN+1, VN+1) = (0, 0). We also assume the following:
Assumption 4.2: Functions u : Rn+×R+ → R and f : Rn+×R+ → R+ are locally Lipschitz

with differential extensions on the boundaries, and strictly increasing in both arguments. The
feasible set Dn : Rn+⇒Rn+×Rn+×R+ is nonempty-valued and uniformly compact near for all
kt.
Since u is strictly increasing the first inequality constraint always holds with an equality,

and the associated Lagrangian is:

Ln(kn) = u(f(kn, ln)− kn+1, 1− ln) + βVn+1(kn+1) + λ1
n(f(kn, ln)− kn+1)

+ λ2
nkn+1 + µn(ln(1− ln))
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Under assumption and if the GMFCQ holds for every optimal solution y∗n(kn) ∈ Y ,∗
n (kn), a

direct consequence of Proposition 19, is that for any direction x ∈ Rn:

lim inf
t→0+

Vn(kn + tx)− Vn(kn)

t
≥ inf

λn∈K(y∗(kn),kn)
{ min
θ∈∂knLn(y∗(kn),kn)

θ · x}

and:

lim sup
t→0+

Vn(kn + tx)− Vn(kn)

t
≤ sup

λn∈K(y∗(kn),kn)

{ max
θ∈∂knLn(y∗(kn),kn)

θ · x}

and Vn is locally Lipschitz for all n = 1, .., N .

4.3 Computing Markov equilibrium in growth models with non-
smooth nonconvex technologies

Recent work on optimal growth models with nonsmooth and nonconvex technologies have
largely set aside the issue of existence of recursive and/or sequential equilibrium (see, for
instance, Kamihigashi and Roy [26][27]), an issue we propose to address in this section by
combining the envelope results of this paper with the lattice programming methodology of
Mirman, Morand, and Reffett [33].
In these models, nonconvexities typically arise when a consumer’s decisions depends on

the aggregate or per capita state K in addition to its own individual state k. Our strategy
is to impose suffi cient conditions on the primitive data such that our search for a recursive
equilibrium can be restricted to a large class of monotone functions. It is therefore related to
the work of Hopenhayn and Prescott [25], extended in Morand, Reffett, and Tarafdar [36],
on the existence of monotone controls on standard stochastic optimal growth models.
To simplify we work here in a deterministic setup, but, just as in Hopenhayn and Prescott

[25] and central in Mirman, Morand and Reffett [33], we use a key result from lattice pro-
gramming relating the supermodularity of a program’s objective to the monotonicity (in
(k,K)) of optimal decisions. It is in the proof of the supermodularity of the value function
that our generalized envelope results play a critical role in models where the primitive data
is not continuously differentiable.

4.3.1 Model and definition of recursive equilibrium

We consider a class of models with a continuum of identical infinitely-lived households/firms,
each household entering period t = {0, 1, 2, ...} with an individual stock of capital kt and
supplying inelastically one unit of time to firms. Common in the literature (e.g., Coleman
[12], Greenwood and Huffman [19]), and consistent with recent work (e.g., [43] [26] [27])
we use a "reduced-form" production function F (k, n,K,N) where k and n are, respectively,
the firm’s capital and labor inputs. Since n = N = 1 we use the notation f(k,K, z) =
F (k, 1, K, 1, z) and make the following standard assumptions.
Assumption (i) There exists k̂ > 0 such that F (k̂, 1, k̂, 1) = k̂ and F (k, 1, k, 1) < k , for

all k > k̂, so we denote by K the interval [0, k̂]. Function F : K× [0, 1]×K× [0, 1]→ R is
continuous, increasing, concave in its first two arguments, and exhibits constant returns to
scale in (k, n).
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Assumption (ii) u : K 7→ R is increasing continuous, concave, and satisfies u(0) = 0.
We replace the usual Inada condition limc→0u

′(c)→∞ by the following assumption:
Assumption (iii). For all M > 0, there exists x0 ∈ K, x0 > 0 such that ξ > M for all

ξ ∈ ∂u(x0).
As in Hopenhayn and Prescott, we also need a curvature condition requiring that the

degree of complementarity between private and aggregate per capita capital stocks be high
relative to the curvature of the utility function. Noting that the function u(f(k, .) − y) is
Lipschitz at any K satisfying f(k,K)−y > 0, and therefore almost everywhere differentiable
at such points, we state this assumption as follows:
Assumption (iv) At points where u(f(k, .)−y) is differentiable, the function u′(f(k,K)−

y)f1(k,K) is increasing in K.
A consumer seeks to maximize utility given by:

E0

{ ∞∑
i=0

βiu(ci)

}
given initial state k0 = K0 > 0. Period t choices of consumption and investement must
satisfy:

ct + kt+1 ≤ f(kt, Kt)

and the consumer is constrained to use a law of motion h to recursively compute the sequence
{Kt} of future per capita capital stocks as Kt+1 = h(Kt).
We require h to belong to the set B defined as:

B = {h : K→ K, 0 ≤ h(k) ≤ f(k, k), h usc and increasing}
and note that (B,≤) is a complete lattice, where ≤ is the pointwise partial (see for instance
Davey and Priestley [15]), and that the set of subsets of B endowed with the induced set
order ≤a is also a complete lattice.
For a given h ∈ B, by a standard argument there exists a unique value function V

satisfying:

V (k,K) = TV (k,K) = sup
y∈Γ(k,K)

{u(f(k,K)− y) + V (y, h(K))},

where Γ(k,K) = {y ∈ K, 0 ≤ y ≤ f(k,K)} is non-empty, compact and convex, and the
continuity of f , implies that Γ is a continuous correspondence. Denote by Y ∗ the set of
solutions to the above program, that is:

Y ∗(k,K;h) = arg sup
y∈Γ(k,K)

{u(f(k,K)− y) + v(y, h(K))}

and by ∨Y ∗ and ∧Y ∗ its greatest and least selection, respectively.
Interpreting a selection from the optimal correspondence Y ∗ as a "best response" to the

law of motion h, we define a recursive equilibrium as a law of motion that is best response
to itself, that is:

Definition 20 A recursive equilibrium is a element h∗ in B such that h∗(k) ∈ Y ∗(k, k;h∗)
for all k ∈ K.
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4.3.2 Existence of Recursive equilibrium

Because recursive equilibria are precisely the fixed point of mapping A defined as:

h ∈ B ⇒ Ah = {h′ ∈ B, ∀k ∈ K h′(k) ∈ Y ∗(k, k;h′)},

our existence proof relies on the order-preserving properties of this mapping, as well as the
related operator A defined as:

h ∈ B → Ah = ∨Y ∗(k, k;h)

Both operators share the following property:

Lemma 21 Both A : (B,≤)→ (2B\∅,≤a) and A : (B,≤)→ (B,≤) are isotone mappings.

Proof. The proof follows precisely the argument in Mirman, Morand and Reffett [32]
(Lemma 7) except for the proof of supermodularity of V . We set aside this (important)
detail for now and turn to the main result of this section.

Proposition 22 The set of recursive equilibria is a non-empty complete lattice. The se-
quence {Anf} pointwise converges to the greatest recursive equilibrium.

Proof. See Mirman, Morand and Reffett [33] (Theorems 6 and 9).

4.3.3 Proof of supermodularity of the value function

We finally turn to the proof of supermodularity of V , for which our generalized envelope
results are needed because the traditional lattice theoretic argument (Theorem 2.7.6 in Topkis
[45]) on the preservation of supermodularity under maximization is not applicabel (or limited
simply to Leontieff production functions, as in Hopenhayn and Prescott [25]). Neither does
the argument in Mirman, Morand and Reffett [33] since it requires the primitive data to be
at least continuously differentiable.
Proof. Given V0 = 0 we prove by induction that each element of the sequence {Vn = T (n)V0}
is supermodular, so that V inherits that property as the pointwise limit of that sequence. Fix
h ∈ B and assume then that Vn is Lipschitz and supermodular, and consider the Lipschitz
program:

Vn+1(k,K) = max
0≤y≤f(k,K)

{u(f(k,K)− y) + Vn(y, h(K))}

Given that h is increasing, βVn(y, h(K)) has increasing differences in (y;K) (on R2 super-
modularity and increasing differences are equivalent properties) while u(f(k,K) − y) has
increasing differences in (y; (k,K)) since u is concave and f is increasing. Consequently,
the objective in the above program has increasing differences in (y; (k,K)), while the choice
correspondence [0, f(k,K)] is strong set order ascending, hence the optimal choice set Y ∗n+1

is strong set order ascending and ∨Y ∗n+1 and ∧Y ∗n+1 are both isotone selections in (k,K) by
Theorems 2.8.1 and 2.8.3 in Topkis [45]. Note that by the same argument both f − ∨Y ∗n+1

and f − ∧Y ∗n+1 are also isotone selections in (k,K).
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Inada conditions imply interiority of solutions (so that all multipliers are 0), so it follows
from Theorem 9 that Vn+1 is Lipschitz and that:

max
y∗(k,K)∈Y ∗n+1(k,K)

(
min

θ∈∂(u(f(k,K)−y∗(k,K)))
θ · x

)
≤ D+Vn+1(k,K;x)

and:

D+Vn+1(k,K;x) ≤ max
y∗(k,K)∈Y ∗n+1(k,K)

(
max

θ∈∂(u(f(k,K)−y∗(k,K))
θ · x

)
in which the Dini derivatives are with respect to the first variable of V .
The concavity of u implies that if c′ > c then ∀(θ, θ′) ∈ ∂u(c) × ∂u(c′) necessarily

0 ≤ θ′ ≤ θ. As a result, for any x > 0:

max
y∗(k,K)∈Y ∗n+1(k,K)

(
max

θ∈∂(u(f(k,K)−y∗(k,K))
θ · x

)
≤ max

θ∈∂(u(f(k,K)−∧Y ∗n+1(k,K))
θ · x

and also, given any k ∈ K, for all k̂ ≥ k ≥ k :

max
θ∈∂(u(f(k,K)−∧Y ∗n+1(k,K))

θ · x ≤ max
θ∈∂(u(f(k,K)−∧Y ∗n+1(k,K))

θ · x

Thus ∀k̂ ≥ k ≥ k and ∀x > 0:

0 ≤ D+Vn+1(k,K;x)

≤ D+Vn+1(k,K;x) ≤ max
θ∈∂(u(f(k,K)−∧Y ∗n+1(k,K))

θ · x

which proves that the Dini derivatives of Vn+1 are uniformly bounded above on any interval
[k, k̂]. A symmetric argument holds for the direction x < 0, thus proving that on any
interval [k, k̂] both Dinis are uniformly bounded. This implies that imply k → Vn+1(k,K) is
absolutely continuous on [k, k̂] for any 0 < k < k̂.
This absolute continuity together with the properties that Vn+1 is increasing and continu-

ous in it first argument, imply that Vn+1 is absolutely continuous on K = [0, k̂] (see Problem
37 in Royden [42]). By the fundamental theorem of integral calculus (Theorem 10, Chapter
6 in Royden [42]), k → Vn+1(k,K) is therefore almost everywhere differentiable and, for all
k ∈ K :

Vn+1(k,K) =

∫ k

0

V ′n+1(s,K)ds (3)

At the points where k → Vn+1(k,K) is differentiable, by definition both Dinis must coincide,
hence:

V ′n+1(s,K) = u′(f(s,K)− ∧Y ∗n+1(s,K))f1(s,K)
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Note that for any K ′ > K, where the derivative exists:

V ′n+1(s,K) = u′(f(s,K)− ∧Y ∗n+1(s,K))f1(s,K)

≤ u′(f(s,K ′)− ∧Y ∗n+1(s,K))f1(s,K ′)

≤ u′(f(s,K ′)− ∧Y ∗n+1(s,K ′))f1(s,K ′)

= V ′n+1(s,K ′)

the first inequality resulting from the curvature assumption (Assumption (iv)), and the
second from the isotonicity of ∧Y ∗n+1 previously established. In light of (3) this proves the
desired supermodularity of Vn+1. By induction, the supermodularity property is true for all
n, and the sequence of functions {Vn}∞n=0 is a collection of supermodular functions in (k,K).
Its pointwise limit, precisely V, must therefore inherit that property.

4.4 Payoff equivalence with multidimensional types

In this last section, we establish the “PayoffEquivalence”result in mechanism design theory
with multidimensional type and nonsmooth utility function. Initially derived in the context
of single dimensional types and continuously differentiable utility by Myerson [37] payoff
equivalence has recently being extended by Krishna and Maenner [28] to models with convex
sets of types and convex utility functions, as well as models in which the allocation rule, the
payment function and utility functions are globally Lipschitz and upper Clarke regular in all
arguments, and utility functions are increasing.
In this section, we impose additional structure on the set of types to apply our direction-

ally differentiable envelope theorems, but extend their result to a considerably weaker set of
hypothesis. Specifically, we drop all but one of the Clarke regularity assumptions, we weaken
the Lipschitz requirements to locally Lipschitz, and we do not require the monotonicity as-
sumption on utilities.
We first recall the problem. Let X denote the set of social alternatives, where X is a

subset of Rn. There are I agents and each i ∈ I has a k-dimensional type ti ∈ Ti ⊂ Rk.
The set T= Πj∈ITi is the product of the sets of types. Agent i’s payoff function takes a
quasilinear form, ui(x, ti)− µi, where x ∈ X is the alternative chosen by the planner and µi
is a monetary transfer to the planner. A mechanism is a pair (χ, µ) where χ : T→X is the
allocation rule and µ : T→RI is the payment rule. Thus, if agent i, reports type si, for all i
in I, the social planner chooses alternative χ(s1, s2, ..sI) and the transfer payment of agent i
is µi(s1, s2, ..sI).
We maintain the following assumptions in this section:
Assumption 4.3.1: The type set Ti is open, separable, and connected.
Assumption 4.3.2: The types ti ∈ Ti are independently distributed across agents according

to a probability measure m(ti) over Ti.
Assumption 4.3.3: For each i (a) the utility function ui is locally Lipschitz in (x, ti)

and Clarke regular in ti; (b) the payment function µi is locally Lipschitz in reported types
(s1, s2, ..., sI), for all i; (c) the allocation rule χ is locally Lipschitz,
Assumption 4.3.4: The utility function ui admit a differential extension on the boundary

for the first argument for all i in I.
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Given a mechanism (χ, µ), the expected payoff to agent i (of type ti) from reporting si
when all other agents truthfully reveal their types is:

Et−iu
i(χ(si, t−i), ti)− Et−iµi(si, t−i)

= U i(si, ti)− µi(si)

The mechanism (χ, µ) is incentive compatible if all agents reveal their true type, that is if
∀i ∈ I and ∀ti ∈ Ti:

Vi(ti) = Ui(ti, ti)− µi(ti) = max
si∈Ti

{
U i(si, ti)− µi(si)

}
(4)

Now we show the expected utility and expected payment functions preserves Lipschitzian
properties of the utility and payment function respectively.

Proposition 23 Under assumptions 4.3.1-4.3.4, U i(si, ti) is locally Lipschitz in (si, ti) and
Clarke Regular in ti and µi(si) is locally Lipschitz in si for all i.

Proof. Under Assumption 4.3.1-4.3.4, given ui(χ(si, t−i), ti) is locally Lipschitz in (si, t−i, ti),
since ui and χ are also locally Lipschitz, and Ti is separable subset of Rk, by Clarke [10]
Theorem 1, implies that

Et−iu
i(χ(si, t−i), ti) =

∫
ui(χ(si, t−i), ti)m(dt−i)

is locally Lipschitz in (si, ti). Similarly, µi(si, t−i) is locally Lipschitz in (si, t−i) ∈ Ti × T−i
(and, therefore µi(si) = Et−iµ

i(si, s) is locally Lipschitz in si). For any si, as ui(χ(si, t−i), ti)
is Clarke regular in ti, by the Clarke’s result,

∫
ui(χ(si, t−i), ti)m(dt−i) is Clarke regular in

ti (as for any si, ui(χ(si, t−i), ti) is Clarke regular in ti).
The next proposition is an important technical result that follows from Krishna and

Maenner [28] that we shall use in deriving the main result of this section.

Proposition 24 If W : C → R is a Lipschitz and Clarke regular function, C is a connected
set in Rn, and ςw ∈ ∂W is a measurable selection, then for any smooth path α joining a to
b in C, we have

W (b)−W (a) =

∫
ςwdα

Proof. See Krishna and Maenner ([28], Theorem 1).
For an application of Proposition 24 we require the function W to be lipschitz and not

just locally Lipschitz on C. The next proposition show that any locally Lipschitz function
on C is Lipschitz on a cpmpact subset of C.

Proposition 25 Any locally Lipschitz function W : C → R, is Lipschitz on any compact
set D ⊂ C
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Proof. f is locally Lipschitz on D, thus for all a ∈ D there exist a open neighborhood of
a, Na such that

|f(a′)− f(a′′)| ≤ K(Na) ‖a′ − a′′‖

for all a′, a′′ ∈ Na. Since D is compact there will be finite number of open sets N1N2, ..., NT

such that D ⊂ ∪iNi with

|f(a′)− f(a′′)| ≤ K(Ni) ‖a′ − a′′‖

for all a′, a′′ ∈ Ni for all i = 1, 2, ..., T .
Any a ∈ D also satisfies a ∈ Ni for atleast some i = 1, 2, ...T . Since Ni is a open cover,

there exist a δ ∈ R such that if ‖a′ − a′′‖ < δ then a′, a′′ ∈ Ni for at least some i. Thus, if
‖a′ − a′′‖ < δ

|f(a′)− f(a′′)| ≤ max
i
{K(Ni)} ‖a′ − a′′‖

where i = 1, 2, ..., T .
Now suppose ‖a′ − a′′‖ ≥ δ > 0. Here,

|f(a′)− f(a′′)| ≤
∣∣∣∣max
a∈D

f(a)−min
a∈D

f(a)

∣∣∣∣
=
|f(a∗)− f(a∗)|

δ
δ

≤ |f(a∗)− f(a∗)|
δ

‖a′ − a′′‖

Here, f(a∗) and f(a∗) are the maxima and minima that f achives on the compact set D by
Weierstrass Theorem.
For K = max{K(N1), K(N2), ..., K(NT ), |f(a∗)−f(a∗)|

δ
} the result follows.

Now we will provide alternative characterization of the utility and payment functions for
"Payoff Equivalence" result by applying the directional differentiable envelope theorems for
an unconstrained problem.

Theorem 26 Under 4.3.1-4.3.4, for any incentive compatible mechanism (χ, µ), Vi(ti) is
locally Lipschitz and Clarke regular, with Gateaux derivative (directional derivative) given by

V ′i (ti; d) = max
s∗i (ti)∈S∗i (ti)

U i
′

2 (s∗i (ti), ti; d)

Further, Vi(ti) is determined by χ up to an additive constant. Finally, for all ti, t′i ∈ Ti and
any smooth path α joining ti and t′i in Ti

Vi(ti) = Vi(t
′
i) +

∫
ςui2dα

for any measurable selection ςui2 ∈ ∂U
i
2(ti, ti).
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Proof. By Proposition 23, the objective of problem (4) is locally Lipschitz and Clarke
regular in ti. Thus, by Proposition 10, Vi is locally Lipschitz and Clarke regular with Gateaux
derivative:

V ′i (ti; d) = max
s∗i (ti)∈S∗i (ti)

U i
′

2 (a∗i (ti), ti; d)

The Gateaux derivative derivative and hence the Clarke gradient of Vi only depends on the
expected utility from allocation and not on the expected payment.
Now for any ti, t′i ∈ Ti and any smooth path α joining ti and t′i in Ti, let D(ti, t

′
i, α) be

any proper, open, bounded subset of Ti containing ti, t′i and α. Further, D(ti, t
′
i, α) is the

closure of D(ti, t
′
i, α). By Proposition 25 Vi is Lipschitz on D(ti, t

′
i, α) and hence D(ti, t

′
i, α).

Further, for any incentive compatible mechanism (χ, µ), Clarke regularity of Vi imply

∂Vi(ti) = ∪s∗i (ti)∈S∗i (ti)∂U
i
2(s∗i (ti), ti)

⊇ ∂U i
2(ti, ti)

since, ti ∈ S∗i (ti). As a result, on the open set D(ti, t
′
i, α), Proposition 24 implies that for

any measurable selection ςui2 ∈ ∂U
i
2(ti, ti)

Vi(ti) = Vi(t
′
i) +

∫
ςui2dα

This shows that Vi is determined by ςui2 ∈ ∂U
i
2(ti, ti) and hence by the allocation χ (and not

the payment function µ) up to an additive constant.

5 Appendix: Mathematical Tools

5.1 Derivatives and subgradients

Given an open set Ω ⊂ Rn, the function f : Ω → Rm is said to be Lipschitz at x ∈ Ω if
∃k > 0 and ∃δ > δ such that:

∀x′, x′′ ∈ δB(x), |f(x′′)− f(x′)| ≤ k |x′′ − x′| ,

where B(x) is the open ball of radius 1 centered on x. If the modulus can be chosen
independently of x on an open subset of Ω, f is said to be globally Lipschitz on that subset.
If f is Lipschitz at x then the upper and lower Dini derivatives, respectively defined as

the functions:

d 7−→ D+f(x; d) = lim sup
t→0+

f(x+ td)− f(x)

t
and:

d 7−→ D+f(x; d) = lim inf
t→0+

f(x+ td)− f(x)

t

always exist.
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Function f is said to be (a) Gateaux (directionally) differentiable at x if both Dini
derivatives coincide for all d, in which case the Gateaux derivative is:

f ′(x; d) = lim
t→0+

f(x+ td)− f(x)

t
,

and (b) differentiable at x if it is Gateaux differentiable at x and if f ′(x; d) = ∇f(x) ·d. Note
that the function x→ |x| is directionally differentiable but not differentiable at 0. However,
by Rademacher’s theorem, if f is Lipschitz at all point of an open set Θ ⊂ Ω, then it is
almost everywhere differentiable on Θ. Finally, if the function x −→ ∇f(.) is continuous at
x, then f is said to be continuously differentiable at x.
Lipschitz functions also have the property that the upper and lower Clarke derivatives,

respectively defined as the functions:

d 7−→ f o(x; d) = lim sup
y→x
t→0+

f(y + td)− f(y)

t
and:

d 7−→ f−o(x; d) = lim inf
y→x
t→0−

f(y + td)− f(y)

t

also always exist. Note that:

f−o(x; d) ≤ −f−o(x;−d) = f o(x; d) (5)

If f is Lipschitz and Gateaux differentiable at x, then clearly:

f−o(x; d) ≤ f ′(x; d) ≤ f o(x; d)

Gateaux differentiable Lipschitz functions (at some x) are said to be upper Clarke regular
at x if f o(x; d) = f ′(x; d) (and lower Clarke regular at x if. f−o(x; d) = f ′(x; d)). Function
f is said to be strictly differentiability at x if both upper and lower Clarke derivatives
coincide. In finite dimensional spaces, strict differentiability and continuous differentiability
are equivalent.
Finally, the Clarke gradient of a Lipschitz function f at x is the nonempty compact

convex set:

∂f(x) = co {lim∇f(xi) : xi → x, xi /∈ Θ, xi /∈ Ωf}

where co denotes the convex hull5, Θ is any set of Lebesgue measure zero in the domain,
and Ωf is a set of points at which f fails to be differentiable. Clarke [11] (Proposition 2.1.5)
shows that x⇒ ∂f(.) is an upper hemicontinuous correspondence. Clarke [11] (Proposition
2.1.2) shows that:

f o(x; d) = max
ζ∈∂f(x)

{ζ.d}

hence f o(x; d) is a convex function of d.
It is important to note the following important properties of convex functions f : Ω →

Rm :
5In the formula, either co or co will do since we work with finite dimensional spaces.
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Lemma 27 Suppose f : Ω→ Rm is convex. Then:
(i) f is Lipschitz at every x ∈ Ω.
(ii) f is upper Clarke regular at every x ∈ Ω.
(iii) the Clarke gradient of f at x coincides with the subgradient of convex analysis, i.e.

the set of p ∈Mm×n satisfying ∀d, p · d ≤ f(x0 + d)− f(x0).
(iv). If f is also differentiable at x, then f is continuously differentiable at x.

Proof. (i), (ii) and (iii) are well-known. We prove now that differentiability together
with upper (or lower) Clarke regularity implies continuous differentiability. Upper Clarke
regularity and differentiability imply that:

f o(x; d) = f ′(x, d) = ∇f(x).d

hence, using (5) above:

f−o(x; d) = −f o(x;−d) = −∇f(x).(−d)

= ∇f(x).d = f o(x; d)

which proves that f is strictly differentiable (thus continuously differentiable) at x. A similar
argument clearly applies if f is lower (rather than upper) Clarke regular.

5.2 Properties of Correspondences

We work in metric spaces, so we can state topological properties of correspondences exclu-
sively in terms of sequences.

Definition 28 Given A ⊂ Rn and S ⊂ Rm, a non-empty valued correspondence D : S � A
is:
(i) lower hemicontinuous at s if for every a ∈ D(s) and every sequence sn → s there

exists a sequence {an} such that an → a and an ∈ D(sn).
(ii) upper hemicontinuous at s if for every sequence sn → s and every sequence {an} such

that an ∈ D(sn) there exists a convergent subsequence of {an} whose limit point a is in D(s).
(iii) closed at s if sn → s, an ∈ D(sn) and an → a implies that a ∈ D(s) (In particular,

this implies that D(s) is a closed set).
(iv) open at s if for any sequence sn → s and any a ∈ D(s), there exists a sequence {an}

and a number N such that an → a and an ∈ D(sn) for all n ≥ N .

Note that D(s) = {a ∈ A, gi(a, s) ≤ 0, i = 1, ..., p}, in which the gi are locally Lipschitz
(and thus continuous), is necessarily closed at s. The same property holds true in the
presence of locally Lipschitz equality constraints.
Another property of correspondences which is critical in our analysis is that of uniform

compactness.

Definition 29 A non-empty valued correspondence D is said to be uniformly compact near
s if there exists a neighborhood S ′ of s such that cl [∪s′∈S′D(s)] is compact.
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We note the result in Hogan [24] that if D is uniformly compact near s, then D is closed
at s if and only if D(s) is a compact set and D is upper hemicontinuous at s. When D is
defined by a system of continuous equality and inequality constraints, uniform compactness
near s thus implies compactness and upperhemicontinuity at s. In fact, for any s′ suffi ciently
close to s, since D(s′) is a closed subset of cl [∪s′∈S′D(s)] it is therefore compact.
Finally, we will need the following property of hemicontinuous correspondences (and thus

of Clarke gradients).

Proposition 30 If D is an upper hemicontinuous correspondence, then for every compact
neighborhood K of x, the set:⋃

z∈K
D(z)

is compact.

Proof. Consider a sequence {yn} in
⋃
z∈K

D(z) so that yn ∈ D(zn) for some zn in K. The

sequence {zn} is the compact K, so there exists a subsequence of {zϕ(n)} of {zn} converging
to some z′ ∈ K. By upper hemicontinuity of D at z′, there exists a subsequence of {yϕ(n)}
converging to some y ∈ D(z′). This proves that the initial sequence {yn} has a convergent
subsequence, and therefore that the set

⋃
x∈K

D(x) is compact.

5.3 Posets, Lattices, Supermodularity and Lattice Programming

A partially ordered set (or Poset) is a set X ordered with a reflexive, transitive, and anti-
symmetric relation. If any two elements of X are comparable, X is referred to as a complete
partially ordered set, or chain. An upper (resp. lower) bound of B ⊂ X is an element xu

(resp. xl) in B such that ∀x ∈ B, x ≤ xu (resp. xl ≤ x). A lattice is a set X ordered
with a reflexive, transitive, and antisymmetric relation ≥ such that any two elements x and
x′ in X have a least upper bound in X, denoted x ∧ x′, and a greatest lower bound in X,
denoted x∨ x′. The product of an arbitrary collection of lattices equipped with the product
(coordinatewise) order is a lattice. B ⊂ X is a sublattice of X if it contains the sup and the
inf (with respect to X) of any pair of points in B.
Let (X,≥X) and (Y,≥Y ) be Posets. A mapping f : X → Y is isotone (or increasing)

on X if f(x′) ≥Y f(x), when x′ ≥X x, for x, x′ ∈ X. A correspondence (or multifunction)
F : X → 2Y is ascending in the set relation on 2Y denoted by ≥S if F (x′) ≥S F (x), when
x′ ≥X x. A particular set relation of interest is Veinott’s strong set order (See Veinott [46],
Chapter 4). Let L(Y ) = {A|A ⊂ Y, A a nonempty sublattice} be ordered with the Strong
Set Order ≥a: if A1, A2 ∈ L(Y ), we say A1 ≥a A2 if ∀(a, b) ∈ A1 × A1, a ∧ b ∈ A2 and
a ∨ b ∈ A1.
Let X be a lattice. A function f : X → R is supermodular (resp., strictly supermodular)

in x if ∀(x, y) ∈ X2, f(x∨ y)+ f(x∧ y) ≥(resp., >) f(x) + f(y). An important property of
the class of supermodular functions is they are closed under pointwise limits. (Topkis, [45],
Lemma 2.6.1). Consider a partially ordered set Ψ = X1×P (with order ≥), and B ⊂ X1×P .
The function f : B −→ R has increasing differences in (x1, p) if for all p1, p2 ∈ P , p1 ≤ p2

=⇒ f(x, p2)− f(x, p1) is non-decreasing in x ∈ Bp1 , where Bp is the p section of B. If this
difference is strictly increasing in x then f has strictly increasing differences on B.
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