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Abstract. Present bias is the inclination to prefer a smaller present reward

to a larger later reward, but reversing this preference when both rewards are

equally delayed. This paper investigates and characterizes the most general

class of present-biased temporal preferences. We show that any present-biased

preference has a max-min representation, which can be cognitively interpreted

as if the decision maker considers the most conservative present equivalents in

the face of uncertainty about future tastes. We also discuss empirical anomalies

that temporal models like beta-delta or hyperbolic discounting cannot account

for, but the proposed general representation can accommodate.

For the most recent version of this paper, please visit this link.

Exponential discounting is extensively used in economics to study the trade-offs

between alternatives that are obtained at different points in time. Under exponen-

tial discounting, the relative preference for early over later rewards depends only

on the temporal distance between the rewards (stationarity). However, recent

experimental findings have called the model into question. Specifically, experi-

ments have shown that small rewards in the present are often preferred to larger

rewards in the future, but this preference is reversed when the rewards are equally

delayed. As an example, consider the following two choices:

Example 1.

A. $100 today vs B. $110 in a week

C. $100 in 4 weeks vs D. $110 in 5 weeks

Many decision makers choose A over B, and D over C. This specific pattern of

choice reversal can be attributed to a bias we might have towards alternatives in
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the present, and hence is aptly called present bias or immediacy effect. This is one

of the most well documented time preference anomalies (Thaler 1981; Loewenstein

and Prelec 1992; Frederick et al. 2002). If preferences are stable across decision-

times, the same phenomenon creates dynamic inconsistency in behavior: People

consistently fail to follow up on the plans they had made earlier, especially if the

plans entail upfront costs but future benefits. Every year people pledge to exercise

more, eat healthier, become financially responsible or quit smoking starting next

year but often fail to follow through when the occasion arrives, to their own

frustration.

There is a big literature on what kind of utility representations could rational-

ize choices made by a present-biased decision maker (DM), which we succinctly

summarize in Table 3 in Appendix I. Though all of these models capture the

behavioral phenomenon of present bias, none of them can be called the model of

present-biased preferences. Instead they are all models of present bias and some

additional temporal behavior that is idiosyncratic to the model.1 Moreover, these

additional behavioral features often conflict across the models and are not em-

pirically well-founded. This raises the following natural question: What is the

most general model of present-biased preferences? Or alternatively, what general

class of utilities is consistent with present-biased behavior? Such a model would

be able to represent present-biased preferences without imposing any extraneous

behavioral assumption on the decision maker. This paper proposes a behavioral

characterization for such general class of utilities. We start by introspecting about

what exactly present-biased behavior implies in terms of choices over temporal

objects. The following example provides the motivation for our “weak present

bias” axiom.

Example 2. Suppose that a DM chooses (B) $110 in a week over (A) $100 today.

What can we infer about his choice between (B′) $110 in 5 weeks versus (A′) $100

in 4 weeks, if we condition on the person being (weakly) present-biased?

1For example, Quasi-Hyperbolic Discounting ( called β-δ discounting interchangeably) addition-
ally assumes Quasi-stationarity: violations of constant discounting happen only in the present
period and the decision maker (DM)’s discounting between any two future periods separated
by a fixed distance is always constant. On the other hand, Hyperbolic Discounting (which sub-
sumes Proportional and Power discounting as special cases) captures the behavior of a decision
maker whose discounting between any two periods separated by a fixed distance decreases as
both periods are moved into the future.
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Note that B%A, implies that a possible present-premium ($100 is available at

the present) and the early factor ($100 is available 1 week earlier) are not enough

to compensate for the size-of-the-prize factor ($110>$100). Equally delaying both

alternatives preserves the early factor and the size-of-the-prize factor unchanged,

but, the already inferior $100 prize further loses its potential present-premium,

which should only make the case for the previous preference stronger.2 Hence,

B%A must imply B′ %A′ to be consistent with a weak notion of present bias.

We use this motivation to define a Weak Present Bias axiom, which relaxes

stationarity by allowing for present bias but rules out any choice reversals in-

consistent with present bias. We then show that if a decision maker satisfies

Weak Present Bias and some basic postulates of rationality, then, his preferences

over receiving an alternative (x, t) (that is receiving prize x at time t) can be

represented in the following way (henceforth called the minimum representation)

V (x, t) = min u∈Uu
−1(δtu(x))

where δ ∈ (0, 1) is the discount factor, and U is a set of continuous and increas-

ing utility functions. The minimum representation can be interpreted as if the

DM has not one, but a set U of potential future tastes or utilities. Each po-

tential future taste (captured by a utility function u ∈ U) suggests a different

present equivalent3 (evaluated as u−1(δtu(x))) for the alternative (x, t). The DM

resolves this multiplicity in a prudent fashion. He evaluates the worth of each

alternative by the most conservative or minimal present equivalent. Given that

the present equivalent of any prize in the present is the prize itself, the minimum

representation has no caution imposed on the present, thus treating present and

future in fundamentally different ways. For any prize x received at time t = 0,

min u∈U(u−1(δ0u(x))) = x4, which can be interpreted as if, immediate alternatives

are not evaluated through similar standards of conservativeness, as is expected

of a DM with present bias. Moreover, the fact that all alternatives are procedu-

rally reduced to present equivalents for evaluation and comparison, underlines the

2Note that we are assuming present-premium≥ 0, thus ruling out the case where it is negative,
i.e, something that would be consistent with future bias.
3Present equivalent of an alternative (x, t) is the immediate prize that the DM would consider
equivalent to (x, t). For a felicity function u defined on the space of all possible prizes x, and
a discount factor of δ, the discounted utility from (x, t) is δtu(x). Hence the corresponding
present equivalent is u−1(δtu(x)).
4As, δ0 = 1, u−1(δ0u(x)) = u−1(u(x)) = x for all u ∈ U .
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salience of the present to the DM. This is another way in which the psychology

of present bias is incorporated in the representation. Our representation nests

the classical exponential discounting model as the special case obtained when the

set U is a singleton and hence can be considered a direct generalization of the

standard model of stationary temporal preferences.

Our model of decision making nests all the popular models of present-biased

discounting as special cases, as those models satisfy all the axioms imposed in

our analysis. However, there are several robust empirical phenomena discussed

in Sections 3 and 8 which temporal models like β-δ or hyperbolic discounting

cannot account for, but the current model can. For example, Keren and Roelof-

sma (1995) show that once all prizes under consideration are made risky, they are

no longer subject to present-biased preference reversals anymore. In other words,

once certainty is lost, present bias is lost too. None of the models of behavior that

treat the time and risk components of an alternative separately (for example, any

discounted expected or non-expected utility model) can accommodate such be-

havior. We extend our analysis to a richer domain of preferences over risky timed

prospects and provide an extended minimum representation that can account for

this puzzling behavioral phenomenon. In Section 9 we show how a benevolent

social planner can use insights from time-risk behavior to improve the welfare of

present-biased individuals. Another choice pattern that most temporal models

fail to accommodate is the stake dependence of present bias. For example, a DM

might have a bias for the present, but he might also expend considerably more

cognitive effort to fight off this bias when the stakes are large. His large stake

choices would satisfy stationarity, whereas he would appear to be present-biased

in his choices over smaller stakes (see Halevy 2015 for supporting evidence). We

show how our representation can accommodate such preferences in Section 8.

The subjective max-min feature of the functional form has been used previously

by Cerreia-Vioglio et al. (2015) in the domain of risk preferences, though they had

the minimum replaced by an infimum. In their paper, Cerreia-Vioglio et al. (2015)

show that if we weaken the Independence axiom to account for the Certainty

Effect (Allais 1953), we obtain a representation where a decision maker evaluates

the certainty equivalent of each lottery with respect to a set of Bernoulli utility

functions and then takes the infimum of those values as a measure of prudence.

We discuss this connection in greater detail in Section 4 and describe how the
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techniques used in our paper can be used to provide an alternative derivation of

their main result in a reduced domain.

The paper is arranged as follows: Section 1 defines the novel Weak Present

Bias axiom and provides the main representation theorem of the paper. Section

2 builds on the main result to provide intuition about the separation of β-δ

discounting from Hyperbolic discounting. Section 3 extends the main result to

a richer domain with risk. We provide an intuition of the inner workings of the

proofs in Section 4. Section 5 comments on the uniqueness of the results. Section

6 surveys the literature closely related to this paper. Sections 7 and 8 discuss the

testability, refutability and empirical content of our model. Sections 9-10 provide

applications, policy implications and extensions of the main results of the paper.

The proofs of the main theorems are included in Appendix II.

1. Model and The Main Result

A decision maker has preferences % defined on all timed alternatives (x, t) ∈
X× T where the first component could be a prize (monetary or non-monetary)

and the second component is the time at which the prize is received. Let T =

{0, 1, 2, ...∞} or T = [0,∞) and X = [0,M ] for M > 0. We impose the following

conditions on behavior.

A0: % is complete and transitive.

Completeness and transitivity are standard assumptions in the literature,

though one can easily argue that they are more normative than descriptive in

nature. The few instances of present-biased intransitive preferences studied in

the economics literature, notably Read (2001), Rubinstein (2003) and Ok and

Masatlioglu (2007) fall outside our domain of consideration due to (A0).

A1: CONTINUITY: % is continuous, that is the strict upper and lower

contour sets of each timed alternative is open w.r.t the product topology.

Continuity is a technical assumption that is generally used to derive the con-

tinuity of the utility function over the relevant domain. When, T = R+, the

standard β-δ model does not satisfy continuity at t = 0.5

5Pan et al. (2015) axiomatize a model of Two Stage Exponential (TSE) discounting which
incorporates the idea of β-δ discounting while maintaining continuity.
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A2: DISCOUNTING: For t, s ∈ T, if t > s then (x, s) � (x, t) for x > 0 and

(x, s) ∼ (x, t) for x = 0. For y > x > 0, there exists t ∈ T such that,

(x, 0) % (y, t).

The Discounting axiom has two components. The first part says that the

decision maker always prefers any non-zero reward at an earlier date. The second

part states that any reward converges to the zero reward (and hence, continually

loses its value), as it is sufficiently delayed.

A3: MONOTONICITY: For all t ∈ T (x, t) � (y, t) if x > y.

The Monotonicity axiom requires that at any point in time, larger rewards are

strictly preferred to smaller ones. Finally, in light of Example 1, we formally

define Weak Present Bias below.

A4: WEAK PRESENT BIAS: If (y, t) % (x, 0) then, (y, t+ t1) % (x, t1) for

all x, y ∈ X and t, t1 ∈ T.

To provide context the standard Stationarity axiom is stated below.

Stationarity: (y, t1) % (x, t2) if and only if, (y, t+t1) % (x, t+t2) for all x, y ∈ X
and t, t1, t2 ∈ T.

Weak present bias as defined in the fourth axiom is the most intuitive weakening

of Stationarity in light of the experimental evidence about present bias or imme-

diacy effect. It allows for choice reversals that are consistent with present-bias,

something that Stationarity does not allow. On the other hand, having an op-

posite bias for future consumption is ruled out . 6Other than all the separable

discounting models mentioned in Appendix I, this Weak Present Bias axiom is

also satisfied by the non-separable models of present bias proposed by Benhabib

et al. (2010) 7 and Noor (2011). This stands testimony to the fact that the Weak

Present Bias axiom is able to capture the general behavioral property of present

bias in a very succinct way. Now we present our main representation result.

6Further, (y, t) � (x, 0) and (y, t+t1) ∼ (x, t1) is also not consistent with WPB, Continuity and
Monotonicity. The reason being that, by Continuity, there would exist y′ < y, (y′, t) � (x, 0)
and (x, t1) � (y′, t + t1). Whereas, (y, t) ∼ (x, 0) and (y, t + t1) � (x, t1) is allowed by the
postulates A0-4.
7Benhabib et al. (2010) introduce the discount factor

∆(y, t) =

{
1 t = 0

(1− (1− θ)rt)(1−θ) − b
y t > 0
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Theorem 1. The following two statements are equivalent:

i) The relation % defined on X× T satisfies axioms A0-A4.

ii) For any δ ∈ (0, 1), there exists a set Uδ of monotinically increasing contin-

uous functions such that

(1) F (x, t) = min
u∈Uδ

u−1(δtu(x))

represents the binary relation %. The set Uδ has the following properties: u(0) = 0

and u(M) = 1 for all u ∈ Uδ. F (x, t) is continuous.

Note that for any timed alternative (x, t), u−1(δtu(x)) in (1) computes its

“present equivalent”, the amount in the present which the individual would deem

equivalent to (x, t) if u were his utility function. For all present prizes, the present

equivalents are trivially equal to the prize itself (u−1(δ0u(x)) = x ∀u) irrespective

of the utility function under consideration, and thus there is no scope or need

for prudence. Whereas for timed alternatives in the future, whenever U is not a

singleton, the DM chooses the most conservative present equivalent due to the

minimum functional, thus exhibiting prudence. This is the primary intuition

of how this functional form treats the present differently from the future and

thus incorporates present bias into it. A potential motivation for the minimum

representation and differential treatment towards present and future, follows from

Loewenstein (1996)’s visceral states argument: “..immediately experienced visceral

factors have a disproportionate effect on behavior and tend to crowd out virtually

all goals other than that of mitigating the action, ...but.. people under weigh, or

even ignore, visceral factors that they will experience in the future.” The following

example shows an easy application of the theorem to represent present-biased

choices.

Example 3. Consider U = {u1, u2}, where,

u1(x) = xa for a>0

u2(x) = 1− exp(−bx) for b>0

Also consider, a = .99, b = .00021, δ = .91. One can easily check that a

minimum representation with respect to this U would satisfy Weak Present Bias

(also follows from Theorem 1). The minimum representation with respect to this

U would assign the following utilities to the timed alternatives in Example 1.
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V (100, 0) = min(100, 100) = 100

V (110, 1) = min(100.056, 99.995) = 99.995

V (100, 4) = min(68.317, 68.48) = 68.317

V (110, 5) = min(68.320, 68.344) = 68.320

Hence,

V (100, 0) > V (110, 1)

V (100, 4) < V (110, 5)

Thus the minimum function with a simple U can be used to accommodate

present biased choice reversals.

2. Special cases

This section applies Theorem 1 to a popular model of present bias, the β-δ

model (Phelps and Pollak 1968; Laibson 1997). The β − δ model evaluates each

alternative (x, t) as U(x, t) = (β+(1−β).1t=0)δtu(x), where u, δ, β have standard

interpretation. 1t=0 is the indicator function that takes value of 1 if t = 0 and

value 0 otherwise, thus assigning a special role to the present. Given that the

β − δ model satisfies Weak Present Bias and all the other axioms included in

Theorem 1 (for the discrete case) , any such β − δ representation must have an

alternative minimum representation, as shown in Theorem 1.

Below, we consider the simplest possible β−δ representation with linear felicity

function u(x) = x, T = {0, 1, 2, ..} and construct the corresponding Weak Present

Bias representation.

Claim 1. β-δ representation with u(x) = x has an alternative minimum repre-

sentation.

Proof. Define the functions uy : R→ R+ for all y ∈ R+:

uy(x) =


x

β
for x ≤ βδy

δy + (x− βδy)
1− δ

1− βδ
for βδy < x ≤ y

x for x > y
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For any y ∈ R+, x ≤ uy(x) ≤ x

β
for all x ∈ R+. As uy is an increasing function,

it must be that x ≥ u−1
y (x) ≥ βx. Since, x ≤ uy(x), we get δtuy(x) ≥ δtx, which

implies,

u−1
y (δtuy(x)) ≥ u−1

y (δtx) ≥ βδtx

Finally, for x = y, δtuy(x) = δtx < δx and, hence, uy(δ
tuy(x)) = βδtx.

Therefore, V (x, t) = miny∈R+u
−1
y (δtuy(x)) = (β + (1 − β).1t=0)δtx, which fin-

ishes our proof.8 �

This shows that if we start with a rich enough set of piece-wise linear utili-

ties, the minimum representation with respect to that set, is enough to generate

behavior consistent with β-δ discounting. In the example above, the set values

taken by the set of functions is bounded above and below at each non-zero point

x of the domain by [
x

β
, x], and this brings us to our next result. Our next theorem

characterizes the behavioral axiom necessary and sufficient for the functions in

Uδ to be similarly bounded.

We start by introducing two more axioms.

A5: EVENTUAL STATIONARITY: For any x > z > 0 ∈ X, there exists

t1 ∈ T, such that for t ≥ 0, (z, t) � (x, t+ t1) and (z, 0) � (xt, t1 + t) for any xt

such that (x, 0) ∼ (xt, t).

A6: NON-TRIVIALITY: For any x ∈ X, and t ∈ T, there exists z ∈ X, such

that (z, t) � (x, 0).

The last axiom basically means that the space of prizes is rich enough to have

exceedingly better outcomes, and it is only needed when X = R+, and can be

dropped if X = [0,M ]. (See Corollary 1)

A5 is the more crucial axiom. That for any x > z > 0 ∈ X, there exists a

sufficient delay t1 ∈ X, such that (z, t) � (x, t+ t1) for t = 0 is already implied by

Discounting (A2). What has been added is that for the same t1 we additionally

have (z, t) � (x, t + t1) for t ≥ 0: This intuitively means once the later larger

prize is “sufficiently” delayed, the relative rates at which the attractiveness of

the earlier and later rewards fall with further delay (increasing values of t) is

consistent with stationarity. This rules out certain preference reversals that were

previously allowed under WPB, for e.g: (z, 0) � (x, t1), but (x, t1 + k) % (y, k)

8This is not necessarily the only possible minimum-representation of the β-δ discounting.
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for the mentioned t1. The last and third part of the axiom, (z, 0) � (xt, t1 + t)

for any xt such that (x, 0) ∼ (xt, t), also has the same interpretation. The A5

property provides a crucial separation between two popular classes of present-

biased discounting functions: β-δ discounting and Hyperbolic discounting , as

only the former satisfies it, but the latter does not. We show this more formally

in Proposition 4 in Appendix II.

Theorem 2. Let T = {0, 1, 2, ...∞} and X = R+. The following two statements

are equivalent:

i) The relation % satisfies properties A0-A6.

ii) There exists a set Uδ of monotonically increasing continuous functions such

that

(2) F (x, t) = min
u∈U

u−1(δtu(x))

represents the binary relation %. The set U has the following properties:u(0) = 0

for all u ∈ U , supu u(x) is bounded above, infu u(x) > 0 ∀x > 0, infu
u(z)

u(x)
is

unbounded in z for all x > 0. F (x, t) is continuous.

This theorem implies that any “minimum-representation” of hyperbolic dis-

counting must require a set of functions which would take unbounded set values

at some point of the domain. The immediate conclusion one can draw from here

is that one cannot generate any variant of Hyperbolic discounting (with any felic-

ity function) with a minimum representation over a finite set U of utilities. This

theorem also has a straightforward corollary, where we consider the prize domain

X =[0,M ] and drop A6.

Corollary 1. Let T = {0, 1, 2, ...∞} and X = [0,M ]. The following two state-

ments are equivalent:

i) The relation % satisfies properties A0-A5.

ii) There exists a set Uδ of monotonically increasing continuous functions such

that

F (x, t) = min
u∈U

u−1(δtu(x))

represents the binary relation %. The set U has the following properties:u(0) = 0,

u(1) = 1 for all u ∈ U , infu u(x) > 0 ∀x. F (x, t) is continuous.
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3. An extension to risky prospects

In this section, we extend the representation derived in Section 1 to risk. This

extension serves the following three goals. First, it shows that the representation

in Section 1 has a natural extension to simple binary lotteries, with zero being one

of the lottery outcomes. Second, through the extended representation we are able

to accommodate experimental evidence that is inconsistent with most previous

temporal models of behavior. Finally, through this extension, we will be able to

identify a unique discount factor δ for any DM satisfying certain postulates of

behavior.

We start by presenting the experimental evidence from time-risk domain that

our model would be able to accommodate, but, the temporal models from Ap-

pendix I would not. In the following text, we summarize each alternative by the

triplet (x, p, t) where x is a monetary prize, p is the probability with which x is

attained at time t. For the first three rows, x was offered in Euros, and in the

next four, x was offered in Dutch Guilder, t was measured in months in Columns

1:3, and measured in weeks in Columns 4:7.

Prospect A Prospect B % chosing A % chosing B N

1 (9,1,0) (12,.8,0) 58% 42% 142
2 (9,.1,0) (12,.08,0) 22% 78% 65
3 (9,1,3) (12,.8,3) 43% 57% 221
4 (100,1,0) (110,1,4) 82% 18% 60
5 (100,1,26) (110,1,30) 37% 63% 60
6 (100,.5,0) (110,.5,4) 39% 61% 100
7 (100,.5,26) (110,.5,30) 33% 67% 100

Table 1. Rows 1-3 are from Baucells and Heukamp (2010), the
rest are from Keren and Roelofsma (1995).

The data can be interpreted in the following way: People have an affinity for

both certainty and immediacy. The loss in either certainty or immediacy has a

similar disproportionate effect on preferences (compare rows 5 and 6 with row

4, or rows 2-3 with row 1). Most interestingly, there is very little evidence of

present-biased reversals over risky prospects (compare rows 6-7, with rows 4-5).

It is the latter finding that is at odds with most temporal models of behavior. In
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fact it rules out all discounted expected or non-expected utility functional forms

which are separable in the temporal and risk components.9

We will consider preferences over triplets (x, p, t) ∈ X× P× T, which describe

the prospect of receiving a reward x ∈ X at time t ∈ T with a probabilityp ∈
[0, 1]. X = [0,M ] is a positive reward interval, P = [0, 1] is the unit interval

of probability, and T = [0,∞) is the time interval. We impose the following

conditions on behavior.

B0: % is complete and transitive.

B1: CONTINUITY: % is continuous, that is the strict upper and lower

contour sets of each risky timed alternative are open w.r.t the product topology.

B2: DISCOUNTING: For t, s ∈ T, if t > s then (x, p, s) � (x, p, t) for

x, p > 0 and (x, p, s) ∼ (x, p, t) for x = 0 or p = 0. For y > x > 0, there exists

T ∈ T such that, (x, q, 0) % (y, 1, T ).

B3: MONOTONICITY AND FOSD: For all t ∈ T, (x, p, t) % (y, q, t) if

x ≥ y and p ≥ q. The preference is strict if at least one of the two following

inequalities is strict.

Note that the first four axioms are just extensions of A0-A3. FOSD is an

acronym for First Order Stochastic Dominance, and it aptly summarizes the risk

relations implied by B3 in the reduced domain of binary lotteries.

B4: WEAK PRESENT BIAS: If (y, 1, t) % (x, 1, 0) then,

(y, 1, t+ t1) % (x, 1, t1) for all x, y ∈ X, α ∈ [0, 1] and t, t1 ∈ T.

B5: PROBABILITY-TIME TRADEOFF: For all x, y ∈ X, p ∈ (0, 1], and

t, s ∈ T, (x, pθ, t) % (x, p, t+D) =⇒ (y, qθ, s)(y, q, s+D).

The fifth axiom (used previously in Baucells and Heukamp 2012) says that

passage of time and introduction of risk have similar effects on behavior, and

there is a consistent way in which time and risk can be traded off across the

domain of behavior. This axiom implies calibration properties as well that we

will utilize in the proofs, and it will be crucial to pin down a unique discount

factor δ for any DM. Additionally, (B4) when combined with (B5) captures a

decision maker’s joint bias towards certainty as well as the present, i.e, it embeds

9Rows 1 and 3 also imply the same.
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Weak Present Bias as well as Weak Certainty Bias10 in itself. This underlines the

insight that once risk and time can be traded-off, Weak Present Bias and Weak

Certainty Bias are behaviorally equivalent. Similar relations between time and

risk preferences have been elaborated on previously by Halevy (2008), Baucells

and Heukamp (2012), Saito (2009), Fudenberg and Levine (2011), Epper and

Fehr-Duda (2012) and Chakraborty and Halevy (2015). In Section 3, we will

discuss how the Weak Certainty Bias postulate connects the current work to

previous literature on risk preferences.

We are now ready for our next result.

Theorem 3. The following two statements are equivalent:

i) The relation % on X× P× T satisfies properties B0-B5.

ii) There exists a unique δ ∈ (0, 1) and a set U of monotonically increasing

continuous functions such that F (x, p, t) = minu∈U(u−1(pδtu(x))) represents the

relation %. For all the functions u ∈ U , u(M) = 1 and u(0) = 0. Moreover,

F (x, p, t) is continuous.

The next example shows a potential application of this representation in light

of Keren and Roelofsma (1995)’s experimental results.

Example 4. Consider the set of functions U and parameters considered in Ex-

ample 3. When applied to the representation derived in Theorem 3, they predict

the following choice pattern.

V (100, 1, 0) > V (110, 1, 1)

V (100, 1, 4) < V (110, 1, 5)

V (100, .5, 0) < V (110, .5, 1)

V (100, .5, 4) < V (110, .5, 5)

Note that this is exactly the choice pattern obtained in the original Keren and

Roelofsma (1995) experiment: time and risk affect choices in similar ways, and

once certainty is removed present bias disappears.

10Weak Certainty Bias can be defined on X× P in the following fashion: If (y, p) % (x, 1) then,
(y, pα) % (x, α) for all x, y ∈ X and α ∈ [0, 1].
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4. An outline of the proofs

This section outlines the proofs of Theorems 1-3 chronologically and discusses

the relation of this paper to recent work by Cerreia-Vioglio et al. (2015).

We will use the two following notions in this section: Present equivalent of any

alternative (z, τ) ∈ X× T with respect to a felicity function u under exponential

discounting is u−1(δτu(z)). More generally, present equivalent of the alternative

(z, τ) with respect to a relation % defined on X× T is the quantity x ∈ X such

that (z, τ) ∼ (x, 0).

The proof of Theorem 1 has the following structure: For any timed alternative

(z, τ), there exists x ∈ X such that (z, τ) ∼ (x, 0). This follows from monotonicity

and continuity, and this guarantees that any (timed) alternative has a well defined

present equivalent with respect to %. It is easy to see that when τ = 0, one

must have z = x. Given the present equivalents with respect to % are well

defined, one possible utility representation V : X× T→ R+ is the function that

assigns to every alternative (z, τ), the present equivalent according to the relation

(z, τ) ∼ (x, 0). The crux of the proof now lies in showing that there exists a set

of utilities Uδ such that the previously defined V function can be rewritten as

V (z, τ) = x = min
u∈Uδ

u−1(δτu(z))(3)

From any relation % that satisfies the axioms in Theorem 1, consider the sub-

relation that contains all comparisons of the form (x, t) % (y, 0) such that x, y ∈ X
and t ∈ T. Such a sub-relation is non-empty by Discounting, but it also does

not contain all possible relations between future and present alternatives. This

subset of binary relations is special for the two following reasons: 1) All the

information about present equivalents of all timed prospects is contained in this

subset of relations. 2) By Weak Present Bias, this is also the subset of % on

which Stationarity holds. Our proof shows that for any δ ∈ (0, 1) there exists Uδ
such that

(x, t) % (y, 0) ⇐⇒ δtu(x) ≥ u(y) ∀u ∈ Uδ
(x, t) ∼ (y, 0) ⇐⇒ δtu(x) ≥ u(y) ∀u ∈ Uδ(4)

and δtuy,δ(x) = uy,δ(y) for some uy ∈ Uδ

The proof is constructive in nature. For any x, y ∈ X and (x, t) ∼ (y, 0), we

find a strictly increasing continuous function uy,δ that assigns to every such (x, t)
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the present equivalent of exactly y, and a weakly higher present equivalent to

every other (z, τ) ∈ X× T. That such functions can be constructed follows from

Weak Present Bias. Construction of the set Uδ requires including the functions

ux,δ for all x ∈ X. Uδ can be though of as the set of all increasing continuous

discounted utility functions that assign a weakly higher discounted utility to (x, t)

than (y, 0), where, (x, t) ∼ (y, 0). Alternatively, it can be described as the set of

all increasing continuous discounted utility functions which assign weakly higher

present equivalents to each prospect, compared to %.

Now, consider (z, τ) ∼ (y1, 0) and define

W (z, τ) = min
u∈Uδ

u−1(δτu(z))

Note that by definition of U ,

(z, τ) ∼ (y1, 0)

=⇒ δτu(z) ≥ u(y1) ∀u ∈ U

=⇒ u−1(δτu(z)) ≥ y1 ∀u ∈ U

Also, u−1
y,δ(δ

τuy,δ(z)) = y1

=⇒ min
u∈U

u−1(δτu(z)) = y1

Which shows the intuition behind Equation 3.

Theorem 2 builds on the methods and insights of Theorem 1. Eventual Sta-

tionarity guarantees that the functions in U can be constructed in a way such

that for any two points x < y there exists t1 for which u(x) > δt1u(y) for all

u ∈ U . Now when one normalizes, u(1) = 1 for all u ∈ U , using the condition

mentioned in the previous sentence, one additionally obtains that supu u(x) is

bounded above and infu u(x) > 0 ∀x > 0

Theorem 3 connects time and risk in the following way: Given the Probability-

Time Tradeoff axiom, the X× P× T domain is isomorphic to either of the reduced

domains of X× P or X× T. For example, there exists unique δ ∈ (0, 1) such that

(x, p, t) ∼ (x, pδt, 0) and (x, p, t) ∼ (x, 1, t + logδ p) for all x ∈ X and p ∈ P.

This theorem restricts its domain to T = R+, unlike Theorem 1, which holds

equally for T = N0 also. The axioms on X× P× T domain imply completeness,

transitivity, continuity, FOSD (Discounting respectively), Weak Certainty Bias

(Weak Present Bias respectively) for a preference defined on the reduced domain

of X× P (X× T respectively for T = N0). Proving Theorem 3, now reduces to
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proving that there is a minimum representation on X× P or X× T of the forms

minu∈U(u−1(pu(x))) or minu∈U(u−1(δtu(x))) respectively. Additionally, proving

any one of the representations from the implied axioms on the relevant domain is

equivalent to proving all of the representations on the respective domains. This

flexibility is allowed by the Probability Time Tradeoff axiom. In the Appendix,

we prove how the reduction from the richer domain to X× P or X× T works, and

then prove that a relation on X× P satisfies completeness, transitivity, continuity,

FOSD and Weak Certainty Bias if and only if the relation on X× P can be

represented by the functional form of minu∈U(u−1(pu(x))).

This result on the reduced X× P domain brings us to a very interesting con-

nection that the present work has with Cerreia-Vioglio et al. (2015). In that

paper, the authors consider preferences over lotteries (L) defined over a compact

real interval [w, b] of outcomes. To account for violations of the Independence

Axiom11 based on a DM’s bias towards certainty or sure prizes12, they relax it in

favor of Negative Certainty Independence (NCI) axiom defined below.

NCI: (Dillenberger 2010) For p, q ∈ L, x ∈ [w, b], and λ ∈ (0, 1),

p D Lx =⇒ λp+ (1− λ)q D λp+ (1− λ)Lx

Cerreia-Vioglio et al. (2015) show that if D satisfies NCI and some basic ra-

tionality postulates, then there exists a set of continuous and strictly increasing

functionsW , such that the relation D can be represented by a continuous function

V (p) = infu∈W c(p, u), where c(p, u) is the certainty equivalent of the lottery p

with respect to u ∈ U . The proof of their theorem has the following steps: From

D, they construct a partial relation D′ which is the largest sub-relation of the

original preference D that satisfies the Independence axiom. By Cerreia-Vioglio

(2009), D′ is reflexive, transitive (but possibly incomplete), continuous and sat-

isfies Independence. Next, following Dubra et al. (2004) 13, there exists a set W
of continuous functions on [w, b] that constitutes an Expected Multi-Utility rep-

resentation of D′, that is, p D′ q if and only if Ev(p) ≥ Ev(q) for all v ∈ W . Now

taking an infimum of the present equivalents with respect to all the functions

11For p, q, r ∈ L, and λ ∈ (0, 1), p D q if and only if λp+ (1− λ)r D λq + (1− λ)r.
12We denote the lottery that gives the outcome x ∈ [w, b] for sure as Lx ∈ L.
13Dubra et al. (2004) define a convex cone in the linear space generated by the lotteries related
by D′ and then apply an infinite-dimensional version of the separating hyperplane theorem to
establish the existence of W.
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in W yields a representation that assigns to each lottery its certainty equivalent

implied by the relation D.

This NCI axiom when reduced to the domain of binary lotteries on X× P,
conveys the same behavior as the Weak Certainty Bias axiom we have discussed

above and have used in the proof of our theorem. Our representation over X× P is

a minimum representation that is an exact parallel of the infimum representation

obtained by Cerreia-Vioglio et al. (2015). This is no coincidence: we provide an

alternative derivation of Cerreia-Vioglio et al. (2015)’s result in a reduced domain

of lotteries for similar behavior and show that their infimum representation can be

replaced with a minimum representation under the implied axioms in our domain.

Our proof is essentially constructive, as illustrated in Claim 1, and it does not

use any intermediate results (for example, results from Dubra et al. (2004)).

Obviously, this begs the following natural question: Could the proof in Cerreia-

Vioglio et al. (2015) be applied directly to our representation theorems? To the

best of our knowledge, we believe that the answer is negative. We do not see any

way to impose the structure of their paper on a domain of timed alternatives,

while also imposing present bias. The Probability Time Tradeoff axiom is capable

of transforming binary lotteries (with zero as one of the outcomes) to timed al-

ternatives in the Fishburn-Rubinstein Framework, but it does not help us achieve

the same for arbitrary lotteries. We hope that this paper would generate further

interest in the careful study of the minimum or infimum functions on different

domains of choice.

5. Uniqueness

The uniqueness results discussed here are formulated keeping the main rep-

resentation theorem of the paper in mind, but they apply equally to the other

representation theorems with minor adjustments. We start with a crucial question

about the representation: Could we have come across an alternative representa-

tion for the same preferences without the exponential discounting part inside the

present equivalents? For example, could we have ended up with a representation

of the form:

(5) V ′(x, t) = min
u∈U

u−1(∆(t)u(x))
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where ∆(t) is some time-decreasing discount function other than exponential

discounting, for example the hyperbolic one? Note that this is an interesting

question, as a positive answer would open the door to representations where

the present equivalents are taken with respect to hyperbolic or quasi-hyperbolic

discounting. However, the answer is negative. If we start with any ∆(t) such

that
∆(t+ t1)

∆(t)
6= ∆(t1) for some t, t1 , there would either 1) exist some binary

relation which satisfies all the axioms in this paper, but cannot be represented

by the representation in (5), or 2) the representation in (5) with a permissible

set of utilities U would represent preferences which do not satisfy at least one of

the axioms in this paper, thus breaking the two-way relation between the axioms

and representation.

Proposition 1. Given the axioms A0-4, the representation form in (5) is unique

in the discounting function ∆(t) = δt inside the present equivalent function.

Proof. See Appendix II. �

One of the limitations of representations over X× T space (the domain used in

Sections 1 and 2) is the lack of uniqueness in terms of the discount factor δ. We

inherit the non-uniqueness of δ in Theorems 1-2 from Fishburn and Rubinstein

(1982). Fishburn and Rubinstein (1982) impose A0-A3 along with Stationarity

on preferences to derive a exponential discounting representation. In their rep-

resentation, given those conditions on preferences, and given δ ∈ (0, 1) , there

exists a continuous increasing function f such that (x, t) is weakly preferred to

(y, s) if and only if δtu(x) ≥ δsu(y). They have the following result: if (u, δ) is a

representation for a preference % then so is (v, β) where β ∈ (0, 1) and v = u
log β
log δ .

Same holds for our representations in Theorems 1-2: if (δ,U) is a representation

of %, then so is (α,F),where F is constructed by the functions v = u
log β
log δ for

u ∈ U . Obviously this is a restriction imposed by working on the prize-time

domain and we can no longer consider δ as a measure of impatience. To put

things in perspective, in a seminal paper Koopmans (1972) instead considers the

richer domain of consumption streams, and under the additional assumption of

separability, he derives a time-separable additive exponential discounting repre-

sentation of behavior. In Theorem 3 we provide a representation over a richer

domain where the discount factor δ ∈ (0, 1) is unique.

Next, we show that the set of functions in the representation in (1) is unique up

to its convex closure. Define
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F = {u : [0,M ]→ R+ : u(0) = 0, u is strictly increasing and continuous}

Define the topology of compact convergence on the set of all continuous func-

tions from R to R. Also, let co(A) and Ā define the convex hull and closure of the

set A (with respect to the defined topology), and c̄o(A) define the convex closure

of the set A.

Proposition 2. If U ,U ′ ⊂ F are such that c̄o(U) = c̄o(U ′), and the functional

form in (1) allows for a continuous minimum representation for both of those

sets, then, minu∈U u
−1(δtu(x)) = minu∈U ′ u

−1(δtu(x)).

Proof. See Appendix II. �

Proposition 3. i) If there exists a concave function f ∈ U , and if U1 is the subset

of convex functions in U , then minu∈U(u−1(δtu(x))) = minu∈U\U1(u
−1(δtu(x))).

ii) If u1, u2 ∈ U and u1 is concave relative to u2, then, minu∈U u
−1(δtu(x)) =

minu∈U\{u2} u
−1(δtu(x)).

Proof. See Appendix II. �

6. Related Literature

This paper is closely linked to the literature that explores the conditions under

which a “rational” person may have present-biased preferences. Sozou (1998),

Dasgupta and Maskin (2005) and Halevy (2008) explain particular uncertainty

conditions that can give rise to present-biased behavior. While telling an uncer-

tainty story sufficient to explain present bias, all these models explicitly assume

the particular structure of risk or uncertainty with relevant risk attitude, and

these assumptions are central to establishing behavior consonant with present

bias in the respective models. In this paper we deviate from this norm: we do

not explicitly assume any uncertainty framework or uncertainty attitude. But

we still obtain a subjective state space representation that is necessary and suf-

ficient for present bias. The set of future tastes U can be considered to be the

subjective state-space, and the decision maker considers the most conservative

state dependent utility minu∈U u
−1(δtu(x)) to evaluate each timed alternative.

Our representation looks similar to the max-min expected utility representation

of Gilboa and Schmeidler (1989) used in the uncertainty or ambiguity aversion
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literature, though there is no objective state space or uncertainty defined in our

set-up. We have already discussed the connection of our paper with Cerreia-

Vioglio et al. (2015) in terms of the similarity in representation. There are other

variants of the minimum or infimum functional in previous literature, for example,

Cerreia-Vioglio (2009) and Maccheroni (2002), used in different contexts.

There is also a sizable literature on the behavioral characterizations of temporal

preferences, that the current project adds to. Olea and Strzalecki (2014), Hayashi

(2003) and Pan et al. (2015) characterize the behavioral conditions necessary

and sufficient for β-δ discounting, Loewenstein and Prelec (1992) characterize

Hyperbolic discounting, and, Koopmans (1972), Fishburn and Rubinstein (1982)

do the same for exponential discounting. Gul and Pesendorfer (2001) study a

two-period model where individuals have preferences over sets of alternatives

that represent second-period choices. Their axioms provide a representation that

identifies the decision maker’s commitment ranking, temptation ranking and cost

of self-control.

7. Properties of the representation

We propose an alternative notion of “present premium”comparison below. The

present premium can be considered as the maximal amount of future consumption

one is willing to forego to have the residual moved to the present. For example,

if (y, t) ∼ (x, 0), then the present premium is (y − x) ≥ 0.

Consider the following partial relation defined on the set of binary relations %

over X× T.

Definition 1. %1 allows a higher premium to the present than %2 if for all

x, y ∈ X and t ∈ T

(x, t) %1 (y, 0) =⇒ (x, t) %2 (y, 0)

The next result connects this notion of comparative present premia to our

representation.

Theorem 4. Let %1 and %2 be two binary relations which allow for minimum

representation w.r.t sets Uδ,1 and Uδ,2 respectively. The following two statements

are equivalent:

i) %1 allows a higher premium to the present than %2.
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ii) Both Uδ,1 and Uδ,1 ∪ Uδ,2 provide minimum representations of %1.

Proof. See Appendix II. �

Testable Implications. The major testable condition in the paper comes from

the Weak Present Bias axiom: If (y, t) % (x, 0) then, (y, t + t1) % (x, t1) for all

x, y ∈ X and t, t1 ∈ T. Stated in terms of the contra-positive, If (x, t1) � (y, t+t1)

for some x, y ∈ X and t, t1 ∈ T, t, t1 > 0, then, (x, 0) � (y, t). Intuitively

speaking, this model only allows preference reversals that arise from present bias

(as restricted by the Weak Present Bias axiom). So any temporal preference that

stems from any other behavioral phenomenon would refute the model.

8. Stake Dependent Present Bias

Consider a decision maker who makes the following 2 pairs of choices.

Example 5.

$100 today � $110 in a week

$110 in 5 weeks � $100 in 4 weeks

$11 in a week ∼ $10 today

$11 in 5 weeks ∼ $10 in 4 weeks

Both pairs of choices are consistent with Weak Present Bias, but there is a

classical choice reversal (or a local violation of Stationarity) only in the first

pair.14 This kind of choice is at odds with all the models of present bias that

we have mentioned other than the one in this paper, but not necessarily at odds

with economic intuition. For example, if a DM’s present bias is driven by the

psychological fear of future uncertainty, the higher the stake, the higher would

be the manifestation of this fear, and the more present-biased he would appear.

The opposite phenomenon, when a subject appears strictly present-biased for

smaller stakes but appears stationary at larger stakes can happen, if the subjects

get better at temporal decisions at higher stakes due to cognitive optimization.

14This kind of behavior closely parallels the“magnitude effect”: in studies that vary the outcome
sizes, subjects appear to exhibit greater patience toward larger rewards. For example, Thaler
(1981) finds that respondents were on average indifferent between $15 now and $60 in a year,
$250 now and $350 in a year, and $3000 now and $4000 in a year, suggesting a (yearly) discount
factor of 0.25, 0.71 and 0.75 respectively.
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None of the models in Appendix I can account for the behavior in Example 5,15

whereas, the simple minimum function mentioned in Example 3 can account for

such choices. There is scope to run future experiments to test for such stake de-

pendent behavior. The closest precedent for such an experimental design appears

in Halevy (2015) where the author finds evidence of stake dependent present bias.

9. Application to a Timing Game

In this section we are going to study dynamic decision-making games for a

present-biased DM whose preferences are consistent with the time-risk relations

outlined in Keren and Roelofsma (1995). Present-biased preferences, when ex-

tended to a dynamic context16, create time inconsistent preferences, which in turn

results in inefficient decision making and loss in long-term welfare. We will show

how the introduction of risk in such a situation can mitigate inefficiency.

Consider the following game adopted from O’Donoghue and Rabin (1999). Sup-

pose a DM gets a coupon to watch a free movie, over the next four Saturdays.

He has to redeem the coupon an hour before the movie starts. His free ticket is

issued subject to availability of tickets, and if there are no available tickets, the

coupon is wasted. Hence there is some risk while redeeming the coupon. The

movies on offer are of increasing quality- the theater is showing a mediocre movie

this week, a good movie next week, a great movie in two weeks and Forrest Gump

in three weeks. Our DM perceives the quality of these movies as 30, 40, 60 and

90 on a scale of 0− 100. In our problem, the DM can make a decision maximum

4 times, at τ = 1, 2, 3, 4 (measured in weeks). The DM’s utility at calendar time

τ from watching a movie of quality x with probability p at calendar time t+ τ(in

weeks) is given by:

U τ (x, p, τ + t) =


p100αtx for p100αt ≥ α

1
2(

α

β

) 1
2

pβtx for p100αt < α
1
2

Where, β = .99, α = (.99)100 ≈ .36. This utility function (which is inspired by

Pan et al. (2015)’s Two Stage Exponential discounting model) has the following

interpretation: The DM has a long run weekly discount factor of .99 that sets

in after a delay of half a week for p = 1. Before reaching the cut-off, the DM is

15For example, if one tries to fit a β-δ model to this data, the second pair of choices immediately
suggest β = 1, which in turn is inconsistent with the first pair of choices.
16We are imposing Time Invariance of preferences following Halevy (2015).
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extremely impatient, with a smaller discount factor of α = β100 ≈ .36, and hence

is biased towards the present and very short-run outcomes. Similarly, the DM

also proportionally undervalues probabilities close to 1. The utility function(s)

U τ define a preference that satisfies all the axioms in Section 3, and hence have a

minimum representation. The DM is time-inconsistent, as his preferences between

future options differ between any two decision periods τ1 and τ2 for τ1, τ2 ∈
{1, 2, 3, 4}. Let us assume that the DM is aware of his future preferences, that

is she is sophisticated, a notion pioneered by Pollak (1968). We are going to use

the following notion of equilibrium for this game.

Definition 2. (O’Donoghue and Rabin (1999)) A Perception Perfect Strategy

for sophisticates is a strategy ss = (ss1, s
s
2, s

s
3, s

s
4), such that such that for all t < 4,

sst = Y if and only if U t(t) ≥ U t(τ ′) where τ ′ = minτ>t{ssτ = Y }.

In any period, sophisticates correctly calculate when their future selves would

redeem the coupon if they wait now. They then decide on redeeming the coupon

if and only if doing it now is preferred to letting their future selves do it. We

consider the following two cases:

Case 1: Suppose, there is not much demand for movie tickets in that city, and

the DM knows that he can always book a ticket through his coupon and p = 1

for all alternatives under consideration.

In this case, the unique Perception Perfect Strategy is ss = (Y, Y, Y, Y ). The

knowledge that the future selves are going to be present biased creates an un-

winding effect: The period 2 sophisticate would choose to use the coupon towards

the good movie as he knows that the period 3 sophisticate would end up using the

coupon for the great movie instead of going for Forrest Gump due to present bias.

The period 1 sophisticate in turns correctly understands that waiting now would

only result in watching the good movie and hence decides to see the mediocre

movie right now instead.

Case 2: Suppose, due to persistent demand for movie tickets in that city, and

the DM knows that redeeming a coupon results in a movie ticket in only 99% of

cases.

The unique Perception Perfect Strategy is ss = (N,N,N, Y ). The unwinding

from the previous case does not happen here due to the risk involved in redeeming

the coupon. Once the present is risky (equivalent to having a front end delay

due to Probability Time Tradeoff), the bias previously assigned to the present
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vanishes, stopping the unraveling. The DM waits until the final period to cash

in his coupon when the expected returns are the highest to the long run self.

t ssτ t ssτ
1 2 3 4 1 2 3 4

τ

4 90 Y

τ

4 54.2 Y
3 60 54.2 Y 3 36.1 53.6 N
2 40 36.1 53.6 Y 2 24 35.8 53 N
1 30 24 35.8 53 Y 1 18 24 35.8 52.57 N

Table 2. The Left table is for Case 1 (p = 1), the right table is
for Case 2 (p = .9). The entries in the table provide U τ (x, p, t).
The sophisticated DM compares the quantities in red row-wise for
each τ when making a decision.

It would be instructive to compare the two cases in terms of welfare impli-

cations. Since present-biased preferences are often used to model self-control

problems rooted in the pursuit of immediate gratification, we would compare

welfare from the long run perspective. This outcome in Case 1 is consistent with

the following general result in O’Donoghue and Rabin (1999): When benefits are

immediate, the sophisticates “preprorate”, i.e, they do it earlier than it might

be optimal. For example, considering the long term self’s interests, given a long

term weekly discount factor of .99 for movie quality, the equilibrium outcome of

watching the mediocre movie (quality of 30) in the first week, instead of Forrest

Gump (quality of 90) definitely results in sub-optimal welfare in Case 1. For

example, considering the choices from a τ = 0 self gives U0(30, 1, 1) = 18, and

U0(90, 1, 4) = 53. On the other hand, the introduction of a small amount of risk

in Case 2, stops the unraveling in terms of “preprorating” (preponing consump-

tion), thus helping the DM attain the most efficient outcome in equilibrium, thus

reversing the O’Donoghue and Rabin (1999) result. In fact, not only is the high-

est level of available welfare achieved in Case 2 after the introduction of risk, the

equilibrium welfare improves from Case 1 to Case 2 in the absolute sense, even

though apriori Case 2 seems to be worse than Case 1 for the DM !

U0(30, 1, 1) = 18 < U0(90, .99, 4) = 52

This is an interesting application of how introducing a dominated menu of

choices can result in absolute welfare improvement.
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What would happen if the DM had the same preferences U τ (), but, instead was

unaware that his preferences were dynamically inconsistent? Let us consider the

extreme case (popularly called “näıveté” in the literature) where the DM thinks

that his future selves’ preferences would be identical to his current selves’. We

will call such a DM naive, and use the following equilibrium notion to characterize

their behavior.

Definition 3. A Perception Perfect Strategy for naifs is a strategy sn = (sn1 , s
n
2 , s

n
3 , s

n
4 ),

such that such that for all t < 4, snt = Y if and only if U t(t) ≥ U t(τ) for all τ > t.

The naive DM, acting under his false belief of time consistency, redeems the

coupon in the current period if and only if it yields him the highest payoff among

the remaining periods. Table 2 tells us that in Case 1, sn = (N,N, Y, Y ), and

in Case 2, sn = (N,N,N, Y ). Thus the introduction of risk in this example also

helps a naive DM make the most efficient choice in equilibrium.

10. Choice over Timed Bads

Most of the discussion on Present Bias till now has been centered around

timed prizes or consumption, in general objects which are desirable. The central

result of this paper is that Present Bias (as defined in A4 in Section 1) over

such outcomes, can be represented by a minimum representation. This section

would provide us the answers to the following two natural follow-up questions:

1) What would Present Bias look like when timed undesireable-goods or bads

(for example, effort) are concerned? 2) What would be a utility representation

of such preferences?

We would consider the richer domain that includes risk, without loss of gener-

ality. The DM has preferences over triplets (x, p, t), which describe the prospect

of receiving an undesirable good x ∈ X at time t ∈ T with a probabilityp ∈ [0, 1].

We impose the following conditions on behavior.

C0: % is complete and transitive.

C1: CONTINUITY: % is continuous, that is the strict upper and lower

contour sets of each timed alternative are open w.r.t the product topology.

The first two axioms are identical to axioms B0 and B1 used in Section 3.
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C2: DISCOUNTING: For t, s ∈ T, if s > t then (x, p, s) � (x, p, t) for

x, p > 0 and (x, p, s) ∼ (x, p, t) for x = 0 or p = 0. For x > y > 0, there exists

T ∈ T such that, (x, q, 0) % (y, 1, T ).

C3: MONOTONICITY AND FOSD: For all t ∈ T, (x, p, t) % (y, q, t) if

y ≥ x and q ≥ p. The first binary relation is strict if at least one of the 2

following relations are strict and if y, q > 0.

Discounting and Monotonicity have been adapted in the most intuitive way.

People want to delay bad outcomes and they prefer is bad outcomes are less likely.

Also when bad outcomes are concerned, more is worse.

C4: WEAK PRESENT BIAS: If (x, 1, 0) % (y, 1, t) then,

(x, 1, t1) % (y, 1, t+ t1) for all x, y ∈ X and t, t1 ∈ T.

The Weak Present Certainty Bias requires that given the present and certainty

are special, a DM would try to avoid bad outcomes which are in the present

and are certain. Moreover, loss of certainty or immediacy can only make bad

outcomes better.

C5: PROBABILITY-TIME TRADEOFF: For all x, y ∈ X, p ∈ (0, 1], and

t, s ∈ T, (x, pθ, t) % (x, p, t+D) =⇒ (y, qθ, s)(y, q, s+D).

The Probability-Time tradeoff axiom is unchanged and has the same interpre-

tation as before.

Theorem 5. The following two statements are equivalent:

i) The relation % on X× P× T satisfies properties C0-C5.

ii) There exists a unique δ ∈ (0, 1) and a set U of monotinically decreasing

continuous functions such that

F (x, p, t) = max
u∈U
−u−1(pδtu(x)) = −min

u∈U
u−1(pδtu(x))

represents the relation %. For all the functions u ∈ U , u(M) = −1 and u(0) = 0.

Moreover, F(x,p,t) is continous.

Conclusion

This paper provides an intuitive behavioral definition of (Weak) Present Bias

and characterized the most general class of utility functions consistent with such

behavior. Our utility representation can be interpreted as if a DM is unsure about
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future tastes and present bias arises as an outcome of his cautious behavior in

the face of uncertainty about future tastes. Given most of the previous models

of present bias have extraneous behavioral assumptions over and above present

bias which are often empirically unsupported, we believe that our representa-

tion theorem is an important theoretical development in this literature. Having

a more general representation for present bias, also helps us accommodate em-

pirical phenomenon (for example, stake dependent present biased behavior) that

previous models could not account for. We have extended the model to incorpo-

rate time-risk relations in behavior and provided an example where this relation

can be utilized for welfare improving policy design. Given the axiomatic nature

of our work, we provide simple testable conditions necessary and sufficient for our

utility representations. These conditions can be easily taken to the laboratory or

field to be empirically tested. We hope that this paper generates further interest

in theoretical and applied work directed towards forming a better understanding

of intertemporal preferences.
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Appendix I

MODELS OF PRESENT BIAS

Consider the general separable discounted utility mode defined over timed

prospects (x, t)

V (x, t) = ∆(t)u(x)

Here, ∆(t) is the discount factor, and u(x) is the felicity function. Below17,

we give a brief summary of the literature on different discounting models which

accommodate present bias, in terms of the discount functions they propose. We

also include the exponential discounting model as a point of reference.

Model Author(s) ∆(t)

1 Exponential discounting Samuelson (1937) (1 + g)−t, g > 0

2 Quasi-hyperbolic discounting Phelps and Pollak (1968) (β + (1− β)t=0)(1 + g)−t, β < 1, g > 0

3 Proportional discounting Herrnstein (1981) (1 + gt)−1, g > 0

4 Power discounting Harvey (1986) (1 + t)−α, α > 0

5 Hyperbolic discounting Loewenstein and Prelec (1992) (1 + gt)−α/γ , α > 0, g > 0

6 Constant sensitivity Ebert and Prelec (2007) exp[−(at)b], a > 0, 1 > b > 0

Table 3. Models of temporal behavior

Appendix II

Theorem 1: Let T = {0, 1, 2, ...∞} or T =[0,∞) and X = [0,M ] for M > 0.

The following two statements are equivalent:

i) The relation % defined on X× T satisfies properties A0-A4.

ii) For any δ ∈ (0, 1) there exists a set Uδ of monotinically increasing continu-

ous functions such that

F (x, t) = min
u∈Uδ

(u−1(δtu(x)))

represents the binary relation %. Moreover, u(0) = 0 and u(M) = 1 for all

u ∈ Uδ. F (x, t) is continuous.

Proof: We start by showing (ii) implies (i). To show Weak Present Bias, we

follow the following steps

17We take the idea of tabular presentation from Abdellaoui et al (2010).
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(y, t) % (x, 0)

=⇒ minu∈Uδ(u
−1(δtu(y))) ≥ minu∈U(u−1(u(x)))

=⇒ minu∈Uδ(u
−1(δtu(y))) ≥ x

=⇒ u−1(δtu(y)) ≥ x ∀u ∈ Uδ

=⇒ δtu(y) ≥ u(x) ∀u ∈ Uδ
=⇒ δt+t1u(y) ≥ δt1u(x) ∀u ∈ Uδ
=⇒ u−1(δt+t1u(y)) ≥ u−1(δt1u(x)) ∀u ∈ Uδ
=⇒ minu∈Uδ(u

−1(δt+t1u(y))) ≥ minu∈Uδ(u
−1(δt1u(x)))

=⇒ (y, t+ t1) % (x, t1)

To show Monotonicity and Discounting, let us show (x, t) � (y, s), when, either

x > y and t = s, or, x = y and t < s. As all the functions u ∈ Uδ are strictly

increasing, and δ ∈ (0, 1),

δtu(x) > δsu(y) ∀u ∈ Uδ
⇐⇒ u−1(δtu(x)) > u−1(δsu(y)) ∀u ∈ Uδ

⇐⇒ min
u∈Uδ

u−1(δtu(x)) > min
u∈Uδ

u−1(δsu(y))

⇐⇒ (x, t) � (y, s)

For proving the second statement under Discounting, start with any u1 ∈ Uδ. For

z > x > 0, and δ ∈ (0, 1) there must exist t big enough such that

u1(x) > δtu1(z)

⇐⇒ u−1
1 (u1(x)) > u−1

1 (δtu1(z))

⇐⇒ x > min
u∈Uδ

u−1((δtu(z))

Hence, there exists t big enough such that (x, 0) � (z, t).

That % satisfies continuity follows directly from the definition of continuity on

the utility function.
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Now, we will prove the other direction of the representation theorem. We will

first deal with the case of T =[0,∞). A similar proof technique would be used in

the proof of Theorem 3.

Proof for the case when T =[0,∞).

Proof. For every x∗ ∈ (0,M ], we are going to provide an increasing utility function

ux∗ on [0,M ] which would have δτux∗(x) ≥ ux∗(y) if (x, τ) % (y, 0). Additionally

it would also have δtux∗(xt) = ux∗(x
∗) for all (x∗, 0) ∼ (xt, t).

Fix ux∗(x
∗) = 1, ux∗(0) = 0.

For any x ∈ (x∗,M ], by Discounting there exists a delay T large enough, such

that (x∗, 0) � (x, T ). Hence, it must be true that (x, 0) � (x∗, 0) � (x, T ). By

Continuity there must exist t(x) ∈ T such that, (x, t(x)) ∼ (x∗, 0).

For x ∈ (x∗,M ] define

(6) ux∗(x) = {δ−t(x) : (x, t(x)) ∼ (x∗, 0)}

and, define the notation

xt = {x ∈ (x∗,M ] : (x, t) ∼ (x∗, 0)}(7)

Using continuity, we can say that all points in (x∗,M ] can be written as xt for

some t.

Now, for x ∈ (0, x∗), define

(8) ux∗(x) = inf{δτ : There exists t such that (xt, t+ τ) ∼ (x, 0)}

Firstly, we will show that the infimum in (8) can be replaced by minimum. Let

the infimum be obtained at a value I = δτ
∗
. Consider a sequence of delays {τn}

that converge above to τ ∗, and (xtn , tn + τn) ∼ (x, 0). Clearly, {tn} is the corre-

sponding sequence of t’s in (8). Note that tn ∈ [0, tmax] where (x∗, 0) ∼ (M, tmax).

Hence, {tn} must lie in this compact interval, and must have a convergent subse-

quence {tnk}. If t∗ is the corresponding limit of {tnk}, we know that t∗ ∈ [0, tmax].

Similarly, xt can be considered a continuous function in t (this also follows from

the continuity of %). Therefore, xtnk → xt∗ when tnk → t∗. Thus, we have

(xtnk , tnk + τnk) ∼ (x, 1) for all elements of {nk}. As, nk → ∞, xtnk → xt∗ ,

tnk + τnk → t∗ + τ ∗. Then, using the continuity of %, (xt∗ , t
∗ + τ ∗) ∼ (x, 1).

Hence, the infimum can be replaced by a minimum.
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Now we will show that the utility defined in (6) and (8) has the following prop-

erties : 1) It is increasing. 2) δtux∗(xt) = ux∗(x
∗) for all (x∗, 0) ∼ (xt, t). 3)

(x, τ) % (y, 0) implies δτux∗(x) ≥ ux∗(y), 4) u is continuous. The first two prop-

erties are true by definition of u. We will show the third and fourth in some

detail.

Consider (x, τ) % (y, 0). In the case of interest, τ > 0 and hence, x > y.

Now let x > y > x∗. Let, u(y) = δ−t1 , which means, (y, t1) ∼ (x∗, 0) . Given

(x, τ) % (y, 0), we must have

(x, τ + t1) % (y, t1) ∼ (x∗, 0)

Hence, if (x, t2) ∼ (x∗, 0), then,

t2 ≥ τ + t1

⇐⇒ ux∗(x) = δ−t2 ≥ δ−(τ+t1)

⇐⇒ δτux∗(x) ≥ δ−t1 = ux∗(y)

If, x > x∗ > y, the proof follows from the way the utility has been defined.

Let y < x < x∗. Let, ux∗(x) = δt1 , which means, (xt, t + t1) ∼ (x, 0) for some

xt ∈ [x∗,M ]. Given (x, τ) % (y, 0), we must have

(xt, t+ t1 + τ) % (x, τ) % (y, 0)

Hence, ux∗(y) ≤ δτ+t1 = δτux∗(x).

Now we turn to proving the continuity of ux∗ . The continuity at x∗ from the

right, or on (x∗,M ] is easy to see.

Next, for any r = δs ∈ (0, 1), define

(9) f(r) = sup{y : (xt, t+ s) ∼ (y, 0)} = ŷ

The supremum can be replaced by a maximum, and the proof is similar to the

one before. Suppose there is a sequence of {yn} that converges up to a value

ŷ, and, (xtn , tn + s) ∼ (yn, 1). Note that tn lies in a compact interval [0, tmax],

and hence has a convergent subsequence tnk that converges to a point in that

interval t̂ ∈ [0, tmax]. Now, xt is continuous in t (in the usual sense), and hence,

xtn also converges to xt̂. Further, ynk → ŷ as nk → ∞. Therefore, using,

(xtnk , tnk + s) ∼ (ynk , 0), as, nk →∞, it must be that (xt̂, t̂+ s) ∼ (ŷ, 0). Hence,

the supremum in (9) must have been attained from xt̂, and hence the supremum

can be replaced by a maximum. Further given this is a maximum, we can say
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that ŷ ∈ (0, x∗). The f function is well defined, strictly increasing and is the

inverse function of ux∗ over r ∈ (0, 1) to (0, x∗), in the sense that, u(f(r)) = r.

This function can be used to show the continuity of u at the point x∗.

Finally, the function u can be easily normalized to have ux∗(M) = 1. (By dividing

the function from before by ux∗(M).)

Now, consider Uδ = {ux∗() : x∗ ∈ (0,M ]}. By construction of the functions, it

must be that

(x, t) % (y, 0) ⇐⇒ δtu(x) ≥ u(y) ∀u ∈ Uδ
(x, t) ∼ (y, 0) ⇐⇒ δtu(x) ≥ u(y) ∀u ∈ Uδ

and δtuy(x) = uy(y) for some uy ∈ Uδ

For any (z, τ), consider the sets {(y, 0) ∈ X × T : (y, 0) % (z, τ)} and {(y, 0) ∈
X × T : (z, τ) % (y, 0)}. Both are non-empty, as (z, 0) belongs to the first one

and (0, 0) in the second one. Both sets are closed in the product topology. Their

union is connected, and hence there exists an element in their intersection, i.e,

there exists a y1 ∈ X such that (y1, 0) ∼ (x, t). By monotonicity this y1 must

be unique. Therefore there must exist a continuous present equivalent utility

representation for %. We show this formally in the next two paragraphs.

Given % is complete, transitive and satisfies continuity, there exists a continu-

ous function F̄ : X× T→ R such that F̄ (a) ≥ F̄ (b) if and only if a % b for

a, b ∈ X× T. (Following Theorem 1, Fishburn and Rubinstein (1982)).

We define G : X→ R as G(x) = F̄ (x, 0). The function G would be strictly mono-

tonic and continuous. Also define F : X× T→ R as F (x, t) = G−1(F̄ (x, t)). As

any alternative has a unique present equivalent, F is well defined, is a mono-

tonic continuous transformation of F̄ (hence represents %) and F (x, 0) = x for

all x ∈ X. By definition the function F assigns to every alternative its present

equivalent as the corresponding utility. Therefore, the present equivalent utility

representation is continuous.

We will show that the function W defined below also assigns to every alternative

(z, τ) an utility exactly equal to its present equivalent.

W (x, t) = min
u∈Uδ

u−1(δtu(x)) = F (x, t)
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Consider any (z, τ) ∼ (y1, 0). By definition of Uδ and by construction of its con-

stituent functions, it must be that for all u ∈ Uδ, δτu(z) ≥ u(y1) and there exists

a function uy1 such that δτuy1(z) = u(y1). This is equivalent to the following

statement: For all u ∈ Uδ, u−1(δτu(z)) ≥ y1 and there exists a function uy1 such

that u−1
y1

(δτuy1(z)) = y1.

Therefore, W (z, τ) = minu∈Uδ u
−1(δτu(z)) is continuous utility representation of

the relation %.

�

Proof for the case of T ={0, 1, 2, ...}.
This proof would be more technical and we will break down the proof

of this case into the following Lemmas.

Lemma 1. Under Axioms A0-A4, for a fixed x0, and any xt and t such that

(xt, t) ∼ (x0, 0), there exists a continuous strictly increasing function u such that

δtu(xt) = u(x0) and δtu(z1) ≥ u(z0) for all (z1, t) % (z0, 0). Further, u(0) = 0,

u(M) = 1.

Proof. By the Discounting axiom, we know that there exists a smallest integer

n ≥ 1 such that (x0, 0) % (M,n). Choose x∗0 = x0. For 0 < t < n , find x∗t such

that (x∗0, 0) ∼ (x∗t , t) . If (x0, 0) � (M,n), choose xn = M .

We define x∗−1 in the following way

x∗−1 = min{x ∈ X : (x, 0) % (x∗j , j + 1), j = 0, 1, 2, ...n}

The idea is to look at the present equivalents of (x∗j , j+1) and take the maximum

of those present equivalents. The alternative way to express the same is to look

at the intersection of the weak upper counter sets of (x∗j , j + 1) on X× {0}, and

then take the minimal value from that set.

Next we will use this to define x∗−2, then use x∗−1 and x∗−2 to define x∗−3. In general,

for i ∈ {−1,−2,−3...} define x∗i recursively as the minimum of the set

{x ∈ X : (x, 0) % (x∗j , j − i), j = i+ 1, i+ 2, ...n}

The definition uses the same idea as before. We consider the intersection of the

weak upper counter sets of (x∗j , j − i) on X×{0} and take its minimum. The set
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is non-empty (x∗0 belongs to it, for example), closed and the minimum exists due

to the continuity, monotonicity and discounting properties.

Next we show that for every x∗i with i ≤ −1, there exists j ∈ {0, 1, ..n}
such that (x∗j , j − i) % (x∗i , 0). The proof is by induction. For i = −1, it is

immediate from the definition. Suppose, it holds for all i ≥ −m. Consider x∗−i−1.

By construction, there must exist k ∈ {−m,−m + 1, ..n} such that (x∗−i−1, 0) ∼
(x∗k, k + i + 1). If k ∈ {0, 1, ..n} we are done already. If not, by the induction

hypothesis, there exists j ∈ {0, 1, ..n} such that (x∗j , j−k) % (x∗k, 0), which gives,

(x∗j , j+ i+ 1) % (x∗k, k+ i+ 1), and hence, (x∗j , j+ i+ 1) % (x∗−i−1, 0), completing

the proof.

Next we will show that the sequence {...x∗−2, x
∗
−1, x

∗
0, x
∗
1, x
∗
2, ..} is converges below

to 0. Suppose not (we are going for a proof by contradiction), that is there exists

w > 0 such that xi ≥ w for all i ∈ Z. As, M > z > 0, there must exist t1 big

enough such that (z, 0) � (M, t1). Consider the element x∗−t1 from the sequence in

consideration. Using the result from the previous paragraph, it must be true that

there exists j ∈ {0, 1, .., n}, such that (x∗j , j + t1) % (x∗−t1 , 0). Now, as M ≥ x∗j ,

we must have, (M, t1) % (x∗−t1 , 0) � (z, 0), which provides a contradiction.

Consider any y0 ∈ (x∗0, x
∗
1).

We are going to find a y1, y2, ..yn−1 recursively.

Finding y1: For each point y ∈ (x1, x2], take reflections of length 1, i.e, find

xy such that (y, 1) ∼ (xy, 0). Note that, (x∗1, 0) � (y, 1) � (x∗0, 0). Hence,

xy ∈ (x∗0, x
∗
1). Let, xx2 be the reflection for the point x2. For any y ∈ (x∗1, x

∗
2],

f(y) = x∗0 + (xy − x∗0)
(x∗1 − x∗0)

(xx2 − x∗0)
. Now, for y0 ∈ (x∗0, x

∗
1), define y1 as f−1(y0).

We can check that this method satisfies the 2 following conditions:

1) Consider two such sequences, one starting from y1
0, and another from y2

0,

with y1
0 > y2

0. We will have y1
1 > y2

1.

2) All points in intervals (x∗1, x
∗
2) are included by some y1 from the sequence.

This follows from monotonicity and discounting too.

Now, the recursive step:

For each point y ∈ (x∗i , x
∗
i+1], take reflections of length j ∈ {i, i−1.., 1} conditional

on those reflections being in the corresponding (x∗i−j, x
∗
i+1−j] intervals. For any y,

at least one of these reflections must exist, and in particular the one with length

i always exists, as (x∗1, 0) � (x∗i+1, i) % (y, i) and (y, i) � (x∗i , i) ∼ (x∗0, 0).

Now, for each such reflection, find the corresponding sequence of {y0, y1, ..yi−1}
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it belongs to, and denote the smallest y0 from that collection of sequences as

xy ∈ [x∗0, x
∗
1]. Note that xxi+1

≤ x∗1. Define the 1 : 1 strictly increasing function

f from (xn−1, xn] to (x∗i , x
∗
i+1] in the following way: For any y ∈ (x∗i , x

∗
i+1] ,

f(y) = x∗0 + (xy − x∗0)
(x∗1 − x∗0)

(xxi+1
− x∗0)

. Now, define yi as f−1(y0). The conditions

mentioned above are still satisfied for the extended sequence.

For i ≤ −1, define yi recursively in the following way. Start by finding y′i as the

minimum of the set

{y ∈ X : (y, 0) % (yj, j − i), j = i+ 1, i+ 2, ...n}

Define x′−i as the minimum of the set

{y ∈ X : (y, 0) % (yj, j − i), j = i+ 1, i+ 2, ...n− 1}

Finally, define

(10) yi = x∗i+1 − (x∗i+1 − y′i)
(x∗i+1 − x∗i )
(x∗i+1 − x′i)

Given y1
0 > y2

0 determines the order of y1
t > y2

t , for t ∈ {1, 2, ..n−2}, our inductive

procedure make sure this holds true for all t ≤ −1 too.

One can check for covering properties of the sequences by induction. Suppose all

points in the intervals (x∗i , x
∗
i+1) are covered by yi for some sequence, for i ≥ j

for some integer j. We are going to show that all points in (x∗j−1, x
∗
j) are also

covered by yj−1 for some sequence. Take any point y ∈ (x∗j−1, x
∗
j), and consider

its corresponding y′ as defined in Equation 10. Consider the reflections from

point y′ of sizes 1, ..n − j + 1, i.e, the points at those temporal distances which

are indifferent to it, conditional on being in the corresponding intervals. By the

induction hypothesis, each of those reflection end points must be coming from

some y0 ∈ (x∗0, x
∗
1). Take the sequence with smallest y0, and that sequence would

result in having y ∈ (x∗j−1, x
∗
j) as its next element.

Now, define u on X as follows: Set u(x∗n) = u(x∗n) = 1. For the sequence

..., x∗−2, x
∗
−1, x

∗
0, x
∗
1, .. , let u(x∗i ) = δi−n for all positive and negative integers i.

Next, let us define u on (x∗n−1, x
∗
n) as any continuous and increasing function

with inf(x∗n−1,x
∗
n)u(x) = δ = u(x∗n−1) and sup(x∗n−1,x

∗
n)u(x) = 1 = u(M). We can

extend each dual sequence with some as u(yi) = δi−nu(y0). This finishes the

construction of a u that satisfies the conditions mentioned in the Lemma. �
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Lemma 2. Under Axioms A0-A4, there exists a continuous present equivalent

utility function F : X× T→ R that represents %. Moreover, for δ ∈ (0, 1) ,

F (z, τ) = minu∈Uδu
−1(δτu(z)) for some set Uδ of strictly monotonic, continuous

functions, u(0) = 0 and u(M) = 1 for all u ∈ Uδ.

Proof. Consider the set Uδ of all strictly monotonic, continuous functions u such

that δtu(z1) ≥ u(z0) for all (z1, t) % (z0, 0), u(0) = 0 and u(M) = 1. By the

previous Lemma, this set is non-empty, and for any (z1, t) ∼ (z0, 0) includes a

function u, such that δtu(z1) = u(z0). By construction of the functions, it must

be that

(x, t) % (y, 0) ⇐⇒ δtu(x) ≥ u(y) ∀u ∈ Uδ
(x, t) ∼ (y, 0) ⇐⇒ δtu(x) ≥ u(y) ∀u ∈ Uδ

and δtuy(x) = uy(y) for some uy ∈ Uδ

For any (z, τ), consider the sets {(y, 0) ∈ X × T : (y, 0) % (z, τ)} and {(y, 0) ∈
X × T : (z, τ) % (y, 0)}. Both are non-empty, as (z, 0) belongs to the first one

and (0, 0) in the second one. Both sets are closed in the product topology. Their

union is connected, and hence there exists an element in their intersection, i.e,

there exists a y1 ∈ X such that (y1, 0) ∼ (x, t). By monotonicity this y1 must

be unique. Therefore there must exist a continuous present equivalent utility

representation for %. We show this formally in the next two paragraphs.

Given % is complete, transitive and satisfies continuity, there exists a continu-

ous function F̄ : X× T→ R such that F̄ (a) ≥ F̄ (b) if and only if a % b for

a, b ∈ X× T. (Following Theorem 1, Fishburn and Rubinstein (1982)).

We define G : X→ R as G(x) = F̄ (x, 0). The function G would be strictly mono-

tonic and continuous. Also define F : X× T→ R as F (x, t) = G−1(F̄ (x, t)). As

any alternative has a unique present equivalent, F is well defined, is a mono-

tonic continuous transformation of F̄ (hence represents %) and F (x, 0) = x for

all x ∈ X. By definition the function F assigns to every alternative its present

equivalent as the corresponding utility. Therefore, the present equivalent utility

representation is continuous.

We will show that the function W defined below also assigns to every alternative
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(z, τ) an utility exactly equal to its present equivalent.

W (x, t) = min
u∈Uδ

u−1(δtu(x)) = F (x, t)

Consider any (z, τ) ∼ (y1, 0). By definition of Uδ and by construction of its con-

stituent functions, it must be that for all u ∈ Uδ, δτu(z) ≥ u(y1) and there exists

a function uy1 such that δτuy1(z) = u(y1). This is equivalent to the following

statement: For all u ∈ Uδ, u−1(δτu(z)) ≥ y1 and there exists a function uy1 such

that u−1
y1

(δτuy1(z)) = y1.

Therefore, W (z, τ) = minu∈Uδ u
−1(δτu(z)) = F (z, τ) is a continuous utility rep-

resentation of the relation %. �

Proposition 1: Given the axioms A0-4, the representation form in (5) is unique

in the discounting function ∆(t) = δt inside the present equivalent function.

Proof. We start with the case where ∆(t) is such that
∆(t+ t1)

∆(t)
< ∆(t1) for some

t, t1. Consider any singleton U = {u}.

(y, t) ∼ (x, 0)

=⇒ u−1(∆(t)u(y)) = x

=⇒ ∆(t)u(y) = u(x)

=⇒ ∆(t+ t1)u(y) =
∆(t+ t1)

∆(t)
u(x) < ∆(t1)u(x)

=⇒ u−1(∆(t+ t1)u(y)) < u−1(∆(t1)u(x))

=⇒ (x, t1) � (y, t+ t1)

Hence, the relation implied by the representation contradicts Weak Present Bias.

Now assume the opposite, let there exists some t, t1 > 0 such that
∆(t+ t1)

∆(t)
>

∆(t1) . Now suppose we started with a relation % which has (y, t) ∼ (x, 0) as

well as (y, t + t1) ∼ (x, t1) for all t, t1 and some x, y. (This does not necessarily

mean that the person’s preferences satisfy stationarity in the broader sense as we

do not ask this from all x, y.) We will show below that such preferences cannot
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be represented by the functional form we started with for any set of functions U .

(y, t) ∼ (x, 0)

=⇒ min
u∈U

(u−1(∆(t)u(y))) ≥ min
u∈U

(u−1(u(x))) = x

=⇒ ∆(t)u(y) ≥ u(x) ∀u ∈ U

=⇒ ∆(t+ t1)u(y) ≥ ∆(t+ t1)

∆(t)
u(x) > ∆(t1)u(x) ∀u ∈ U

=⇒ u−1(∆(t+ t1)u(y)) > u−1(∆(t1)u(x)) ∀u ∈ U

=⇒ min
u∈U

(u−1(∆(t+ t1)u(y))) > min
u∈U

(u−1(∆(t1)u(x)))

=⇒ (y, t+ t1) � (x, t1)

This completes our proof. �

Proposition 2: If U ,U ′ ⊂ F are such that c̄o(U) = c̄o(U ′), and the functional

form in (1) allows for a continuous minimum representation for both of those

sets, then, minu∈U u
−1(δtu(x)) = minu∈U ′ u

−1(δtu(x)).

Proof. We will prove this in 2 steps.

First we will show that for any set A, minu∈A u
−1(δtu(x)) = minu∈Ā u

−1(δtu(x)),

where Ā is the closure of the set A.

It is easy to see the direction that minu∈A u
−1(δtu(x)) ≥ minu∈Ā u

−1(δtu(x)).

We will prove the other direction by contradiction. Suppose, minu∈A u
−1(δtu(x)) >

minu∈Ā u
−1(δtu(x)). This would imply that there exists v ∈ Ā\A and some ε > 0,

such that v−1(δtv(x)) + ε < u−1(δtu(x)) for all u ∈ A. By definition of the topol-

ogy of compact convergence and given that v belongs to the set of limit points

of A, there must exist a sequence of functions {vn} ⊂ A which converges to

v in the topology of compact convergence , i.e, for any compact set K ⊂ R+,

limn→∞ supx∈K |vn(x) − v(x)| = 0. It can be shown that under this condition,

v−1
n (δtvn(x)) would also converge to v−1(δtv(x)) where vn ∈ U .18 This consti-

tutes a violation of v−1(δtv(x)) + ε < u−1(δtu(x)) for all u ∈ A. Hence, it must

beminu∈A u
−1(δtu(x)) = minu∈Ā u

−1(δtu(x)).

As a second part of this proof, we will show that for any setA, minu∈A(u−1(δtu(x))) =

minu∈co(A)(u
−1(δtu(x))).

It is easy to see that minu∈A(u−1(δtu(x))) ≥ minu∈co(A) u
−1(δtu(x)), as A ⊂

18As, vn → v in the topology of compact convergence, vn → v point wise, hence, δtvn(x) →
δtv(x). Now, as v−1n → v−1 compact convergence (proof later in the appendix), v−1n (δtvn(x))→
v−1(δtv(x)).
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co(A). We will again use proof by contradiction to show the opposite direc-

tion. We assume that there exists a ū ∈ c̄o(A) and (x, t) ∈ X × T, such that

ū =
∑n

i=1 λiui,
∑n

i=1 λi = 1 and ū−1(δsū(y)) < mini u
−1
i (δsui(y)). This would

imply that ui(ū
−1(δsū(y))) < δsui(y) for all i.

Now,

δsū(y) = δs
∑
i

λiui(y)

=
∑
i

λiδ
sui(y)

>
∑
i

λiui(ū
−1(δsū(y)))

= ū(ū−1(δsū(y)))

= δsū(y)

This gives us a contradiction. Note that the equality right after the inequality

comes from the definition of ū.

Hence, we have, minu∈A u
−1(δtu(x)) = minu∈co(A) u

−1(δtu(x)). �

Proposition 3: i) If there exists a concave function f ∈ U , and if U1 is the sub-

set of convex functions in U , then minu∈U u
−1(δtu(x)) = minu∈U\U1 u

−1(δtu(x)).

ii) If u1, u2 ∈ U and u1 is concave relative to u2, then, minu∈U u
−1(δtu(x)) =

minu∈U\{u2} u
−1(δtu(x)).

Proof. If a function u is convex,

u−1(δtu(x)) = u−1(δtu(x) + (1− δt)u(0))

≥ u−1(u(δtx+ (1− δt)0))

= δtx

Similarly for concave f , we would have, f−1(δtf(x)) ≤ δtx which completes the

proof of part (i). Note that this result is expected given concave functions give

rise to more conservative present equivalents.

For part (ii), note that
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u−1
1 (δtu1(x)) = u−1

1 (δtu1(u−1
2 (u2(x))))

≤ u−1
1 (u1(u−1

2 (δtu2(x))))

= u−1
2 (δtu2(x))

Where the inequality arises from the fact that u1 is concave relative to u2. �

Proposition 4. Eventual stationarity is satisfied by β-δ discounting, but not

hyperbolic discounting.

Now for any x > z > 0 ∈ X, choose t1 > log 1
δ

(
u(x)

u(z)

)
.

t1 > log 1
δ

(
u(x)

u(z)

)
⇐⇒

(
1

δ

)
t1 >

u(x)

u(z)

=⇒ u(z) > δt1u(x) > βδt1u(x)

=⇒ βδtu(z) > βδt+t1u(x)

(z, t) � (x, t+ t1)

Also, (x, 0) ∼ (xt, t) implies, u(x) = βδtu(xt), which implies,

u(z) > δt1u(x) = βδt+t1u(xt)

(z, 0) � (xt, t+ t1)

This shows that β − δ does indeed satisfy A5.

Now consider the simple variant of Hyperbolic discounting model when α = γ =

1. Fix any felicity function u and x > z > 0 ∈ X. We will show that there does

not exist t1,such that (z, t) � (x, t+ t1) for all t ≥ 0.

(z, t) � (x, t+ t1) for all t ≥ 0

⇐⇒ u(z)

1 + t
>

u(x)

1 + t+ t1
for all t ≥ 0

⇐⇒ 1 + t+ t1
1 + t

>
u(x)

u(z)
for all t ≥ 0

⇐⇒ 1 +
t1

1 + t
>

u(x)

u(z)
for all t ≥ 0
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Note that the last statement is not possible, as for fixed t1 the LHS↓ 1 as t ↑ ∞,

whereas, the RHS is always a fixed number, that is strictly greater than one.

Hence, hyperbolic discounting does not satisfy A5.

Theorem 2: The following two statements are equivalent:

i) The relation % satisfies properties A0-A6.

ii) There exists a set Uδ of monotinically increasing continuous functions such

that

F (x, t) = min
u∈U

u−1(δtu(x))

represents the binary relation %. The set U has the following properties: u(0) =

0 for all u ∈ U , supu u(x) is bounded above, infu u(x) > 0 ∀x, infu
u(z)

u(x)
is

unbounded in z for all x > 0.

Proof : Going from (ii) to (i) :

That (ii) implies Monotonicity, Discounting, Weak Present Bias and Continuity

has already been shown in the proof of Theorem 1.

Showing Eventual Stationarity: Given supu u(x) is bounded above and infu u(x) >

0 , for any choice of x, z > 0 and δ ∈ (0, 1) there exists t1 > 0 big enough such

that infu u(z) > δt1 infu u(x). This would imply that, for all u ∈ U ,

u(z) > δt1u(x)

and, hence, (z, 0) � (x, t1).

Now, for t > 0 consider xt such that (xt, t) ∼ (x, 0). By the representation, this

implies that there exists u1 ∈ U such that

δtu1(xt) = u1(x)

=⇒ δt+t1u1(xt) = δt1u1(x) < u1(z)

=⇒ min
u
u−1(δt+t1u1(xt)) ≤ u−1

1 (δt+t1u1(xt)) < u−1
1 (u1(z)) = min

u
u−1(u(z))

Hence, (z, 0) � (xt, t+ t1).

Similarly, for all u ∈ U ,

δtu(z) > δt+t1u(x)

=⇒ min
u
u−1(δtu(z)) > min

u
u−1(δt+t1u(x))
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Hence, (z, t) � (x, t+ t1).

Showing Non-triviality: We have that infu
u(z)

u(x)
is unbounded in z for all x > 0.

Therefore, for any x, and t ∈ T, there exists z, such that

inf
u

u(z)

u(x)
> δ−t

=⇒ u(z)

u(x)
> δ−t ∀u ∈ U

=⇒ δtu(z) > u(x) ∀u ∈ U

=⇒ u−1(δtu(z)) > u−1(u(x)) ∀u ∈ U

=⇒ min
u
u−1(δtu(z)) > min

u
u−1(u(x))

(z, t) � (x, 0)

To go from the direction (i) to (ii) of Theorem 2, one needs to follow Lemma 3-5.

Lemma 3. Under Axioms A1-A6, for any (x0, t), (xt, 0) such that (x0, t) ∼ (xt, 0)

in the original relation, there exists u ∈ U such that δtu(xt) = u(x0) and δtu(z1) ≥
u(z0) for all (z1, t) ≥ (z0, 0). Moreover, u is strictly monotonic, continuous, and

u(0) = 0, u(1) = 1.

Proof. We will prove it for t = 1, x0, xt > 0 and then show the general guideline

for a general t.

We define the following procedure: Choose x∗0 = 1. Find x∗1 such that (x∗0, 0) ∼
(x∗1, 1) . We can do it because of the Non-Triviality assumption. Clearly, x∗1 = x1.

Next find x∗−1 = max{x−1, x
′
−1} where (x∗0, 1) ∼v (x−1, 0) and (x∗1, 2) ∼v (x′−1, 0).

The value x−1 > 0 exists because, (x∗0, 0) � (x∗0, 1) � (0, 1), coupled with the fact

that % is continuous. Same with x′−1.

Note that x∗0 > x∗−1 by discounting. Next going in the opposite direction, we find

x∗2 = min{x2, x
′
2, x
′′
2}, where, (x∗1, 0) ∼v (x2, 1), (x∗0, 0) ∼v (x

′
2, 2) and (x∗−1, 0) ∼v

(x′′2, 3). Next we find x∗−2, x
∗
3, x
∗
−3, x

∗
4, ... sequentially. Thus one can find a sequence

...x∗−3 < x∗−2 < x∗−1 < x∗0 < x∗1 < x∗2...

We will show that this sequence is unbounded above and converges below to 0 .

Consider any z < x∗0. By A5, there must exist t1 such that (z, 0) � (x∗0, t1). and

given for any t > 0, (x0, 0) % (x∗t , t), by monotonicity, it must hold that (z, 0) �
(x∗t , t + t1). By definition of x∗−1, either (x∗−1, 0) ∼ (x∗0, 1) or (x∗−1, 0) ∼ (x∗1, 2), if

not both. So, by WPB, either (x∗0, t1) % (x∗−1, t1−1) or (x∗1, t1 +1) % (x∗−1, t1−1),
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and hence, either (z, 0) � (x∗−1, t1 − 1) . One can use the construction of the

sequence, and induction, here on, to show that, for any general 0 < i < t1,

(z, 0) � (x∗−i, t1 − i). Hence, it must be that x∗−t1 ≤ z, which proves that the

sequence converges below to zero. To show that the sequence is unbounded

above, one uses a similar trick. Consider z > x∗0. There must exist t2 such that

(x∗0, t) � (z, t + t2) for all t ≥ 0, and given for any t > 0, (x∗−t, 0) % (x∗0, t), by

monotonicity, it must hold that (x∗−t, 0) % (x∗0, t) � (z, t + t2). By definition of

x∗1, (x∗1, 1) ∼ (x∗0, 0) � (z, t2). So, by WPB, it must be that (x∗1, 0) � (z, t2 − 1).

(z < x∗1 is trivial and hence neglected). One can use the construction of the

sequence, and induction, here on, to show that, for any general 0 < i < t2,

(x∗i , 0) � (z, t2 − i). Hence, it must be that x∗t2 ≥ z, which proves that the

sequence diverges to infinity.

Consider any y0 ∈ (x∗0, x
∗
1). We find y′−1 such that (y′−1, 0) ∼ (y∗0, 1). Finally,

y∗−1 = x∗0 − (x∗0 − y′−1)
(x∗0 − x∗−1)

(x∗0 − x−1)
∈ (x∗−1, x

∗
0).

The upper bound on y∗−1 comes from the fact that (x∗0 > y′−1) and the lower bound

comes from the fact that y′−1 is bounded below by x−1. Note that for y∗0, ŷ0 ∈
(x∗0, x

∗
1), y∗0 > ŷ0 if and only if y∗−1 > ŷ−1. And finally, for any y∗−1 ∈ (x∗−1, x

∗
0)

there exists a y∗0 ∈ (x∗0, x
∗
1) corresponding to it.

Next we will define an inductive procedure to find the other points in such se-

quences. Let S be the set of all such sequences. The induction hypothesis is

that for every y∗0 ∈ (x∗0, x
∗
1) we have already defined a corresponding chain19

Si = y∗−i < ...y∗−3 < y∗−2 < y∗−1 < y∗0 < y∗1 < y∗2.. < y∗i−1, i ≥ 2 such that i)

y∗n ∈ (x∗n, x
∗
n+1) for all the elements of all the chains. ii) If we compare the nth

elements of 2 chains they are always similarly ranked, regardless of the value of

n. iii) If the last element constructed is y∗i for i ∈ N then, any point in (xn, xn+1)

for n ∈ {−i, ..i− 1} is part of exactly one chain in Si.
Finding y∗i where i ≥ 1: Note that we can write x∗i = min{x1

i , x
2
i , x

3
i ...x

2i
i }20,

where (x1
i , 1) ∼ (x∗i−1, 0),(x2

i , 2) ∼ (x∗i−2, 0).., (x2i−1
i , 2i−1) ∼ (x∗−i+1, 0). Similarly,

x∗i+1 = min{x1
i+1, x

2
i+1, x

3
i+1...x

2i+1
i+1 }. Define, x′i+1 = min{x1

i+1, x
2
i+1, x

3
i+1...x

2i
i+1} ≥

19A set paired with a total order.
20We are using one extra comparison than that existed in the original construction of the
sequence, and this is to make sure that x∗i has 2i comparisons in its construction, just like y∗i .
Given the structure of the sequence we can always add more comparisons than the original, but
never have fewer comparisons.
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x∗i+1. Define y′i = max{y1
i , y

2
i , y

3
i , ...y

2i
i } where (y1

i , 1) ∼ (y∗i−1, 0),.., (y2i
i , 2i) ∼

(y∗−i, 0). Finally, y∗i = x∗i + (y′i − x∗i )
(x∗i+1 − x∗i )
(x′i+1 − x∗i )

∈ (x∗i , x
∗
i+1). By monotonic-

ity, yni ∈ (xni , x
n
i+1) for all n ∈ {1, 2, .., 2i}. Therefore, y

′
i ∈ (x∗i , x

′
i+1). Therefore,

y∗i ∈ (x∗i , x
∗
i+1), the upper bound comes from the fact that x′i+1 > y′i and the

lower bound comes from the fact that y′i is bounded below by x∗i . Note that for

y∗0, ŷ
∗
0 ∈ (x∗0, x

∗
1), y∗0 > ŷ∗0 if and only if y∗i > ŷ∗i . And finally, for any ŷ∗i ∈ (x∗i , x

∗
i+1)

there exists a ŷ∗0 ∈ (x∗0, x
∗
1) corresponding to it. The last part can be shown con-

structively.

Finding y∗−i−1 where i ≥ 1: Note that x∗−i = max{x1
−i, x

2
−i, x

3
−i...x

2i+1
−i }21, where

(x1
−i, 0) ∼v (x∗−i+1, 1),(x2

−i, 0) ∼v (x∗−i+2, 2).., (x2i
−i, 0) ∼v (x∗i , 2i). Similarly, x∗−i−1 =

max{x1
−i−1, x

2
−i−1, .. x

2i+1
−i−1, x

2i+2
−i−1}.

Define, x′−i−1 = max{x1
−i+1, x

2
−i+1, x

3
−i+1, ...x

2i+1
−i+1}≤ x∗−i−1.

Define y′−i−1 = max{y1
−i+1, y

2
−i+1, y

3
−i+1, ...y

2i+1
−i+1} where (y1

−i+1, 0) ∼v (y∗−i+2, 1), ..

.., (y−i+1, 0) ∼v (y∗i , 2i + 1). Finally, y∗−i−1 = x∗−i − (x∗−i − y′−i−1)
(x∗−i − x∗−i−1)

(x∗−i − x′−i−1)
∈

(x∗−i−1, x
∗
−i). By monotonicity, yn−i−1 ∈ (xn−i−1, x

n
−i) for all n ∈ {1, 2, .., 2i + 1}.

Therefore, y
′
−i−1 ∈ (x

′
−i−1, x

∗
−i). Therefore, y∗−i−1 ∈ (x∗−i−1, x

∗
−i), the upper bound

comes from the fact that x∗−i > y′−i−1 and the lower bound comes from the fact

that y′−i−1 is bounded below by x′−i−1. Note that for y∗0, ŷ0 ∈ (x∗0, x
∗
1), y∗0 > ŷ0

if and only if y∗−i−1 > ŷ−i−1. And finally, for any ŷ−i−1 ∈ (x∗−i−1, x
∗
−i) there

exists a ŷ0 ∈ (x∗0, x
∗
1) corresponding to it. The last part can be shown in-

ductively. Fix ŷ′−i−1. Find the points (whenever possible) zn ∈ (x∗n, x
∗
n+1) for

n ∈ {−i,−i+ 1,−i+ 2, ..i} such that (ŷ′−i−1, 0) ∼v (zn, n+ i+ 1). Note that we

can always find atleast one such zn.22 Next, using the induction hypothesis we

can map all the zn’s to a y∗0 ∈ (x∗0, x
∗
1). We take the maximum of all such y∗0s and

define it as ŷ∗0. One can check that starting from this (ŷ−i+1, ..ŷ0, ŷ1..ŷi) would

indeed result in ending with the ŷ′−i−1 we started with. 23

21As before, we are using one extra comparison than that existed in the original construction
of the sequence.
22There exists k such that (x∗−i, 0) ∼v (x∗−i+k, k). In general, (x∗−i, 0) %v (x∗−i+k, k).This
implies (ŷ′−i, 0) �v (x∗−i+k, k) and (x∗−i+1+k, k) �v (ŷ′−i, 0). Hence, there exists z−i+k ∈
(x∗−i+k, x

∗
−i+k+1) such that (ŷ′−i, 0) ∼v (zn, n+ i).

23Suppose not. Given our definition of ŷ0, starting from this (ŷ−i+1, ..ŷ0, ŷ1..ŷi) would give
us ŷ′′−i ≥ ŷ′−i. Let, ŷ′′−i > ŷ′ and (ŷ′′−i, 0) ∼ (ŷ−i+k, k) for ŷ−i+k ∈ (x−i+k, x−i+k+1), this
being the relation that binds while defining ŷ′′−i. Given, (ŷi+k, k) �v (ŷ′−i, 0) and (ŷ′−i, 0) �
(x′−i, 0) %v (x∗−i+k, k), there would exist (ŷ′′−i, 0) ∼ (ŷ∗−i+k, k) for ŷ−i+k ∈ (x∗−i+k, x

∗
−i+k+1) and

ŷ−i+k < ŷ′−i+k which would be a contradiction.
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Now, define u on X as follows: Set u1(x∗0) = 1. For the sequence .., x∗−1, x
∗
0, x
∗
1, ..,

let u(x∗i ) = δi for all positive and negative integers i. Next, let us define u!

on (x∗−1, 1) as any continuous and increasing function with inf(x∗−1,1)u1(x) = δ =

u(x∗−1) and sup(x∗−1,1)u1(x) = 1 = u(1). We can extend each dual sequence with

some y0 ∈ (x∗−1, 1) as u(yi) = δiu(y0). Finally, define U(x, t) = δt
u1(x)

u1(1)
to ensure

u1(1) = 1 (note that u1(1) > 0).

It is important to note here that the utility defined retains all the monotonicity,

discounting and present bias properties. Consider any (y, t) % (x, 0) in the origi-

nal relation. The element x must belong to one of the sequences defined above. If

xt is the corresponding element to the right in that sequence separated by a dis-

tance of t, then, by construction we must have u(x) = δtu(xt) and (x, 0) % (xt, t).

By monotonicity, it would be true that y > xt and hence, u(x) < δtu(y).

Now we will extend the logic above to a more general case of (x0, t), (xt, 0) such

that (x0, t) ∼ (xt, 0) for t > 1.

For i ∈ {1, ..t}, let xi be such that (x0, 0) ∼ (xi, i). We define the following

procedure: Choose x∗0 = x0, the same x0 that was provided in the statement of

this Lemma. Find x∗1 such that (x∗0, 0) ∼ (x∗1, 1) . Of course, x∗1 = x1. Next use

the iterative format used in Lemma 2 to find x∗2, x
∗
3, ..x

∗
t .

At each of these steps, by WPB, one would get, x∗i = xi, ending with x∗t = xt.

We provide a brief outline for this, the proof requires induction.

Let, x∗2 = min{x2, x
′
2}, where, (x2, 2) ∼v (x∗0, 0) and (x′2, 1) ∼v (x∗1, 0). By WPB,

the latter implies, (x′2, 2) %v (x∗1, 1). By definition of x∗1, (x∗0, 0) ∼v (x∗1, 1).

Putting it all together,

(x′2, 2) %v (x∗1, 1) ∼ v(x
∗
0, 0) ∼v (x2, 2)

Hence, x′2 ≥ x2, and x∗2 = x2.

Similarly, let x∗3 = min{x3, x
′
3, x
′′
3}, where, (x3, 3) ∼v (x∗0, 0), (x′3, 2) ∼v (x∗1, 0)

and (x′′3, 1) ∼v (x∗2, 0).

(x′3, 3) %v (x∗1, 1) ∼ v(x
∗
0, 0) ∼v (x3, 3)

Also,

(x′′3, 3) %v (x∗2, 2) ∼ v(x
∗
0, 0) ∼v (x3, 3)
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And so on. Note that the sequence in which the elements are being found till now

has been different that that in Lemma 2. Here on, find the sequence elements in

the following order x∗−1, x
∗
t+1, x

∗
−2, x

∗
t+2, .... using the iterative procedure as Lemma

2.

For any y0 ∈ (x∗0, x
∗
1), find similar sequences in the same order as we derived the

sequence x∗.

Now, define u on X as before to finish the proof. Note that any u such constructed

is strictly monotonic, continuous, and u(0) = 0, u(1) = 1. �

Lemma 4. Under Axioms A1-A6, there exists a set of functions U such that,

for all u ∈ U , u is strictly monotonic, continuous, and u(0) = 0, u(1) = 1,

and δtu(z1) ≥ u(z0) for all (z1, t) ≥ (z0, 0). Moreover, i) for any (x, t) ∼ (y, 0),

there existsu ∈ U such that δtu(xt) = u(x0). ii) For x > 0, infu∈U u(x) > 0,

supu∈U u(x) <∞

Proof. Consider the set U consisting of all functions u constructed from all the

indifference relations ∼ in (3). It would suffice to show that infu∈U u(x) > 0,

supu∈U u(x) <∞.

First we will show that infu∈U u(x) > 0. This is trivial for points above x = 1.

Consider 0 < x < 1. Suppose we are constructing a function that would respect

the relation (x0, 0) ∼ (xt, t).

By A5, there exists t1 such that (x, t) � (1, t + t1) for all t ≥ 0 and for any yi

such that such that (1, 0) ∼ (yi, i) for i ≥ 0, (x, 0) � (yi, t1 + i). Consider the

following cases:

CASE 1: Consider x0 < x < 1. By A5, there exists t ≥ 1, such that in

the sequence constructed, xt−1 < x ≤ xt. Note that given the construction

of the sequence for (x, 0) ∼ (xi, i), it must be that for any (xp, xq), p < q,

(xp, 0) % (xq, q − p)). By monotonicity, using xt−1 < x ≤ xt, for any point xi in

the sequence , |i| ≤ t, one has (xi, 0) % (xt, t − i) % (x, t − i) . Hence, for any

element xi of the sequence with i ≤ 0, (xi, 0) % (x, t− i) � (1, t1 + t− i), with the

last inequality coming from A5.24 Hence, the x(t+t1)th element of the sequence

must be weakly to the right of 1. Thus, u(x) ≥ 1

δt1+1
.

24The property we are using implicitly without proving is the following: In our constructed
sequences, xi always is a direct reflection from {x0, x−1, x−2, ..} when i is positive, and a direct
reflection of {x0, x1, x2..}when i is negative. This follows from WPB.
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CASE 2: Consider x < x0 < 1. By construction of the dual sequence {..x−1, x0, x1, ..},
it must be that x−t1 ≤ x and xt1 ≥ 1. Thus, u(x) ≥ 1

δ2t1
. 25

Hence, u(x) ≥ 1

δ2t1
for all u ∈ U .

Now, showing that supu∈U u(x) < ∞. This is trivial for points x ≤ 1. Consider

x > 1. By A4, there exists t1 such that (1, 0) � (x, t1) and for any y such that

(x, 0) ∼ (y, i), i ≥ 0 ,(1, 0) � (y, t1 + i). Suppose we are constructing a function

that would respect the relation (x0, 0) ∼ (xt, t), and in the process construction

a dual sequence {..x−1, x0, x1, ..}. There are two cases as before.

CASE 1: Consider x0 > x > 1. By A4, there exists t ≥ 1, such that in the

sequence constructed, one has x−t ≤ x < x−t+1. As before, given the construction

of the sequence for (x, 0) ∼ (xi, i), it must be that for any (xp, xq), p < q,

(xp, 0) % (xq, q − p).) By monotonicity, using x−t ≤ x, for any point xi in the

sequence , |i| ≤ t, (x, 0) % (x−t, 0) % (xi, i+ t) . Hence, for any element xi of the

sequence with i ≥ 0, (1, 0) � (xi, t1 + i+ t). Thus, u(x) ≤ 1

δt1+1
.

CASE 2: Consider x > x0 > 1. By construction of the dual sequence {..x−1, x0, x1, ..},
it must be that x−t1 ≤ 1 and xt1 ≥ x. Thus, u(x) ≤ 1

δ2t1
.

Hence, u(x) ≤ 1

δ2t1
for all u ∈ U . �

Lemma 5. Under Axioms A1-A6, there exists a continuous present equivalent

utility function F : X× T→ R that represents %. F is monotonically increasing

in x and monotonically decreasing in t.

Proof. The first part of this proof is very similar to Lemma 2, and we will omit it

here. By construction of the set U , V (x, t) = minv∈Uv
−1(δtv(x)). Moreover, for

all u ∈ U , u(0) = 0, u(1) = 1, infu∈U u(x) > 0, supu∈U u(x) <∞ for x > 0.

Finally, from A6, for any x > 0, and t ∈ T, there exists z such that (z, t) � (x, 0).

δtu(z) > u(x) ∀u ∈ U

=⇒ u(z)

u(x)
> δ−t ∀u ∈ U

=⇒ inf
u

u(z)

u(x)
≥ δ−t ∀u ∈ U

25One can make the bound tighter.
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But we had started with arbitrary t. Hence, infu
u(z)

u(x)
is unbounded above for

any x > 0. �

Theorem 3: The following two statements are equivalent:

i) The relation % satisfies properties B0-B5.

ii) There exists a continuous function F : X× P× T→ R such that (x, p, t) %

(y, q, s) if and only if F (x, p, t) ≥ F (y, q, s). The function F is continuous, in-

creasing in x, p and decreasing in t ∈ T. There exists a unique δ ∈ (0, 1) and

a set U of monotinically increasing continuous functions such that F (x, p, t) =

minu∈U u
−1(pδtu(x)) and u(0) = 0 for all u ∈ U .

Proof. Showing that (ii) implies (i) :

Continuity and monotonicity of % follow from the continuity and monotonicity

of F . Weak Present Bias follows as before.

B5 can be shown in the following way:

(x, pθ, t) % (x, p, t+D)

=⇒ min
u
u−1(pθδtu(x)) ≥ min

u
u−1(pδt+Du(x))

=⇒ θ ≥ δD

=⇒ min
u
u−1(qθδsu(y)) ≥ min

u
u−1(qδs+Du(y))

=⇒ (y, qθ, s) % (y, q, s+D)

We will prove the direction (i) to (ii) in the following three steps.

Step 1: Recall the Probability Time Tradeoff axiom: for all x, y ∈ X, p, q ∈
(0, 1],and t, s ∈ T, (x, pθ, t) % (x, p, t+ ∆) =⇒ (y, qθ, s) % (y, q, s+ ∆).

This axiom has calibration properties that we will use. Given Monotinicity and

FOSD, (x, 1, 0) � (x, 1, 1) � (x, 0, 0) for any x ∈ X. By continuity, there must

exist δ ∈ (0, 1) such that (x, δ, 0) ∼ (x, 1, 1). Note that Probability-Time Tradeoff

Axiom helps us write (x, δ, τ + 1) ∼ (x, 1, τ) for all x ∈ X and τ ∈ T, and further

extend it to (x, q, t) ∼ (x, qδt, 0). For integer t’s this follows by induction.

For any integer b > 0, there exists ∆(1
b
) = δ1 ∈ P such that (x, δ1, 0) ∼ (x, 1,

1

b
).

Now applying Probability Time Tradeoff (PTT) repeatedly b times, (x, 1, 1) ∼
(x, δb1, 0), which implies, δ1 = δ

1
b . For any ratio of positive integers (rational

number) t =
a

b
, ∆(a

b
) = δ

a
b . This argument can be extended to all real t > 0.

This crucially helps us pin down δ as the discount factor.
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Henceforth, we are going to concentrate on finding a representation of the reduced

domain of X× [0, 1]. Note that this reduced domain can also be conceptually seen

as the set of all binary lotteries that have zero as one of the outcomes.

Step 2: The rest of the proof will have a similar flavor to the ones the reader

has already encountered. For every x∗ ∈ X, we are going to provide an increasing

utility function u on [0,M ] which would respect all the relations of the form

(x, p) % (y, 1), i.e, have pu(x) ≥ u(y) and also have pu(y) = u(x∗) for all (x∗, 1) ∼
(y, p).

Fix x∗, u(0) = 0 and u(x∗) = 1. For x ∈ (x∗,M ], define

(11) u(x) = {1

p
: (x, p) ∼ (x∗, 1)}

and,

xq = {x : (x, q) ∼ (x∗, 1)}(12)

The expressions in (11) and (12) exist due to the continuity of %.

Now, for x ∈ (0, x∗), define

(13) u(x) = inf{p(q) : (xq, qp(q)) ∼ (x, 1), q ≤ 1}

First, we will show that the infimum in (13) can be replaced by minimum. Con-

sider a sequence of probabilities {pn} that converge below to p∗, and (xqn , pnqn) ∼
(x, 1). Note that qn ∈ [qmax, 1] where (x∗, 1) ∼ (M, qmax). Hence, {qn} must be

bounded by this closed interval, and must have a convergent subsequence {qnk}.
Let q∗ be the corresponding limit, and we know that q∗ ≥ qmax. Similarly, xq

can be considered continuous in q (this also follows from the continuity of %).

Therefore, xqnk → xq∗ as qnk → q∗. Also, it must be that pnk → p∗ as qnk → q∗.

Thus, we have (xqnk , pnkqnk) ∼ (x, 1) for all elements of {nk}. Then, using the

continuity of %, (xq∗ , p
∗q∗) ∼ (x, 1).

u(x) = inf{p : (xq, pq) ∼ (x, 1)} = min{p : (xq, pq) ∼ (x, 1)} = p∗

Now we will show that the utility defined in (11) and (13) has the following

properties : 1) It is increasing. 2) p1u(x1) = u(y1) 3) (x, p) % (y, 1), implies

pu(x) ≥ u(y) 4) u is continuous. The first two properties are true by definition

of u. We will show the third in some detail. Consider (x, p) % (y, 1). In the case
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of interest, p < 1 and hence, x > y. Now let x > y > x∗. Let, u(y) = 1/p1, which

means, (y, p1) ∼ (x∗, 1) . Given (x, p) % (y, 1), we must have

(x, pp1) % (y, p1) ∼ (x∗, 1)

Hence,

u(x) ≥ 1

pp1

⇐⇒ pu(x) ≥ 1

p1

= u(y)

If, x > x∗ > y, the proof follows from the way the utility has been defined.

Let y < x < x∗. Let, u(x) = p1, which means, (xq, p1q) ∼ (x, 1) for some xq.

Given (x, p) % (y, 1), we must have

(xq, p1qp) % (x, p) % (y, 1)

Hence, u(y) ≤ pp1.

Now we turn to proving the continuity of u. The continuity at x∗ from the right

is easy to see.

Next, for any r ∈ (0, 1), define

(14) f(r) = sup{x ∈ [0, x∗) : (xq, qr) ∼ (x, 1)}

The supremum can be replaced by a maximum, and the proof is similar to the

one before. Suppose there is a sequence of {xn} that converges up to a value x̂,

and, (xq(n), q(n)r) ∼ (xn, 1). Note that q(n) lies in a closed interval, and hence

has a convergent subsequence that converges to a point in that interval. Let us

call this point q̂. Now, x is continuous in q (in the usual sense), and hence, xn and

xq(n) also has a convergent subsequence. The convergent subsequence {xq(n)} and

{xn} must have the same limit point, let us call it xq̂, a point in [x∗,M ]. Hence,

the supremum in (14) must have been attained from xq̂, and hence the supremum

can be replaced by a maximum. The f function is well defined, strictly increasing

and is the inverse function of u over r ∈ (0, 1). This function can be used to show

the continuity of u at the point x∗.

Finally, the function u can be easily normalized to have u(M) = 1.

Step 3: In this step, we construct the U set as in Theorem theorem ??, to

complete the proof. �
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Theorem 4: Let %1 and %2 be two binary relations which allow for minimum

representation w.r.t sets Uδ,1 and Uδ,2 respectively. The following two statements

are equivalent:

i) %1 allows a higher premium to the present than %2.

ii) Both Uδ,1 and Uδ,1 ∪ Uδ,2 provide minimum representations for %1.

Proof. The direction from (i) to (ii): Consider any (x, t) ∈ X× T such that

(x, t) ∼1 (y, 0). Using (i), we must have, (x, t) %2 (y, 0).

Hence,

min
u∈Uδ,2

u−1(δtu(x)) ≥ y

=⇒ min
u∈Uδ,1∪Uδ,2

u−1(δtu(x)) = y

Hence,

min
u∈Uδ,1∪Uδ,2

u−1(δtu(x)) = min
u∈Uδ,1

u−1(δtu(x))(15)

To go in the opposite direction, let us assume, (x, t) %1 (y, 0).

Given, (15), it must be that

min
u∈Uδ,1∪Uδ,2

u−1(δtu(x)) = min
u∈Uδ,1

u−1(δtu(x)) ≥ y

=⇒ u−1(δtu(x)) ≥ y ∀u ∈ Uδ,1 ∪ Uδ,2
=⇒ u−1(δtu(x)) ≥ y ∀u ∈ Uδ,2

=⇒ min
u∈Uδ,2

u−1(δtu(x)) ≥ y

Hence, (x, t) %2 (y, 0), which completes the proof. �

Proposition 5. Let fn be a set of bijective, increasing, continuous functions.

Let fn → f “locally uniformly”/ compactly (equivalent notions in Rn.), where f

is bijective, increasing, continuous. Then, f−1
n → f−1 compactly.

Proof. Consider the composite function gn = fnof
−1. Note that gn is also bijec-

tive, increasing, continuous. As fn converges locally uniformly to f , gn converges

locally uniformly to the identity function g(x).

51



To see this, note that for any ε1 > 0

sup
x∈[c,d]

|gn(x)− g(x)| = sup
x∈[c,d]

|fn(f−1(x))− f(f−1(x))|

= sup
y∈[f−1(c),f−1(d)]

|fn(y)− f(y)|

≤ ε1

for n ≥ N0 for some N0.

Choose an interval [a, b]. Now, there would exist n1, n2 such that gn(a − 1) ≤ a

and gn(b + 1) > b for n ≥ n1 and n ≥ n2 respectively. Similarly, there exists n3

such that supx∈[a−1,b+1] |gn(x)− g(x)| < ε for n ≥ n3.

Finally, for N ≥ max{n1, n2, n3}

sup
x∈[a,b]

|g−1
n (x)− g(x)| ≤ sup

x∈[gn(a−1),gn(b+1)]

|g−1
n (x)− x|

= sup
t∈[a−1,b+1]

|g−1
n (gn(t))− g(t)|

= sup
t∈[a−1,b+1]

|t− g(t)|

< ε

Therefore, g−1
n = fof−1

n converges locally uniformly to the identity function.

Therefore, f−1
n converges locally uniformly to f−1. �
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