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Abstract

We study rationalizability of choice functions where an agent selects the kth best
alternative. We propose two axioms which fully characterise a choice function that is
rationalizable by a unique, reflexive, connected and quasi-transitive rationalization
when kth best elements are chosen under full domain. The standard literature on
rationalizability of choice functions, where first best alternatives are chosen, takes
a narrow and individualistic view of rationality. This paper studies behaviours that
violate standard consistency axioms and yet are well-behaved.

Keywords: rationalizability • choice functions • rational choice • external refer-
ence

1 Introduction

Rationality of choice has been an essential part of discussions in social choice theory and
is an extensively studied subject in the literature. What is meant by rational choice and
what is a commonly acceptable notion of rationality of choice has been the questions
that the voluminous literature on this subject has tried to answer. The fact that ratio-
nality of economic agents is fundamental for economic theory renders the debate over
it inescapable. An important constituent of this debate is the rationalizability of choice
functions. The theory of rationalizability of choice functions owes its existence to the in-
spiring work by Samuelson (1938) on the theory of revealed preference. He proposed that
by observing the choice behaviour of a representative consumer, we can observe the pref-
erences that she reveals in her actions. The pioneering work of Uzawa (1956) and Arrow
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(1959) augmented this theory thus laying the foundations of the choice theoretic frame-
work of rationalizability theory. Subsequently, a large literature developed that examined
choice functions to see if they are rationalizable, that is, the same choices as that of the
choice function can be generated with some preference relation. Most of the literature in
this area deals with the same kind of axiomatic treatment of choice behaviour wherein by
satisfying certain conditions, we can get a preference relation that rationalizes the choice
function. The nature of the rationalization, the properties that it satisfies, depends upon
the underlying consistency condition of the axiom that is imposed. These conditions are
devoid of any context or substantive principle outside of the choice function.

We examine rationalizability to confirm that the choices were made sensibly and say
that if a choice function is rationalizable then choices are well-behaved. It, however,
would be problematic to assume that for choices to be well-behaved or sensibly made a
choice function needs to be rationalizable or that if a choice function is not rationalizable
then there must be some inconsistency in the behaviour. Sen (1993) terms the a priori
imposition of such conditions as the “internal consistency” of choice. He points out the
difference between imposed and entailed internal consistency. While arguing against the
former, Sen says that there is no internal way by which one can determine whether or
not the choice behaviour is consistent. This issue arises because of the presumption that
the act of choice can be viewed as a stand-alone action.

Sen (1993) draws attention to different circumstances under which an internally incon-
sistent choice behaviour would seem to be perfectly consistent.1 Individuals might be
operating under some norms which might be influencing their act of choice, benevolence
might lead them to alter their choice behaviour or they could simply be following what
society perceives as proper or good behaviour. To emphasise this we quote Sen’s famous
example. Suppose a person has been offered some cake and has to choose from the dif-
ferent pieces available. Let x, y and z be three pieces of different sizes such that z is
bigger than y which is bigger than x. It is assumed that the individual has no difficulty
assessing the difference between them. Suppose on being offered x and y, she chooses x
and from x, y and z she decides to pick up y. If this person is fond of cakes and would
like to choose the biggest piece, then her behaviour is indeed inconsistent. Alternatively,
suppose she does not want to appear greedy and is operating under a norm of never
choosing the largest piece. Keeping this in mind and that the size of z is the biggest and
x the smallest, her behaviour is now perfectly rational.

In the above example, it was assumed that the individual has no difficulty assessing the
difference between the size of the slices. However, this may not always hold. Suppose
a person has been offered some cold drink and has to choose from different glasses of

1See Sen (1997) also.
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the same drink. Say there are three glasses with 150ml, 140ml and 130ml of the same
cold drink. Further suppose that the individual can differentiate in the volume of the
drink only if there is a minimum difference of 20ml. Now, say on being offered 150ml and
140ml, she picks the glass with 150ml of cold drink; on being offered 140ml and 130ml,
she picks 140ml. But when she is offered all three, she picks 130ml. If this person likes
the drink and would like to pick the biggest glass, then her behaviour is inconsistent.
However, if she does not want to appear greedy and, as before, is operating under a
norm of never choosing the biggest glass, her behaviour now seems consistent. If she
cannot differentiate between 150ml and 140ml, she could have randomly picked 150ml.
Similarly, she randomly picked 140ml when offered 140ml and 130ml. But when all three
were offered, she could differentiate between 150ml and 130ml and thus, picked 130ml.
This inability to differentiate between the alternatives violates transitivity2 and thus,
other consistency conditions need to be explored.

Consider a different scenario. Suppose in a family there are five siblings of different ages.
They might have been taught that whenever offered cake, they should leave the bigger
pieces for younger siblings. So the eldest child always leaves the four biggest pieces on
the plate and picks the fifth largest piece. The immediate younger sibling chooses the
fourth largest piece and leaves three biggest pieces for the younger ones and so on. Here
every sibling is again consistent in their choices although their choices fail to satisfy
many of the standard rationalizability conditions. These examples perfectly depict how
external references are important while rationalizing choice behaviour. As it is obvious,
this kind of choice behaviour will violate previously stated axioms and will naturally be
path dependent.

From the above examples, we can see that willingly giving up the top alternative, when
available, may not always be an unreasonable move on the part of an individual. Such
choice behaviours merit further investigation. Inspired by Sen’s example, Baigent and
Gaertner (1996) have provided characterisations for choice behaviour that picks the sec-
ond largest element if there is a uniquely largest; otherwise, the largest elements are
picked. Gaertner and Xu (1999a) provide characterisation conditions for median ratio-
nalizability. These papers have also hinted at further possible developments towards the
kth best.3 The characterisation for choosing the second best has been given by Banerjee
(2008a,b). Banerjee (2009b) provides a characterisation for the kth best ordering ratio-

2Transitivity is the most common consistency requirement imposed on the choice function. However,
it was challenged on the grounds of being too stringent (Luce (1956)) and was also thought to be one
of the culprits behind Arrow’s impossibility result. Plott (1973) argued that if path independence is
the desired property of social choice, as emphasised by Arrow (1963), the stronger rationality conditions
need not be imposed. Much has not been achieved by solely easing the consistency requirements but it
has helped in immediately circumventing the negative result.

3See Gaertner and Xu (1997, 1999b) also.
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nalization in full domain. Needless to say, the area of kth best offers a lot to be explored.
Continuing with the framework developed by Banerjee (2009b), in this paper we would be
looking at a choice behaviour where kth best elements are chosen when they exist and we
provide necessary and sufficient conditions for the choice function to be rationalizable by
a reflexive, connected and quasi-transitive k-rationalization in full domain. We devote the
next section to understanding what is meant by kth best elements and k-rationalizability
where k is a positive integer.

2 k-Rationalizability

We will begin the discussion on kth best elements by first understanding what is meant
by second best elements. Suppose we have a set S that consists of some elements and we
assume that second best elements exist in this set. Let B be the set of best elements of
the set S. If we remove the elements of the set B from set S, we are left with the reduced
set S − B. Now, we find best elements of this set S − B. The best elements of the set
S −B are the second best elements of the set S as they are the best elements of the set
in the absence of the elements of set B.

2-Rationalizability: A choice function is second best rationalizable (or 2-rationalizable)
if we can generate a binary relation such that if second best elements of that relation are
chosen, whenever available, same choices are obtained. Whenever second best elements
are available, they should be the ones chosen. If second best elements are not available,
the first best elements must be chosen.

On similar lines we can obtain the third best elements of the set by eliminating the
first best and second best elements of the set and finding the best elements from the
remaining set. A more general form of this kind of choice behaviour would be where kth

best elements are chosen, whenever they exist, where k is a positive integer (k ≥ 2). We
can arrive at kth best elements by picking the best elements after similarly eliminating
consecutive sets of best elements up till (k−1)th best elements. That is to say, we remove
the first best, second best, ..., (k − 1)th best elements and find the best elements from
the remaining set to obtain the kth best elements of the set.

k-Rationalizability: A choice function is kth best rationalizable (or k-rationalizable)
if we can generate a binary relation such that if kth best elements of that relation are
chosen, whenever available, same choices are obtained. If, however, kth best elements are
not available, (k − 1)th best elements are chosen and if (k − 1)th best elements are also
not available, (k− 2)th best are chosen and so on. Note here that if kth best elements are
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not available, the chosen elements are the worst elements of the set.

Consider a choice function which is k-rationalizable. If a choice function is k-rationalizable
then the choice set must contain kth best elements, if they exist. If there exists a kth best
element, to obtain this element we must eliminate k − 1 consecutive and distinct sets
of best elements. Thus, we are interested in finding the number of distinct consecutive
preference levels present in the set. Let there be a set that contains a jth best element
in it, where j > 1. If this element is jth best, it is obvious that there must be a (j − 1)th

best element that is preferred to this jth best element and for this (j− 1)th best element,
there must exist a (j − 2)th best element that is preferred to it and so on. Thus, for
the existence of a jth best element, there needs to be a sequence of distinct j number of
elements in the set such that the element that is placed first in this sequence is preferred
to the second element, second element is preferred to the third, and so on and lastly you
have the (j − 1)th element preferred to the jth element where the jth element is the jth

best element. Since we began by saying that a jth best element exists, we know that the
length of such a sequence is j. If, however, a jth best element does not exist in the set
then there cannot be any such sequence of distinct j number of elements present in the
set. If at all there is a sequence, it must be of a length less than j.

Order of the set: The length of the longest sequence of the type where the first element
is preferred to the immediate next element and the last element being the jth best element
is called as the order of the set . It gives us the largest number of distinct consecutive
preference levels present in the set.

There may be many such sequences in a set. If the length of the longest sequence in a set
S is l then the order of the set S is l, where l is a positive integer. Then we know there is
an lth best element present in the set and there does not exist any (l + 1)th best element
in the set. If we are considering k-rationalizability in full domain, we can observe all pair-
wise choices and in every such pair-wise choice we know that the second best element
will be chosen whenever there exists one. Otherwise both elements are chosen. Hence,
we can easily form a sequence of the kind described above and the order of the set can
be effortlessly determined.

3 Notations and Definitions

In this section we introduce various notations and definitions that will be used in the
subsequent sections. We denote the non-empty and finite set of alternatives by X. Ω
denotes the set of all non-empty subsets of X, i.e. Ω = 2X − {∅}. N denotes the set of
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positive integers.

Let λ be a non-empty subset of Ω, ∅ 6= λ ⊆ Ω, which denotes the domain of the choice
function. A choice function C is defined as a mapping C : λ 7→ Ω such that the choice
set (denoted by C(A) for any set A in the domain) is non-empty and a subset of A, i.e.
∅ 6= C(A) ⊆ A. Sometimes choice sets are restricted to be singletons but we impose no
such restriction. In this paper, we have assumed that the domain of the choice function
is full that is, λ = Ω.

Let R be a binary relation over the set S, R ⊆ S × S. The symmetric and asymmetric
parts of R denoted by I(R) (or simply I) and P (R) (or P ) respectively as (∀x, y ∈
S)[xIy ↔ xRy ∧ yRx] and (∀x, y ∈ S)[xPy ↔ xRy∧ ∼ yRx]. We say R is an ordering
iff R is reflexive, connected and transitive.

3.1 kth Best Elements and k-Rationalization

Best element: An element x ∈ S is called a best or first best element of set S according
to a binary relation R iff (∀y ∈ S)(xRy). These elements are also referred to as greatest
elements according to a binary relation R. The set of best or R-greatest elements in a
set S is denoted by G(S,R).

Second best element: An element x ∈ S−G(S,R) is called as the second best element
in S according to R iff (∀y ∈ S −G(S,R))(xRy).

k th best element: More generally, we obtain the kth best elements according to R in S
by removing the first best, second best, ... , and (k − 1)th best elements from the set and
then picking out best elements from the reduced set.

We define,

G1(S,R) = G(S,R) and

Gi(S,R) = G[S −
i−1⋃
j=1

Gj(S,R), R] where i ≥ 2.

Following the above notations, a set of first best elements in S according to R is denoted
by G1(S,R), a set of second best elements in S according to R is denoted by G2(S,R)
and so on. A set of kth best elements in S according to R is denoted by Gk(S,R).

Definition 1. A binary relation R is said to be a k-rationalization (kth best rationalization)
of a choice function C iff for all S ∈ λ
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C(S) = Gk(S,R) if Gk(S,R) 6= ∅
= Gj(S,R) if Gj(S,R) 6= ∅ ∧Gj+1(S,R) = ∅

where 1 ≤ j < k; j, k ∈ N.

3.2 Order of a Set

Let R∗ be a binary relation over X defined as follows:

(∀x, y ∈ X)[xR∗y ↔ ({x, y} ∈ λ ∧ y ∈ C({x, y}))]

P ∗ and I∗ respectively are the asymmetric and symmetric parts of R∗.

For any x ∈ X we define,

Px = {y ∈ X | yP ∗x}.

Px is the set of all elements in X that are preferred to x with respect to R∗.

Definition 2. The order of any set S ∈ λ is defined as,

OS = 0 iff S = ∅
= 1 iff (∀x, y ∈ S)(xI∗y)
= n iff otherwise

where n is the largest value of m ∈ N such that there exist distinct z1, z2, . . . , zm in S
and (∀i ∈ {1, 2, . . . ,m− 1})(ziP ∗zi+1).

The order of the set gives us the largest number of consecutive preference levels present
in the set S. If any set S is empty then it is intuitively obvious that the order of the set
will be zero. If S is non-empty, all elements are indifferent to each other then this set is
a set with order one. That is to say, that no element is preferred to another and hence
there is only one preference level. If neither of the above two cases is satisfied then we
look for the longest chain of distinct elements that are consecutively joined by P ∗. The
number of elements present in this longest chain gives us the order of the set, OS.

4 Axioms and Result

In this section we would be looking at characterisation conditions for a choice function
when it is kth best rationalizable for some positive integer k where k ≥ 3.4 We assume that

4If k = 1, we are back to the case of best rationalizability that we discussed in the beginning. A
characterisation for k = 2, that is, second best rationalizability is provided in Banerjee (2008a) and
Sharma (2017).
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the domain of the choice function is full (C : Ω 7→ Ω). Characterising results are available
for an ordering k-rationalization and a reflexive, connected and acyclic k-rationalization.5

In this paper we will be looking at characterising conditions for a reflexive, connected
and quasi-transitive k-rationalization in full domain.

Here, we introduce the following two axioms:

A. 1. (∀S ∈ Ω)[OS ≥ k → C(S) = {x ∈ S | OPx∩S = k − 1}]

A. 2. (∀S ∈ Ω)[OS < k → C(S) = {x ∈ S | OPx∩S = OS − 1}]

Theorem. If k ≥ 3 then there exists a reflexive, connected and quasi-transitive k-
rationalization of C if and only if C satisfies A.1 and A.2.

Suppose the choice function is k-rationalizable with k ≥ 3. The chosen elements then
must be the kth best elements, whenever they exist. Let us consider the case where kth

best elements are chosen. In that case there must exist some preferred elements in the
set. Evidently this set of preferred elements cannot have any kth best element in it.
There must be a sequence of k consecutively preferred elements of which the last and the
least preferred element is the kth best element. For a quasi-transitive k-rationalization,
ignoring the last element (that is the kth best element), the remaining k − 1 elements
must be there in the set of preferred elements constituting k− 1 distinct and consecutive
preference levels. Hence, the order of this set of preferred elements must be k − 1.
Therefore, whenever the order of a set is j and j ≥ k, we know that kth best elements
exist, then for every chosen element the order of the preferred set must be exactly equal
to k − 1. This requirement has been formalised as axiom A.1.6

Next we see what happens when a kth best element does not exist. In the absence of kth

best elements, we search for the (k− 1)th best elements and if they are also not available,
we look for the (k − 2)th best elements, and so on. In such a scenario, irrespective of
which elements we end up choosing, they are essentially the worst of the set. Therefore,
whenever the order of a set is j < k, the order of the set of preferred elements must be
j − 1 thereby ensuring that the worst elements of the set are chosen. This is our axiom
A.2. If the set contains only best elements then, by definition, order of the set is one.
In that case, all elements must be chosen and there cannot be any unchosen or preferred

5See Banerjee (2009b).
6This axiom was introduced by Banerjee (2009b) which uses this and another axiom to characterise

a choice function that is k-rationalizable by an ordering rationalization R∗. Banerjee (2009a) provides
charactersing results for a reflexive, connected and acyclic k-rationalization in full domain.
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elements. According to A.2, the order of the unchosen and preferred set of elements in
this case is zero, that is this set must be empty. Therefore, the choice set is the set itself.

Together axioms A.1 and A.2 fully characterise a choice function that is k-rationalizable
under full domain by a quasi-transitive k-rationalization.7 Full domain ensures that this
k-rationalization is unique, reflexive and connected. This k-rationalization is R∗ which
we defined in section 3.2. We begin the proof by showing that if A.1 and A.2 are satisfied
then R∗ is quasi-transitive. Next we show that if R∗ is quasi-transitive then an element
x is the mth best element of some set S according to R∗ iff the order of the preferred
set of elements of x in S or OPx∩S is m − 1, where m ∈ N. Using the above, we show
that whenever the order of any set in the domain of the choice function is less than some
given k, A.2 ensures that the worst elements according to R∗ are chosen and whenever
the order of the set is at least k, A.1 ensures that the kth best elements according to R∗

are chosen. Thus, R∗ k-rationalizes the choice function. To show the necessity part of
the theorem, we assume that a reflexive, connected and quasi-transitive k-rationalization
of the choice function exists which is the same as R∗ in full domain. We know that if
for some set S, OS ≥ k then kth best elements are chosen. From the quasi-transitivity
of R∗, x is a kth best element iff the order of the preferred set of x in S is k − 1. Thus,
A.1 is satisfied. Similarly, if OS = j < k then jth best elements are chosen. From the
quasi-transitivity of R∗, the order of the preferred set of the chosen element in S is j− 1.
Thus, A.2 is also satisfied.

5 Conclusion

In this paper we have argued that unlike what the mainstream literature on rationality of
choice warrants, deviating from choosing one’s first best alternative cannot be termed as
unreasonable or senseless on the face of it. It is possible that these seemingly ‘senseless’
choices may prove to be perfectly well-reasoned if we were to add some context to our
process of rationalizability. This body of work derives inspiration from Sen’s argument
of having an external reference where he argues that internal consistency conditions of
choice cannot be applied in a context independent way. In order to see whether different
parts of a choice function are consistent or not we need to specifically consider the context
of that choice. Sen further argues that the conditions of internal consistency, however
appealing, do not take us very far as an individual can be consistently “moronic” in
her choices.8 He illustrates by arguing that an individual who always chooses her worst
alternative will have great consistency of behaviour but does it count as rational? He
asserts that consistency should not be a priori imposed, rather it should entail from the

7Complete proof is provided in section 6.
8See Sen (2017), pp 302.

9



choice behaviour.

While Sen argues against internal consistency of choice, he also argues against the view
of rationality as self-interest maximization.9 This approach completely ignores the role
of norms, social commitments, altruism or any need for cooperation. This narrow and
limiting view of rationality has played a crucial role in the literature on rational choice
and forms the basis of many economic theories. Fehr and Schmidt (2006) review and
emphasise the importance of experimental evidence indicating that people are strongly
motivated by other-regarding preferences and that altruism and fairness play important
roles. They argue that if such preferences are overlooked, social scientists run the risk
of providing incomplete or in some cases wrong explanations of the phenomena under
study. A detailed discussion on such experimental evidence is beyond the scope of this
paper, nonetheless, it provides an additional perspective to the debate. Following these
arguments, we recognise that restricting rational choice to the first best is not a good
idea. This paper looks at a case when choices have deviated from the first best and
provides similar axiomatic framework for them. The framework advanced here is not rid
of the problem of internal consistency posited by Sen and this forms the limitation of this
work. Nonetheless, we argue that as long as economic theories rely on the conventional
axiomatic structure, there is need to improve upon it to include more possibilities.

Including these results among the already existing ones, we now have necessary and suf-
ficient conditions for choice functions under full domain to be k-rationalizable, for all
k ∈ N, by orderings as well as by binary relations that are quasi-transitive and acyclic.
Further, similar characterisations for a choice function to be k-rationalizable with gen-
eral domain remains largely unexplored. For k = 1, Houthakker’s axiom is necessary and
sufficient for a choice function to have an ordering k-rationalization. Banerjee (2008b)
provides a characterisation result of an existential nature for choice functions with order-
ing 2-rationalization. Any further result in this context would be of great significance.

6 Appendix: Proofs

Lemma 1. If k ≥ 3 and A.1 and A.2 are satisfied then R∗ is quasi-transitive.

Proof: Let the choice function C satisfy A.1 and A.2. Suppose R∗ is not quasi-transitive.
Then there exist x, y, z in X such that xP ∗y, yP ∗z and ∼ xP ∗z.

Consider the set T = {x, y, z} ∈ Ω.
xP ∗y ∧ yP ∗z → OT = 3 ∧ Py ∩ T = {x}
∼ xP ∗z ∧ xP ∗y → Px ∩ T = ∅ ∨ Px ∩ T = {z}

9See Sen (2017), chapter A2.
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∼ xP ∗z ∧ yP ∗z → Pz ∩ T = {y}
Hence, OPy∩T = OPz∩T = 1 and OPx∩T = 0 or 1.

Suppose k = 3 and say x ∈ C(T ).
→ OPx∩T = k − 1 = 2 [By A.1.]
This leads to a contradiction. Therefore, x /∈ C(T ).
y ∈ C(T )→ OPy∩T = 2 [By A.1.]
This leads to a contradiction. Therefore, y /∈ C(T ).
Similarly, z ∈ C(T ) also violates A.1 as OPz∩T 6= k − 1. Therefore, C(T ) = ∅.
This leads to a contradiction. Hence, xP ∗z and R∗ is quasi-transitive.

Suppose k > 3 and say x ∈ C(T ).
→ OPx∩T = OT − 1 = 2 [By A.2.]
This leads to a contradiction. Therefore, x /∈ C(T ).
y ∈ C(T )→ OPy∩T = 2 [By A.2.]
This leads to a contradiction. Therefore, y /∈ C(T ).
Similarly, z ∈ C(T ) also violates A.2 as OPz∩T 6= OT − 1. Therefore, C(T ) = ∅.
This leads to a contradiction. Hence, xP ∗z and R∗ is quasi-transitive. This completes
the proof. •

Lemma 2. For any S ∈ Ω, OS = j and R∗ over S is acyclic if and only if Gj(S,R
∗) 6=

∅ ∧
j⋃

i=1

Gi(S,R
∗) = S where j ∈ N.

This lemma was introduced and proved by Banerjee (2009b). •

Lemma 3. If R∗ is quasi-transitive then x ∈ Gm(S,R∗) if and only if OPx∩S = m− 1.

Proof: Let R∗ be quasi-transitive.

Suppose x ∈ Gm(S,R∗).
→ x /∈ Gm−1(S,R

∗)

→
[
∃zm−1 ∈ S −

m−2⋃
l=1

Gl(S,R
∗)
]
[zm−1P

∗x]

zm−1 /∈ Gm−2(S,R
∗) →

[
∃zm−2 ∈ S −

m−3⋃
l=1

Gl(S,R
∗)
]
[zm−2P

∗zm−1]

Similarly, there exist z2, z3, . . . , zm−3 ∈ S such that z2P
∗z3 ∧ z3P ∗z4 ∧ · · · ∧ zm−3P ∗zm−2.

z2 /∈ G1(S,R
∗)→ (∃z1 ∈ S)(z1P

∗z2)
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Thus we have, z1P
∗z2 ∧ z2P ∗z3 ∧ · · · ∧ zm−2P ∗zm−1 ∧ zm−1P ∗x.

Since R∗ is quasi-transitive, z1, z2 . . . zm−1 ∈ Px ∩ S and therefore, OPx∩S = m− 1.

We shall now show the converse.

Suppose (∃x ∈ S)[OPx∩S = m− 1].
Let Px ∩ S = S ′.
S ′ ⊂ S ∧ x ∈ S → OS = j ≥ m
Let OS = j. R∗ is quasi-transitive, therefore, by lemma 2 we have Gj(S,R

∗) 6= ∅ and
j⋃

l=1

Gl(S,R
∗) = S. As j ≥ m, we know Gm(S,R∗) 6= ∅. Thus, there exists i ∈ N such

that x ∈ Gi(S,R
∗). Suppose i 6= m.

Say i < m.

→
[
∀y ∈ S −

i−1⋃
l=1

Gl(S,R
∗)
]
[xR∗y]

→
[
∀y ∈ S −

i−1⋃
l=1

Gl(S,R
∗)
]
[y /∈ Px]

→ Px ∩ S ⊆
i−1⋃
l=1

Gl(S,R
∗)

Let T =
i−1⋃
l=1

Gl(S,R
∗).

But OT = i− 1 < m− 1 and OPx∩S = m− 1.
This leads to a contradiction. Hence, i ≮ m. (i)

Suppose i > m.
x ∈ Gi(S,R

∗)→ x /∈ Gi−1(S,R
∗)

→
[
∃zi−1 ∈ S −

i−2⋃
l=1

Gl(S,R
∗)
]
[zi−1P

∗x]

zi−1 /∈ Gi−2(S,R
∗) →

[
∃zi−2 ∈ S −

i−3⋃
l=1

Gl(S,R
∗)
]
[zi−2P

∗zi−1]

Similarly, there exist z2, z3, . . . , zi−3 ∈ S such that z2P
∗z3 ∧ z3P ∗z4 ∧ · · · ∧ zi−3P ∗zi−2.

z2 /∈ G1(S,R
∗)→ (∃z1 ∈ S)(z1P

∗z2)
We thus obtain, z1P

∗z2∧z2P ∗z3∧· · ·∧zi−2P ∗zi−1∧zi−1P ∗x. Since R∗ is quasi-transitive,
z1, z2, . . . , zi−1 ∈ Px ∩ S and therefore, we have OPx∩S = i − 1 > m − 1. This leads to a
contradiction. Hence, i ≯ m. (ii)

Thus, from (i) and (ii) it is clear that i = m and x ∈ Gm(S,R∗). This completes the
proof. •
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Theorem. If k ≥ 3 then there exists a reflexive, connected and quasi-transitive k-
rationalization of C if and only if C satisfies A.1 and A.2.

Proof: Let k ≥ 3 and let A.1 and A.2 be satisfied by the choice function C. We have
to show that R∗ is a reflexive, connected and quasi-transitive k-rationalization of C. As
the choice sets are non-empty and λ = Ω, R∗ is reflexive and connected. Since k ≥ 3 and
A.1 and A.2 hold, we know by lemma 1 that R∗ is quasi-transitive. Hence, we are left to
show that R∗ is a k-rationalization of C.

Case 1: Let Gj(S,R
∗) 6= ∅ ∧

j⋃
i=1

Gi(S,R
∗) = S where 1 ≤ j < k.

From lemma 2, we know that OS = j < k.
Say x ∈ C(S).
→ OPx∩S = OS − 1 = j − 1 [By A.2.]
As R∗ is quasi-transitive and OPx∩S = j − 1, x ∈ Gj(S,R

∗). [Using lemma 3.]
Hence, we have C(S) ⊆ Gj(S,R

∗). (i)

Let x ∈ Gj(S,R
∗).

→ OPx∩S = j − 1 = OS − 1 [Using lemma 3.]
→ x ∈ C(S) [By A.2.]
Hence, Gj(S,R

∗) ⊆ C(S). (ii)
Thus, using (i) and (ii) we have shown that C(S) = Gj(S,R

∗).

Case 2: Let Gk(S,R∗) 6= ∅.

Let x ∈ Gk(S,R∗).
→ OPx∩S = k − 1 [Using lemma 3.]
→ x ∈ C(S) [By A.1.]
Hence, Gk(S,R∗) ⊆ C(S). (iii)

Let x ∈ C(S).
→ OPx∩S = k − 1 [By A.1.]
As R∗ is quasi-transitive and OPx∩S = k − 1, x ∈ Gk(S,R∗). [Using lemma 3.]
Hence, we have C(S) ⊆ Gk(S,R∗). (iv)
Therefore, from (iii) and (iv) we have C(S) = Gk(S,R∗).

Now we show the necessity part of the theorem.

Suppose that k ≥ 3 and R is a reflexive, connected and quasi-transitive k-rationalization
of the choice function C. As we have full domain, R = R∗. We shall now show that A.1
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and A.2 hold.

Suppose, OS = j ≥ k. As R∗ is quasi-transitive, using lemma 2, we know Gj(S,R
∗) 6= ∅.

Since j ≥ k, thus Gk(S,R∗) 6= ∅.
Let x ∈ C(S).
→ x ∈ Gk(S,R∗) [As C(S) = Gk(S,R∗).]
By lemma 3, OPx∩S = k − 1. (1)

Now let’s show the converse.
Let (∃x ∈ S)[OPx∩S = k − 1].
As R∗ is quasi-transitive, x ∈ Gk(S,R∗). [By lemma 3.]
→ x ∈ C(S) (2)

Using (1) and (2) we have established that C(S) = {x ∈ S | OPx∩S = k − 1} when
OS ≥ k. Thus, A.1 holds.

Now suppose, OS = j < k. As R∗ is quasi-transitive, using lemma 2, Gj(S,R
∗) 6= ∅. As

R∗ is a k-rationalization and Gj+1(S,R
∗) = ∅, C(S) = Gj(S,R

∗).
Let x ∈ C(S).
→ x ∈ Gj(S,R

∗)
By lemma 3, OPx∩S = j − 1. (3)

Now let’s show the converse.
Let (∃x ∈ S)[OPx∩S = j − 1].
As R∗ is quasi-transitive, x ∈ Gj(S,R

∗). [By lemma 3.]
→ x ∈ C(S) (4)

Using (3) and (4) we have shown that C(S) = {x ∈ S | OPx∩S = OS − 1} when OS < k.
Thus, A.2 holds. Hence, the theorem is proved.

6.1 Independence of Axioms

Example 1. X = {a, b, c, d} and let k ≥ 3.

Consider the following choice function:

C({a}) = {a} C({b}) = {b} C({c}) = {c}
C({d}) = {d} C({a, b}) = {b} C({a, c}) = {c}
C({a, d}) = {d} C({b, c}) = {b, c} C({b, d}) = {d}
C({c, d}) = {d} C({a, b, c}) = {a, b, c} C({a, b, d}) = {d}
C({a, c, d}) = {d} C({b, c, d}) = {b, c, d} C({a, b, c, d}) = {d}
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From the above choice function we get the following R∗:

R∗ =
{

(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, c), (b, d), (c, b), (c, d)
}

Thus, Pa = ∅, Pb = {a}, Pc = {a} and Pd = {a, b, c}.

Here, A.1 is satisfied but A.2 is violated. Consider the set {a, b, c}. We have Pa ∩
{a, b, c} = ∅ and hence, OPa∩{a,b,c} = 0. Thus, C({a, b, c}) = {a, b, c} 6= {x ∈ {a, b, c} |
OPx∩{a,b,c} = O{a,b,c} − 1 = 1

}
and A.2 is violated for any k ≥ 3. �

Example 2. X = {a, b, c, d} and let k = 4.

Consider the following choice function:

C({a}) = {a} C({b}) = {b} C({c}) = {c}
C({d}) = {d} C({a, b}) = {b} C({a, c}) = {c}
C({a, d}) = {d} C({b, c}) = {c} C({b, d}) = {d}
C({c, d}) = {d} C({a, b, c}) = {c} C({a, b, d}) = {d}
C({a, c, d}) = {d} C({b, c, d}) = {d} C({a, b, c, d}) = {a, b, c, d}

From the above choice function we get the following R∗:

R∗ =
{

(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, c), (b, d), (c, d)
}

Thus, Pa = ∅, Pb = {a}, Pc = {a, b} and Pd = {a, b, c}.

Here, A.2 is satisfied but A.1 is violated. Consider the set {a, b, c, d}. We have Pa ∩
{a, b, c, d} = ∅ and hence, OPa∩{a,b,c,d} = 0. Thus, C({a, b, c, d}) = {a, b, c, d} 6= {x ∈
{a, b, c, d} | OPx∩{a,b,c,d} = k − 1

}
and A.1 is violated. �
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