Fiscal Austerity in Emerging Market Economies

Chetan Dave1 Chetan Ghate2 Pawan Gopalakrishnan3 Suchismita Tarafdar4

1NYU Abu Dhabi
2Indian Statistical Institute - Delhi
3Reserve Bank of India
4Shiv Nadar University

13th Annual Conference on Growth and Development

December 18-20, 2017
While there is a large literature on fiscal consolidation on economic activity in AEs, there is very little research in the context of EMEs.

- There is no general consensus regarding the short term effects of fiscal austerity. Consolidation typically has a contrationary effect on output in the short run in AEs. Domestic demand - consumption + investment - falls by about 1 percent. (IMF WEO, October 2010)
- Fiscal adjustments tend to be expansionary when they rely primarily on spending cuts (IMF WEO, October 2010)
- Contractionary fiscal expansions can occur in the long term (Alesina, 2010).

Some recent examples of fiscal contractions in EMEs:
- Malaysia (Malaysia Economic Monitor, 2016)
- India (meeting revised FRBM guidelines)
Introduction – Fiscal Deficit as % of GDP in India

Fiscal Deficit as % of GDP for India

Year

Fiscal Deficit as % of GDP

2010 2012 2014 2016 2018

(13th Annual Conference on Growth and Development)
There is a growing literature on EME business cycles using SOE RBC models

- Aguiar and Gopinath (2008), Neumeyer and Perri (2005), Chong and Fernandez (2013). But these papers don't have fiscal policy or debt dynamics.
- The Indian Case: Ghate, Pandey and Patnaik (2013); Ghate, Gopalakrishnan, and Tarafdar (2016)

There is a large literature on government spending shocks in the basic RBC model (Aiyagari et al., 2010; Baxter and King, 1993; Christiano and Eichenbaum, 1992; Gali, Lopez-Salido, and Valles, 2007)

- With infinitely lived Ricardian households, an increase in (non-productive) government spending purchases (financed by current or future lump sum taxes) lowers the present value of after tax income, and generates a negative wealth effect on consumption.
Introduction

- We merge the above literatures to understand:
 - What are the general equilibrium effects of fiscal contractions in a SOE RBC model with financial frictions?
 - What are the channels through which fiscal contractions can be expansionary in EMEs?

- We address this by adding public debt to a canonical (Neumeyer and Perri, 2005) "interest-rate" shock EME business cycle model
 - Like NP and GGT, the main financial friction is that firms face working capital constraints

- We extend these papers in two main ways
 - We add public debt to the framework in GGT. We also allow for sovereign risk premium to depend on public debt dynamics

- We calibrate/estimate the model using the approach in Sims (2001)
Main Result

- We identify the transmission mechanism of a variety of shocks on the macroeconomy.
 - TFP shocks, Interest Rate Shocks, Government Spending Shocks
- We derive conditions under which fiscal contractions can become expansionary.
Households derive utility from effective consumption \((C^*)\), leisure \((1 - H)\), and government debt \((D)\).

A representative household maximizes utility:

\[
\begin{align*}
\max_{\{C_t, H_t, D_t, K_t\}} & \quad E_0 \sum_{t=0}^{\infty} \beta^t \left[\mu \ln (C^*_t) + (1 - \mu) \ln (1 - H_t) + \varphi \ln (D_t) \right], \\
\text{subject to,} & \\
C^*_t &= C_t + \zeta G_t, \\
C_t + K_t - (1 - \delta) K_{t-1} + \frac{\phi}{2} K_{t-1} \left[\frac{K_t}{K_{t-1}} - 1 \right]^2 + D_t + \\
&\quad \frac{\kappa}{2} Y_t \left[\frac{D_t}{Y_t} - \bar{D} \right]^2 + b_t + \frac{\kappa}{2} Y_t \left[\frac{b_t}{Y_t} - \frac{b}{Y} \right]^2 \\
&\quad = (1 - \tau_w) W_t H_t + (1 - \tau_k) R_t K_{t-1} + R^G_{t-1} D_{t-1} + R^P_{t-1} b_{t-1} + T_t
\end{align*}
\]

Government spending is exogenous, i.e., \(G_t \sim CSSP\); the government also extends (imposes) a lump-sum transfer (tax) \(T_t\) to (on) households.
The government budget constraint is given by

\[G_t + R_t^G D_{t-1} + T_t = \tau_w W_t H_t + \tau_k R_t K_t + D_t, \]

(2)

\[R_t^G = R_t^* \eta_t \]

(3)

where,

\[\eta_t = \eta \exp \left(\frac{D_t}{Y_t} - \frac{D}{Y} \right) + \varepsilon_t \]

(Case 2)
The firm seeks to maximize it’s profits given by,

$$\max_{\{K_t, H_t\}} Y_t - R_t K_{t-1} - (1 - \theta) W_t H_t - \theta W_t H_t R^P_{t-1}, \quad (4)$$

subject to

$$Y_t = A_t K_{t-1}^\alpha H_t^{1-\alpha} \quad (5)$$

$$A_t \sim CSSP \quad (6)$$

$$R^P_t = R^G_t \Gamma_t \quad (7)$$
Estimation strategy

- We use a combination of calibration and maximum likelihood estimation to specify model parameters.
- Specifically, we calibrate all parameters except those governing the exogenous shock processes.
- To estimate, we linearize the model, solve that linear model using Sims (2001) to obtain the state space form

\[
X_{t+1} = FX_t + G\varepsilon_t \tag{8}
\]
\[
Y_t = H'X_t \tag{9}
\]

where \(Y_t \) denotes the vector of observed data of the same dimension as the number of exogenous stochastic processes in the model.
- Given the state space form, the Kalman Filter delivers a likelihood function for parameters not already calibrated.
We consider two cases: $\zeta < 1$ and $\zeta > 1$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.4</td>
</tr>
<tr>
<td>β</td>
<td>0.95</td>
</tr>
<tr>
<td>μ</td>
<td>0.5</td>
</tr>
<tr>
<td>ζ</td>
<td>${0.5, 1.2}$</td>
</tr>
<tr>
<td>τ_w</td>
<td>0.01</td>
</tr>
<tr>
<td>τ_k</td>
<td>0.01</td>
</tr>
<tr>
<td>δ</td>
<td>0.025</td>
</tr>
<tr>
<td>θ</td>
<td>0.01</td>
</tr>
<tr>
<td>κ_1</td>
<td>0.0001</td>
</tr>
<tr>
<td>κ_2</td>
<td>0.0001</td>
</tr>
<tr>
<td>ϕ</td>
<td>10</td>
</tr>
<tr>
<td>θ'</td>
<td>0.502</td>
</tr>
<tr>
<td>R^*</td>
<td>1.03</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>10</td>
</tr>
<tr>
<td>ξ</td>
<td>1.02</td>
</tr>
<tr>
<td>ρ_{R^*}</td>
<td>0.9750</td>
</tr>
<tr>
<td>ρ_A</td>
<td>0.5483</td>
</tr>
<tr>
<td>ρ_G</td>
<td>0.6</td>
</tr>
<tr>
<td>ρ_T</td>
<td>0.9781</td>
</tr>
<tr>
<td>σ_{R^*}</td>
<td>0.01</td>
</tr>
<tr>
<td>σ_A</td>
<td>0.01</td>
</tr>
<tr>
<td>σ_G</td>
<td>0.01</td>
</tr>
<tr>
<td>σ_T</td>
<td>0.01</td>
</tr>
<tr>
<td>B</td>
<td>-2</td>
</tr>
</tbody>
</table>
Case 1: Single period TFP Shock

\[\zeta = 0.5 \]

- Output falls, because of a fall in labor, which is due to an increase in consumption.
Case 1: Single period International interest rate Shock

$\zeta = 0.5$

- $R_t^* \uparrow \implies R^g$, and $R^p \uparrow$. This causes private consumption to fall and labor to increase. Since $Y_t = Y(H_t, K_{t-1})$, $Y_t \uparrow$
Case 1: Single period G Shock

\(\zeta = 0.5 \)

- \(G_t \downarrow \implies C_t \uparrow \). With a higher weight on \(C_t \) in \(C^*_t \), \(H_t \downarrow \). Since \(Y_t = Y(H_t, K_{t-1}), Y_t \downarrow \)
Case 1: Single period Gamma Shock

\[\zeta = 0.5 \]

This works in the same way as an interest rate shock
Case 2: Single period TFP Shock

ζ = 1.2
Case 2: Single period International interest rate Shock

$\zeta = 1.2$
Case 2: Single period G Shock

\[\zeta = 1.2 \]

- \(G_t \downarrow \implies C_t \uparrow \). With a higher weight on \(G_t \) in \(C_t^* \), \(H_t \uparrow \). Since \(Y_t = Y(H_t, K_{t-1}) \), \(Y_t \uparrow \).
Case 2: Single period Gamma Shock

\[\zeta = 1.2 \]

- Works the same way as an interest rate shock.
Concluding Remarks

- This project is ongoing
- We show that a fiscal consolidation may be expansionary in EMEs, but this crucially depends on the substitutability parameter between private consumption and government expenditure
- Contractionary fiscal policy is expansionary only when the weight on government expenditure in effective household consumption is high
- A shock to international interest rate and the sovereign debt spreads causes output to increase when the weight on government expenditure in effective household consumption is low
- Future work:
 - Quantifying and disaggregating the expansionary effect and the contractionary effect of a fiscal contraction
 - Identifying conditions under which the expansionary effect of a fiscal contraction dominates the contractionary effect
This project is ongoing

We show that a fiscal consolidation may be expansionary in EMEs, but this crucially depends on the substitutability parameter between private consumption and government expenditure.

Contractionary fiscal policy is expansionary only when the weight on government expenditure in effective household consumption is high.

A shock to international interest rate and the sovereign debt spreads causes output to increase when the weight on government expenditure in effective household consumption is low.

Future work:

- Quantifying and disaggregating the expansionary effect and the contractionary effect of a fiscal contraction.
- Identifying conditions under which the expansionary effect of a fiscal contraction dominates the contractionary effect.