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Abstract

This research connects two seemingly unrelated facts that have recently been documented in

developing countries, with important consequences for global health: (i) the weak association

between nutritional status, which we measure by BMI, and income, and (ii) the elevated risk of

diabetes among normal-weight individuals. Our model is based on a set point for BMI that is

adapted to food supply in the pre-modern economy, but which subsequently fails to adjust to rapid

economic change. During the process of development, some individuals thus remain at their low-

BMI set point, despite the increase in their income (food consumption), while others who have

escaped their set point (but are not necessarily overweight) are at increased risk of diabetes. The

model and the underlying biological mechanism, which are validated with micro-data from many

countries, can jointly explain inter-regional (Asia versus Africa) differences in nutritional status

and the prevalence of diabetes.
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1 Introduction

Two recently documented facts run counter to the conventional wisdom that economic development

leads to better health: first, the absence of a clear link between nutritional status and income in

developing countries (Deaton, 2007; Swaminathan et al., 2019) and second, a surge in diabetes, with

a surprisingly high prevalence of this condition among normal weight individuals, in these countries

(Narayan and Kanaya, 2020). Our objective in this paper is to develop and test a model with three

ingredients – adaptation, mismatch and a set point – that can explain these seemingly unrelated

observations. We discuss these ingredients in sequence below.

Two models of early-life adaptation or developmental plasticity have been proposed by evolutionary

biologists: (a) The developmental constraints model in which developing organisms in severely resource

limited environments make immediate tradeoffs to protect critical functions and improve survival in

early life (Barker, 1995). (b) The predictive model in which maternal cues in utero predict the (normal)

adult environment and the organism evolves accordingly in anticipation of future conditions (Gluckman

and Hanson, 2006). While the developmental constraints model will apply to birth cohorts that face

extreme or novel nutritional insults (Bateson et al., 2014), the predictive model will be relevant

when conditions in past generations are an accurate predictor of (average) conditions in the current

generation (Burgess and Marshall, 2014; Lind et al., 2020). The pre-modern (Neolithic) economy was

characterized by wide short-term fluctuations in food supply, but had growth rates close to zero for

centuries. The predictive model would have been especially relevant in such an environment, resulting

in a population whose body size was adapted to long-term (low) food supply, with the adaptation

varying across space with agroclimatic conditions (Pomeroy et al., 2019).

With economic development, there is a substantial increase in income. Figure 1, for example, plots

GDP per capita (in logs) for India from 1600 to 2016. Income is stable (declining mildly) for the first

350 years, after which it starts to increase steeply. This increase in income would have translated into

an increase in food consumption. The developmental origins of adult disease literature posits that the

resulting mismatch between current and ancestral consumption (to which the population is adapted)

has contributed to the high rates of diabetes in developing countries; e.g. Gluckman and Hanson

(2004); Wells et al. (2016); Narayan and Kanaya (2020). Our model places additional restrictions on

the relationship between diabetes and the mismatch, while simultaneously explaining the persistence

of undernutrition in these countries by characterizing the initial adaptation by a set point.

Many individuals (but not all individuals, as we will see) have a relatively stable set point for their

bodyweight throughout adult life (Müller et al., 2010, 2018). This set point is part of a homeostatic

(stabilizing) system that maintains the body’s energy balance against fluctuations in food intake by

making metabolic and hormonal adjustments.1 We posit that the set point for a given dynasty (family)

1Homeostasis is a fundamental concept in biology, which describes how physiological systems maintain an equilibrium
set point by counteracting environmental stresses. As discussed in Müller et al. (2010) and Speakman et al. (2011),
numerous studies indicate that when the energy balance is perturbed in either direction through a change in diet, the
body returns to its original weight once the nutritional constraint is released. Furthermore, energy expenditures are
modulated to resist the perturbation, indicating that the body is actively defending its set point.
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Figure 1: Evolution of Income in India
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Source: Maddison Project Database (2018)
GDP per capita is measured in 2011 US dollars.

is determined by food supply in the pre-modern economy. While the adapted set point would have

allowed pre-modern populations to maintain their energy balance, and to survive and reproduce, in

an environment characterized by low and fluctuating food supply, it becomes a liability if it persists

for multiple generations after the onset of economic development, as made precise below.

A property of all – physical and biological – homeostatic systems is that they can only self-regulate

within fixed bounds and will malfunction when the environmental stresses to which they are subjected

exceed a threshold level (Kültz, 2020).2 This implies that as long as current and pre-modern (ancestral)

consumption or, equivalently, income remain sufficiently close to each other, the body will successfully

defend its bodyweight set-point. Once the gap between current and pre-modern income crosses a

threshold, however, the body will no longer be able to defend the set point. Escape from the set point

is associated with imbalance in energy regulation, which will be accompanied by imbalance in related

(inter-linked) homeostatic systems. Failure of glucose homeostasis, in particular, manifests directly as

diabetes.

Although it may be appropriate to characterize the set point with respect to weight for a given

individual, we account for possible variation in height across generations by specifying a common

set point for members of a dynasty with respect to their BMI; i.e. weight conditional on height.

This normalization is especially useful for our analysis because BMI is a standard measure of adult

nutritional status and is also associated with the risk of diabetes.3 Based on the discussion above, it

2Stebbing (2009) uses this description of homeostasis (with a threshold) to explain the typical ‘dose-response’
relationship observed in toxicology: there is no effect of a toxin on the functioning of an organism until the concentration
reaches a threshold, after which the effect is increasing linearly with concentration. In our application, the toxin is
replaced by food intake, but the principle is the same.

3Height is another common measure of nutritional status and archaeological evidence indicates that Neolithic pop-
ulations adapted to low food supply by adjusting their stature (Pomeroy et al., 2019). Although this is not the focus

2



follows that there will be two types of individuals in a developing economy: (i) Those individuals who

remain at their pre-modern set point, despite the increase in their consumption, are partly responsible

for the weak association between nutritional status, which we measure by BMI, and income. (ii) Those

individuals who have escaped their set point, but are not necessarily overweight, are at increased risk

of diabetes and related metabolic disorders.

The partition of the population that we have described may not be permanent. The assumption

in many models of developmental plasticity is that the initial adaptation is epigenetic; i.e. it involves

changes in gene expression and, hence, will persist for a limited number of generations (Jablonka

and Raz, 2009; Lind and Spagopoulou, 2018). This would explain why European populations, which

were also under-nourished historically, no longer exhibit the traits we document in developing-country

populations.4 It would also explain the health experience of migrants from developing countries to

substantially wealthier advanced economies. For example, Alacevich and Tarozzi (2017) document

that the nutritional status of immigrants from South Asia (a historically poor region) to the U.K.

converges to the level of the native population very swiftly, presumably because they have escaped

their set points. Given the persistence in these set points, South Asian immigrants residing in the

U.K. and the U.S. are nevertheless many times more likely to have diabetes, conditional on their BMI,

than the native population (McKeigue et al., 1991; Oza-Frank and Narayan, 2010).

If data on income, BMI, and diabetes were available for each family (dynasty) over many gener-

ations, going back to the pre-modern era, then we could test the preceding argument directly. For

a given dynasty, we would expect to observe a discrete increase in BMI in a particular generation

in which the gap between current and ancestral income exceeded a threshold, with an accompanying

increase in the risk of diabetes. In the absence of such multi-generational household-level data, we

take a deductive, model-based, approach familiar to economists (but not biologists) that proceeds in

four steps.

First, by characterizing the evolution of income in the population across generations during the

process of development, the dynamic model laid out in Section 2 generates implications at any point

in time that do not require knowledge of ancestral income: (i) Although BMI is increasing in current

household income at all levels, there is a discontinuous increase in the slope of this relationship at

a particular income threshold. (ii) The risk of diabetes is constant below the same threshold and

increasing in current income above the threshold. Viewed through the lens of the model, these cross-

sectional relationships across households are informative about underlying causal relationships within

households (dynasties) over generations. However, such causal interpretations are only appropriate

of our analysis, we provide evidence supporting this complementary adaptation in Section 3.1. Moreover, while we
specify historical adaptation and contemporary diabetes risk with respect to BMI, Pomeroy et al. focus on a correlated
but distinct measure: lean mass. There is evidence that the risk of diabetes is negatively associated with lean mass,
conditional on BMI (Haines et al., 2022) and we will account for this when interpreting our results below.

4Cutler et al. (2006) note that there is a negative association between the risk of cardiovascular disease and income in
advanced economies and Deaton (2007) notes that the weak association between height and income that he documents
in developing countries is in sharp contrast with the corresponding associations in European populations. In these
populations, it has been postulated that the epigenetically determined pre-modern set point is replaced by (i) “settling-
points,” which the body does not defend (Müller et al., 2010), or (ii) by genetically determined upper and lower
“intervention points,” between which nutritional status responds flexibly to food intake (Speakman, 2007).
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if the model is correctly specified and, thus, much of the analysis will be devoted to validating the

model.

We verify the cross-sectional implications of the model in Section 3.1, using Hansen’s (2017)

slope-threshold test, with nationally representative household data from the India Human Develop-

ment Survey (IHDS). The weak association between BMI and household income below the estimated

threshold, which is located close to the median income level in the Indian population, explains (in

part) the persistence of undernutrition in that population. The steep increase in the risk of diabetes

with income above the same threshold, which corresponds to a BMI that is in the middle of the normal

range, helps explain the second stylized fact.5 Our interpretation of these twin findings is that BMI

and the risk of diabetes increase simultaneously and independently when an underlying homeostatic

system (maintaining a low BMI) breaks down. As discussed in Section 3.2, alternative determinants

of nutritional status and diabetes in developing countries, such as childhood illness, diet, and lifestyle

cannot plausibly explain these twin findings in the absence of a set point. Providing additional support

for our interpretation, the test of the model’s internal validity in Section 3.3 verifies not only that a

set-point threshold is present, but also the specific structure that is imposed on the threshold function

in the BMI-income relationship.

Next, we assess the external validity of the model. The core analysis focuses on the Indian popula-

tion because it is simultaneously characterized by high levels of undernutrition and a high prevalence

of diabetes. However, we expect the model to apply more generally, with the fraction of the population

having escaped the set point in a given country depending on its stage in the process of development

or, equivalently, the gap between current incomes and historical incomes. In line with the obser-

vation in Section 4.1 that the income-gap is greater in Indonesia than in India, the location of the

precisely estimated income threshold with Indonesia Family Life Survey (IFLS) data indicates that

three-quarters of the population has escaped its set point in that country. In contrast, per capita

incomes have changed very little over time in Africa, which implies that African populations remain

largely at their set points and explains why we are unable to detect a discontinuity with data from

the Ghana Socioeconomic Panel Survey (GSPS).

Although information on income, BMI and diabetes is only available in a limited number of data

sets, the Demographic Health Survey (DHS) and the WHO-STEPS surveys provide individual-level

information on BMI and diabetes (with biomarkers) for many countries. We use these data to examine

an additional implication of the model, which is that the positive association between the risk of

diabetes and BMI is characterized by a slope discontinuity (precisely estimated at a BMI of 21.8 with

Indian data) in Section 4.2. Moving from micro-data to cross-country comparisons in Section 4.3,

we document that BMI conditional on current income is greater in African than in Asian countries,

mirroring Deaton’s (2007) findings with height as the measure of nutritional status, whereas the

5Diabetes is self-reported and, hence, under-reported in the IHDS. For all analyses that utilize self-reported health
data in this paper, we thus construct a composite variable that indicates whether an individual has been diagnosed
with diabetes or with either of two highly correlated comorbidities: hypertension and cardiovascular disease (Petrie
et al., 2018). We validate this measure, which we refer to as “metabolic disease” to distinguish it from our measures
of diabetes based directly on biomarkers, in Sections 3.1 and 4.2.
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prevalence of diabetes conditional on BMI is greater in Asia (this is also observed with the micro-

data). We show that these seemingly unrelated findings can be interpreted through the lens of our

model, once we account for the fact that African populations remain largely at their set points and

that historical per capita incomes, which determine the set points, were higher in Africa than in Asia.

Finally, we validate the biological relationships that serve as the starting point for our model: (a)

BMI is determined by ancestral income, which is associated with the set point, below a threshold

and by current income above the threshold. (b) The risk of diabetes is increasing in the difference

between current and ancestral income, above but not below the same threshold. We do this by

constructing exogenous measures of ancestral (pre-modern) per household income at (i) the district

level with FAO-GAEZ crop suitability data in Section 5.1, using a method suggested by Galor and

Özak (2016), and (ii) at the village level in Section 5.2, using data on the agricultural revenue tax

that was collected by the British colonial government in 1871, based on its independent assessment

of local agricultural productivity. The district-level measures of ancestral income are merged with

the IHDS and IFLS datasets that we use to test the cross-sectional implications of the model for

India and Indonesia, respectively. The village-level measures, which are available for villages in the

modern Indian state of Tamil Nadu, are merged with data from the South India Community Health

Study (SICHS) which provides information on income, BMI and diabetes for a representative sample

of households in rural Vellore district. For these validation exercises, the location of the threshold is

derived from the cross-sectional tests discussed above.

CDC statistics indicate that 9.5% of diabetics in the U.S. are normal weight (with a BMI below

25). Using a more stringent BMI cutoff of 23, recommended for Asian populations, we find that

55% of diabetics in the 2015-16 round of the India DHS are normal weight. Our model provides an

explanation for this striking difference, based on a low-BMI set point that is specific to developing-

country populations and which determines both the BMI distribution and the risk of diabetes. We

will return to this observation in the concluding section where we discuss the policy implications of

our analysis.

2 The Model

2.1 Population and Income

The population consists of a large number of infinitely lived dynasties (families). Each dynasty consists

of a single individual in each generation, who is replaced by a single descendant in the generation that

follows. There is a fixed return on wealth in each generation; i.e. an income flow, which is consumed,

so that the stock is passed on (without depletion) to the next generation. We will thus use the

terms (permanent) income and wealth interchangeably in the discussion that follows. Income is the

same in each generation during the pre-modern era, in which epigenetic adaptation takes place, but

subsequently evolves. Denote the logarithm of the dynasty’s initial income by y0. Permanent income

in the modern economy is well approximated by the log-normal distribution (Battistin et al., 2009).
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We thus assume that each dynasty receives a permanent, additive and independent income shock uτ

in each subsequent period or generation τ , where uτ ∼ N(µ, σ2). Solving recursively, log-income of a

dynasty in period t is

yt = y0 + Ut, (1)

where Ut =
∑t

τ=1 uτ ∼ N(tµ, tσ2).6 For ease of exposition, we will denote tµ by µt and tσ2 by σ2
t .

2.2 Biological Relationships

We now characterize the biological relationships between (i) BMI and income, and (ii) the risk of

diabetes and income, during the process of economic development. This characterization is based on

the verbal description from the preceding section.

There is a positive and continuous relationship between (food) consumption and income in all

time periods.7 Focussing first on the initial period in which the set point is determined, it follows that

nutritional status, which we measure by BMI z0, is increasing continuously in pre-modern income y0,

as specified below:

z0 = a+ by0. (2)

In subsequent periods, each descendant’s body will defend her dynasty’s set point z0 in the face of

fluctuations in consumption that arise due to the permanent income shocks. However, as noted, the

body can only respond up to a point to deviations in income from the initial level, y0, that determined

the set point. There is thus a threshold α, such that BMI in period t,

zt =

{
a+ by0 if Ut ⩽ α

a+ byt if Ut > α
(3)

Equation (3) imposes the restriction that the (linear) relationship between BMI and income is the

same, below and above the threshold; what changes is the relevant measure of income, from y0 to yt.

Later in the analysis, we will validate the structure we have imposed in equation (3) by separately

estimating the b parameter, below and above the (estimated) threshold.8

Notice that we do not specify a lower threshold for the set point. Given low levels of food supply

in the pre-modern era, the population would have been adapted to defend the set point especially

6We do not include a dynasty-specific identifier when deriving and characterizing the income equation to simplify
notation.

7The implicit assumption is that individuals do not alter their behavior to account for the effect of the set point
on their nutritional status and the risk of diabetes during the process of development. This seems reasonable, given
that the effect of the set point on these outcomes is the subject of our inquiry and, thus, is not known to the general
population. This assumption also allows us to specify the biological relationships with respect to income rather than
(more proximate) consumption.

8While we focus on adaptation with respect to body size, in line with the modern evolutionary biology literature,
the “thrifty genotype” hypothesis (Neel, 1962) posits that body weight in historically undernourished populations will
be more responsive to the increase in food consumption that accompanies economic development. This implies that
there should be an additional yo · yt term above the threshold in equation (3), with a negative coefficient. If that were
the case, however, then we would fail the validation test that follows in Section 3.3.
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vigorously against downward fluctuations in consumption.9 Although mean income is increasing with

economic development in our model, the distribution of income shocks is unbounded and, hence, a

small number of dynasties could, nevertheless, face a sequence of very negative shocks that the body

could not defend. However, all societies have consumption-smoothing mechanisms in place to insure

against precisely such negative outcomes and these mechanisms improve with economic development.

We thus assume that dynasties always successfully defend the set point z0 in the face of negative income

shocks, either biologically or by taking advantage of social safety nets to augment their consumption.10

As long as income remains within the threshold associated with the dynasty’s set point, metabolic

and hormonal adjustments ensure that the increases in consumption that accompany the increases

in income due to economic development do not translate into increases in BMI. Once income crosses

the threshold, however, the body can no longer defend the set point and BMI starts to track current

income. As discussed in the preceding section, this simultaneously increases the risk of diabetes. As

in the developmental origins of adult disease literature, this risk is specified to be increasing in the

mismatch between current income, yt, and initial income, y0. The additional feature of our model

is that the income-gap only determines the risk of diabetes when it exceeds a threshold (and the

individual escapes the set point). The relationship between the probability of diabetes, P (Dt), and

income can thus be characterized as follows:11

P (Dt) =

{
γ1 if Ut ⩽ α

γ1 + γ2(yt − y0) if Ut > α
(4)

2.3 Cross-Sectional BMI-Income Relationship

Figure 2a describes the evolution of BMI across multiple generations (time periods) for a single dynasty,

based on the biological relationship specified above. For expositional convenience, we assume that the

dynasty only receives positive income shocks. Starting from an initial income, y0, the dynasty’s

income thus increases monotonically across generations. However, its members’ BMI will remain at

the dynasty’s set point, z0 = a + by0, until yt exceeds y0 + α. At that point in time, there will be a

discrete increase in BMI, after which BMI will track yt. If data over many generations, going back

to the pre-modern period, were available for each dynasty, then these implications could be tested

directly. In the absence of such multi-generational data, we proceed to derive the cross-sectional

association between BMI and income, as implied by equation (3), when a dynasty-specific set point

for BMI is present.

9This is consistent with the conventional view that the regulation of bodyweight is more responsive to weight
loss than to weight gain (Müller et al., 2010). For example, despite repeated weight cycling in response to seasonal
fluctuations in food supply, minimal bodyweight in a sample of rural Gambian women remained extremely stable
(within 1.5 kg.) over a period of 10 years (Prentice et al., 1992).

10Given that income shocks are positive on average and their distribution is symmetric, such redistribution is feasible.
We are effectively ignoring catastrophic common shocks, such as famines, that can shift set points in an entire birth
cohort. Such events have always been rare and are less relevant in the modern economy.

11γ1 > 0, γ2 > 0 in equation (4). The implicit assumption, which is consistent with recent evidence on diabetes
reversal is that the risk of diabetes can change in both directions over time as the individual’s BMI shifts on either
side of the threshold.
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Figure 2: BMI, Diabetes and Income

(a) Within a dynasty over time (b) Across households in the cross-section

We normalize so that the initial income distribution is bounded below at zero. We also do not

specify a lower threshold for the set point. It follows that all individuals with yt ≤ α must be at their

set point; some of these individuals will belong to dynasties that had initial incomes below α and

which subsequently increased their income by relatively little, whereas others will belong to dynasties

whose income has drifted down over time. Mean BMI at any given level of income yt ≤ α can then

be characterized by the following expression:

E(zt|yt) =
∫ yt

−∞
[a+ b(yt − Ut)]P (Ut | yt) dUt

where P (Ut|yt) is the conditional density function of Ut given yt. As shown in Appendix A, our dis-

tributional assumptions together with a simplifying (empirically validated) analytical approximation

allow us to express the preceding equation as follows:

E(zt|yt) =
∫ yt

−∞
[a+ b(yt − Ut)]

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )

dUt = a+ b
(
yt − eL(yt)

)
(5)

where eL(yt) = 1
Φ(yt;µt,σ2

t )

∫ yt
−∞ Utϕ(Ut;µt, σ

2
t ) dUt = µt − σtΛ

(
yt−µt

σt

)
and Λ(·) is the inverse Mills

ratio.

For individuals with yt > α, some will have crossed their set point threshold, while others (who

started with a higher initial income) will remain at their set point. The expression for mean BMI at a

given level of income yt > α thus includes both types of individuals. Incorporating the same analytical
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approximation and distributional assumptions as above:

E(zt|yt) =
∫ α

−∞
[a+ b(yt − Ut)]

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )

dUt

+

∫ yt

α

[a+ byt]
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )

dUt

= a+ b
(
yt − eH(yt)

)
(6)

where eH(yt) =
1

Φ(yt;µt,σ2
t )

∫ α

−∞ Utϕ(Ut;µt, σ
2
t ) dUt =

µtΦ
(

α−µt
σt

;0,1
)
−σtϕ

(
α−µt

σt
;0,1

)
Φ
(

yt−µt
σt

;0,1
)

Given the specifications of the eL(yt), e
H(yt) functions, we can derive the following result (the proof

is in Appendix A):

Proposition 1 (i) The slope of the BMI-income relationship is positive but less than b for yt ⩽ α

and greater than b for yt > α. (ii) There is a discontinuous change in the slope of the BMI-income

relationship at yt = α. (iii) There is no level discontinuity in the BMI-income relationship at yt = α.

The association between BMI and income implied by Proposition 1 is described graphically in

Figure 2b. Each dynasty transitions discretely to a higher BMI level, at a particular point in time, in

Figure 2a. This level-shift is smoothed out, and translates into a slope change at a particular income

level, when we derive the corresponding cross-sectional BMI-income relationship across dynasties, at

any point in time.

The preceding implication is robust to alternative specifications of the set point. Although an

epigenetically determined set point may be heritable, it will ultimately cease to be relevant once a

changed economic environment has been in place for a sufficient number of generations. Our model

thus describes the relationship between nutritional status and income over a finite number of gener-

ations during the initial phase of economic development. During this phase, we assume that the set

point, z0, determined in period 0, is fixed. However, an alternative specification would allow the set

point to adjust gradually across generations until it is no longer relevant. For example, the set point

could be specified as a weighted average of y0 and yt, with the weight on yt increasing over time.

Alternatively, the set point could be determined by initial conditions (income) in each generation.

Since income does not vary within periods in our setup, the set point in period t with this alternative

specification will then be parental income, yt−1. As shown in Appendix A, the alternative specifica-

tions generate the same qualitative predictions as Proposition 1. What distinguishes the benchmark

specification in equation (3) from the alternatives, as verified empirically in Section 5, is that BMI

below the estimated current-income threshold is determined exclusively by y0.

The test of internal validity, reported in Section 3.3, will provide additional and independent

support for our preferred specification of the set point and, more generally, the structure we have

imposed on the model. This stringent test is based on the observation, from equations (5) and (6),

that once eL(yt) and eH(yt), respectively, are subtracted from yt, the slope of the BMI-adjusted income

association will be the same (equal to b) below and above the estimated threshold. If the specification
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of the BMI-income relationship in equation (3), the distributional assumptions, or the analytical

approximation that we use to derive closed-form expressions for eL(yt), e
H(yt) were invalid, then we

would fail the test of internal validity.

2.4 Cross-Sectional Diabetes-Income Relationship

Taking as given the biological relationship between the probability of diabetes, P (Dt), and income, as

specified in equation (4) for a single dynasty, the corresponding association in the cross-section across

dynasties can be derived as follows:

Proposition 2 (i) There is no relationship between P (Dt) and yt for yt ⩽ α, and a positive relation-

ship for yt > α. (ii) There is a discontinuous change in the slope of the P (Dt) − yt relationship at

yt = α. (iii) There is no level discontinuity in the P (Dt)− yt relationship at yt = α.

The proof in Appendix A follows the same steps as the proof of Proposition 1. The P (Dt) − yt

relationship specified by Proposition 2 is described graphically in Figure 2b. This relationship is

qualitatively the same as the E(zt)− yt association, except that the slope is zero below the threshold.

This is because the risk of diabetes is constant (and the same) for all individuals who remain at their

set point and because all individuals below the income threshold are at their set point. Above the

threshold, in contrast, the risk of diabetes is increasing in income. This is due to (i) the greater

fraction of individuals who have escaped their set point, and (ii) the increased risk for those who have

escaped. Note that the model predicts that the E(zt)− yt and P (Dt)− yt associations will exhibit a

slope discontinuity at the same income level: yt = α.12

Proposition 1 indicates that BMI is increasing with income at all levels, more steeply above a

threshold, while Proposition 2 indicates that the risk of diabetes is only increasing in income above

the same threshold. Bringing the two implications together, it follows that there will be no association

between the risk of diabetes and BMI up to a BMI threshold (which corresponds to the underlying

income threshold) and a positive association thereafter. Although our analysis focuses on the BMI-

income and diabetes-income relationships, we will examine this additional implication of the model,

which is especially relevant for policy in Section 4.2.

3 Testing the Model

3.1 Cross-Sectional Analysis

The core data set that we use to test the model is the India Human Development Survey (IHDS). This

nationally representative household survey, which was conducted in 2004-2005 and 2011-2012, includes

detailed information on household income, nutritional status for adults residing in the household at

12Although we normalize so that the initial income distribution is bounded below at zero, it can more generally be
bounded below at some income level y

0
, in which case the threshold would be located at yt = y

0
+ α. This would

change the interpretation of the threshold location, but otherwise leave the analysis unchanged.
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the time of the survey, and the self-reported prevalence of different diseases among adult members

of the household. The survey includes, in addition, information on household composition, food

consumption expenditure in the last month, morbidity among the children in the last month, and

district-level geographic locators, which will be used to supplement the analysis.13

The key variables in our analysis – income, BMI and diabetes – are measured as follows:(i) Although

a dynasty consists of a single individual in each generation in our model, multiple individuals will reside

in a household in practice. Income is thus measured at the household level, as the average over the 2004

and 2012 rounds.14 This smooths out noise in the round-specific income measures and given that the

rounds were conducted nearly a decade apart, provides a more accurate estimate of the household’s

permanent income. We also report instrumental variable estimates below that account for reverse

causality and for measurement error in the income variable. (ii) Nutritional status is measured by the

BMI of the household head and his spouse in each survey round. BMI is defined as weight conditional

on height (kg./m2) and both height and weight are directly measured. (iii) Given that diabetes is

self-reported and, hence, under-reported in the IHDS, we construct a composite variable, “metabolic

disease,” which indicates whether a given individual has been diagnosed with diabetes or with either

of two highly correlated comorbidities: hypertension and cardiovascular disease. This indicator is

constructed for the household head and his spouse in each survey round, consistent with the implicit

assumption in the model that diabetes is reversible, and with recent experimental evidence (Taylor,

2013). Later in Section 4.2 we will validate our composite measure of diabetes by comparing it with

a direct indicator, based on biomarkers, obtained from the India DHS. We also verify below that the

tests of the model go through with self-reported diabetes alone.

We test the implications of the model by nonparametrically estimating the BMI-income and

metabolic disease-income relationships using the measures described above. Although our analysis

focuses on the association with income, other individual and household characteristics, which are

omitted from the model for expositional convenience, could independently determine BMI and the

risk of diabetes. All of the estimating equations in our analysis thus include the following standard set

of covariates: age in years (linear, quadratic, and cubic terms) and dummies for gender, caste group,

rural area, district and survey-round. These covariates are partialled out using the Robinson (1988)

procedure prior to the nonparametric estimation reported in Figure 3a.15

The vertical lines in Figure 3a mark the point where we locate an income threshold, based on the

13The Demographic Health Survey (DHS), which is used by Deaton (2007) also contains many of these variables.
However, the DHS is not suitable for our purposes because it only collects indicators of asset ownership, which must
then be converted into a crude wealth statistic using principal component analysis. The tests of the model, particularly
the statistical tests to locate a slope-change at an income threshold, cannot be implemented without fine-grained income
data. We will, however, use DHS data in Section 4.2 to examine the diabetes–BMI association that is implied by the
model.

14Household income, measured in thousands of Rupees per month, includes farm income, non-farm business income,
wage income, remittances, and government transfers. To make incomes in the two rounds comparable, we adjust
2004-2005 incomes to 2011-2012 prices. For rural areas, the correction is based on the Consumer Price Index (CPI) for
agricultural wage labor and for urban areas it is based on the CPI for industrial workers.

15Observations in the top and bottom 1% of the outcome distribution are excluded from the estimation sample in
all of our analyses. This ensures that the estimation results are not driven by extreme outliers.
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Figure 3: Nutritional Status and Metabolic Disease with respect to Household Income

(a) Nonparametric relationship
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(b) Threshold test

Source: India Human Development Survey (IHDS)
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, rural
area, district, and survey-round are partialled out prior to nonparametric estimation. The same set of covariates are
included in the estimating equation at each assumed threshold for the threshold test.
The vertical lines mark the estimated threshold location and the shaded areas demarcate the corresponding confidence
intervals. Cluster bootstrapped 5% critical values are used to bound the threshold location.

statistical test described below. The shaded area around each line marks the 95% confidence interval

for the threshold location, based on the same test. It is evident with each outcome that the association

with income is relatively weak below the estimated threshold, and much stronger above the threshold.

A slope discontinuity is not readily apparent with BMI as the outcome in Figure 3a. However, we

can detect its presence with a high degree of statistical confidence and sharper discontinuities will be

observed with other datasets (IFLS, SICHS) below. Notice also that the estimated threshold location

is slightly lower with BMI as the outcome. Such minor differences are to be expected, given that BMI

is directly measured, whereas metabolic disease (although diagnosed) is self reported. Nevertheless,

this discrepancy is not observed in the robustness tests that follow and in the subsequent analyses

with South Indian (IHDS) and Indonesian (IFLS) data.

The threshold locations and confidence intervals in Figure 3a are estimated using a procedure

developed by Hansen (2017). This procedure involves sequential estimation of the following piecewise

linear equation:

zi = β0 + β1yi + β2(yi − τ)× I(yi − τ > 0) + xiλ+ ϵi, (7)

where zi is an outcome of interest; e.g. BMI, yi is household i′s income, τ is the location of the income

threshold (which must be estimated), I(·) is an indicator function, β1, β2 are slope parameters, and xi

is a vector of additional covariates (the same covariates that are partialled out prior to nonparametric

estimation). This equation is estimated at different assumed income thresholds (values of τ), starting

at a very low income level and then covering the entire income range in small increments. An F-type
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Table 1: Piecewise Linear Equation Estimates - nutritional status and metabolic disease

Dependent variable: BMI metabolic disease
(1) (2)

Baseline slope (β1) 0.239∗∗ 0.002
(0.057) (0.002)

Slope change (β2) 0.940∗∗ 0.028∗∗

(0.066) (0.003)
Threshold location (τ) 1.65 1.90

[1.55, 1.75] [1.80, 2.05]
Threshold test p−value 0.000 0.000
Mean of dependent variable 22.002 0.074
N 76,949 148,928

Source: India Human Development Survey (IHDS)
Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular
disease. BMI is measured for adults present in the household at the time of the survey.
Logarithm of household income is the independent variable.
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, rural
area, district, and survey-round are included in the estimating equation.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.
∗∗ significant at 5%, based on cluster bootstrapped confidence intervals.

statistic is computed at each assumed threshold, based on a comparison of the sum of squared residuals

at that assumed threshold and the minimized value across all assumed thresholds. This statistic will

have a minimum value of zero by construction, and the assumed income threshold corresponding to

that value is thus our best estimate of the true threshold. If there is indeed a slope-change, then the

F-type statistic will increase steeply as the assumed threshold moves away (on either side) from the

income level at which it is minimized.

Figure 3b plots the F-type statistic across the range of assumed thresholds for each outcome.

The assumed threshold (income level) at which the statistic is minimized corresponds to the location

of the threshold in Figure 3a. The confidence interval for each threshold location in that figure is

determined by the points of intersection between the F-type statistic and the 5% critical value line

for the corresponding outcome in Figure 3b. The F-type statistic increases steeply as the assumed

threshold moves away from the income level at which it is minimized for both outcomes, allowing us

to locate the thresholds with a high degree of statistical confidence.

The same (wild) bootstrap procedure, clustered at the level of the primary sampling unit, that is

used to compute the critical values and, hence, the 95% confidence interval for the threshold location

in Figure 3b can also be used to compute standard errors for the slope coefficients, β1 and β2, in a

piecewise linear equation estimated at the threshold we have located.16 Moreover, a similar bootstrap

16Following Hansen (2017) and Roodman et al. (2019), a coefficient’s significance at the 5% level is determined by
cluster bootstrapped 95% confidence intervals. For ease of exposition we report cluster bootstrapped standard errors
for each coefficient.
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procedure can be used to test our statistical model with a slope change at an income threshold,

as described in equation (7), against the null hypothesis that there is a linear relationship between

household income and each of the outcomes. These results are reported in Table 1. We can easily

reject the null that the relationship is linear, without a discontinuity at a threshold, with each outcome.

This does not rule out the possibility that the true relationship is actually (highly) nonlinear, without

a discontinuity. However, the test of internal validity that follows in Section 3.3 will provide statistical

support for the specific structure we have imposed on the model.

The reported point estimates of the baseline slope coefficient (β1) and the slope-change coefficient

(β2) are obtained at our best estimate of the true threshold, τ , for each outcome. As implied by

our model with a set point, the slope increases to the right of the threshold with each outcome (the

slope-change coefficient is positive and significant). Moreover, the slope to the left of the threshold is

positive and significant with BMI, but not with the risk of diabetes (measured by metabolic disease)

as the outcome.17 The estimated threshold location ranges from 1.65 to 1.9 for the two outcomes and

the median income in our nationally representative sample of households is 1.8. This implies that the

lower half of the income distribution in India remains at its pre-modern BMI set point, whereas the

upper half is at risk of diabetes.

We complete this section by verifying the robustness of this evidence in a number of ways. (i)

Appendix B1: We include measures of household composition, which could independently determine

decisions and behaviors that are relevant for nutritional status and health outcomes as additional

covariates in the estimating equation.18 We also construct a nonparametric shift-share instrument

for household income, based on national-level growth in agricultural crop values over the 1966-2015

period, weighted by crop acreage shares at the district level in 1966, and then interacted with the

rural dummy and household land ownership.19 The instrumental variable estimates, which are based

on exogenous changes in the Ut component of current income, account for measurement error in the

permanent income variable, as well as for possible reverse causality; i.e. the effect of BMI or metabolic

disease on household income. (ii) Appendix B2: We separate men and women. (iii) Appendix B3:

We separately examine the components of BMI (height, weight) and metabolic disease (diabetes,

hypertension, cardiovascular disease), as described below.

Although height is not the focus of our analysis, archaeological evidence indicates that stature

was also adapted to pre-modern food supply (Pomeroy et al., 2019). Replacing BMI by height in

our model, we would then expect a discontinuous association between height and income and this is

indeed what we see in Appendix B3. Height varies relatively little across the range of incomes in our

data. This implies that the weight-income relationship should match the BMI-income relationship

reported above, which, once again, is what we find (with a slope discontinuity at almost the same

17The number of observations in Column 2 is substantially greater than in Column 1 for two reasons: (i) BMI, based
on height and weight, can only be measured for adult individuals who were physically present at the time of the survey
interview. (ii) BMI data were only collected for a small number of adult men in the 2004-2005 round.

18Household income and household composition are closely related, which is why we exclude these variables from
the estimating equation in the benchmark specification.

19The nonparametric instrumental variable estimation follows Newey et al. (1999) and the estimates are validated
with tests of the shift-share instrument developed by Goldsmith-Pinkham et al. (2020). See Appendix B1 for details.
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income level). Unpacking the components of our metabolic disease measure, we observe in Appendix

B3 that the risks of diabetes and hypertension track very closely with income and that the precisely

estimated threshold location is the same for both disorders. Although a slope discontinuity cannot

be detected statistically with cardiovascular disease, it exhibits the same qualitative association with

income.

3.2 Alternative Explanations

The additional covariates in the estimating equations are included to account for independent de-

terminants of nutritional status and metabolic disease in India. For example, spatial variation in

food tastes, as emphasized by Atkin (2013, 2016), or in the disease environment, as documented by

Dandona et al. (2017), are captured by the district dummies and the rural dummy. However, such

controls may not be complete and the discussion that follows thus considers alternative explanations

for our results. Any alternative explanation must first generate the discontinuous association between

BMI and income that we have uncovered (and will further validate in Section 3.3).

We begin by examining the possibility that there is a discontinuous relationship between income

and two important proximate determinants of nutritional status (BMI) in developing countries: nu-

trient intake and childhood illness, particularly diarrhoeal disease (Scrimshaw et al., 1968). Nonpara-

metric estimates of the nutrient intake-household income relationship are reported in Figure 4a and

corresponding estimates of the children’s illness-household income relationship are reported in Figure

4b, using IHDS data. Nutrient intake is measured by the consumption of calories and fat (in grams)

at the household level. Childhood illness is measured by whether the child is reported to have had

diarrhea and cough in the past month. The standard set of covariates, plus household composition and

the number of adults engaged in physical labor are partialled out prior to estimation using Robinson’s

procedure. The additional covariates are included to condition for energy expenditures, since energy

(nutrient) intake net of these expenditures determines nutritional status.20 We see that there is a posi-

tive and continuous relationship between the intake of calories and fat and household income in Figure

4a, as assumed in our model. In addition, there is a negative and continuous relationship between

the incidence of both diarrhea and cough with household income in Figure 4b. Indeed, Hansen’s test

fails to locate a slope-change at any assumed threshold in Figures 4c and 4d.21 The same result (not

reported) is obtained with other measures of nutrient intake – sugar consumption – and children’s

illness – the incidence of fever.22

Selective child mortality, which Deaton (2007) considers as an explanation for his findings, could

20Ng and Popkin (2012) decompose total energy expenditures into types of activity: work, active leisure, travel, and
domestic tasks. The work category accounted for over 80% of the total energy expenditure in 2000 and 2005 in India.

21We increase the sample size and, hence, the likelihood of detecting a threshold when estimating the children’s
illness-income relationship by including children aged 0-19. Tests that separate the children into 0-5 year olds and 5-19
year olds also fail to detect a threshold.

22Appendix Figure B5 examines the relationship between household income and expenditures on nine food categories:
wheat, rice, cereals and derivative products, meat and eggs, milk and derivative products, pulses, vegetables, sugar
and derivative products, and oil. Although a positive association is observed with each category, a slope discontinuity
cannot be detected with any category.
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Figure 4: Nutrient Intake and Children’s Illness with respect to Household Income

(a) Nutrient intake (b) Children’s illness
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(c) Nutrient intake
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(d) Children’s illness

Source: India Human Development Survey (IHDS).
For the nutrient intake figures, the following covariates are partialled out prior to nonparametric estimation and included
in the estimating equation at each assumed threshold: reported local price of rice, wheat, cereals and their derivative
products, pulses, meat, sugar, oil, eggs, milk and its derivative products, vegetables and dummies for the number of
children, adults, and teens in the household, dummies for the number of adults engaged in physical labor, caste group,
rural area, district, and survey-round.
For the children’s illness figures, age (linear, quadratic, and cubic terms) and dummies for gender, birth order, caste
group, rural area, district and survey-round are partialled out prior to nonparametric estimation and included in the
estimating equation at each assumed threshold.
Cluster bootstrapped 5% critical values are used to bound the threshold location.

generate a discontinuous BMI-income association, as shown in Appendix C. Poverty trap models

generated by undernutrition; e.g. Dasgupta and Ray (1986) could also generate a discontinuity because

of the feedback from BMI to income below a threshold.23 However, neither of these explanations

23When poverty traps are generated by credit constraints and non-convexities, as in Galor and Zeira (1993) and
Banerjee and Newman (1993), households with sufficiently low initial income will remain permanently at that level.
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stands up to closer scrutiny. As discussed in Appendix C, the discontinuity generated by selective

child mortality is driven by households at the lower end of the BMI distribution at each income level

and quantile regressions do not detect such variation in the BMI-income association. The poverty trap

model does not imply a role for ancestral income, conditional on current income, below the threshold,

which is at odds with our model and the results in Section 5. Moreover, our instrumental variable

estimates, reported in Appendix B1, account for possible reverse causality from BMI to income in any

case.

Although it is difficult to come up with an alternative explanation for the discontinuous BMI-

income association, it is possible (albeit unlikely) that an unobserved component of nutrient intake, or

physical activity, is changing discontinuously at the income level at which we observe the discontinuous

increase in BMI. However, any alternative explanation would also need to explain why (i) BMI and

metabolic disease do not initially track together with respect to income, (ii) why both outcomes

increase discontinuously at the same income level, and (iii) if BMI is the source of forcing variation,

why a marginal increase in BMI, starting from a base level below 22 as we will observe, should generate

an increase in the risk of metabolic disease. In our model, BMI and the risk of diabetes change

simultaneously, at a BMI level that is well within the normal range, because they are independently

impacted by the failure of an underlying homeostatic system, which is specific to developing country

populations. The tests of external validity in Section 4 and the biological mechanism in Section 5

provide additional support for this interpretation of the results.

3.3 Internal Validity

Our assumption that the body defends its inherited (pre-modern) set point up to a threshold has not

been previously verified in developing country populations. Moreover, the model places additional

structure on the threshold function in equation (3) by specifying that there is a linear relationship,

with slope b, between BMI, zt, and income, both below and above the threshold, with the relevant

income measure switching from y0 to yt. The analysis that follows empirically validates the threshold

assumption, the specific structure we have imposed on the threshold function in the BMI-income rela-

tionship, the distributional assumptions underlying the income generating process, and the analytical

approximation that is used to derive closed-form expressions for eL, eH .

Given our modeling assumptions, equation (3) implies the following cross-sectional zt−yt relation-

ships, below and above the threshold, respectively:

E(zt|yt) = a+ b(yt − eL(yt))

E(zt|yt) = a+ b(yt − eH(yt)).

Expressions for the adjustment terms, eL(yt), e
H(yt), as functions of yt and the parameters α, µt ≡ tµ,

and σ2
t ≡ tσ2 are derived in equations (5) and (6). If the parameter values can be independently

This will change the distribution of current income, but without a set point there will be no discontinuity in the
cross-sectional BMI-income association.
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obtained, then the appropriate adjustment term can be computed for each yt. Once the adjustment

term is included in the estimating equation, the structural slope parameter, b, can be independently

estimated, below and above the income threshold. If the structure we have imposed on the model is

empirically valid, the estimated b parameter will be statistically indistinguishable below and above

the threshold.

The value of the α parameter can be obtained directly from the estimated location of the threshold

in the cross-sectional tests. To determine the value of t, recall from Figure 1 that economic development

in India commenced in the middle of the twentieth century. If each generation spans 30 years, then

the grandparents of current working-age adults would have been the first generation to experience

development; i.e. we are now in generation t = 3 of the model. To estimate the parameters of the

distribution of income shocks, µ and σ2, we require data on the income distribution over multiple

time periods or generations. The distribution of pre-tax national income is available from the World

Inequality Database from 1951 onwards for India (Chancel and Piketty, 2017). Assuming that each

generation spans 30 years, as above, we use the (real) income distribution in 1951, 1981, and 2011

and, in particular, the change in these distributions, to estimate the µ and σ parameters.24

Table 2 reports coefficient estimates from a piecewise linear equation, using IHDS data, with adult

BMI as the outcome. The standard covariates, in addition to household income, are included in

each estimating equation. The slope-change in the estimating equation is imposed at the income level

where the threshold was previously located. Column 1 reports benchmark estimates without including

the eL(yt), e
H(yt) adjustment terms. This specification is essentially the same as what we estimated

earlier in Table 1, except that we now report the slopes below and above the threshold (rather than

the slope-change). Column 2 reports estimates with the adjustment terms included in the estimating

equation. The slope coefficients can now be interpreted as the structural, b, parameter in the model.

Although we can easily reject the null hypothesis that the slopes below and above the threshold are

equal in Column 1, without the adjustment, we cannot reject the null once the adjustment terms

are included. Indeed, the point estimates of the slope coefficient are now remarkably similar, below

and above the threshold. A comparison of the point estimates indicates, in addition, that the slope

without the adjustment term is less than (greater than) b, below (above) the threshold, as implied by

Proposition 1.

Figure 5a examines the sensitivity of the slope coefficient estimates in Table 2, Column 2 to different

values of the threshold, α, parameter. We see that the slope coefficients below (above) the specified

threshold are increasing (decreasing) in α and coincide just around the value that we assign to that

parameter in Table 2 (marked by the vertical lines in Figure 5a). Appendix Figure B6 repeats this

exercise for the three remaining parameters of the model: µ, σ, t. As with α, we see that the slope

24The World Inequality Database provides the 99 fractiles of the income distribution; p0p1, ..., p98p99, where pxpy
refers to the average income between percentiles x and y, in each of the three years. We set the number of dynasties in
the economy to be equal to 10,000. We draw 10,000 times from the 1951 income distribution, with each fractile being
equally represented, to generate the initial income distribution. For a given value of µ and σ2 this allows us to simulate
the income distribution in 1981 and 2011. Our best estimate of the parameters of the income-shock distribution is the
value of µ and σ2 for which the simulated income distribution in 1981 and 2011 matches most closely with the actual
distribution.
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Table 2: Piecewise Linear Equation Estimates - with and without adjustment terms

Dep. variable: BMI

Specification: without with
adjustment adjustment

(1) (2)

Slope below threshold (βL) 0.223∗∗∗ 0.735∗∗∗

(0.048) (0.035)
Slope above threshold (βH) 1.140∗∗∗ 0.797∗∗∗

(0.035) (0.084)

F−statistic (βL = βH) 234.45 0.45
[0.000] [0.502]

Imposed threshold 1.65 1.65

N 76,949 76,949

Source: India Human Development Survey (IHDS)
Logarithm of household income is the independent variable.
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, rural
area, district, and survey-round are included in the estimating equation.
Least squares standard errors are reported in parentheses and p−values associated with F-statistic are in square
brackets.
∗ significant at 10%, ∗∗ at 5% and ∗ ∗ ∗ at 1%

coefficients coincide just around the values that we assign to the µ, t parameters in Table 2 (the slope

coefficients are largely insensitive to the value of σ). These results indicate that all three parameter

values need to line up precisely to equalize the slope coefficients in Table 2, which is especially striking

given that these values are derived independently from different sources: the value of α is based on

the income threshold location estimated with IHDS data, the value of µ is derived from the World

Inequality Database, and t is based on the changes in per capita income over many centuries reported

in Figure 1.

One benefit of the structural estimation is that it allows us to validate our modeling assumptions.

An additional benefit is that it allows us to quantify the consequences of the set point for nutritional

status. If the set point is irrelevant, there will be a linear relationship between BMI and household

income: E(zt) = a + byt. Figure 5b reports the relationship between income and (i) observed BMI,

(ii) predicted BMI based on the estimated model, and (iii) counter-factual BMI in the absence of a

set point. The standard set of covariates are partialled out, and the dotted vertical line in the figure

marks the location of the estimated income threshold. Despite the model’s parsimonious structure,

and the simplifying assumptions we need to make to estimate its parameters, we see that the model

fits the data very well. In our data, 20% of adults are underweight (with a BMI below 18.5). Based

on the parameter estimates, the fraction of underweight adults would decline by 24% if the set point
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Figure 5: Sensitivity of Slope Coefficients with respect to Parameter Values and Counter-factual
Nutritional Status
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Source: India Human Development Survey (IHDS)
Panel (a) plots the estimated slope coefficients, below and above the threshold, with respect to the value of the threshold
location. The vertical line marks the parameter value (threshold location) that we use for estimation in Table 2. Panel
(b) plots the nonparametric relationship between actual, predicted and counter-factual BMI against the logarithm of
household income. The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender,
caste group, rural area, district, and survey-round are partialled out prior to nonparametric estimation.

were absent. The observed dampening of the nutritional status-current income relationship below

the threshold, which we attribute to a predetermined set point, has important consequences for adult

nutritional status in India.

4 External Validity

4.1 Tests With Respect to Income

The next step in the analysis assesses the applicability of the model to other developing countries. To

test the cross-sectional implications of the model, the following data are required: (i) Household in-

come, preferably at multiple points in time. (ii) Nutritional status (BMI). (iii) Indicators of metabolic

disease. (iv) Individual characteristics and detailed geographical indicators. The additional require-

ment is that a large sample is needed to locate a slope-change with precision. A search of publicly

available data sets from other countries recovered two data sets that are suitable to test our model: the

Indonesia Family Life Survey (IFLS) and the Ghana Socioeconomic Panel Survey (GSPS), although

the GSPS does not contain information on metabolic disease.25

While a set point may be present in other developing countries, the fraction of the population

25Other well known data sets that we considered, but were determined to be unsuitable, include the Demographic
Health Survey (DHS), the Living Standards Measurement Study (LSMS), Young Lives, and the China Health and
Nutrition Survey (CHNS).
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that has escaped its pre-modern set point in a given country will depend on the difference between

current and historical (pre-modern) income. While roughly half the Indian population has escaped

its set point, at what stage in the process of development are Indonesia and Ghana? To answer

this question, we proceed to compare current and historical incomes across countries. It is standard

practice to use adult height as a proxy for income, and the standard of living, in historical research.

We thus use historical adult height to measure historical income.26 Figure 6a plots the relationship

between per capita GDP in 2010 and adult height for individuals born in 1900, which is available

for a number of developing countries including India, Indonesia, and Ghana.27 Figure 6b plots per

capita GDP in 2010 and 1960 (the first available year) against adult height for the 1900 birth cohort.

The first point to take away from the figures is that historical per capita incomes, measured by adult

heights, were higher in Africa.28 The second point to take away from the figures is that the gap

between current income in 2010 and historical income, measured by height in 1900 or even income in

1960, is greater in Asian countries than in African countries. This is also true for the specific countries

that we care about, with a larger income-gap in India and Indonesia than in Ghana (where per capita

incomes were largely unchanged from 1960 to 2010).

Figure 7a nonparametrically estimates the relationships between adult BMI, the risk of metabolic

disease, and household income using Indonesia Family Life Survey (IFLS) data. The same set of

covariates that were included in the estimating equation with Indian data are included here as well,

except that the district is replaced by the regency and caste is replaced by ethnicity. These covariates

are partialled out, using Robinson’s procedure, prior to nonparametric estimation. The IFLS has been

conducted in five waves. To be consistent with the analysis using IHDS data in 2005 and 2011, the

outcomes with IFLS data are measured in the last two (2007 and 2014) waves. However, household

income is averaged over all available waves to span as wide a time-window as possible and to smooth

out transitory income shocks. The vertical lines in the figure mark the income levels at which Hansen’s

test locates thresholds for each outcome in Appendix Figure B7a and the shaded areas demarcate the

corresponding confidence intervals. The estimated threshold locations are extremely close to each

other, with an almost complete overlap in the confidence intervals. Moreover, as documented formally

in Appendix Table B4, there is a weak association between household income and each outcome below

the estimated threshold and a positive and significant slope-change above the threshold. The gap

26As noted by Deaton (2007), genes are important determinants of individual height (and nutritional status more
generally) but cannot explain variation across populations. Recall from the model that nutritional status, which we
measure by BMI but which also includes stature, is increasing continuously in contemporaneous income in the pre-
modern economy. This relationship only weakens in subsequent periods (generations) with economic development on
account of the persistent set point.

27We include all countries in South and South East Asia and Sub-Saharan Africa that satisfy the following require-
ment: their GDP per capita must be less than $10,000, which roughly corresponds to the upper bound for lower-middle
income countries set by the World Bank. The same criterion is applied in the cross-country analysis below.

28This is consistent with archeological evidence that South Asian populations had relatively low nutritional status
(Pomeroy et al., 2019), although we make a broader Asia-Africa comparison. Notice in Figure 6b that there is no
apparent relationship between 1960 income and 1900 height across countries, in contrast with the negative relationship
that is observed with 2010 income. Given the change in the slope over time, we expect that the sign would have
reversed – turned positive – if cross-country income data were available a few decades prior to 1960, consistent with
the assumption that historical heights and incomes are positively correlated.
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Figure 6: Current and Historical Income Across Countries
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Source: NCD-RisC and Penn World Table 9.0
Historical income is measured by height in the 1900 birth cohort.

between current and historical income is even greater in Indonesia than in India in Figure 6. We

would thus expect a larger fraction of the population to have escaped its set point in Indonesia and,

based on our estimates of the threshold location with respect to the income distribution, it appears

that three-quarters of the Indonesian population has indeed crossed the threshold.

Figure 7b reports the nonparametric relationship between adult BMI and household income, using

data from the Ghana Socioeconomic Panel Survey (GSPS). As noted, the GSPS does not collect data

on metabolic disease. However, the full set of covariates that were used in the Indian and Indonesian

analyses are available, with tribal affiliation replacing caste category and ethnicity, respectively. These

covariates are partialled out prior to nonparametric estimation, as usual. The GSPS was conducted

in three waves; 2009-2010, 2013, and 2017. The outcomes are measured in the 2009-2010 and 2013

waves, which correspond most closely to the IHDS waves, while household income is averaged over

all three waves. In contrast with the discontinuous relationships that we estimated with Indian and

Indonesian data, nutritional status is increasing smoothly with income in Figure 7b. Formal statistical

support for this observation is provided in Appendix Figure B7b, where the Hansen test is unable to

detect an income threshold. As reported in Appendix Table B4, there is a positive and statistically

significant association between adult BMI and household income in Ghana. Where the Ghana data

differ from the Indian and Indonesian data is that there is no slope change. Our interpretation of this

finding, which is in line with the observation that current and historical incomes are relatively close

in Africa (and in Ghana) is that the bulk of the Ghanaian population remains at its pre-modern set

point. Additional support for this interpretation is provided below.
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Figure 7: Nutritional Status and Metabolic Disease with respect to Income (Indonesia and Ghana)

(a) Nonparametric relationships (Indonesia). (b) Nonparametric relationship (Ghana)

Source: Indonesia Family Life Survey (IFLS), Ghana Socioeconomic Panel Survey (GSPS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, ethnicity (Indonesia) or
tribe (Ghana), rural area, regency (indonesia) or district (Ghana), and survey-round are partialled out prior to
nonparametric estimation.
The vertical line marks the threshold location and the shaded region demarcates the cluster bootstrapped confidence
interval.

4.2 Tests With Respect to BMI

Although few surveys collect information on income, BMI and metabolic disease, many health-focussed

surveys have collected information on BMI and specific diseases, including diabetes (with biomarkers).

These include recent rounds of the DHS (India 2015-16, Bangladesh 2011 and 2017-18, Namibia 2013),

WHO-STEPS surveys (16 African countries and 5 Asian countries) and the 2014 round of the IFLS.

These data allow us to test an additional implication of the model derived in Section 2.4, which is that

there is no association between the risk of diabetes and BMI up to a threshold BMI, and a positive

association thereafter.29

Our tests of the diabetes-BMI association begin with data from India. The IHDS, which we use

for the core analysis, includes 150,000 observations on metabolic disease (diabetes, hypertension, car-

diovascular disease) over two rounds and the 2015-16 round of the DHS includes diabetes information

(with biomarkers) for as many as 770,000 adults. Nonparametric estimates of the association between

metabolic disease or diabetes and BMI are reported in Figure 8a, after partialling out the additional

covariates in the estimating equation as usual. We locate a threshold at precisely the same BMI –

21.8 – with both datasets.30 It has been recommended, without supporting statistical evidence, that

29Other obesity indicators; e.g. waist circumference, waist-hip ratio have also been associated with diabetes. However,
these indicators are highly correlated and meta-analyses indicate that the three indicators have similar associations
with diabetes (Vazquez et al., 2007).

30Matching the figure, we estimate a positive and significant slope change above the estimated threshold in Appendix
Table B5. However, we also estimate a positive and significant (albeit small in magnitude) coefficient below the
threshold, which is not implied by the model. This positive association is also observed in the inter-regional analysis
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Figure 8: Reported Metabolic Disease, Measured Diabetes, and BMI
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Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS), Demographic and Health
Survey (DHS), WHO STEPS
For panel (a), the standard set of covariates: age (linear, quadratic and cubic terms), and dummies for gender, caste
group, rural area, and survey-round for IHDS data are partialled out prior to the nonparametric estimation. For
panel (b), age (linear, quadratic and cubic terms), and dummies for gender, country, and survey year are partialled
out prior to the nonparametric estimation.

the lower bound for the overweight range in Asian populations be reduced from 25 to 23, to account

for the fact that these populations are at elevated risk of diabetes at lower BMI (Deurenberg-Yap et

al., 2002; Pan et al., 2004). Our estimates indicate that the risk of diabetes increases discontinuously

at an even lower threshold and to put this difference in perspective, we note that 11% of adult Indians

have BMI’s between 21.8 and 23 (based on the DHS sample).

As discussed, diabetes with IHDS (and IFLS) data is measured by a composite variable, which

indicates whether a given individual has been diagnosed with diabetes or with highly correlated

comorbidities (hypertension, cardiovascular disease). In contrast, the analysis with DHS data is based

on objective biomarkers (blood sugar levels exceeding 125 mg/dL) for diabetes. Although reported

levels are higher with DHS data in Figure 8a, on account of the under-counting with self reported

data, notice that the two measures track closely across the range of BMI’s once the levels are adjusted,

validating the composite measure of diabetes that we have used thus far in the analysis.

The discontinuity that we detect in Figure 8a arises because there is a discontinuous increase in

both BMI and the risk of diabetes at a threshold income level. Lean mass, a component of BMI

that is emphasized by Pomeroy et al. (2019), would also likely increase at that level, but this would

have a dampening effect on the risk of diabetes (conditional on BMI). In contrast, the inter-regional

comparisons of the diabetes-BMI association that follow could potentially be independently explained

by variation in lean mass (conditional on BMI) across regions. We do not attempt to disentangle

that follows in Figure 8b. One explanation for the positive association, in line with the conventional view, is that an
increase in BMI has a direct effect on the risk of diabetes.
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these channels; our objective with the inter-regional comparisons is to verify that they are in accord

with the implications of the model, while allowing for co-existing mechanisms.

Sample sizes for the diabetes-BMI analysis with Indian data, from the IHDS and DHS, are an order

of magnitude larger than what are available for other countries from the DHS, WHO-STEPS, and

IFLS (with biomarkers), ranging from 2,000 to 9,500 observations. Not surprisingly, we cannot locate

a slope discontinuity with statistical confidence separately by country with these datasets and, hence,

we proceed to pool individual-level data into two regions: Asia and Africa. Based on the inter-regional

income dynamics reported in Figure 6 and the results for India in Figure 8a, we infer that African

populations are largely at their set points, whereas Asians will start to escape when their BMI’s cross

a relatively low threshold. Once we pool Asian countries with different thresholds, we do not expect to

observe a discontinuity, as in Figure 8a. The expectation, instead, is that diabetes prevalence will be

increasing with BMI in both regions, with a divergence at higher BMI levels as an increasing fraction

of Asian populations escape their set points. This is indeed what we observe in Figure 8b and the same

broad cross-regional patterns are observed when the diabetes-BMI associations are reported country

by country in Appendix Figure B8.31

4.3 Cross-Country Analysis

We complete the tests of external validity by shifting the analysis from the individual level to the

country level. The nutrition-income puzzle that Deaton (2007) uncovered is that nutritional status,

which he measures by height, is lower in South Asia than what would be predicted by GDP per capita,

whereas the reverse is true for Africa. Our model, adapted to a cross-country setting with aggregate

data (and a country-specific set point) can generate the same fact, but with BMI as the measure

of nutritional status. Consider an Asian and an African country with the same current income (per

capita GDP). Looking back at Figure 6, the African country will have higher historical income, which

determines the set point. Assuming, as above, that the population in the African country is largely

at its set point, its BMI will be determined by historical income. In contrast, BMI in the Asian

population, which is on both sides of the set point, will be a weighted average of (lower) historical

income and (higher) current income. If a sufficiently large fraction of the Asian population remains at

its set point, then its BMI will be lower than the African population with the same current income.

This is what we observe in Figure 9a using cross-country data from NCD-RisC. Focusing on the income

region in which both Asian and African countries are represented, Asian BMI’s lie disproportionately

below the trend line.

Although other mechanisms have been proposed to explain the weak association between nutri-

tional status and income in developing countries, an appealing feature of our mechanism, based on a

31Geographic indicators at the district level and ethnic affiliation are unavailable in the WHO-STEPS surveys. We
thus partial out a reduced set of covariates – age (linear, quadratic and cubic terms) and dummies for gender, country
and survey year – using the Robinson procedure, prior to nonparametric estimation in Figure 8b. Only STEPS
countries that lie entirely south of the Sahel are included in Africa and two outlying Asian countries with implausibly
low diabetes rates – Vietnam (2.3%) and Cambodia (1.8%) – are excluded from the sample. Depending on the survey,
diabetes is defined by a blood sugar level exceeding 125 mg/dL or 7 mmol/L.
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historically determined set point is that it also has implications for the emergence of diabetes. The

micro evidence reported in Figure 8b indicates that diabetes rates are (weakly) higher in Asian pop-

ulations than in African populations at each BMI level. Moving up to the country level, this implies

that diabetes prevalence should be higher in Asia than in Africa, conditional on BMI, and this is what

we observe in Figure 9b, with Asian countries clustered (almost without exception) above the trend

line. Notice that while India is somewhat of an outlier in the figure, other Asian countries are even

bigger outliers and not all of them are South Asian. Although the diabetes literature has tended to

focus on South Asians as a particularly vulnerable group, our analysis, as with the analysis of the

BMI-income association, indicates that inter-regional differences in diabetes prevalence extend to the

Asian continent as a whole.

Figure 9: BMI - Current Income and Diabetes - BMI Relationship Across Countries
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Source: NCD-RisC and Penn World Table 9.0

5 The Mechanism

Two biological relationships serve as the starting point for our model: (a) BMI is determined by

ancestral income below a threshold and by current income above the threshold. (b) The risk of diabetes

is constant below the threshold and increasing in the difference between current and ancestral income

above the threshold.32 We next proceed to validate these relationships by constructing exogenous

measures of ancestral income. The threshold location for this exercise is derived from the cross-

sectional tests of the model; recall that households below the current income threshold remain at their

32Bringing the two relationships together, the risk of diabetes is increasing in the difference between current BMI and
ancestral BMI. This is precisely the model proposed by Wells et al. (2016), with current BMI measuring the “metabolic
load” and ancestral BMI measuring “metabolic capacity.” We do not test this model because reliable measures of
ancestral BMI are unavailable. Wells et al. use height as a proxy for metabolic capacity, but this is a measure of
current nutritional status, together with BMI, in our analysis.
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set point.33 As with the cross-sectional tests, we focus on India in the analysis that follows, but verify

that the results hold up with Indonesian data (with which a threshold can also be located).

An appealing feature of the cross-sectional tests of the model is that they do not require knowledge

of the set point, y0. This allowed us to include rural populations and urban populations (which include

a large share of relatively recent migrants) in the analysis. When testing the biological relationships,

however, we will need to link current income, yt, to pre-modern ancestral income, y0, and hence the

tests of the mechanism are restricted to rural households who would have remained in their place of

residence for many generations. Measures of ancestral income are unavailable at the family (dynasty)

level. We thus construct measures of per household ancestral income at the district level and at the

village level in the analysis that follows.

5.1 District-Level Evidence

Our first measure of y0 is constructed at the district level and is based on historical food supply.

Agriculture was the dominant activity in the pre-modern economy and aggregate wealth would thus

have been determined by crop productivity. Galor and Özak (2016) convert potential crop yields,

obtained from the Food and Agriculture Organization Global Agro-Ecological Zones (FAO-GAEZ)

project, to caloric production and then average across crops to construct a Caloric Suitability Index

(CSI) which they document is a good indicator of the historical level of economic development or,

equivalently, aggregate wealth across countries. We use the same index to measure pre-modern wealth

at the district level, except that the baseline specification restricts attention to two staple crops –

wheat and rice – that dominated historical agricultural production (and continue to account for a

large share of agricultural production) in India. If the CSI is a good measure of pre-modern aggregate

wealth, then it should be closely related to historical population density (Diamond, 1997). Appendix

Figure B9a verifies this hypothesis at the district level by estimating a positive association between

population density in 1951, when the Indian economy was just starting to develop, and CSI.34

While Appendix Figure B9a provides empirical support for our measure of historical aggregate

wealth, it also indicates that the positive relationship between population and CSI must be accounted

for when constructing measures of ancestral per household income. We do this by specifying that

ancestral per household income is a flexible function of the CSI, f(CSI). We then estimate the

following equation:

yt = f(CSI) + ϵt, (8)

where yt is current household income, which is obtained as in the cross-sectional tests from the India

Human Development Survey (IHDS), and CSI is based on the household’s district of residence (the

33Based on the model, some households above the current income threshold will also be at their set point. In a
rapidly growing economy, however, most households above the threshold will have escaped their set point.

34State fixed effects are partialled out in Appendix Figures B9a and B9b and are included in the estimating equations
that follow to account for independent state-level determinants of historical population density, current household
income, and the outcomes of interest (BMI and metabolic disease). For the analysis with Indonesian data, state fixed
effects are replaced by regency fixed effects.
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IHDS does not provide location identifiers below the district level). Equation (8) can be compared

with the income equation (1) in the model:

yt = y0 + Ut.

Predicted income in equation (8) corresponds to ancestral income, y0, and the residual in that esti-

mating equation corresponds to the income mismatch, Ut ≡ yt − y0.
35 The objective when specifying

the f(CSI) function is to capture that part of the variation in current income that is explained by

historical conditions and, by extension, ancestral per household income. Our preferred measure of y0

will thus be predicted household income based on the most flexible nonparametric specification of the

f(CSI) function. In our data we document a nonmonotonic relationship (reasonably approximated

by a quadratic function) between predicted household income and CSI in Appendix Figure B9b.36

Table 3 reports the relationship between BMI and both ancestral income, y0, and current income,

yt, below and above the estimated threshold. y0 and yt are normalized, by dividing by their respective

standard deviations, to allow the magnitude of the income coefficients to be comparable. The standard

set of covariates, with state fixed effects instead of district fixed effects since y0 is measured at the

district level, and with the exception of the rural dummy since this is now a rural sample, are included

in the estimating equations. As observed in Columns 1-2 with IHDS data, ancestral income has a

positive and significant effect on BMI below the threshold (where households are at their set point)

but not above it. Although the current income coefficient is also significant below the threshold, it is

substantially smaller than the ancestral income coefficient and, moreover, is four times larger above

the threshold.

Table 3, Columns 3-4, reports the BMI-income relationship with Indonesian (IFLS) data. The

analysis proceeds in exactly the same way as above, except that we restrict attention to a single staple

crop – rice – which is by far the dominant crop in Indonesia. While a long history of internal migration

in Indonesia could potentially weaken the relationship between our measure of ancestral income, which

is based on the current place of residence, and nutritional status, the compensating advantage of the

IFLS data is that they provide the sub-regency (sub-district) in which the household resides. The

CSI can thus be constructed at a more disaggregate level than is possible with IHDS data. We see

35The residual, ϵt, is mean-zero by construction, whereas Ut has positive mean µt. Our estimates of y0 and Ut are
thus only identified up to a constant, but this has no bearing on the analysis that follows. Appendix Figure B10a uses
binned scatter plots to (separately) describe the relationships between household income, yt, and our measures of y0
and Ut. These relationships are linear, matching the structure of the income equation (1) in the model. Note that
failure of the separability assumption in equation (8), which allows us to construct measures of y0 and Ut, would lead
to false rejection of the model and not the converse.

36Spatial heterogeneity in y0 is not inconsistent with the Malthusian model. Ashraf and Galor (2011) show theo-
retically that steady-state pre-modern per capita income would have varied with the predisposition towards having
children and the cost of child rearing. Such heterogeneity in fertility could have varied with agricultural productivity.
For example, Diamond (1997) argues that greater agricultural productivity in the pre-modern period was associated
with higher population densities and with more complex (vertically stratified) societies. Fertility would have varied
by social class in such societies, with the elites consuming above subsistence. Once social stratification and associated
fertility regulation is incorporated in the Malthusian model, average per capita income (food consumption) will vary
with agricultural productivity, but in a way that is theoretically ambiguous.
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Table 3: Nutritional Status - Income Relationship (below and above the threshold)

Dependent variable: BMI

Country: India Indonesia

Sample: Below Above Below Above

Ancestral income 0.899∗∗∗ 0.165 1.059∗∗∗ 0.464
(0.243) (0.283) (0.254) (0.337)

Current income 0.185∗∗∗ 0.852∗∗∗ -0.048 0.591∗∗∗

(0.040) (0.047) (0.119) (0.064)

Threshold location 1.65 1.65 6.1 6.1
Dep. var. mean 20.482 21.851 22.317 23.021
N 27,164 20,296 3,182 10,610

Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group (India) or
ethnicity (Indonesia), state (India) or regency (Indonesia) and survey-round are included in the estimating equation.The
rural-urban dummy is excluded, since the sample is restricted to rural households.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
∗ significant at 10%, ∗∗ at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.

that the results in Columns 3-4 match closely with the biological relationships specified in the model.

Ancestral income has a positive and significant effect on adult BMI below but not above the estimated

threshold, whereas the converse is true for current income.

Current income in equation (8) can be decomposed into two orthogonal components: ancestral

income, y0, which is measured by predicted income and the income mismatch, Ut ≡ yt − y0, which

is measured by the residual in that equation. Table 4 reports the relationship between the risk

of metabolic disease and (separately) each income component, below and above the threshold (τ).

Results with Indian (IHDS) data are presented in Columns 1-2 and with Indonesian (IFLS) data in

Columns 3-4. As specified in the model, the (uninteracted) income mismatch coefficient, which reflects

the association with the risk of metabolic disease below the threshold, is economically and statistically

insignificant in Columns 1 and 3. In contrast, the interaction coefficient, reflecting the change in the

association above the threshold, is positive and significant in both columns. Moreover, the ances-

tral income coefficients in Columns 2 and 4 are insignificant, with one exception (the uninteracted

coefficient with Indian data in Column 2). Summarizing the estimation results and in line with the

specification of the metabolic disease -income relationship implied by the model, we observe that the

uninteracted and interacted coefficients are jointly significant in Columns 1 and 3, which measure the

association between metabolic disease and the income mismatch, but jointly insignificant in Columns

2 and 4, where we measure the corresponding association with ancestral income.37

We complete the district-level analysis in Appendix Tables B6-B9 by verifying the robustness of

37Although ancestral income does not determine the risk of diabetes in our model, initial conditions and the mismatch
will jointly determine outcomes in other models of developmental plasticity (Malani et al., 2022). These factors can be
examined independently in our analysis because they are orthogonal by construction.
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Table 4: Metabolic Disease - Income Relationship

Dependent variable: Pr(metabolic disease)

Country: India Indonesia

Income component:
income

mismatch
ancestral
income

income
mismatch

ancestral
income

(1) (2) (3) (4)

Income component 0.001 0.012∗ -0.004 -0.011
(0.002) (0.006) (0.011) (0.019)

Income component ×
1{current income > τ} 0.018∗∗∗ -0.002 0.032∗∗ 0.001

(0.004) (0.002) (0.011) (0.008)

Joint signficance
F−statistic [p−value] 14.983 1.889 13.811 0.170

[0.000] [0.153] [0.000] [0.844]

Threshold location (τ) 1.90 1.90 6.00 6.00
Dep. var. mean 0.054 0.054 0.162 0.162
N 90,879 90,879 11,001 11,001

Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group (India) or
ethnicity (Indonesia), state (India) or regency (Indonesia) and survey-round are included in the estimating equation.The
rural-urban dummy is excluded, since the sample is restricted to rural households.
F−statistic measures the joint significance of the uninteracted and interacted income component coefficients.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
∗ significant at 10%, ∗∗ at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.

the results to (i) a less flexible quadratic specification of the f(CSI) function, and (ii) to construction

of the CSI with an expanded set of major crops; wheat, rice, barley, sorghum, rye and millet for India

and rice, sorghum, cassava and maize for Indonesia.

5.2 Village-Level Evidence

The district-level measures of ancestral income, y0, allow us to validate both biological relationships

specified in the model. The advantage of these measures is that they can be constructed, in a consistent

fashion, using nationally representative data from India and Indonesia. However, the district and the

sub-regency are aggregate spatial units. Moreover, while we use low technology-rainfed agriculture to

construct the CSI, as do Galor and Özak (2016), this measure is not based directly on pre-modern

income. We improve on both of these dimensions by using data from the South India Community

Health Study (SICHS), which we have collected, for the analysis that follows.

The SICHS covers a rural population of 1.1 million individuals residing in Vellore district in the

South Indian state of Tamil Nadu. Two components of the SICHS are relevant for our analysis:

a census of all 298,000 households residing in the study area, completed in 2014, and a detailed

survey of 5,000 representative households, completed in 2016. The SICHS census collected each
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Figure 10: Nutritional Status and Metabolic Disease with respect to Income (IHDS and SICHS)

(a) BMI (b) Metabolic disease

Source: India Human Development Survey (IHDS), South India Community Health Study (SICHS)
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, and (for
IHDS) rural area, district and survey-round are partialled out prior to nonparametric estimation.
The vertical lines mark the estimated threshold location and the shaded areas demarcate the corresponding 95%
confidence intervals.

household’s income in the preceding year. The SICHS survey collected information on the marriage of

the household head and his spouse, and their parents, and in addition covers all variables included in

the analysis using IHDS and IFLS data above. More importantly, the SICHS data are supplemented

with historical records, obtained from the British Library in London, on the agricultural revenue tax

per acre of cultivated land that was collected from each village in the Northern Tamil Nadu region

(encompassing the study area) in 1871.38 The revenue tax was based on a detailed assessment, made

by the colonial government, of crop suitability, soil quality, precipitation, and other growing conditions.

Like the CSI, this is a measure of potential agricultural productivity, but it is (i) defined at the village

level, (ii) based explicitly on pre-modern growing conditions, and (iii) provides a direct measure of

pre-modern income; i.e. the monetary value of agricultural output.

We begin the analysis with SICHS data by establishing that the cross-sectional relationships esti-

mated above with nationally representative IHDS data are obtained in the study area as well. Figure

10a reports the association between the BMI of the household head and his spouse and current house-

hold income. To smooth out transitory shocks, we take the average of the household income reported

in the SICHS census and the SICHS survey as our measure of permanent household income. The

standard set of covariates, excluding the district dummies and the rural dummy since the rural sam-

ple is drawn from a single district, are partialled out prior to nonparametric estimation. The SICHS

38There are 377 panchayats or village governments in the SICHS study area. These panchayats were historically
single villages, which over time sometimes divided or added new habitations. The panchayat as a whole, which often
consists of multiple modern villages, can thus be linked back to a single historical village. What we refer to as a
“village” in the discussion that follows is thus a historical village or, equivalently, a modern panchayat.

31



study area was purposefully selected to be representative of rural South India, defined as in Munshi

and Rosenzweig (2016) by the states of Tamil Nadu, Andhra Pradesh, Karnataka, and Maharashtra,

with respect to socioeconomic and demographic characteristics.39 As a basis for comparison, we thus

report the corresponding nonparametric plot obtained with IHDS data, for the South Indian states,

in Figure 10a. We go through the same steps as above to plot the relationship between the risk of

metabolic disease and current income, with SICHS and IHDS South India data, in Figure 10b.

The estimated relationships, with SICHS and IHDS South India data, match very closely across

the income distribution in both figures.40 The vertical lines mark the spot where Hansen’s test

(shown in Appendix Figure B11) locates an income threshold, with the shaded area demarcating

the associated 95% confidence interval. The threshold locations with adult BMI as the outcome are

precisely estimated and almost identical with the two data sets. With the risk of metabolic disease

as the outcome, in contrast, a threshold is precisely estimated with IHDS South India data but not

SICHS data.41 The tests that follow will thus be restricted to the BMI-income relationship.

One advantage of the SICHS analysis is that ancestral income can be measured at the village level.

However, this creates a new complication because ancestors can be drawn from multiple villages.

Epigenetic inheritance was traditionally assumed to occur along the female line; i.e. via the mother,

although recent evidence indicates that paternal traits can also be transmitted epigenetically (Jablonka

and Raz, 2009; Lind and Spagopoulou, 2018). We allow for both possibilities, in which case ancestral

incomes along the male and female line are relevant. Marriage in India is patrilocal, with women often

leaving their natal (birth) village when they marry. In a patrilocal society, men do not move when

they marry and, hence, ancestral income along the male line is determined by historical income in

the individual’s natal village. Ancestral income along the female line, in contrast, will be determined

by historical income in the (possibly) many different villages from which the female ancestors were

drawn.

To construct a single measure of ancestral income, we take advantage of the fact that families in

rural India match assortatively on wealth (permanent income) in the marriage market, as documented

with SICHS data by Borker et al. (2021). Although ancestral income, y0, will not match perfectly on

the male and female side in any marriage on account of the Ut ≡ yt−y0 term in the income equation, it

will still be highly correlated for husbands and wives. We verify that this is the case, with SICHS data,

39Borker et al. (2021) provide a detailed description of the study area, documenting that it is representative of rural
Tamil Nadu and rural South India with respect to socioeconomic and demographic characteristics; e.g. age distribution,
marriage patterns, literacy rates, labor force participation, child and adult sex ratios, and religious composition.

40BMI and the risk of metabolic disease are systematically higher with SICHS data relative to IHDS South India
data (this can be observed by comparing the range of the Y-axes in Figure 10). In line with this finding, Alacevich
and Tarozzi (2017) document that average heights for children under 5 are lower in the IHDS than in the Demographic
Health Survey (DHS). They also document that heights and weight are measured with error in the IHDS, with heaping
at particular focal points. Once we control for the level, however, the SICHS and the IHDS South India data track
very closely with household income.

41This is because the sample size is much smaller with SICHS data and the threshold location is more difficult to
estimate with the risk of metabolic disease as the outcome. For those outcomes for which thresholds can be located
in Figure 10, the piecewise linear equation estimates at the estimated thresholds are reported in Appendix Table B10.
In line with previous results, we cannot reject the hypothesis with South Indian (IHDS) data that the thresholds with
BMI and metabolic disease as outcomes are located at the same income level.
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for the household head and his spouse in Appendix Figure B12a and for their parents in Appendix

Figure B12b, using the 1871 tax revenue in each individual’s natal village to measure y0.
42 The

strong correlation in ancestral income that we document does not arise mechanically because couples

are drawn from the same natal village. 80% of women in the SICHS study area leave their natal

village when they marry, although almost all of them marry within the district, and we expect that

similarly strong correlations in ancestral incomes would be observed if data from earlier generations

were available. This implies that the 1871 tax revenue in any village from which ancestors were drawn

could be used to construct y0. To be consistent with our measure of current income, we use 1871 tax

revenue in the current village of residence, both for the household head and his spouse, to construct

their ancestral income.

The tax revenue per acre of cultivated land in 1871 measures historical wealth at the level of the

village. As with the construction of the district level measure of ancestral per household income, we

allow for an endogenous (village level) population response by specifying that per household ancestral

income, y0, is a flexible function, g(R), of the 1871 tax revenue, R. The analysis thus proceeds in

two steps: First, we estimate the relationship between current household income, yt, and g(R); the

predicted income provides us with a measure of y0, following the same argument as above. Second,

we estimate the relationship between BMI and both y0 and yt, below and above the threshold located

in Figure 10. As seen in Table 5, the ancestral income coefficient is positive and significant below, but

not above, the threshold. In contrast, the current income coefficient is positive and significant above,

but not below, the threshold. This result is robust to alternative (nonparametric and quadratic)

specifications of the g(R) function.

We close this section by considering alternative explanations for the results in Table 5. The statis-

tical challenge when testing the mechanism underlying the model is that the set point is determined

by fixed pre-modern conditions. Even if these conditions are exogenously determined, they could

still be associated with factors that independently determine the outcomes of interest. For example,

village-level tax revenue in 1871, which we use to construct ancestral income, is also associated with

pre-modern aggregate wealth and contemporaneous levels of economic development. These historical

economic conditions could potentially determine nutritional status today through a variety of chan-

nels. A second alternative argument posits that ancestral income proxies for poorly measured current

income at low income levels. However, any alternative mechanism must explain the additional restric-

tions imposed by our model: ancestral income should only be relevant below the estimated threshold

and current income should only be relevant above the threshold. These sharp discontinuities cannot be

explained by historical development or by measurement error, and they continue to hold in Appendix

Table B11 even when ancestral income and current income are included separately in piecewise linear

equations. The ancestral income coefficient continues to be positive and statistically significant below

(but not above) the threshold, whereas the converse is true with current income.43

42The household’s ancestral income, y0, is specified as a continuous function of the 1871 village-level tax revenue
below. However, this has no bearing on the analysis of assortative matching.

43We include ancestral income and current income, above and below the threshold, in Tables 3 and 5 to avoid the
possibility that one variable simply proxies for the other. This is because ancestral income and current income are
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Table 5: SICHS Nutritional Status - Income Relationship (below and above the threshold)

Dependent variable: BMI

g(R) specification: nonparametric quadratic

Sample: below above below above
(1) (2) (3) (4)

Ancestral income 0.334∗∗∗ 0.170 0.375∗∗∗ 0.026
(0.124) (0.150) (0.128) (0.123)

Current income 0.012 0.834∗∗∗ 0.048 0.834∗∗∗

(0.190) (0.119) (0.191) (0.120)

Threshold location 1.69 1.69 1.69 1.69
Dependent var. mean 23.033 23.755 23.033 23.755
N 1810 3844 1810 3844

Source: South India Community Health Study (SICHS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender and caste group are included
in the estimating equation. The rural-urban dummy and district dummies are excluded, since the rural sample is drawn
from a single district.
Bootstrapped standard errors, clustered at the level of the village, are in parentheses.
∗ significant at 10%, ∗∗ at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.

6 Conclusion

This research helps explain two seemingly unrelated facts that have been documented in developing

countries: (i) the weak association between nutritional status, which we measure by BMI, and income,

and (ii) the elevated risk of diabetes among normal weight individuals. Our explanation is based on

a set point for BMI that is adapted to food supply in the pre-modern economy, but which fails to

subsequently adjust to rapid economic change. The postulated mechanism is validated with micro

data from many countries and can jointly explain inter-regional (Asia versus Africa) differences in

nutritional status and the prevalence of diabetes.

Our structural estimates and accompanying counter-factual simulations indicate that the fraction

of underweight adults in India, who comprise 20% of the population, would decline by 24% in the

absence of a set point. At the same time, half the adult population who remain at their set point

are protected from diabetes. While the health consequences of the set point are thus ambiguous,

what is incontrovertible is the fact that in the coming decades an increasing fraction of the Indian

population, and the adult population in other developing countries, will escape their pre-modern set

points. Screening will be an important component of public health programs that attempt to address

the resulting increase in diabetes. Our analysis, which documents a discontinuous increase in the risk

of diabetes at a BMI below 22 in India, indicates that much of the adult population will need to be

screened for this condition.

While the cost of screening may be greater than currently envisaged, the flip-side of this finding

correlated by construction.
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is that many individuals detected with diabetes will have relatively low BMI’s. A natural question to

ask is how these lean diabetics should be treated. The recent medical literature has shifted focus away

from BMI towards more proximate risk factors for diabetes that are common in developing-country

populations, such as low insulin secretion and ectopic fat deposition (Narayan and Kanaya, 2020). But

in our view, these factors are symptomatic of an underlying homeostatic-system failure, and efforts to

reverse diabetes would be better served by correcting that fundamental failure. Evidence on diabetes

reversal through a weight-loss program in the U.K. indicates that there is an individual-specific BMI

threshold, which is independent of initial BMI, below which diabetes is reversed (Taylor and Holman,

2015). In a developing-country population, we expect that this threshold will be associated with the

pre-modern set point, which for many (lean) diabetics will not be far from their existing BMI. This

suggests a promising approach to diabetes control in such a population, involving relatively little

weight loss, which we plan to explore in future research.
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Online Appendix

A Mathematical Appendix

A.1 Proofs of Propositions

Proof of Proposition 1: At any given level of income yt ≤ α,

E(zt|yt) =
∫ yt

−∞
[a+ b(yt − Ut)]P (Ut | yt) dUt

Let f(·) denote the density of the y0 distribution. Applying Bayes’ rule:

P (Ut | yt) =
P (Ut)P (yt | Ut)∫ yt

−∞ P (Ũt)P (yt | Ũt)
=

ϕ(Ut;µt, σ
2
t )f(yt − Ut)∫ yt

−∞ ϕ(Ũt;µt, σ2
t )f(yt − Ũt) d Ũt

In the absence of any prior knowledge about the distribution of pre-modern income, we make the

simplifying assumption that initial income is uniformly distributed; i.e. f(·) is constant. It follows

that

E(zt|yt) =
∫ yt

−∞
[a+ b(yt − Ut)]

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )

dUt = a+ b
(
yt − eL(yt)

)
(A.1)

where eL(yt) =
1

Φ(yt;µt,σ2
t )

∫ yt
−∞ Utϕ(Ut;µt, σ

2
t ) dUt.

Since the uniform distribution has bounded support, the lower range of integration should extend

to yt−y0, where y0 is the right support of the initial income distribution. The advantage of extending

the range to −∞ is that we can solve the model analytically and derive a closed-form expression for

eL(yt), with simulations reported below in Appendix A.2 indicating that this approximation has no

discernable effect on predicted BMI (and the risk of metabolic disease) except in the right tail of the

yt distribution.

Making the same approximation as above, at any given level of income yt > α:

E(zt|yt) =
∫ α

−∞
[a+ b(yt − Ut)]

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )

dUt +

∫ yt

α

[a+ byt]
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )

dUt (A.2)

= a+ b
(
yt − eH(yt)

)
, where eH(yt) =

1

Φ(yt;µt, σ2
t )

∫ α

−∞
Utϕ(Ut;µt, σ

2
t ) dUt

We next derive closed-form expressions for eL(yt), e
H(yt), which are given as

eL(yt) = µt − σtΛ

(
yt − µt

σt

)
(A.3)

eH(yt) =
µtΦ

(
α−µt

σt
; 0, 1

)
− σtϕ

(
α−µt

σt
; 0, 1

)
Φ
(

yt−µt

σt
; 0, 1

) (A.4)
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where Λ(·) is the Inverse Mill’s ratio. Focusing on the numerator of the eL(yt) expression in (A.1) we

can write ∫ yt

−∞
Utϕ(Ut;µt, σ

2
t ) dUt =

∫ yt

−∞
Ut

1√
2πσt

exp

[
−1

2

(
Ut − µt

σt

)2
]
dUt

=

∫ yt−µt
σt

−∞
(σtxt + µt)

1√
2π

exp

[
−1

2
x2
t

]
dxt

where the second equality comes from the substitution xt =
Ut−µt

σt
. The last equality can be written

as

µtΦ

(
yt − µt

σt
; 0, 1

)
− σtϕ

(
yt − µt

σt
; 0, 1

)
given that dϕ(xt;0,1)

dxt
= −xtϕ(xt; 0, 1). A similar transformation of Φ(yt;µt, σ

2
t ) in the denominator of

the eL(yt) expression in (A.1) gives us the closed-form expression for eL(yt) in equation (A.3). The

corresponding expression for eH(yt) in equation (A.4) is derived by replacing yt with α in the upper

limit for integration.

To establish that the slope of the BMI-income relationship is positive but less than b below the

threshold, substitute the expression for eL(yt) from equation (A.3) in equation (A.1) and differentiate

with respect to yt. Given the properties of the inverse Mill’s ratio, the slope at yt ⩽ α is given as

dE(zt|yt)
d yt

= b

[
1 + Λ′

(
yt − µt

σt

)]
∈ (0, b)

Further, to demonstrate that the slope of the BMI-income relationship above the threshold is

greater than b, observe from the expression for eH(yt) in equation (A.4), that the numerator is inde-

pendent of yt and the denominator is increasing in yt. Hence,
d eH(yt)

d yt
< 0, which implies dE(zt|yt)

d yt
> b

for yt > α.

Note, from equations (A.3) and (A.4), that eL(yt) = eH(yt) at yt = α, and thus, from equations

(A.1) and (A.2), there is no level discontinuity at the threshold. To prove that there is, nevertheless,

a slope discontinuity at the threshold, yt = α, we need to show that

lim
yt↑α

dE(zt|yt)
d yt

̸= lim
yt↓α

dE(zt|yt)
d yt

From equations (A.1) and (A.2), a necessary and sufficient condition for the preceding inequality to

be satisfied is that d eL(yt)
d yt

̸= d eH(yt)
d yt

at yt = α. Using equations (A.3) and (A.4), it can be established

that this is indeed the case. For this result, first denote vt =
yt−µt

σt
. From equation (A.3), eL(yt) =

L(vt)
Φ(vt;0,1)

, where L(vt) = µtΦ(vt; 0, 1) − σtϕ(vt; 0, 1). From equation (A.4), eH(yt) = L(v)
Φ(vt;0,1)

where

v = α−µt

σt
. Given that the denominator and the numerator (evaluated at yt = α) of the eL(yt), e

H(yt)

expressions are the same, a necessary condition for d eL(yt)
d yt

̸= d eH(yt)
d yt

is that dL(vt)
d yt

̸= dL(v)
d yt

at yt = α.
dL(v)
d yt

= 0. From the property of the standard normal distribution, ϕ′(vt; 0, 1) = −vtϕ(vt; 0, 1), and,
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hence, dL(vt)
d yt

∣∣∣
yt=α

= α
σt
ϕ(v; 0, 1) > 0.

Proof of Proposition 2: The relationship between the probability of diabetes, P (Dt), and income

is given as

P (Dt) =

{
γ1 if Ut ⩽ α

γ1 + γ2(yt − y0) if Ut > α
(A.5)

Hence, for any given yt ⩽ α, making the same analytical approximation and distributional as-

sumptions as above:

P (Dt|yt) =
∫ yt

−∞
γ1

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )

dUt = γ1 (A.6)

and for any given yt > α,

P (Dt|yt) =
∫ α

−∞
γ1

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )

dUt +

∫ yt

α

(γ1 + γ2Ut)
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )

dUt

= γ1 + γ2

∫ yt

α

Ut
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )

dUt

Following the same steps that we used to derive the expression for eL(yt) in (A.3), we can write for

any given yt > α,

P (Dt|yt) = γ1 + γ2

µt − σtΛ

(
yt − µt

σt

)
−

µtΦ
(

α−µt

σt
; 0, 1

)
− σtϕ

(
α−µt

σt
; 0, 1

)
Φ
(

yt−µt

σt
; 0, 1

)
 (A.7)

From equation (A.6), dP (Dt|yt)
d yt

= 0 for yt ⩽ α, and from equation (A.7), dP (Dt|yt)
d yt

> 0 for yt > α

because Λ′(·) < 0 and Φ
(

yt−µt

σt
; 0, 1

)
is increasing in yt. This also establishes that there is a slope

discontinuity at yt = α. Further, substituting yt = α in equation (A.7) eliminates the term inside

square brackets, implying that there is no level discontinuity at yt = α.

A.2 Placing an upper bound on y0

BMI-income relationship: Assume that the period 0 income has both lower and upper bounds i.e.

y0 ∈ [0, y0]. Hence the range of Ut for any given value of yt is [yt−y0, yt]. The mean BMI at any given
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yt ⩽ α is given by

E(zt|yt) =
∫ yt

yt−y0

[a+ b(yt − Ut)]
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt

= a+ byt − b

∫ yt

yt−y0

Ut
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt

= a+ b(yt − eL(yt)) (A.8)

where eL(yt) corresponds to eL(yt) in the model without an upper bound on y0. Following the same

steps as in the proof of Proposition 1 above:

eL(yt) = µt − σt

[
ϕ
(

yt−µt

σt
; 0, 1

)
− ϕ

(
yt−y0−µt

σt
; 0, 1

)]
[
Φ
(

yt−µt

σt
; 0, 1

)
− Φ

(
yt−y0−µt

σt
; 0, 1

)] (A.9)

For yt > α there are two cases: (i) yt ∈ [α, y0 + α] and (ii) yt > y0 + α. In the first case, at each

level of yt, there are two types of individuals: those who remain at their set point and those who have

crossed the threshold. The mean BMI at any given yt ∈ [α, y0 + α] is thus described by the following

expression:

E (zt|yt) =
∫ α

yt−y0

[a+ b(yt − Ut)]
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt

+

∫ yt

α

[a+ byt]
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt

= a+ byt − b

∫ α

yt−y0

Ut
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt

= a+ b(yt − eH(yt)) (A.10)

where eH(yt) corresponds to eH(yt) in the model without an upper bound. As above, this expression

can be simplified as

eH(yt) =
µt

[
Φ
(

α−µt

σt
; 0, 1

)
− Φ

(
yt−y0−µt

σt
; 0, 1

)]
− σt

[
ϕ
(

α−µt

σt
; 0, 1

)
− ϕ

(
yt−y0−µt

σt
; 0, 1

)]
Φ
(

yt−µt

σt
; 0, 1

)
− Φ

(
yt−y0−µt

σt
; 0, 1

) (A.11)

For yt > y0+α, everyone has escaped the set point. Hence, the mean BMI at any given yt > y0+α is

E(zt|yt) =
∫ ∞

α

(a+ byt)
ϕ(Ut;µt, σ

2
t )

1− Φ(α;µt, σ2
t )

dUt

= a+ byt
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Diabetes-income relationship: For any given yt ⩽ α,

P (Dt|yt) =
∫ yt

yt−y0

γ1
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt

= γ1

For any given yt ∈ [α, y0 + α],

P (Dt|yt) =
∫ α

yt−y0

γ1
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt+∫ yt

α

(γ1 + γ2Ut)
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt

= γ1 + γ2

∫ yt

α

Ut
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )− Φ(yt − y0;µt, σ2

t )
dUt

Solving the integral,

P (Dt|yt) = γ1 + γ2
µt

[
Φ
(

yt−µt

σt
; 0, 1

)
− Φ

(
α−µt

σt
; 0, 1

)]
− σt

[
ϕ
(

yt−µt

σt
; 0, 1

)
− ϕ

(
α−µt

σt
; 0, 1

)]
Φ
(

yt−µt

σt
; 0, 1

)
− Φ

(
yt−y0−µt

σt
; 0, 1

) (A.12)

For any given yt > y0 + α, as everyone has escaped their set point, we can write,

P (Dt|yt) =
∫ ∞

α

(γ1 + γ2Ut)
ϕ(Ut;µt, σ

2
t )

1− Φ(α;µt, σ2
t )

dUt

= γ1 + γ2

µt + σt

ϕ
(

α−µt

σt
; 0, 1

)
1− Φ

(
α−µt

σt
; 0, 1

)
 (A.13)

which is independent of yt.

Although analytical results can no longer be derived as in Propositions 1 and 2, expressions (A.8),

(A.9), (A.11), (A.10), (A.12) and (A.13) can be used to simulate the relationship between current

income and both BMI and the probability of metabolic disease. We use the actual income from the

IHDS and the estimates of µt, σt from the structural estimation exercise for the simulation. The left

panel in Figure A1 plots the relationship between BMI and current income, with and without the

upper bound on y0. The right panel plots the corresponding relationships between metabolic disease

and income. For the upper bound we choose two values of y0. The first value y10, marked by the blue

dotted vertical line, is close to the threshold α whereas the second value y20, marked by the red dashed

line, is further to the right. The simulated BMI-income and metabolic disease-income relationships

track together, almost exactly, with the three specifications, except in the right tail of the income

distribution where we observe a second discontinuity with y10. In our data, we do not observe a second

discontinuity, at a high income level, with either BMI or the risk of metabolic disease as outcomes.
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Figure A1: Simulated Cross-Sectional Relationships with upper bound on y0
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A.3 Alternative Specifications for the Set Point

A.3.1 Set point determined by ancestral and current income

Assume that a dynasty’s set point is determined, each period, by the weighted average of ancestral

income and current income. The relationship between BMI and income can now be written as

zt =

{
a+ b[rty0 + (1− rt)yt] if yt − [rty0 + (1− rt)yt] ⩽ α̃

a+ byt if yt − [rty0 + (1− rt)yt] > α̃
(A.14)

where r1 = 1 and limt→∞ rt = 0. yt − [rty0 + (1 − rt)yt] = rt(yt − y0) = rtUt. Hence, the threshold

becomes time variant and is given by α̃
rt
. The mean BMI at any given yt ⩽ α̃

rt
can then be expressed

as

E [zt|yt] =
∫ yt

−∞
(a+ b[rty0 + (1− rt)yt])

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )
dUt

=

∫ yt

−∞
(a+ b[yt − rtUt])

ϕ(yt;µt, σ
2
t )

Φ(yt;µt, σ2
t )
dUt

= a+ b(yt − rte
L(yt))
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where eL(yt) is defined in (A.3). Similarly, for any given yt >
α̃
rt
, we can write

E [zt|yt] =
∫ α̃

rt

−∞
(a+ b[yt − rtUt])

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )
dUt +

∫ yt

α̃
rt

(a+ byt)
ϕ(Ut;µt, σ

2
t )

Φ(yt;µt, σ2
t )
dUt

= a+ byt − brt

∫ α̃
rt

−∞
Ut

ϕ(Ut;µt, σ
2
t )

Φ(yt;µt, σ2
t )
dUt

= a+ b(yt − rtẽ
H(yt))

where the expression for ẽH(yt) is the same as in equation (A.4) when α is replaced by α̃
rt
.

A.3.2 Set point determined by previous generation income

Assume that a dynasty’s set point is determined, each period, by the previous generation’s income.

The relationship between nutritional status and income can be written as

zt =

{
a+ byt−1 if yt − yt−1 ⩽ α

a+ byt if yt − yt−1 > α
(A.15)

Assuming that yt−1 ⩾ 0, and using ut = yt − yt−1 where ut ∼ N(µ, σ2), we can write mean BMI

for any given yt ⩽ α as

E[zt|yt] =
∫ yt

−∞
[a+ byt−1]

ϕ(ut;µ, σ
2)

Φ(yt;µ, σ2)
dut

= a+ byt − b

∫ yt

−∞
ut

ϕ(ut;µ, σ
2)

Φ(yt;µ, σ2)
dut

= a+ b(yt − eL(yt;µ, σ
2))

Similarly, mean BMI at any given yt > α is given as

E[zt|yt] =
∫ α

−∞
[a+ byt−1]

ϕ(ut;µ, σ
2)

Φ(yt;µ, σ2)
dut +

∫ yt

α

[a+ byt]
ϕ(ut;µ, σ

2)

Φ(yt;µ, σ2)
dut

= a+ byt − b

∫ α

−∞
ut

ϕ(ut;µ, σ
2)

Φ(yt;µ, σ2)
dut

= a+ b(yt − eH(yt;µ, σ
2))

45



B Appendix Figures and Tables

Figure B1: Nutritional Status and Metabolic Disease with respect to Household Income (additional
covariates and nonparametric shift-share instrument)

(a) Additional covariates (b) Nonparametric shift-share instrument

Source: India Human Development Survey (IHDS)
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, rural
area, district, and survey-round are included in panels (a) and (b).
For panel (a), additional covariates include dummies for the number of adults, teens, and children in the household,
dummies for the number of individuals engaged in manual labor, and dummies for the highest education of adult
females and males. For panel (b), additional covariates include land ownership, its interaction with the rural dummy,
and the residual (linear, quadratic, and cubic terms) from the first-stage nonparametric regression, as described below.
Covariates are partialled out prior to nonparametric estimation.
The vertical lines mark the estimated threshold location and the shaded areas demarcate the corresponding confidence
intervals.
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Table B1: Piecewise Linear Equation Estimates (additional covariates and nonparametric shift-share
instrument)

Robustness exercise: additional covariates nonparametric shift-share instrument

Dependent Variable: BMI metabolic disease BMI metabolic disease
(1) (2) (3) (4)

Baseline slope (β1) 0.281∗∗ 0.003 0.192 0.005
(0.052) (0.002) (0.411) (0.006)

Slope change (β2) 0.516∗∗ 0.014∗∗ 1.522∗ 0.044∗∗

(0.069) (0.003) (0.827) (0.012)
Threshold location (τ) 1.80 1.95 1.95 1.90

[1.60, 1.95] [1.75, 2.30] [1.60, 2.25] [1.80, 2.05]
Threshold test p−value 0.000 0.000 0.022 0.000
Mean of dependent variable 22.002 0.074 22.275 0.073
N 76,949 148,928 73,708 138,782

Source: India Human Development Survey (IHDS)
Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular
disease.
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, rural
area, district, and survey-round are included in the estimating equation.
For columns 1-2, additional covariates include dummies for the number of adults, teens, and children in the household,
dummies for the number of individuals engaged in manual labor, and dummies for the highest education of adult
females and males.
For columns 3-4, additional covariates include land ownership, its interaction with the rural dummy and the residual
(linear, quadratic, and cubic terms) from the first-stage nonparametric regression, as described below.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
For all columns except for column (3), cluster bootstrapped 95% confidence bands for the threshold location are in
brackets. For column (3), 90% confidence bands are provided.
∗∗, ∗ significant at 5%, 10%, based on cluster bootstrapped confidence intervals.
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The instrumental variable estimation proceeds in the following steps:

Step 1: We use ICRISAT District Level Data (DLD) for India to construct the growth in output

value, at the national level over the 1966-2015 period, for each of the following crops: rice, wheat,

sorghum, maize, chickpea, castor, linseed and cotton. We then construct a district-level measure of

the growth in value by taking a weighted average of the growth of each crop, where the weight is the

acreage allocated to that crop in 1965 divided by total cultivated acreage in that year. District-level

growth is interacted with the rural dummy and land owned by the household (obtained from IHDS)

to construct the shift-share instrument.

Step 2: We regress household income nonparametrically on the shift-share instrument, after

partialling out district effects, the rural dummy, land ownership and the interaction of land ownership

with the rural dummy, using the Robinson procedure. The coefficient on the shift-share instrument

in a corresponding linear regression has a t-statistic of 3.75 (F=13.67), indicating that the instrument

has sufficient statistical power.

Step 3: Following Newey et al. (1999), we include a polynomial (cubic) function of the residuals

from the preceding step, land ownership, and its interaction with the rural dummy as additional covari-

ates, which are partialled out together with the standard set of controls, when we nonparametrically

estimate the BMI-income and metabolic disease-income relationships.

Step 4: Following Goldsmith-Pinkham et al. (2020), we validate the nonparametric instrumental

variable estimates, reported in Figure B1b and Table B1, Columns 3-4 by using acreage shares of indi-

vidual crops, rather than the growth in value, to construct crop-specific instruments. As Goldsmith-

Pinkham et al. note, the estimates will be similar with each crop if the shift-share instrument is valid,

and this is indeed what we observe below.

Figure B2: Nutritional Status and Metabolic Disease with respect to Household Income (instrument
based on individual crop shares)

(a) BMI (b) Metabolic disease

Source: India Human Development Survey (IHDS)
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, rural area,
district, and survey-round, together with land ownership, its interaction with the rural dummy, and the residual from
the first-stage nonparametric regression (linear, quadratic, and cubic terms) are partialled out prior to nonparametric
estimation.
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Figure B3: Nutritional Status and Metabolic Disease with respect to Household Income (separately
for men and women)

(a) Men (b) Women

Source: India Human Development Survey (IHDS)
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for caste group, rural area,
district, and survey-round are partialled out prior to nonparametric estimation.
The vertical lines mark the estimated threshold location and the shaded areas demarcate the corresponding confidence
intervals.

Table B2: Piecewise Linear Equation Estimates (separately for men and women)

Dependent variable: BMI metabolic disease

Sample: men women men women
(1) (2) (3) (4)

Baseline slope (β1) 0.342∗∗ 0.225∗∗ −0.001 0.005
(0.104) (0.062) (0.003) (0.003)

Slope change (β2) 0.877∗∗ 0.980∗∗ 0.038∗∗ 0.018∗∗

(0.112) (0.079) (0.004) (0.005)
Threshold location (τ) 1.50 1.75 1.90 1.95

[1.25, 1.65] [1.60, 1.85] [1.80, 2.00] [1.55, 2.35]
Threshold test p−value 0.000 0.000 0.000 0.002
Mean of dependent variable 21.854 22.060 0.071 0.077
N 20,596 56,044 71,768 77,160

Source: India Human Development Survey (IHDS)
Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular
disease.
Logarithm of household income is the independent variable.
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for caste group, rural area,
district, and survey-round are included in the estimating equation.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.
∗∗ significant at 5%, based on cluster bootstrapped confidence intervals.
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Figure B4: Alternative Nutritional Status Measures and Metabolic Diseases (separately) with respect
to Household Income

(a) Height and weight (b) Hypertension,diabetes, and cardiovascular disease

Source: India Human Development Survey (IHDS)
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, rural
area, district, and survey-round are included in the estimating equation.
The vertical lines mark the estimated threshold locations and the shaded areas demarcate the corresponding cluster
bootstrapped 95% confidence intervals.

Table B3: Piecewise Linear Equation Estimates (alternative nutritional status measures, hypertension,
diabetes, and cardiovascular disease)

Measures: alternative nutrition measure metabolic disease

Dependent variable: height weight hypertension diabetes
cardiovascular

disease
(1) (2) (3) (4) (5)

Baseline slope (β1) 0.191 0.656∗∗ 0.001 0.001 0.001∗∗

(0.135) (0.150) (0.002) (0.001) (0.0005)
Slope change (β2) 0.836∗∗ 2.863∗∗ 0.018∗∗ 0.017∗∗

(0.144) (0.174) (0.003) (0.002)
Threshold location (τ) 1.45 1.60 1.95 1.95

[1.30,1.70] [1.50,1.70] [1.75, 2.15] [1.85, 2.15]
Threshold test p−value 0.000 0.000 0.000 0.000
Mean of dependent variable 154.483 52.578 0.049 0.027 0.014
N 77,000 77,143 147,858 147,684 147,626

Source: India Human Development Survey (IHDS)
Logarithm of household income is the independent variable.
The standard set of covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, rural
area, district, and survey-round are included in the estimating equation.
For columns (1)-(4), bootstrapped standard errors, clustered at the level of the primary sampling unit, are in
parentheses. For column (5), standard errors are clustered at the primary sampling unit level.
Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.
∗∗ significant at 5%, based on cluster bootstrapped confidence intervals.
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Figure B5: Expenditure on different food categories with respect to household income

(a) Cereals, rice and wheat (b) Meat, eggs and milk, including derivative products

(c) Pulses and vegetables (d) Oil and sugar and derivative products

Source: India Human Development Survey (IHDS).
This figure plots the nonparametric relationship between expenditures on different food categories and household
income. Food expenditures are measured as the log of monthly expenditures in Rupees. The following covariates are
partialled out prior to the nonparametric estimation: reported local price of rice, wheat, cereals and their derivative
products, pulses, meat, sugar, oil, eggs, milk and its derivative products, vegetables and dummies for the number of
children, adults, and teens in the household, occupation, caste group, rural area, district, and survey-round.
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Figure B6: Sensitivity of Slope Coefficients with respect to Parameter Values

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.
0

0.
5

1.
0

assumed mean (µ)

slope below
slope above

(a) Mean of the income shock

0.05 0.10 0.15 0.20

0.
0

0.
5

1.
0

assumed standard deviation (σ)

slope below
slope above

(b) Standard deviation of the income shock

.2
.4

.6
.8

1
1.

2

1 2 3 4
assumed number of generations (t)

slope below
slope above

(c) Number of generations

Notes: This figure plots the estimated slope coefficients, below and above the threshold, with respect to three parameters
of the model: (i) mean of the income shock, (ii) standard deviation of the income shock, and (iii) the number of
generations. The vertical line in each panel marks the parameter value that we use for estimation in Table 2.
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Figure B7: Nutritional Status and Metabolic Disease with respect to Income (Indonesia and Ghana)
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(b) Threshold test (Ghana)

Source: Indonesia Family Life Survey (IFLS), Ghana Socioeconomic Panel Survey (GSPS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, ethnicity (Indonesia) or
tribe (Ghana), rural area, regency (Indonesia) or district (Ghana), and survey-round are included in the estimating
equation at each assumed threshold for the threshold test.
Indonesia: bootstrapped 5% critical values, clustered at the sub-regency level. Ghana: bootstrapped 5% critical
values, clustered by enumeration area.

Table B4: Piecewise Linear Equation Estimates (Indonesia and Ghana)

Sample country: Indonesia Ghana

Dependent variable: BMI metabolic disease BMI
(1) (2) (3)

Slope below (βL) 0.067 -0.001 0.165∗∗∗

(0.065) (0.010) (0.036)
Slope above (βH) 0.398∗∗ 0.022∗∗ –

(0.069) (0.011)
Threshold location (τ) 6.10 6.00 –

[5.80, 6.65] [4.55, 6.50]
Threshold test p− value 0.000 0.004 –
Dep. var. mean 23.532 0.181 23.934
N 30,812 24,788 11,372

Source: Indonesia Family Life Survey (IFLS), Ghana Socioeconomic Panel Survey (GSPS)
Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular
disease.
Logarithm of household income is the independent variable.
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, ethnicity (Indonesia) or
tribe (Ghana), rural area, regency (Indonesia) or district (Ghana), and survey-round are included in the estimating
equation.
Bootstrapped standard errors, clustered at the sub-regency level for Indonesia and by enumeration area for Ghana, are
in parentheses.
Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.
∗∗ significant at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.
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Figure B8: Measured Diabetes and BMI

(a) South and South-East Asia (b) Sub-saharan Africa

Source: Indonesia Family Life Survey (IFLS), Demographic and Health Survey (DHS), WHO-STEPS
The following covariates: age (linear, quadratic and cubic terms), and dummies for gender, country, and survey year
are partialled out prior to nonparametric estimation.
WHO-STEPS African countries, with final sample size: Benin (9541), Botswana (2839), Central African Republic
(5752), Cameroon (7026), Comoros (2359), Eritrea (5137), Ethiopia (7303), Ghana (2162), Guinea (1976),
Mozambique (2447), Malawi (6859), Rwanda (5897), Tanzania (4613), Togo (3297), Uganda (3045), Zambia (4887).
WHO-STEPS Asian countries: Laos (2311), Sri Lanka (4028), Myanmar (7382), Nepal (4681).
DHS countries: Bangladesh (17207), Namibia (2955). IFLS with biomarkers (6240)

Table B5: Piecewise Linear Equation Estimates (reported metabolic disease and measured diabetes)

Dependent variable: metabolic disease (IHDS) diabetes (DHS)
(1) (2)

Baseline slope (β1) 0.003∗∗ 0.001∗∗

(0.001) (0.0004)
Slope change (β2) 0.006∗∗ 0.010∗∗

(0.001) (0.0005)
Threshold location (τ) 21.80 21.80

[20.20, 22.80] [21.60, 22.00]
Threshold test p−value 0.000 0.000
Mean of dependent variable 0.066 0.136
N 76,103 730,995

Source: India Human Development Survey (IHDS), Demographic Health Survey (DHS) 2015-16
BMI is the independent variable. The standard set of covariates: age (linear, quadratic, and cubic terms) and
dummies for gender, caste group, rural area, district, and survey-round for IHDS are included in the estimating
equation.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses. Cluster
bootstrapped 95% confidence bands for the threshold location are in brackets.
∗∗ significant at 5%, based on cluster bootstrapped confidence intervals.
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Figure B9: Relationship between Population Density, Predicted Household Income and Caloric Suit-
ability Index (CSI)
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(b) Predicted household income

Source: FAO-GAEZ dataset, 1951 population census, India Human Development Survey (IHDS)

Figure B10: Relationship between Household Income, Predicted Income, and Residual Income
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(b) Residual income

Source: FAO-GAEZ dataset, India Human Development Survey (IHDS)
This figure reports binned scatter plots describing the relationship between current household income, yt, and (i)
predicted income, which is our measure of y0, and (ii) residual income, which is our measure of Ut. All variables are
standardized.
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Table B6: Nutritional Status - Income Relationship (below and above the threshold, quadratic f(CSI)
function)

Dependent variable: BMI

Country: India Indonesia

Sample: below above below above

Ancestral income 0.530 -0.009 0.966∗∗∗ 0.339
(0.243) (0.202) (0.354) (0.475)

Current income 0.194∗∗∗ 0.854∗∗∗ -0.048 0.601∗∗∗

(0.040) (0.047) (0.120) (0.065)
Threshold location (τ) 1.65 1.65 6.1 6.1
Dep. var. mean 20.482 21.851 22.317 23.021
N 27,164 20,296 3,182 10,610

Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group (India) or eth-
nicity (Indonesia), state (India) or regency (Indonesia), and survey-round are included in the estimating equation.The
rural-urban dummy is excluded, since the sample is restricted to rural households.
For India, staple crops are wheat and rice. For Indonesia, the staple crop is rice.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
∗ significant at 10%, ∗∗ at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.

Table B7: Nutritional Status - Income Relationship (below and above the threshold, additional crops)

Dependent variable: BMI

Country: India Indonesia

Sample: below above below above

Ancestral income 0.538∗∗ 0.406 1.332∗∗∗ 0.552
(0.193) (0.210) (0.281) (0.381)

Current income 0.186∗∗∗ 0.848∗∗∗ -0.051 0.589∗∗∗

(0.040) (0.047) (0.118) (0.063)
Threshold location (τ) 1.65 1.65 6.1 6.1
Dep. var. mean 20.482 21.851 22.317 23.021
N 27,164 20,296 3,182 10,610

Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group (India) or
ethnicity (Indonesia), state (India) or regency (Indonesia) and survey-round are included in the estimating equation.The
rural-urban dummy is excluded, since the sample is restricted to rural households.
For India, staple crops are wheat, rice, sorghum, barley and millet. For Indonesia, staple crops are rice, sorghum,
cassava and maize.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
∗ significant at 10%, ∗∗ at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.
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Table B8: Metabolic Disease - Income Relationship (quadratic f(CSI) function)

Dependent variable: metabolic disease

Country: India Indonesia

Income component:
income

mismatch
ancestral
income

income
mismatch

ancestral
income

(1) (2) (3) (4)

Income component 0.001 0.006 -0.003 0.016
(0.002) (0.006) (0.011) (0.037)

Income component ×
1{income > τ} 0.018∗∗∗ -0.002 0.030∗∗ 0.006

(0.004) (0.002) (0.011) (0.009)
Joint significance
F−statistic [p−value] 16.070 0.734 12.699 0.341

[0.000] [0.481] [0.000] [0.711]
Threshold location (τ) 1.90 1.90 6.00 6.00
Dep. var. mean 0.054 0.054 0.162 0.162
N 90,879 90,879 11,001 11,001

Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group (India) or
ethnicity (Indonesia), state (India) or regency (Indonesia) and survey-round are included in the estimating equation.
The rural-urban dummy is excluded, since the sample is restricted to rural households.
For India, staple crops are wheat and rice. For Indonesia, staple crop is rice.
F−statistic measures the joint significance of the uninteracted and interacted income component coefficients.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
∗ significant at 10%, ∗∗ at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.
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Table B9: Metabolic Disease - Income Relationship (additional crops)

Dependent variable: metabolic disease

Country: India Indonesia

income component:
income

mismatch
ancestral
income

income
mismatch

Ancestral
income

(1) (2) (3) (4)

Income component 0.001 0.005 -0.004 0.006
(0.002) (0.007) (0.011) (0.020)

Income component ×
1{income > τ} 0.018∗∗∗ -0.002 0.031∗∗ 0.004

(0.003) (0.002) (0.011) (0.009)
Joint significance
F−statistic [p−value] 15.646 0.435 13.121 0.236

[0.000] [0.648] [0.000] [0.790]
Threshold location (τ) 1.90 1.90 6.00 6.00
Dep. var. mean 0.054 0.054 0.162 0.162
N 90,879 90,879 11,001 11,001

Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group (India) or
ethnicity (Indonesia), state (India) or regency (Indonesia) and survey-round are included in the estimating equation.The
rural-urban dummy is excluded, since the sample is restricted to rural households.
For India, staple crops are wheat, rice, sorghum, barley and millet. For Indonesia, staple crops are rice, sorghum,
cassava and maize.
F−statistic measures the joint significance of the uninteracted and interacted income component coefficients.
. Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
∗ significant at 10%, ∗∗ at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.
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Figure B11: Threshold Tests - Nutritional Status and Metabolic Disease (IHDS and SICHS)
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(b) metabolic disease

Source: India Human Development Survey (IHDS), South India Community Health Study (SICHS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, and (for
IHDS) rural area, district and survey-round are included in the estimating equation at each assumed threshold for the
threshold test.
Cluster bootstrapped 5% critical values are used to bound the threshold location.

Table B10: Piecewise Linear Equation Estimates – Nutritional Status and Metabolic Disease (South
India)

Source: IHDS SICHS

Dependent variable: BMI metabolic disease BMI
(1) (2) (3)

Slope below (βL) 0.200∗∗ 0.001 0.079
(0.112) (0.005) (0.369)

Slope above (βH ) 0.803∗∗ 0.029∗∗ 1.148∗∗

(0.125) (0.008) (0.382)
Threshold location (τ) 1.70 2.00 1.69

[1.50, 1.95] [1.75, 2.25] [1.29, 2.07]
Threshold test p−value 0.000 0.000 0.002
Dep. var. mean 22.186 0.074 23.449
N 22,316 41,198 7,634

Source: India Human Development Survey (IHDS), South India Community Health Study (SICHS)
Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular
disease.
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender, caste group, and (for IHDS)
rural area, district and survey-round are included in the estimating equation.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
∗∗ significant at 5%, based on cluster bootstrapped confidence intervals
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Figure B12: Assortative Matching on Historical Income
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(b) Parents’ generation

Source: South India Community Health Study (SICHS)
Historical income is measured by tax revenue per acre of cultivated land in 1871 in the individual’s natal village.
The number of bins in the binned scatter plot is set equal to 20.

Table B11: Nutritional Status - Income relationship below and above the threshold (SICHS)

Dep. var.: BMI

Income measure: current income

ancestral income
(non-parametric

g(R) function)

ancestral income
(quadratic

g(R) function)

Sample: below above below above below above
(1) (2) (3) (4) (5) (6)

Income coefficient 0.072 0.773∗∗∗ 0.334∗∗∗ 0.170 0.374∗∗∗ 0.014
(0.161) (0.102) (0.123) (0.159) (0.129) (0.127)

Dep. var. mean 23.034 23.755 23.034 23.755 23.034 23.755
N 1810 3844 1810 3844 1810 3844

Source: South India Community Health Study (SICHS)
The following covariates: age (linear, quadratic, and cubic terms) and dummies for gender and caste group are included
in the estimating equation.
Bootstrapped standard errors, clustered at the level of the village, are in parentheses.
∗ significant at 10%, ∗∗ at 5%, ∗ ∗ ∗ at 1%, based on cluster bootstrapped confidence intervals.
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C Selective Child Mortality

Suppose that there is a positive and continuous relationship between mean nutritional status and

household income, with a fixed dispersion in nutritional status at each level of income, as in Figure

C1. If children can only survive above a subsistence nutrition level, and this constraint only binds at

lower income levels, then as observed in the figure there will be a discontinuous relationship between

mean nutritional status, which we measure by BMI, and income. If this relationship persists into

adulthood, then the observed BMI-income relationship can be explained by selective mortality in

childhood (without requiring a set point).

Notice, however, that the discontinuous relationship between mean BMI and income with this

alternative model is driven entirely by households at the lower end of the nutritional status distribution,

at each income level. Child mortality is concentrated in the first five years and, hence, if the nutritional

status-income relationship is distorted by child mortality, this will show up most clearly among the

5-19 year olds. As with adult BMI, we precisely locate an income threshold at which the slope of the

relationship between household income and child (aged 5-19) BMI-for-age changes discontinuously.

Figures C2a and C2b report quantile regression estimates of the baseline slope coefficient (β1) and

the slope-change coefficient (β2) in the piecewise linear equation estimated at that threshold. The

conditional mean of the baseline slope coefficient and the slope change coefficient, evaluated at the

mean of the dependent variable, BMI-for-age, match what we obtain with adult BMI as the outcome in

Table 1, Column 1: the baseline slope is close to zero and the slope change is positive and significant.

Moreover, it is evident from Figures C2a and C2b that these results are not driven by a small fraction

of households at the bottom of the nutritional status distribution, as the alternative explanation

based on selective child mortality would imply. We cannot statistically reject the hypothesis that the

estimated coefficients at each quantile are equal to the corresponding conditional mean coefficient.

Figure C1: Child Nutritional Status with respect to Income (with selective child mortality)
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Figure C2: Conditional Mean and Conditional Quantile Coefficients (child nutritional status with
respect to income)
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Source: India Human Development Survey (IHDS)
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