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1 Introduction

Collective contests are situations where agents organize into groups to compete over a given

prize. Such situations are quite common: funds to be allocated among di↵erent departments

of an organization, team sports, projects to be allocated among di↵erent divisions of a firm,

regions within a country vying for shares in national grants, party members participating in

pre-electoral campaigns, disputes between tribes over scarce resources.

Prizes in such contests may be purely private, e.g. money. Or the prizes may have some

public characteristic like reputation or glory for the winning team. In this paper we focus

on purely private prizes. For prizes with public characteristics the reader may refer to Baik

(2008), Balart et al. (2016).

One essential feature of collective contests is that a groups’ performance depends on the

individual contribution of its members. Departments in universities usually receive funds

depending on the publication record of the department, which in turn depends on the indi-

vidual publication of its members. So the group needs to coordinate and establish some rules

regarding its internal organization, in particular how to share the prize in case of success in a

contest. In this study we focus on two such important sharing rules. One such prize sharing

rule, which was proposed by Nitzan (1991) suggests the following way of sharing the prize

within the group, if the group wins the collective contest:

(1� ↵i)
xki

Xi
+ ↵i

1

ni
(1)

where xki is the e↵ort put in by the kth member of group i, Xi is the total e↵ort of group i and

ni is the size of group i. ↵i is weight put on egalitarian sharing of the prize within the group

and 1�↵i is the weight put on a sharing rule, which rewards higher e↵orts within the group,

thereby inducing intra-group competition. Rule N introduces intra-group externalities by

making each members reward depend on e↵orts of all other members of the group.

This prize sharing rule has been extensively studied in the literature on collective contests,
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see e.g. Flamand et al. (2015). The popularity of this rule lies in its intuitive appeal. It

combines two extreme forms of internal organization, capturing the tension between intra-

group competition and the tendency to free ride on e↵orts of other group members. Despite

its popularity the rule is ad hoc. This paper tries to provide strategic foundations to these

prize sharing rules, which we denote N throughout the paper.

In order to do that, we introduce another rule E, which represents cooperative behavior

within a group. According to this rule, the net expected group payo↵ is divided equally

among all group members, thereby aligning individual and group interests. In other words,

using rule E helps to internalize all intra-group externalities. It is defined as follows:

1

ni
(Pi(Xi, Xj)�Xi) (2)

where Pi(Xi, Xj) is the probability with which group i wins the prize and Xi is aggregate

e↵ort of the group i.

We consider a situation in which a group has access to these two prize sharing rules E and

N . We construct a two stage game where the groups choose between the rules simultaneously

in the first stage. The rules having been chosen, the individual group members simultaneously

put in e↵orts in the second stage. The question we ask is whether this game has any subgame

perfect Nash equilibrium in which rule N is chosen by any group.

We find that both groups choosing E always constitutes a subgame perfect Nash equilib-

rium in pure strategies. However, we also uncover a class of games, that we call Coordination

games, in which both groups choosing N is also a subgame perfect Nash equilibrium in pure

strategies.

The reason why such Coordination games arise is that, when the weight on intra-group

competition is high enough in both groups, a situation of strategic uncertainty is created

between the groups. In these cases rule N is a powerful instrument to increase chances of

winning the contest. If a particular group chooses N , it generates high e↵orts and wins the
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contest with a high probability. The other group should, in that case, choose N to increase

its own e↵orts to counter the first group and keep its probability of winning from falling too

much. The upward spiral in e↵orts comes at the cost of a vastly reduced net surplus 1, which

harms both groups in terms of payo↵s.

In fact, we go on to show that the Nash equilibrium in which N is chosen payo↵ dominates

the one in which both groups choose E. So it is not survive the equilibrium selection criterion

of payo↵ dominance, first suggested in Harsanyi et al. (1988).

However, when we consider criteria of equilibrium selection, which are based on the

“riskiness” of the equilibrium point, the results change. First, we consider the selection

criterion of risk dominance as suggested in Harsanyi (1995). We are able to provide necessary

and su�cient conditions for equilibrium profile NN to risk dominate EE. We show the

existence of such games by considering a special subclass of coordination games we call

symmetric coordination games.

Finally, we consider a equilibrium selection criterion called the Security Principle. Ac-

cording to it the players choose the strategy that maximizes their minimum possible payo↵,

see e.g. Van Huyck et al. (1990). We show that equilibrium profile NN is always selected

by this criterion.

Even though di↵erent equilibrium selection criterion make di↵erent prescriptions, the

fact that equilibrium NN is selected by some of them helps us establish that there exists a

strategic basis to the prize sharing rules N introduced by Nitzan (1991).

The paper is structured as follows. In Section 2 we discuss the relevant literature. In

Section 3 we describe the model. In Section 4 we analyze the second stage of the game, where

individuals make e↵ort choices. In Section 5 we analyze the first stage of the game where the

group leaders make their choice between E and N . In Section 6 we study the robustness of

the equilibria to equilibrium refinement criteria of Payo↵ Dominance and Risk Dominance

and the Security Principle. Section 7 contains a discussion of the results and things left out

1Surplus minus total e↵orts put in the contest
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of the main body. Section 8 concludes. All proofs can be found in the Appendix 1.

2 Literature

The literature on prize sharing rules (rule N) in collective contests started with an influential

paper by Nitzan (1991). Thereafter, these class of rules have been widely applied to the

analysis of group competition. The popularity of this class of rules owes to the fact that it

very nicely captures e↵ects of intra-group competition on the welfare of the groups in the

collective contest. For an extensive survey the reader can look at Flamand et al. (2015).

These rules have been used to study two very important features of collective contests

(a) Monopolization and (b) Group Size Paradox (GSP).

In two group contests Davis and Reilly (1999) uses the term monopolization to refer to a

situation where one group withdraws from the competition. Ueda (2002) extended the idea

of monopolization to multi-group contests. In our analysis monopolization is possible but

plays a supplementary role with regard to the main aim of the paper.

Group Size Paradox (GSP) is a situation where a smaller group outperforms a larger one

in terms of payo↵s. The notion dates back to the seminal work by Olson (1965), who focused

on the detrimental e↵ects of free riding within large groups. Our focus not being on GSP,

the interested reader is referred to Flamand et al. (2015).

There is an extensive literature on strategic choice of sharing rules under di↵erent re-

strictions on publicness of the prize and the sharing rule itself. One part of the literature

(Baik (1994), Lee (1995), Noh (1999), Ueda (2002)) focuses on the case where the prize can

be shared at most proportionally to individual contributions. Another part of the litera-

ture weakens this assumption (Baik and Shogren (1995), Lee and Kang (1998), Baik and

Lee (1997), Baik and Lee (2001), Lee and Kang (1998), Gürtler (2005)) and allows trans-

fers from worse performing group members to better performing group members. A recent

strand of literature, (Nitzan and Ueda (2014), Vázquez-Sedano (2014)) has studied cost
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sharing schemes with purely public prizes, where prize sharing is not possible.

There are a few other papers, which study the e↵ect of publicness of the prize on group

welfare. The purely public prizes case, where the prize sharing rules do not apply, has been

analyzed by (Baik (1993), Baik (2008)). Esteban and Ray (2001) considers the case of a

mixed private-pubic goods, with exogenous and fully egalitarian sharing rules, which was

later endogenized in a private information framework in Nitzan and Ueda (2011). Balart

et al. (2016) analyze the case of a mixed public-private prize with strategic choice of sharing

rules in a complete information setting.

This paper di↵ers in focus from all the strands of literature cited above, in that it attempts

to provide non-cooperative foundations to these prize sharing rules N instead of studying its

e↵ects on group welfare. We assume the prize to be fully private and we also abstract from

strategic choice of sharing rules. Instead we provide the groups a strategic choice between an

exogenous and internally non-cooperative prize sharing ruleN and an intra-group cooperative

prize sharing rule E and ask whether a group chooses rule N in any subgame perfect Nash

equilibrium of an appropriately defined two stage game.

There are two papers, which analyze the choice between E and N , when both options are

available. Cheikbossian (2012) questions the validity of GSP, by giving individual members of

the groups a choice betweenN with ↵i = 1, which captures maximal internal non-cooperation

and cooperative rule E. He goes onto show that it is easier to sustain E as a subgame perfect

Nash equilibrium within the larger group, where the punishment used for a group member

deviating from E is that other group members deviate to N then on.

The focus of our paper is di↵erent. We focus on how the presence of di↵erent options

creates strategic uncertainty between the groups and why that may lead to N being chosen

by both groups in equilibrium. In our model, individuals cannot deviate from the sharing

rule chosen by their leaders. Cheikbossian (2012), on the other hand, focuses on the question

of the ease of maintaining cooperation within a group, given that non-cooperative options

are present for each individual member.
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To the best of our knowledge, the only other paper with the motivation to find a strategic

foundation for rule N is Ursprung (2012). He considers two groups of the same size. He

gives the groups a choice among E, and the two extreme points of rule N , i.e. ↵i = 0 and

↵i = 1. He goes onto show that in an evolutionary game, N with ↵i = 0 crowds out E

in the long run. In our model, there is no choice between di↵erent points of rule N . Also

groups can be of di↵erent sizes. Besides, our study does not take the evolutionary game

route. Instead, we try to characterize which parts of rule N can arise in equilibrium of an

appropriately constructed two stage game. As our paper di↵ers on important features from

Ursprung (2012), our analysis can be considered to be complementary to theirs.

3 Model

There are two groups A and B, of size ni , i = {A,B}, where ni 2 {2, 3, ....}. We assume

without loss of generality that group B is at least as large as A, i.e. nB > nA. We denote

the total number of agents as N , so that N = nB + nA. All agents are assumed to be risk

neutral.

Both groups compete for a purely private prize, the size of which we normalize to 1. The

groups cannot write binding contracts among themselves regarding sharing the prize. Instead

they indulge in a rent-seeking Tullock contest spending e↵orts trying to win the contest. The

outcome of this contest depends on the aggregate e↵ort spent by the two groups. Let xki

denote the e↵ort level of individual k belonging to group i, where e↵ort costs are C(xki). In

particular C(xki) = xki. The aggregate e↵ort of group i is Xi =
Pni

k=1 xki. The aggregate

e↵ort of the groups in the contest is denoted X, i.e., X = X1 +X2.

E↵orts do not add to productivity, and only determine the probability Pi(Xi, Xj) that

group i wins the contest. We assume that Pi(Xi, Xj) takes the ratio form, i.e.
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Pi(Xi, Xj) =

8
>><

>>:

Xi
Xi+Xj

, if Xi > 0 or Xj > 0,

1
2 , otherwise.

(3)

Every group has a leader, who has the authority to enforce a sharing rule that speci-

fies how the expected groups payo↵s are to be shared within the group. Both leaders are

benevolent, maximizing the expected group payo↵ while making their decisions.

The leaders can choose between two alternative sharing rules, either a cooperative sharing

rule denoted E, or a non-cooperative sharing rule denoted N . We next turn to discussing

these two rules.

⌅ Cooperative Sharing Rule E: The cooperative sharing rule E, introduced in (2),

involves the group leader committing to share the net expected group payo↵ equally among

all its members. Given Pi(Xi, Xj) takes the ratio form in (3), that is equivalent to the

leader committing to divide the surplus net of aggregate e↵orts, i.e., 1�X, equally among

all members in case of success2. It is important to note that this rule implies that the net

surplus is contractible, i.e., 1 � X is verifiable. The expected net utility of member k of

group i is as follows:

EUki(E) =
1

ni
(Pi(Xi, Xj)�Xi) = Pi(Xi, Xj)

⇣1�X

ni

⌘
. (4)

Individual k in group i chooses e↵ort xki to maximize equation (4).

As this scheme gives each member a fixed share in the net group payo↵, each individual’s

interest gets aligned with group interest. That is why we call the rule cooperative. The equal

sharing assumption is of course not necessary for perfect alignment of individual and group

interests. Any asymmetric sharing scheme which gives all members a fixed positive share in

the net group payo↵ will also work. We fix it at equal shares because it has natural appeal

in a setting where all agents are symmetric. More importantly, the equal sharing assumption

2Pi(Xi, Xj)�Xi =
Xi

Xi+Xj
�Xi =

Xi
Xi+Xj

(1�Xi �Xj) = Pi(Xi, Xj)(1�X)
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makes the leader a representative agent of his group, which makes concerns about his identity

irrelevant.

⌅ Non-cooperative Rule N: The group leader can instead opt for the prize sharing rules

introduced by Nitzan (1991). We denote this prize sharing rule by N . If group i leader

chooses Rule N , then in case of success, the share of the kth member of group i (ski) is as

follows:

ski(xki, Xi;↵i, ni) = (1� ↵i)
xki

Xi
+

↵i

ni
, (5)

where ↵i 2 [0, 1]. ↵i is fixed for a group and cannot be manipulated by the leaders 3. N

is feasible as
P

k2ni
ski = 1. It should also be noted that in this case only the ratio of the

individual to the total group e↵ort needs to be verifiable.

Note that this rule is a weighted average of an egalitarian component 1
ni

and a competitive

component xki
Xi

. The egalitarian part tends to reduce group e↵ort because individual members

of a group free ride on e↵ort provision, given that his share is independent of his e↵orts. The

competitive component, on the other hand, tends to increase group e↵orts because individual

members compete internally to get a larger share of the prize in case of success.

It should be noted that a change in group e↵orts has two countervailing e↵ects. On the

one hand, an increase in groups e↵orts increases the chances that the group wins the contest.

On the other hand, higher group e↵orts also dissipates the prize leaving a lower ex-post

surplus.

This is the trade o↵, which the literature on strategic choice of prize sharing rules focuses

on, see e.g. Flamand et al. (2015). While abstracting from this trade-o↵ in our paper by

fixing the weights ↵i, we focus on a qualitatively similar trade-o↵ which is generated when

the groups choose between E and N .

When group i leader chooses N , individual k in group i chooses e↵orts xki to maximize

3We endogenize the choice of ↵i in Chapter 2
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his expected utility, which is as follows:

EUki(N) =

8
>>>>>><

>>>>>>:

ski(xki, Xi;↵i, ni)Pi(Xi, Xj)� xki if Xi > 0, Xj > 0,

1
2ni

if Xi = Xj = 0,

0 if Xi = 0, Xj > 0.

(6)

⌅ Leader’s Objective: Recall that the leader of both groups are benevolent social planners.

The strategy of the leader of group i is denoted �i 2 {E,N}, i 2 {A,B}. The leader chooses

�i, i.e., either the cooperative rule E or non-cooperative rule N , to maximize the net group

payo↵s. The maximization problem of leader of group i is as follows:

max
�i2{E,N}

Pi

⇣
Xi(�i, �j), Xj(�i, �j)

⌘⇣
1�X(�i, �j)

⌘
(7)

where X(�i, �j) = Xi(�i, �j) +Xj(�i, �j).

The payo↵ representation in equation (7) is intuitive, and captures the trade-o↵ inherent

in the group leader’s maximization problem. X measures the amount of prize dissipated in

the competition between the two groups. Therefore, 1�X is the surplus net of e↵orts,which

remains for ex post consumption. The probability with which group i wins this net surplus

is Pi(Xi, Xj). If leader of group i wants to win the contest with a higher probability she has

to take measures, which increase group e↵orts Xi. But when Xi goes up so does X, which

reduces the size of the net surplus.

⌅ Description of the Game: Our game consists of two stages. In the first stage the two

leaders simultaneously choose between E and N . Having observed the choice of the sharing

rules, in stage 2 all agents simultaneously decide on their own e↵ort levels.

We denote an equilibrium strategy profile of the game �⇤ = (�⇤
A, �

⇤
B).

We solve for the Subgame Perfect Nash equilibrium (SPNE) of the game described above.

10



4 Choice of Individual Efforts

In this section we characterize the Nash equilibrium e↵ort choices of individual members

of the groups taking as given the sharing rules, which are chosen by the group leaders in the

first stage.

Before stating the results we define the phenomenon of Monopolization of a group in the

contest, which is well recognized in the collective contest literature, see e.g. Davis and Reilly

(1999).

Definition 1 Monopolization

A SPNE h�⇤
A, �

⇤
Bi is said to involve monopolization of group i, if group i does not put in any

e↵ort in the contest.

Convention: In what follows we denote generic e↵orts as XA and XB. But when we talk

about equilibrium e↵orts, surpluses and probabilities of winning we use superscripts. We fix

the first component of the superscripts to be the strategy chosen by group A and the second

component to be the strategy chosen by group B in the first stage.

4.1 Equilibrium Net Surplus and Probabilities of Success

In the following proposition we report only the surplus net of e↵ort S, which remains for

consumption, i.e. S = 1 � X, and the probabilities with which each group wins the net

surplus, Pi and Pj. Such a choice was made to keep the discussion in line with the basic

trade-o↵ in the model. In the Appendix 1 we provide all the details. Before proceeding we

introduce the following notations:

For i, j 2 {A,B} and j 6= i we define

�i = ni + ni(nj � 1)↵j � nj(ni � 1)↵i. (8)
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�i can be interpreted as a measure of the competitiveness of group i relative to group j. In

fact, when both groups choose N, the probability that group i wins the contest Pi is directly

proportional to �i. Note that �i is increasing in ↵j and decreasing in ↵i. When ↵j is large

relative to ↵i, group j is relatively less competitive, which gives group i an advantage in

the contest. On the other hand when ↵i large relative to ↵j, group j wins the contest more

often.

In Proposition 1 we report the net surplus and probabilities of winning in an equilibrium

of the second stage of our game. For features of the best response functions the readers are

encouraged to go to Appendix 2. There we do a detailed analysis of individual and aggregate

best response functions and analyze when aggregate e↵orts are strategic substitutes and when

they are strategic complements. As mentioned, we relegate that analysis to Appendix 2 as

it is subsidiary to the focus of the paper.

Proposition 1

(A) If both groups choose E then in any Nash equilibrium of the e↵ort subgame

(a) The net surplus in the contest is SEE = 1
2 .

(b) The probabilities of winning are (PEE
i , PEE

j ) = (12 ,
1
2).

(B) If group i chooses E and group j chooses N , i, j 2 {A,B} and j 6= i, then in any Nash

equilibrium of the e↵ort subgame

(a) The net surplus in the contest is S�A�B = 1� 1+(1�↵j)(nj�1)
nj+1 .

(b) The probabilities of winning are (P �A�B
i , P �A�B

j ) = (1+↵j(nj�1)
(nj+1) , 1� 1+↵j(nj�1)

(nj+1) ).

(C) If both groups choose N then

(1) If �i 6 0 , i, j 2 {A,B} and j 6= i 4, then group i is monopolized by group j. In

the unique intra-group symmetric Nash Equilibrium of the e↵ort subgame

4If �i 6 0 then �j > 0 as �i + �j = N
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(a) The net surplus in the contest is SNN = 1� (1�↵j)(nj�1)
nj

.

(b) The probabilities of winning are (PNN
i , PNN

j ) = (0, 1).

(2) If �i > 0 and �j > 0, i, j 2 {A,B} and j 6= i, then neither group is monopolized

and in any Nash equilibrium of the e↵ort subgame

(a) The net surplus in the contest is SNN = 1� 1+(1�↵i)(ni�1)+(1�↵j)(nj�1)
N .

(b) The probabilities of winning are (PNN
i , PNN

j ) = (�i

N , 1� �i

N ).

We next discuss the results summarized in Proposition 1.

⌅ Both groups choose E: When both groups choose E in the first stage, there exists a

continuum of Nash equilibria in individual e↵orts in all of which XEE = 1
2 and so the net

surplus is SEE = 1
2 . Both groups win with equal probabilities PEE

i = PEE
j = 1

2 . Therefore,

XEE
i = XEE

j = 1
4 , but the individual e↵ort choices can be asymmetric. Given the fact

that aggregate e↵ort choices are all that matters, we find that the equilibrium levels of

aggregate e↵orts are independent of group sizes. We will treat this case as our benchmark

for comparison as it represents full cooperation within both the groups.

⌅ Group i chooses E, group j chooses N: Here we analyze the individual e↵ort choices of

group members when group i has chosen E and group j has chosen N in the first stage. For

ease of exposition, let us assume that group i = A and j = B. Just as in the benchmark case,

the individual e↵ort choices in the Nash equilibrium is not unique but the aggregate e↵orts

XEN
A and XEN

B are. The Nash equilibrium levels of net surplus SEN and the probability of

group A winning, PEN
A are stated in Proposition 1. In Figure 1, we make a comparison to

the benchmark case.

The total e↵ort XEN monotonically decreases and net surplus SEN monotonically in-

creases in ↵B, equaling the benchmark level of 1
4 , at ↵B = 1

2 . For ↵B > 1
2 aggregate e↵ort

costs XEN is lower compared to the benchmark case, and hence the net surplus, SEN is

higher.
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↵A11
20

1
2

1

↵B

SEN > 1
2 = SEE

SEN < 1
2 = SEE

PEN
A < 1

2 = PEE
A

PEN
A > 1

2 = PEE
A

Figure 1: Comparison of EN to EE

�B = 0

�A = 0

B Monopolized

A Monopolized

↵A

↵B

1

10 1
2

1
2

PNN
A = 1, PNN

B = 0

0 < PNN
A < 1

0 < PNN
B < 1

PNN
A = 0, PNN

B = 1

Figure 2: Probabilities of winning under NN

14



On the other hand, the probability that group A wins the contest, PEN
A , monotonically

increases in ↵B, equaling the benchmark level at ↵B = 1
2 . As ↵B rises, free riding increases

within group B, thereby not only creating a larger net surplus but also reducing the proba-

bility that group B wins the contest.

⌅ Both groups choose N: When both groups choose N in the first stage, we may have

Monopolization of one group by the other, in that the equilibrium e↵ort level of the other

group is zero,(see Figure 2). It is clear that the probability with which group i wins the

contest is 0 when �i 6 0, which happens when ↵i is large relative to ↵j.

We now focus on the more interesting case, where neither group is Monopolized, which

happens when �i > 0. From Proposition 1,

The net surplus SNN > 1
2 if:

(ni � 1)(1� 2↵i) + (nj � 1)(1� 2↵j) < 0 (9)

whereas the probability that group i wins PNN
i > 1

2 if:

�i >
N

2
(10)

The equations are represented in Figure 3. For relatively low levels of both ↵A and ↵B

the e↵ort expended in the contest is more than the benchmark level of 1
2 , which makes the

net surplus less than 1
2 . The probability of group i winning is lower the closer we are to the

line where it is monopolized.

The total e↵ort XNN is monotonically decreasing and the net surplus SNN is monoton-

ically increasing in both ↵A and ↵B. When ↵A goes up free riding goes up within group A

reducing the total e↵ort put in the contest, thereby increasing the net surplus. Similarly for

↵B.

The probability that group i wins, PNN
i , goes up as ↵j rises as free riding goes up within

group j. But, PNN
i falls with ↵i, as now there is more free riding among its own members.
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↵A11
2

0

1
2

1

↵B

PNN
A = 1

PNN
A = 0

�B = 0

�A = 0

SNN = 1
2

PNN
A = 1

2

PNN
A > PEE

A

SNN < SEE

PNN
A < PEE

A

SNN < SEE

PNN
A > PEE

A

SNN > SEE

PNN
A < PEE

A

SNN > SEE

Figure 3: Comparison of NN to EE

4.2 Group Payo↵ Functions

In the previous subsection we analyzed properties of the equilibrium in the second stage of our

game, specifically focusing on the associated net surplus and the probabilities of winning. In

Appendix 2, we analyze how changing group sizes a↵ects the net surplus and probabilities of

winning. But given that we are primarily interested in group payo↵s instead of its individual

components, we next we analyze what happens to the group payo↵s when the parameters in

the model are changed.

As mentioned at the beginning under any strategy profile the payo↵ of group i can be

expressed in the following form

⇧i = PiS (11)

where Pi is the probability with which group i wins the contest and S is the surplus net

of e↵orts of the groups.
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So, the growth rate of group payo↵s with respect to a particular parameter, will just be

the sum of the growth rate of the probability of winning and the growth rate of the net

surplus with respect to that parameter. Suppose we change parameter K, then the following

will be true

g⇧i
K = gPi

K + gSK (12)

where gYK = 1
Y

dY
dK , for any variable Y .

In the previous subsection we analyzed dPi
d↵i

and dS
d↵i

. Here, we analyze the composition of

the two e↵ects when ↵i is changed. Given, that there exists a trade-o↵ between Pi and S,

analyzing the composition of the two separate growth rates helps us pin down the growth

rate of group payo↵s. Obviously, the growth rate of group payo↵s will be of the same sign

as d⇧i
d↵i

.

Changing ↵i

Here, we will change ↵A and ↵B and see how it a↵ects group payo↵s. The following Propo-

sition contains the information.

Before stating the proposition we introduce the following notation:

↵o
B =

(nB � nA)(1 + ↵A(nA � 1))

2nA(nB � 1)
(13)

↵o
B is the value of ↵B, which maximizes the payo↵ of group B, ⇧NN

B .

Proposition 2

(A) If group i chooses E and group j chooses N, i, j 2 {A,B} and j 6= i, then

(a) ⇧�A�B
j is strictly increasing (decreasing) in ↵j i↵ ↵j < (>)12 and achieves global

maximum at ↵j =
1
2 .

(b) ⇧�A�B
i is strictly increasing in ↵j.
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(B) If both groups choose N and neither group is monopolized, then

(a) ⇧NN
A is strictly decreasing in ↵A.

(b) ⇧NN
A is strictly increasing in ↵B.

(c) ⇧NN
B is strictly increasing in ↵A.

(d) ⇧NN
B is strictly increasing (decreasing) in ↵B i↵ ↵B < (>)↵o

B and achieves global

maximum at ↵B = ↵o
B.

⌅ Group A chooses E, Group B chooses N:

I Case 1: ↵B < 1
2 .

In this case the payo↵s of the groups depend only on ↵B. When ↵B < 1
2 , we have

PEN
B > SEN , so that the base probability of winning for group B is higher than the base net

surplus.

It is also true that XA and XB are strategic substitutes in this case 5. An increase in ↵B

reduces XEN
B as free riding increases within group B. But, XEN

A increases as the strategies

are substitutes. This causes XEN
B to fall farther. The net surplus SEN rises as XEN

B falls

more than XEN
A rises, thereby reducing aggregate e↵orts XEN .

As XEN
A increases so does the probability of winning for group A, PEN

A . As the growth

rates of both SEN and PEN
A are positive, ⇧EN

A is increasing with ↵B.

The payo↵ of group B, ⇧EN
B , also rises in this case as the base probability of winning PEN

B

is quite high and SEN is low to start with. So, the growth in SEN dominates the deceleration

in probability of success PEN
B , causing group B payo↵s to increase with ↵B.

I Case 2: ↵B > 1
2 .

In this case, we have PEN
B < SEN , so that the base net surplus higher than the base

probability of winning for group B.

As ↵B rises, XEN
B falls due to increased free riding in group B. But, XEN

A also declines

as XA is a strategic complement to XB. But, XEN
B falls more than XEN

A , so that PEN
A is

5See Appendix 2
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still increasing. Again, as the growth rates of both SEN and PEN
A are positive, ⇧EN

A keeps

on increasing with ↵B

For group B, on the other hand, the deceleration in PEN
B is now more than positive

growth the in net surplus SEN , by the base e↵ect. So, the payo↵ of group B declines as ↵B

increases.

⌅ Both groups choose N: In this case it is easier to clarify part (b) and (c) of the

proposition. As ↵B rises, SNN rises and so does PNN
A . The growth rates of both are positive

and so ⇧NN
A also grows with ↵B. Similarly, as ↵A goes up, ⇧NN

B is increasing.

To understand part (a) of the proposition, notice that as ↵A goes up so does SNN .

Therefore, the growth rate of the net surplus, SNN , is positive. But, the growth rate of PNN
A

is negative when ↵A rises. Given that group A is the smaller group, when ↵A increases, a

small number of agents reduce their e↵orts, causing a minute growth of net surplus. However,

decreased e↵orts contribute more to a reduction of the group’s chances of victory. So, the

growth rate in net surplus is always outdone by the slowdown in winning probabilities for

group A. So, ⇧NN
A is decreasing in ↵A.

To understand part (d), notice that when ↵B goes up, SNN goes up but PNN
B falls. When,

↵B < ↵o
B, the growth rate of net surplus dominates the deceleration in chances of winning

for group B. This happens because, at such a low level of ↵B the larger group B is also very

competitive. It generates a lot of e↵ort XNN
B , causing a lot of the rent to be dissipated. This

makes the base net surplus SNN lower than the base PNN
B here. When ↵B rises, the growth

rate in net surplus dominates the deceleration in probability of winning due to a lower base.

So, the payo↵s of group B is rising here.

When, ↵B > ↵o
B, the bases switch and therefore the deceleration in probabilities of

winning dominates the growth in net surplus and the payo↵s of group B start to fall.
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Group B

E N

Group A
E ⇧EE

A ,⇧EE
B ⇧EN

A ,⇧EN
B

N ⇧NE
A ,⇧NE

B ⇧NN
A ,⇧NN

B

Table 1: Game �

5 Choice of Sharing Rules by Group Leaders

In this section we consider the choice made by the group leaders in the first stage. Given

the e↵ort choices made by individual group members in the second stage, the group leaders

play a normal form game in the first stage. A strategy profile is a Nash equilibrium of the

normal form game, if both leaders choose strategies, which maximize (7), taking the other

groups strategy choice as fixed.

Given any configuration of parameters (↵A,↵B, nA, nB), we have a normal form game we

denote �(↵A,↵B, nA, nB). We denote the set of all such normal form games �. Games in �

are bi-matrix games as represented in Table 1.

Proposition 3

Consider any game G 2 �. EE is a pure strategy Nash equilibrium of G.

This result is quite convenient and serves as a benchmark for us. The fact that E

constitutes mutual best responses means that the only way we can generate N as a part of

a Nash Equilibrium of any G 2 � is when both groups choose N , which takes the structure

of a Coordination Game. To prove that EE is a Nash Equilibrium we have to show that

For i, j 2 {A,B} and j 6= i and 8G 2 �

⇧�A�B
i (�i = N, �j = E) 6 ⇧EE

i
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Using Proposition 1 the inequality can be written as follows:

 
1 + (1� ↵i)(ni � 1)

ni + 1

! 
1� 1 + (1� ↵i)(ni � 1)

ni + 1

!
6
 
1

2

! 
1

2

!
=

1

4
(14)

where the first term in brackets is the probability that group i wins the contest Pi and the

second term in brackets is the net surplus 1�X. But (14) follows directly from part (A) of

Proposition 2 and the fact that ⇧EE
i = ⇧EE

i = 1
4 .

When group j chooses E, group i can guarantee a payo↵ of 1
4 by responding with E. At

profile EE, the net surplus is SEE = 1
2 and each group wins it with PEE

i = PEE
j = 1

2 . On the

other hand, if group i responds with N it can get a maximum of 1
4 when ↵i =

1
2 . Otherwise,

it gets a lower payo↵. Therefore E is always a best response for group i when group j plays

E. Look at Figure 4, where we plot ⇧EE
i and ⇧�A�B

i (�i = N, �j = E).

1O
1
2

1
4

1
2

⇧
EE
i , ⇧

�A�B
i

↵i

ni
(ni+1)2

ni
(ni+1)2

⇧
EE
i

⇧
�A�B
i (�i = N, �j = E)

Figure 4: Payo↵ Comparison of EE and EN
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I Case 1: ↵i <
1
2

Consider i = A and j = B. In this case, we know that PNE
A > SNE. We also know that

PNE
A > PEE

A = 1
2 and SNE < SEE = 1

2 , so that group A gets a larger share of a smaller net

surplus. As, XA and XB are strategic substitutes in this case, as ↵A increases, XA falls and

XB increases. SNE increases but PNE
A falls. This means that the incremental net surplus,

which is a public good created by a reduction in e↵orts by group A, is mostly captured by

group B. Even, though the payo↵ of group A is increasing due to a lower base SNE, choosing

N cannot be an optimal response because group A could switch to E, where both groups

contribute equally to the net surplus and take away an equal share of it.

I Case 2: ↵i >
1
2

Consider i = A and j = B. In this case, we know that PNE
A < SNE. It is also true that

PNE
A < PEE

A = 1
2 and SNE > SEE = 1

2 . Here, as ↵A increases XA falls but so does XB as it

is strategic complement to XA. But XA falls more and PNE
A keeps on decreasing. So, again

group A gets a smaller share of the public good it largely creates. It would be better for

group A to switch to E, and get an equal share in a lower net surplus, which both groups

have contributed to equally.

Given that EE is a Nash equilibrium of any G 2 �, we need to check when games in �

also have as Nash equilibrium the strategy profile NN .

Definition 2 Coordination game

Consider any game G 2 �. G will be called a Coordination game i↵ ⇧EE
A > ⇧NE

A , ⇧NN
A >

⇧EN
A , ⇧EE

B > ⇧EN
B and ⇧NN

B > ⇧NE
B . The set of Coordination games is denoted �C.

For i = A,B and j 6= i, we introduce the following notations:

↵i =
1 + ↵j(nj � 1)

nj + 1
, (15)
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and

↵i =
(1 + ↵j(nj � 1))(ni � n2

j)

nj(nj + 1)(ni � 1)
, (16)

where ↵i is the larger and ↵i is the smaller root of the following quadratic equation 6

⇧�A�B
i (�i = E,�j = N) = ⇧NN

i

We are now in a position to state and analyze the main result of the paper. Proposition 4

confirms the existence and helps us clearly identify the Coordination games we are looking for.

This result helps us establish strategic foundations of the prize sharing rules N , which have

been subjected to extensive analysis in the collective contests literature, see e.g. Flamand

et al. (2015).

Proposition 4

Consider any game G 2 �

(A) EE and NN are pure strategy Nash equilibria of G i↵ ↵A 2 [0,↵A] and ↵B 2 [max{0,↵B},↵B].

(B) Otherwise, G is dominance solvable and EE is its unique pure strategy Nash equilib-

rium.

This is the main result of this paper. We have been able to show, that there exist games

G 2 � such that NN is a Nash equilibrium outcome, thereby providing strategic foundations

to the prize sharing rules N .

G belongs to the set of Coordination games �C when ↵A 2 [0,↵A) and ↵B 2 (↵B,↵B) if

↵B > 0. On the other hand, when ↵B < 0 then G belongs to the set of Coordination games

�C , if ↵A 2 [0,↵A) and ↵B 2 [0,↵B). Under the conditions specified above N is a strict best

response to N for both the groups and hence satisfies the requirements for any G 2 � to be

a Coordination game.

6Notice that ↵i =
ni�n2

j

nj(ni�1)↵i. So the roots are multiples of each other, i.e., ↵i = C↵i, where C < 1.
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If ↵A = ↵A, then N is a weak best response to N for group A. The cooperative strategy E

weakly dominates the non-cooperative strategy N for group A. This follows from Proposition

3. Similarly, E weakly dominates N for group B, when ↵B = ↵B or ↵B = ↵B, in case ↵B is

positive 7. Even though we can see in Part (A) of Proposition 4 that both EE and NN are

Nash equilibria in such cases 8, we ignore them while considering Coordination games �C as

they are defined to have N as a strict best response to N for both groups.

To check when N is a best response to N for group i we need to check the following

inequality:

For i, j 2 {A,B} and j 6= i

PNN
i SNN > [P �A�B

i S�A�B ](�i = E,�j = N) (17)

It can be easily verified that SNN > S�A�B(�i = E,�j = N) i↵ ↵i > ↵i. Similarly, it can

be verified that PNN
i > P �A�B

i (�i = E,�j = N) i↵ ↵i < ↵i. At, ↵i = ↵i, the strategies N

and E are equivalent for group i both in terms of net surplus and probabilities of winning

the contest.

Let us first consider group A and refer to Figure 5. Let us start from ↵A = ↵A, where

⇧NN
A = ⇧EN

A . Now from Proposition 2 we know that ⇧NN
A is strictly decreasing in ↵A. So,

starting from, ↵A = ↵A, if we reduce ↵A, then ⇧NN
A will strictly increase, while ⇧EN

A , being

independent of ↵A, will remain unchanged. Given that the smaller root ↵A is negative, it

follows that for all ↵A 2 [0,↵A), N is a strict best response to N for group A.

The story for group B is slightly di↵erent and can be seen in Figures 6 and 7. If ↵B = ↵B,

then ⇧NN
B = ⇧NE

B . From Proposition 2 we know that ⇧NN
B is decreasing in ↵B if ↵B > ↵o

B.

So, starting from ↵B = ↵1
B, if we reduce ↵B, ⇧NN

B first increases upto ↵o
B and then decreases.

⇧NE
B , being independent of ↵B is unchanged. Given that ⇧NN

B decreases when we reduce ↵B

7Of course in these cases equilibrium NN will be lost if we apply Iterated Elimination of Weakly Domi-
nated Strategies (IEWDS)

8It can also be easily verified that ↵A and ↵B intersect at (↵A,↵B) = ( 12 ,
1
2 ). At (↵A,↵B) = ( 12 ,

1
2 ) all

strategy profiles, i.e., EE, NN , EN and NE are Nash equilibria of �.
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below ↵o
B, gives rise to the possibility that the smaller root of ⇧NN

B = ⇧NE
B , which we denote

↵B, is positive.

It can be easily verified that ↵B is negative when nB < n2
A. So in this case N is a strict

best response to N for group B when ↵B 2 [0,↵B). See Figure 6.

In the other case, when nB > n2
A, the smaller root ↵B is non negative and N is a strict

best response to for group B when ↵B 2 (↵B,↵B). This is captured in Figure 7.

In Figures 8 and 9 we represent the Coordination games for the two di↵erent cases in the

↵A↵B plane. The case, where ↵B is negative is captured in Figure 8. The case where ↵B is

non-negative is captured in Figure 9. The Coordination games are marked in blue.

⌅ Intuition: To see why NN turns out to be a Nash equilibrium when G 2 �C , we have

to understand how presence of the non-cooperative rule N creates a situation of strategic

uncertainty for the groups. The main feature of this rule N is that it allows the groups a

chance to enhance its probability of winning at the expense of the other group, when G 2 �C .

Even, though the net surplus is lower a group wins with a higher chance by choosing N . If

both groups believe that the other is going to choose N to increase its chances of winning

the contest, both end up choosing N , not to give up a substantial winning advantage to the

other group. Of course, coordinating on NN comes at the cost of a substantially reduced

net surplus.

For example, consider the case where group B chooses N . If group A were to choose

E, then it gives up the option of increasing its chances of winning the contest. If ↵B is

su�ciently low, then group B puts in a lot of e↵ort and wins with a very high probability

a net surplus, which is lower. But, group A has no way to counter group B. However, if

group A were to respond with N , then it would be able to stop its probability of winning

from falling too much.

Therefore, in the race to keep its probability of winning high, a group may choose N if it

believes the other group will also do so. These kind of perverse incentives of groups results

from the fact the net surplus behaves exactly like a public good between the groups, leading
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↵A1
O

1
2

1
2

⇧
NN
A , ⇧

EN
A

⇧
NN
A

⇧
EN
A

↵A

N Best Response to N for Group A

Group A Monopolized

Figure 5: N best response to N for group A

↵B1
O

1
2

1
2

⇧
NN
B , ⇧

NE
B

⇧
NN
B

⇧
NE
B

↵B

N Best Response to N for Group B

Group B Monopolized

Figure 6: N best response to N for group B when nB < n2
A
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↵B1
O

1
2

1
2

⇧
NN
B , ⇧

NE
B

⇧
NN
B

⇧
NE
B

↵B ↵B

N Best Response to N for Group B

↵o
B

Group B Monopolized

Figure 7: N best response to N for group B when nB > n2
A
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↵A11
2

O

1
2

1

↵B

Coordination

Games

E is a dominant strategy for B

not for A

E is a dominant strategy for A

not for B

E is dominant

for both

groups

↵A = ↵A

↵B = ↵B

1
nA+1

1
nB+1

Figure 8: Coordination Games when nB < n2
A
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↵A11
2

O

1
2

1

↵B
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Games

E is dominant strategy only for B

E is a dominant strategy only for A

E is dominant for both groupsE dominant

for B, not A

E is dominant

for both groups

↵B = ↵B

↵A = ↵A

↵B = ↵B1
nA+1

(nB�n2
A)

nA(nA+1)(nB�1)

1
nB+1

Figure 9: Coordination Games when nB > n2
A
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to free riding on its maintenance by both groups. Instead, both groups have an incentive to

increase their winning chances by putting in more e↵ort. Therefore, if one group believes

that the other is trying to enhance its chances of winning by choosing N , it should respond

by doing the same to maintain parity. Given e↵orts eat into the prize, none of the groups

ideally want to end up in this spiral of higher e↵orts. But, given the strategic uncertainty

embodied in the normal form game G 2 �C , NN turns out to be an equilibrium outcome.

This result essentially has the flavor of a failure to coordinate on the Pareto e�cient outcome

EE.

6 Equilibrium Selection

We have been able to generate NN as a subgame perfect Nash equilibrium of an appro-

priately constructed two stage game, thereby providing a strategic foundations to the non-

cooperative prize sharing rule N , which has been so extensively analyzed in the collective

contests literature. But, given that it is an equilibrium of a Coordination game, where EE

is also a Nash equilibrium, the natural next step is to consider the question of equilibrium

selection, i.e., which of the equilibria are the groups likely to coordinate on? To tackle this

we introduce the three refinement criteria of the Nash equilibrium solution concept, namely

payo↵ dominance, risk dominance and the security principle.

If a game has multiple Nash equilibria and there is one Nash equilibrium which is Pareto

superior to all other Nash equilibria then it is called payo↵ dominant. The notion of payo↵

dominance is based on the idea of collective rationality, which leads to a coordination on the

Pareto superior equilibrium. The readers may refer to Harsanyi et al. (1988) for the first

discussions of this refinement concept. Readers are also referred to (Schelling, 1980), who

argues that e�ciency based considerations may make decision makers to focus on and select

a payo↵ dominant equilibrium point if it is unique.

A Nash equilibrium is said to be risk dominant if the losses from deviation from it is the
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largest among all other Nash equilibria. In the presence of high degree of uncertainty about

other player’s actions, this criterion seems to be more natural as players have an incentive to

coordinate on it to minimize losses. A risk dominant equilibrium is defined to be one which

generates the highest product of losses for the players, when there is a deviation from it.

Harsanyi (1995) first made a case for risk dominance as an equilibrium selection criterion.

Interestingly, there can be a tension between the criteria of risk dominance and payo↵

dominance in the sense that they may make conflicting prescriptions. A Nash equilibrium can

be payo↵ dominant but not risk dominant and vice versa. This leads to the obvious concern

about the relative appropriateness of the criteria? Researches have built evolutionary game

theory models in an attempt to justify one or the other of the refinements, see e.g. Samuelson

(1997). As it turns out, the tension between the two criterion is also a feature of our model

under certain circumstances.

There also exists a substantial experimental literature, which studies how real subjects

actually select between payo↵ dominance and risk dominance, when the two criteria make

conflicting prescriptions. For a guide to that literature, the readers may look at Keser et al.

(2000) and the references therein. The major takeaways from this literature is that the

number of players, time horizon, pre-play communication and the structure of interactions

matter. Interestingly, Keser et al. (2000) report an experiment where despite the two criteria

making the same equilibrium prescription, subjects systematically deviate from playing it.

Based on their conclusions, the authors claim that it is important to look for new criteria

that may play an important role in equilibrium selection.

Therefore, we also consider the Security principle, see e.g. Van Huyck et al. (1990), as an

additional selection criteria in our paper. The security principle suggests players to select a

course of action that maximizes their minimum payo↵s over all possible actions. The idea is

based on the notion of maximin introduced by Von Neumann and Morgenstern (1944). This

criterion, like risk dominance, is based on the “riskiness” of the equilibrium point. Therefore,

it will be salient when there is su�cient uncertainty regarding the other player’s actions.
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We now take up the equilibrium selection criteria one at a time. We first formally define

a criterion tailored to our game �C . Then we state the corresponding result.

First, we take up the equilibrium selection criteria based on “riskiness”of the equilibrium

point, i.e., risk dominance and the security principle. Then, we consider the selection criterion

of payo↵ dominance.

Definition 3 Risk Dominance

Consider any game G 2 �C. NN is said to risk dominate EE in G i↵ (⇧NN
A �⇧EN

A )(⇧NN
B �

⇧NE
B ) > (⇧EE

A � ⇧NE
A )(⇧EE

B � ⇧EN
B ). If the inequality holds strictly NN is said to strictly

risk dominate EE.

For ease of stating the result we start by introducing some notations.

For i, j 2 {A,B} and j 6= i we define

�i = nj(nj + 1)2
h
(↵i � ↵i)(↵i � ↵i)

i
, (18)

where ↵i and ↵i are the roots of ⇧�A�B
i (�i = E,�j = N) = ⇧NN

i as defined in (15) and

(16). �i is a measure of ⇧NN
i � ⇧�A�B

i (�i = E,�j = N). As we consider only Coordination

games, it is true that ↵i 2 (↵i,↵i) and therefore the right hand side of (18) is positive. We

are now in a position to state a condition which is necessary and su�cient for equilibrium

profile NN to risk dominate EE.

Proposition 5

Consider any game G 2 �C. NN risk dominates EE in G i↵ N4(1 � 2↵A)2(1 � 2↵B)2 6

16�A�B.

The Prosposition provides us a very easy to check condition for NN to risk dominate

EE. It can be written out as follows:
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N4(1�2↵A)
2(1�2↵B)

2 6 16nAnB(nA+1)2(nB+1)2(↵A�↵A)(↵A�↵A)(↵B�↵B)(↵B�↵B)

(19)

The left hand side of (19) is a measure of (⇧EE
A �⇧NE

A )(⇧EE
B �⇧EN

B ). It is close to zero

if either ↵A or ↵B is close to 1
2 . But it is clear from Figures 8 and 9 that � is a Coordination

game when ↵A and ↵B are relatively symmetric, i.e., not too far from each other. So if the

left hand side has to be small when � is a Coordination game, we must have ↵A ⇡ ↵B and

close to 1
2 .

The the right hand side of (19) is a measure of (⇧NN
A �⇧EN

A )(⇧NN
B �⇧NE

B ). Its size depends

on the product �A�B. The product will be close to zero if either ↵A or ↵B approaches any

of its respective roots. But, it is clear from Figures 8 and 9 that when ↵A ⇡ ↵B and close to

1
2 , both ↵A and ↵B are at some distance from its roots, which may make the product �A�B

large enough to dominate left hand side of (19), which is close to zero.

Therefore, Coordination games in which NN risk dominates EE, if they exist, are likely

to be located around ↵A = ↵B. To show that the set of games in which equilibrium profile

NN risk dominates EE is non-empty, we consider a subclass of Coordination games of � we

call Symmetric Coordination games.

Definition 4 Symmetric Cordination games

Consider any game G 2 �C. G is said to be a Symmetric Coordination game i↵ nA = nB = n

and ↵A = ↵B = ↵. The set of all Symmetric Coordination games is denoted �SC.

Corollary 1

Consider any game G 2 �SC. NN risk dominates EE in G i↵ ↵ 2 [14 �
1
4n ,

1
2)

9.

9These games are in fact Stag Hunt games, see e.g. Skyrms (2004)
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This result can be obtained by replacing nA = nB = n and ↵A = ↵B = ↵ in (19) 10 11.

This corollary of Proposition 5 establishes that when groups participating in the collective

contest are symmetric in all respects, there is a robust strategic basis of N based on the

equilibrium selection criterion of risk dominance. In order to understand why these games

arise, first note that at ↵A = ↵B = 1
2 , both the right hand side and left had side of (19) are

zero. As we approach ↵A = ↵B = 1
2 from below, along ↵A = ↵B, the right hand side falls

at faster rate than the left hand side and therefore has to dominate it along the path, given

that both have to be zero at ↵A = ↵B = 1
2 .

If we introduce asymmetries between groups it is unlikely that NN will pass the test of

risk dominance as it becomes harder to satisfy (19).

Next, we consider the equilibrium selection criterion called the Security Principle, see e.g.

Van Huyck et al. (1990). A secure strategy for a player is one in which the smallest payo↵ is

at least as large as the smallest payo↵ to any other feasible strategy. Security principle selects

equilibrium points implemented by secure strategies. The Security Principle, as we will see,

always selects NN unlike the criterion of payo↵ dominance, never selects it (Proposition 7).

Definition 5 Secure Strategy

A strategy �i of group i is said to be secure i↵ �i = arg
⇣
max�i2{E,N}min�j2{E,N}⇧i(�i, �j)

⌘
,

i, j 2 {A,B} and j 6= i.

The strategy �i guarantees group i the best out of the worst of its outcomes.

Definition 6 Security Principle

Consider any game G 2 �C. NN will be said to satisfy the Security Principle in G i↵ N is

a secure strategy for both groups A and B.

10It is easiest to see if we use the form of �i in (59).
11This case corresponds to Figure 8, with nA = nB = n.
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Proposition 6

Consider any game G 2 �C. NN satisfies the Security Principle in G.

Proof :

We do the proof assuming i = A.

We know that ⇧NN
A > ⇧EN

A when � is a Coordination game. We also know from Propo-

sition 7 that ⇧EE
A > ⇧NN

A when � is a Coordination game. Therefore it follows that we must

have ⇧EE
A > ⇧NN

A > ⇧EN
A when � is a Coordination game.

We can also see in proof of Proposition 3 that ⇧EE
A > ⇧NE

A when ↵A < 1
2 . And, it can also

be easily verified from Proposition 1 and 4 that ⇧NE
A > ⇧NN

A when � is a Coordination game.

This is true because both PNE
A > PNN

A and SNE > SNN , i.e., not only is the net surplus

higher in this case, but group A also wins the contest with a higher probability. Therefore,

when � is a Coordination game, we have ⇧EE
A > ⇧NE

A > ⇧NN
A > ⇧EN

A .

As ⇧NN
A > ⇧EN

A , i.e., the minimum payo↵ from choosing N is strictly larger than the

minimum payo↵ from choosing E for group A, N is a secure strategy for group A. The

argument is similar for group B. ⌅

Finally, we consider the equilibrium selection criterion of payo↵ dominance.

Definition 7 Payo↵ Dominance

Consider any game G 2 �C. EE is said to payo↵ dominate NN in G i↵ ⇧EE
A > ⇧NN

A and

⇧EE
B > ⇧NN

B with one inequality holding strictly. If both inequalities hold strictly we will say

that EE strictly payo↵ dominates NN in G.

Proposition 7

Consider any game G 2 �C. EE strictly payo↵ dominates NN in G.
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To prove this result we need to show that, for G 2 �C and i = A,B

PNN
i SNN > PEE

i SEE (20)

We proceed by identifying games G 2 �, such that strategy profile EE is Pareto superior

to strategy profile NN , i.e., PNN
i SNN > PEE

i SEE, i = A,B. We denote such games �PS.

Then we go on to show that the set of Coordination games �C is a proper subset of �PS ,

i.e., �C ⇢ �PS.

The following equation represents the bigger root 12 of the quadratic equation of (20)

↵+
j =

(nj � ni)(ni � 1)↵i +N
p

((ni � 1)↵i)2 + ni � 2ni

2ni(nj � 1)
(21)

For instance, when ↵B = ↵+
B, we have ⇧NN

A = ⇧EE
A = 1

4 . If ↵B < ↵+
B, group B is more

competitive and generates more e↵ort, which leads to a lower SNN and PNN
A and hence a

lower ⇧NN
A compared to ⇧EE

A = 1
4 . Similarly, when ↵A < ↵+

A, we have ⇧NN
B < ⇧EE

B . For the

shapes of ↵+
A and ↵+

B look at Figure 10.

When both ↵B 6 ↵+
B and ↵A 6 ↵+

A with one inequality holding strictly, EE is Pareto

superior to NN . This can be observed in Figure 10. It is clear from the diagram that EE

Pareto superior to NN , when both ↵A and ↵B are substantially less than 1
2 .

To understand why this must be the case we refer to Figure 3. We start from ↵A = ↵B =

1
2 , where strategy profiles EE and NN are equivalent. Now, if either ↵A or ↵B falls then

SNN < 1
2 and decreasing. For example, if ↵A falls substantially but ↵B falls infinitesimally,

then PNN
A rises and PNN

B falls and we approach PNN
A = 1. Here, group A captures almost

the whole of the reduced net surplus, thereby getting a payo↵ ⇧NN
A > ⇧EE

A = 1
4 . For this

case not to arise we need ↵B to fall su�ciently as well.

It can also be observed in Figure 11 and 12, that ↵A supports ↵+
A from below and ↵B

supports ↵+
B from above at (12 ,

1
2) in the ↵A↵B plane. This fact helps us establish our result.

12We do not report the smaller root ↵�
j as it is negative and can be ignored. See proof of Proposition 7 in

Appendix 1
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If (↵A,↵B) < (12 ,
1
2), then ↵+

B > ↵B and ↵+
A > ↵A. Therefore, the set of Coordination games

�C , is a proper subset of the games in which EE is Pareto superior to NN .

⌅ Intuition: To understand the result, it is best to begin by noticing that the issue is only

relevant in Coordination games. Further note that the Coordination games are clustered

around PNN
A = PNN

B = 1
2 (see Figures 3 and 8). The di↵erence in probabilities of winning

between the groups cannot be too large if � has to be a Coordination game.

We know from Proposition 1 that PEE
A = PEE

B = 1
2 . Given that the disparity in probabil-

ities of winning between the groups cannot be large, i.e., PNN
A ⇡ PNN

A , and SNN < 1
2 = SEE,

when � is Coordination game, it will be the case that each group achieves a payo↵ strictly

less than 1
4 , i.e., EE Payo↵ dominates NN . In Coordination games, both groups essentially

cancel out the gain in winning probabilities each wishes to have by choosing N . But, as both

groups e↵orts are higher under NN net surplus is lower compared to EE. The net e↵ect is

that both groups lose by choosing N .

In this section we introduced several equilibrium selection criterion to check whether

equilibrium NN is prescribed by any of them. When we consider the criterion of risk

dominance we are able to show that there exist Coordination games in which NN risk

dominates EE. We provide a necessary and su�cient conditions for NN to risk dominate

EE in Proposition 5 and then go onto show existence of such games using a symmetric

subclass of Coordination games in Corollary 1. When we consider equilibrium selection

criterion called the Security Principle, we are able to show that NN is always prescribed

over EE. However, when we consider the principle of payo↵ dominance, equilibrium profile

NN is never selected as is shown in Proposition 7. The results are therefore mixed. However,

given that there exist equilibrium criteria which prescribe selection of equilibriumNN , allows

us to claim that there exists a robust strategic basis of prize sharing rules N , first introduced

in Nitzan (1991).
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7 Discussion

In this section we discuss a few assumptions we made and some other properties, which we

have skipped in the main body.

⌅ Coordination Devices: Given that in our model selecting equilibrium NN is essen-

tially a failure to coordinate on a Pareto e�cient equilibrium point EE, we discuss a few

coordination devices, which may help the groups circumvent the problem.

(1) Timing of the Game: In our game we assume that in the first stage the group

leaders move simultaneously to choose between E and N and having observed those choices

the agents make their e↵ort decisions simultaneously. But, it is clear that if one leader

moves first, then the groups will coordinate on EE. Given the EE payo↵ dominates NN

(Proposition 7), if one of the group leaders could choose the rule first, he would choose E

and coordination failure on N will be avoided. But, the assumption of simultaneous choice

of the rules is justified because in our framework of direct conflict and no communication

between the groups, there is no reason to assume otherwise.

(2) Strategic Choice of Sharing Rules: In our game we have kept the ↵i’s fixed and

provided the leader a choice between E and N . Another part of the literature considers

the case, where the leaders do not have access to E. The only rule available is N but the

leaders can choose ↵i 2 [0, 1]. This part of the literature mostly focuses on the phenomenon

of Group Size Paradox (GSP), whereby a larger group wins the contest less often due to free

riding.

If we allow the leaders to choose ↵i 2 [0, 1] in our model, then all equilibria will be payo↵

equivalent to EE. Given that the group leaders have some adjustment room with N , they

will adjust N in such a manner that both groups will get fully cooperative payo↵s. In fact

it can shown that EE, NE ,EN will all be equilibrium profiles, with the leader of group i,

choosing ↵i =
1
2 under N . Only NN will not be an equilibrium profile. So, allowing strategic

choice of sharing rules essentially gives the leaders an extra degree of freedom and help them
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avoid coordination failures.

⌅ Prisoner’s Dilemma Games: There also exists a class of Prisoner’s Dilemma games

in our model. We primarily focused on the case where (↵A,↵B) < (12 ,
1
2), because the focus

of the paper was on providing strategic foundations to N . But if (↵A,↵B) > (12 ,
1
2), and

↵A > ↵+
A and ↵B > ↵+

B (↵+
A and ↵+

B defined in (21)) , then � turns out to be Prisoner’s

Dilemma games. Both groups have a dominant strategy E, but the strategy profile NN

payo↵ dominates EE. So the use of grim trigger strategies, would allow us to generate NN

as a subgame perfect Nash equilibrium if the first stage game is infinitely repeated 13. The

Prisoners Dilemma games can be seen in Figures 11 and 12.

When, (↵A,↵B) > (12 ,
1
2), rule N makes both groups less competitive in the contest for

the prize. The benefit is that a lot of net surplus gets saved and both groups benefit. But of

course, given that rule N is not competitive enough, both groups have unilateral incentives

of deviating to E. If the groups could write enforceable agreements they would have chosen

X = 0. In this case mutually beneficial agreements are ones where (↵A,↵B) > (12 ,
1
2),

↵A > ↵+
A and ↵B > ↵+

B. But in absence of the possibility of explicit agreements between

groups, one way to sustain NN as an equilibrium outcome is to repeat our stage game

infinitely and use reverting to the Nash equilibrium EE forever as a punishment strategy for

deviation from strategy N by any group at any stage.

8 CONCLUSION

The explicit aim of the paper was to provide strategic foundations to the prize sharing rules

introduced by Nitzan (1991), which has subsequently become the standard in the collective

contests literature. To that end, we were able to uncover a class of Coordination games, where

in fact the groups may end up coordinating on the Nitzan rule N , even though a cooperative

option E is present. But, coordinating on this rule looks like a case of coordination failure,

13Ursprung (2012) recognizes that if ↵A = 1 and ↵B = 1 then � is a Prisoner’s Dilemma game.
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because the equilibrium with mutual cooperation EE payo↵ dominates the one in which

both groups choose the prize sharing rules NN .

However, when we introduce equilibrium selection criterion of risk dominance and security

principle, which are based on the “riskiness” of the equilibrium point, we find that NN does

indeed survive both these criterion. We provide a necessary and su�cient condition for NN

to risk dominate EE and show existence of such a class of coordination games. When we

use the security principle, we find that the prescription is always to select NN . In light of

these selection criterion, which prescribe selection of equilibrium profile NN , we claim that

there exists a robust strategic basis to the prize sharing rules N .

We also uncover a class of Prisoner’s Dilemma games where, the prize sharing rule N

has a robust basis if the game is repeated infinitely and the leaders can use grim-trigger like

punishment strategies.

Previously Ursprung (2012) showed in an evolutionary game theoretic model, that the

extreme point ↵i = 0 of the prize sharing rule N crowds out E in the long run. We considered

the whole class of rules in a 2 stage game and showed that there exist games, where the prize

sharing rules may arise in equilibrium. Our analysis is complementary to theirs. It seems

a worthwhile exercise to check, which parts of the rule N can actually crowd out E in the

long run, given that we have been able to compute precise the conditions under which N is

a Nash equilibrium in the static context.

Given, the complexity of the analysis we also did not consider what would happen if there

are more than two groups. Another question which deserves attention is whether these prize

sharing rules N will ever be chosen in equilibrium if e↵orts also had a productive component.

All these issues and more, are beyond the aims and scope of the current analysis and warrant

future research.
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Appendix 1

Proof of Proposition 1

First notice that both

Proposition 1 will be proved with the help of a few Lemmas, which we prove next.

Lemma 1

If both group A and B choose Rule E, then in any Nash Equilibrium

• Group e↵ort levels are (XEE
i , XEE

j ) = (14 ,
1
4).

• The net surplus in the contest is SEE = 1
2

• The probabilities of winning are (PEE
i , PEE

j ) = (12 ,
1
2)

• The payo↵s of the groups are (⇧EE
i ,⇧EE

j ) = (14 ,
1
4).

Proof :

The payo↵ of member k of Group i is as follows:

⇧EE
ki =

1

ni
(

Xi

Xi +Xj
�Xi) (22)

The individual members of the groups choose e↵orts xki to maximize (22).

The following equation represents the F.O.C of any member k in group i:

Xj

(Xi +Xj)2
= 1 (23)

Similarly, the following equation represents the F.O.C. of any member k in group j:

Xi

(Xi +Xj)2
= 1 (24)

Adding (23) and (24) and we find that
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Xi +Xj =
1

2
(25)

Using (25) back in (23) and (24) we obtain that in any Nash equilibrium we must have:

(Xi, Xj) = (
1

4
,
1

4
)

Again using (25) we get that the net surplus SEE = 1�Xi �Xj = 1� 1
2 = 1

2

The probabilities can be obtained by dividing the equilibrium e↵orts by (25) and we get

(PEE
i , PEE

j ) = (12 ,
1
2)

Using the equilibrium e↵ort levels in (22) we obtain the payo↵s of the groups in equilib-

rium are as follows:

(⇧EE
i ,⇧EE

j ) = (
1

4
,
1

4
)

. ⌅

Lemma 2

If Group i chooses E and j chooses N, then in the intra-group symmetric Nash Equilibrium

• Group e↵ort levels are (Xi, Xj) = (1+(1�↵j)(nj�1)
(nj+1) � (1+(1�↵j)(nj�1))2

(nj+1)2 , (1+(1�↵j)(nj�1))2

(nj+1)2 ).

• The net surplus in the contest is S�A�B = 1� 1+(1�↵j)(nj�1)
nj+1 .

• The probabilities of winning are (P �A�B
i , P �A�B

j ) = (1+↵j(nj�1)
(nj+1) , 1� 1+↵j(nj�1)

(nj+1) ).

• The payo↵s of the groups are:

(⇧�A�B
i ,⇧�A�B

j ) = ( (1+↵j(nj�1))2

(nj+1)2 , 1+(1�↵j)(nj�1)
(nj+1) � (1+(1�↵j)(nj�1))2

(nj+1)2 )

Proof :

The payo↵ of member k in group i is as follows:
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⇧ki =
Xi

Xi +Xj
�Xi (26)

The payo↵ of member k of Group j (which chooses N) is as follows:

⇧kj =
Xj

Xi +Xj
[(1� ↵j)

xkj

Xj
+

↵j

nj
]� xkj (27)

The following equation represents the F.O.C. of member k of group i:

Xj

(Xi +Xj)2
= 1 (28)

The following equation represents the F.O.C. of member k of group j:

Xi

(Xi +Xj)2
[(1� ↵j)

xkj

Xj
+

↵j

nj
] +

Xj

Xi +Xj
[
(1� ↵j)(Xj � xkj)

X2
j

] = 1 (29)

Adding (29) over members in group j we reach the following condition:

Xi

(Xi +Xj)2
+

(1� ↵j)(nj � 1)

Xi +Xj
= nj (30)

Adding (28) and (30) we find the total e↵ort expended in the contest in equilibrium to

be :

Xi +Xj =
1 + (1� ↵j)(nj � 1)

nj + 1
(31)

The net surplus can obtained from (31) and is as follows

S�A�B = 1�Xi �Xj = 1� 1 + (1� ↵j)(nj � 1)

nj + 1

.

Using (31) in (28) we find that in equilibrium group j puts in
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Xj =
(1 + (1� ↵j)(nj � 1))2

(nj + 1)2
(32)

Replacing Xj in (32) in (31) we solve for Xi in equilibrium to be

Xi =
1 + (1� ↵j)(nj � 1)

(nj + 1)
� (1 + (1� ↵j)(nj � 1))2

(nj + 1)2
(33)

To figure out the payo↵ of Group i we divide (33) by (31) we get the probability of group

i winning the contest to be

P �A�B
i =

Xi

Xi +Xj
= 1� 1 + (1� ↵j)(nj � 1)

nj + 1
(34)

Subtracting Xi in (33) from (34) gives us group i’s payo↵ in equilibrium to be

⇧�A�B
i =

(1 + ↵j(nj � 1))2

(nj + 1)2

Similarly dividing (32) by (31) we the probability that group j wins the contest and

subtracting Xj from the result we get the payo↵ of group j.

⌅

Lemma 3

If both groups choose N and ↵inj(ni � 1)� ↵jni(nj � 1) > ni then group i is monopolized by

group j. In the unique intra-group symmetric Nash Equilibrium

• Group e↵orts are (Xi, Xj) = (0, (1�↵j)(nj�1)
nj

).

• The net surplus in the contest is SNN = 1� (1�↵j)(nj�1)
nj

.

• The probabilities of winning are (PNN
i , PNN

j ) = (0, 1).

• The payo↵s of the groups are (⇧iM
i ,⇧iM

j ) = (0, 1+↵j(nj�1)
nj

).
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Proof :

If both groups choose rule N, then the payo↵ of member k in group i is as follows

⇧ki =
Xi

Xi +Xj
[(1� ↵i)

xki

Xi
+

↵i

ni
]� xki (35)

The following is the F.O.C. for member k of group i

Xj

(Xi +Xj)2
[(1� ↵i)

xki

Xi
+

↵i

ni
] +

Xi

Xi +Xj
[
(1� ↵i)(Xi � xki)

X2
i

] 6 1 (36)

If both groups choose rule N, then the payo↵ of member k in group j is as follows

⇧kj =
Xj

Xi +Xj
[(1� ↵j)

xkj

Xj
+

↵j

nj
]� xkj (37)

The F.O.C. for member k in group j is

Xi

(Xi +Xj)2
[(1� ↵j)

xkj

Xj
+

↵j

nj
] +

Xj

Xi +Xj
[
(1� ↵j)(Xj � xkj)

X2
j

] 6 1 (38)

For all members of group i to choose xki = 0, the F.O.C. of group i members in (36)

satisfied at xki = 0, which boils down to the following condition after we sum the F.O.C s

1

Xj
+

✓i
Xj

6 ni (39)

And summing the F.O.C.s of group j members in (38) ,at Xi = 0 we get the following

condition

njXj = ✓j (40)

For i to be monopolized in a Nash equilibrium both (39) and (40) have to be satisfied.

Replacing Xj from (40) into (39) and simplifying we find that group i is monopolized if
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↵inj(ni � 1)� ↵jni(nj � 1) > ni

Using (40) we get Xj =
✓j
nj

= (1�↵j)(nj�1)
nj

Therefore, net surplus is SNN = 1�Xj = 1� (1�↵j)(nj�1)
nj

. Group j wins the contest with

probability 1. The payo↵ of group i is 0, because it is monopolized. The payo↵ of group j is

the net surplus SNN , which it wins with probability 1.

⌅

Lemma 4

If both groups choose N and none of the groups is monopolized then in the unique intra-group

symmetric Nash Equilibrium

• Group e↵orts are (Xi, Xj) = (nj(XNN)2 � (1 � ↵j)(nj � 1)XNN , ni(XNN)2 � (1 �

↵i)(ni � 1)XNN) where XNN = 1+(1�↵i)(ni�1)+(1�↵j)(nj�1)
N .

• The net surplus in the contest is SNN = 1� 1+(1�↵i)(ni�1)+(1�↵j)(nj�1)
N .

• The probabilities of winning are (PNN
i , PNN

j ) = (�i

N , 1 � �i

N ) where �i = ni + ni(nj �

1)↵j � nj(ni � 1)↵i.

• The payo↵s of the groups are:

(⇧NN
i ,⇧NN

j ) = ((�i

N )(1�1+(1�↵i)(ni�1)+(1�↵j)(nj�1)
N ), (1��i

N )(1�1+(1�↵i)(ni�1)+(1�↵j)(nj�1)
N )).

Proof :

As none of the groups is monopolized the F.O.C. (36) and (38) hold with equality at

some xki > 0 , 8k 2 {2, 3..ni} and xkj > 0 , 8k 2 {2, 3..nj}.

Using (36) which the F.O.C. for Group i members and summing it over all the members

in i we get the following condition

Xj

X2
+

✓i
X

= ni (41)
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Summing (38) over members of group j , we get the following condition

Xi

X2
+

✓j
X

= nj (42)

Adding (41) and (42) and simplifying we can solve for total e↵ort X to be

XNN =
1 + ✓i + ✓j
ni + nj

=
1 + (1� ↵i)(ni � 1) + (1� ↵j)(nj � 1)

N
(43)

From (43) it follows that the net surplus is

SNN = 1�XNN = 1� 1 + (1� ↵i)(ni � 1) + (1� ↵j)(nj � 1)

N

From (41) and (42) and using ✓r = (1� ↵r)(nr � 1), r = i, j we can deduce that

Xi = njX
2 � (1� ↵j)(nj � 1)X

and

Xj = niX
2 � (1� ↵i)(ni � 1)X

From these equations it is clear that the probability that group i wins the contest is

PNN
i =

Xi

X
= njX � (1� ↵j)(nj � 1) (44)

Replacing XNN from (43) in (44) and simplifying we get that PNN
i = �i

N where �i =

ni+ni(nj � 1)↵j �nj(ni� 1)↵i. Of course, the chances that group j wins the contest is just

PNN
j = 1� �i

N .

Note that ⇧NN
i = PNN

i SNN . Replacing values of PNN
i and SNN we get our result.

Similarly we can obtain the payo↵ of group j.

⌅

53



Proposition 1 is just sub-parts of Lemma 1, 2, 3, 4.

Proof of Proposition 2

⌅ Part A of the Proposition

Notice in Lemma 2 that both ⇧�A�B
i and ⇧�A�B

j are independent of ↵i.

Again from Lemma 2

⇧�A�B
i =

(1 + ↵j(nj � 1))2

(nj + 1)2

This is clearly a strictly increasing function of ↵j.

⇧�A�B
j =

1 + (1� ↵j)(nj � 1)

(nj + 1)
� (1 + (1� ↵j)(nj � 1))2

(nj + 1)2
(45)

Define C = 1+(1�↵j)(nj�1)
(nj+1) . It is easy to see that dC

d↵j
< 0.

Replacing value of C in (45) we simplify it to ⇧�A�B
j = C � C2

Di↵erentiating with respect to ↵j we get

d⇧�A�B
j

d↵j
= (1� 2C)

dC

d↵j

As dC
d↵j

< 0, the sign of
d⇧

�A�B
j

d↵j
depends on the sign of 1 � 2C. If 1 � 2C < 0 then

d⇧
�A�B
j

d↵j
> 0. But 1 � 2C < 0 when ↵j <

1
2 . If ↵j >

1
2 , then 1 � 2C > 0 and then we have

d⇧
�A�B
j

d↵j
< 0.

⌅ Part (B) of the Proposition

Using Lemma 4 we can write the payo↵ of group i as follows

⇧NN
i =

⇣ni + ni(nj � 1)↵j � nj(ni � 1)↵i

N

⌘⇣1 + ↵i(ni � 1) + ↵j(nj � 1)

N

⌘
(46)

Notice that in both the terms within the brackets ↵j enters with a positive sign. Therefore,

it is the case that d⇧NN
i

d↵j
> 0. So we have

d⇧NN
A

d↵B
> 0 and

d⇧NN
B

d↵A
> 0.

Di↵erentiating ⇧NN
i in (46) with respect to ↵i we get
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d⇧NN
i

d↵i
=

(ni � 1)[(ni � nj)(1 + (nj � 1)↵j)� 2nj(ni � 1)↵i]

N2
(47)

The sign of d⇧NN
i

d↵i
is the same as the sign of (ni � nj)(1 + (nj � 1)↵j) � 2nj(ni � 1)↵i,

which is the second term in brackets in the numerator.

Consider i = A. The term then is (nA � nB)(1 + (nB � 1)↵B) � 2nB(nA � 1)↵A. It is

negative as we have assumed nB > nA. Therefore,
d⇧NN

A
d↵A

< 0.

Consider i = B. The term (nB � nA)(1 + (nA � 1)↵A) � 2nA(nB � 1)↵B > 0 when

↵B < (nB�nA)(1+(nA�1)↵A)
2nA(nB�1) = ↵o

B. Therefore,
d⇧NN

B
d↵B

> 0 if ↵B < ↵o
B. And

d⇧NN
B

d↵B
< 0 if

↵B > ↵o
B.

Proof of Proposition 3

Strategy profile EE will be a pure strategy Nash equilibrium of � if ⇧EE
A > ⇧NE

A and

⇧EE
B > ⇧EN

B .

From Lemma 1 we know that ⇧EE
A = 1

4 . And from Lemma 2 we know that

⇧NE
A =

1 + (1� ↵A)(nA � 1)

(nA + 1)
� (1 + (1� ↵A)(nA � 1))2

(nA + 1)2

E is a best response to E for group A if the following inequality is satisfied

1

4
> 1 + (1� ↵A)(nA � 1)

(nA + 1)
� (1 + (1� ↵A)(nA � 1))2

(nA + 1)2
(48)

To see why (48) holds we define x = 1+(1�↵A)(nA�1)
(nA+1) . Then (48) can be written as

1

4
> x� x2

) (x� 1

2
)2 > 0

But this is true irrespective of the values of the parameters. Playing strategy E is a best

response for group A to group B playing E.
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When ↵A = 1
2 , then x = 1

2 and we have

) (x� 1

2
)2 = 0

So in this case E is a weak best response to E for group A. In all other cases E is a strong

best response for group A to E.

Similarly we can show that ⇧EE
B > ⇧EN

B which means group B playing E is a best response

to group A playing E.

Proof of Proposition 4

For strategy profile NN to be a Nash equilibrium we must have ⇧NN
A > ⇧EN

A and ⇧NN
B >

⇧NE
B .

In general it must be true that for i = A,B

⇧NN
i > ⇧�A�B

i (�i = E,�j = N) (49)

Replacing the payo↵s from Lemma 2 and 4 in (49) we get

⇣
ni + ni(nj � 1)↵j � nj(ni � 1)↵i

⌘⇣
1 + (ni � 1)↵i + (nj � 1)↵j

⌘

N2
>

⇣
1 + ↵j(nj � 1)

⌘2

(nj + 1)2

(50)

We solve (50) as a quadratic equation using the Sridharacharya formula and get the

following two roots:

The smaller root is

↵i =
(ni � n2

j)(1 + ↵j(nj � 1))

nj(nj + 1)(ni � 1)
(51)

The larger root is
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↵i =
1 + ↵j(nj � 1)

(nj + 1)
(52)

It can be easily shown using Proposition 2 that ⇧NN
i > ⇧�A�B

i (�i = E,�j = N) i↵

↵i 2 [↵i,↵i]. 14 In other words, if ↵i 2 [↵i,↵i] for i = A,B, then NN is a Nash equilibrium

profile.

Now consider i = A. Given the assumption that nB > nA it is clear from (51) that

↵A < 0. Therefore the lower root can be ignored and the relevant range is ↵A 2 [0,↵A].

Consider i = B. From equation (51) it is clear that ↵B < 0 i↵ nB < n2
A. Otherwise it is

positive. If ↵B < 0, then the relevant range for NN to be a Nash equilibrium is ↵B 2 [0,↵B].

If ↵B > 0 , then the relevant range is ↵B 2 [↵B,↵B]. We can write this range in a concise

manner as ↵B 2 [max{0,↵B},↵B].

Therefore, NN is a Nash equilibrium profile of � i↵ ↵A 2 [0,↵A] and ↵B 2 [max{0,↵B},↵B].

If the condition is not satisfied then in light of Proposition 3 it follows that strategy E is a

strictly dominant strategy for at least one of the groups in �. Given that there are only two

groups, � will be dominance solvable with the unique Nash equilibrium strategy profile EE.

See Figures 8 and 9.

Proof of Proposition 7

For EE to strictly payo↵ dominate NN we find when is it that ⇧NN
A < ⇧EE

A and ⇧NN
B <

⇧EE
B .

In general for i = A,B we must have

⇧NN
i < ⇧EE

i (53)

Using Lemma 1 and 4 in (53) we get the following inequality which needs to hold

14 For instance, consider group A. Starting from ↵A where (50) holds with equality, if we decrease ↵A

slightly, the LHS of (50) increases by Proposition 2 but the RHS being independent of ↵A is una↵ected.
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⇣
ni + ni(nj � 1)↵j � nj(ni � 1)↵i

⌘
(1 + (ni � 1)↵i + (nj � 1)↵j

⌘

N2
<

1

4
(54)

Solving (54) as a quadratic equation using the Sridharacharya formula we get the following

two roots

The larger root is

↵+
j =

(nj � ni)(ni � 1)↵i +N
p

((ni � 1)↵i)2 + ni � 2ni

2ni(nj � 1)
(55)

The smaller root is

↵�
j =

(nj � ni)(ni � 1)↵i �N
p
((ni � 1)↵i)2 + ni � 2ni

2ni(nj � 1)
(56)

Using Proposition 2 we can easily verify that EE will payo↵ dominate NN i↵ ↵j 2

(↵�
j ,↵

+
j ), j = A,B.

We first consider group i = A. The roots of ⇧NN
A = ⇧EE

A are ↵+
B and ↵�

B. We now state

a few important properties which these roots satisfy.

Property 1

In the ↵A↵B plane ↵+
B lies completely above the ↵A axis and ↵�

B lies completely below the ↵A

axis and can therefore be ignored 15.

This can be verified by trying to solve either ↵+
B = 0 or ↵�

B = 0, which gives us values

of ↵A at which these roots cut the ↵A axis. Neither equation has a real solution as the

discriminant for both these problems is N
p
1� nB, which is a complex number. Therefore,

there does not exist a real ↵A such that ↵+
B = 0 or ↵�

B = 0. Therefore, neither ↵+
B = 0 nor

↵�
B = 0 cut the ↵A axis.

Replacing, ↵A = 0 in ↵+
B we find that it cuts the ↵B axis at N

p
nA�2nA

2nA(nB�1) > 0. This combined

with the observation made above helps us conclude that ↵+
B lies completely above the ↵A

15This means that the relevant zone for payo↵ dominance will be ↵B 2 [0,↵+
B)
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axis

Replacing, ↵A = 0 in ↵�
B we find that it cuts the ↵B axis at �N

p
nA�2nA

2nA(nB�1) < 0. Therefore,

↵�
B lies completely below the ↵A axis and can be ignored.

Property 2

↵+
B is increasing and convex in the ↵A

16.

To prove this we just look at the first and the second derivatives of ↵+
B with respect to

↵A

d↵+
B

d↵A
=

(nB � nA)(nA � 1) + N(nA�1)2↵Ap
nA+(↵A(nA�1))2

2nA(nB � 1)
> 0

d2↵+
B

d↵2
A

=
N(nA � 1)2

2nA(nB � 1)

⇣ nA

(nA + (↵A(nA � 1)2)
3
2

⌘
> 0

Property 3

↵+
B passes through (↵A,↵B) = (12 ,

1
2). At ↵A = 1

2 it is supported from below by the line ↵B.

The first part is easily shown by replacing ↵A = 1
2 in ↵+

B. We get ↵+
B = 1

2

To prove the second part we note from (52) that the slope of ↵B is d↵B
d↵A

= nA�1
nA+1 .

The slope of ↵+
B is

d↵+
B

d↵A
=

(nB � nA)(nA � 1) + N(nA�1)2↵Ap
nA+(↵A(nA�1))2

2nA(nB � 1)

At ↵A = 1
2 , the slope is

d↵+
B

d↵A
=

(nB � nA)(nA � 1) + N(nA�1)2

nA+1

2nA(nB � 1)
=

nA � 1

nA + 1

16For clear visualization note that in the ↵A↵B plane ↵+
B plots as an increasing and convex function
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Therefore, Slope of ↵B = Slope of ↵+
B at ↵A = 1

2 . Also at ↵A = 1
2 we have ↵B = 1

2 and

↵+
B = 1

2 . So, the curve ↵+
B and line ↵B have a common point and same slope at ↵A = 1

2 .

Given that ↵+
B is convex and increasing and ↵B is increasing and linear in ↵A, it follows that

↵B supports ↵+
B from below at ↵A = 1

2 .

Now we consider i = B and state similar properties for ↵+
A and ↵�

A

Property 4

In the ↵A↵B plane ↵+
A lies completely to the right of the ↵B axis and ↵�

A lies completely to

the left of ↵A axis and can therefore be ignored.

We skip the proof as it follows exactly the same steps as Property 1.

Property 5

↵+
A in increasing (decreasing) in ↵B if ↵B > (<) nB�nA

2
p
nA(nB�1) . ↵+

A is convex in ↵B
17.

To prove this we just look at the first and the second derivatives of ↵+
A with respect to

↵B

d↵+
A

d↵B
=

N(nB�1)2↵Bp
↵2
B(nB�1)2+nB

� (nB � nA)(nB � 1)

2nB(nA � 1)

Therefore,
d↵+

A
d↵B

> 0 i↵

N(nB � 1)2↵Bp
↵2
B(nB � 1)2 + nB

> (nB � nA)(nB � 1)

Simplifying we get that this happens i↵ ↵B > nB�nA
2
p
nA(nB�1)

For convexity of ↵+
A we look at the second derivative, which is

d2↵+
A

d↵2
B

=
N(nB � 1)2

2nB(nA � 1)

⇣ nB

((nB � 1)2↵2
B + nB)

3
2

⌘
> 0

17In the ↵A↵B plane it plots as a concave function when ↵+
A is increasing and convex function when ↵+

A
is decreasing. This happens because the domain of the function ↵+

A. i.e., ↵B 2 [0, 1] is the vertical axis
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Property 6

↵+
A passes through (↵A,↵B) = (12 ,

1
2). At ↵B = 1

2 it is supported from below by the line ↵A
18.

We skip the proof as it follows exactly the same steps as Property 3.

Properties 1 to 6 are captured in Figure 10.

We now proceed to show that the set of games � with Nash equilibria EE ad NN , i.e.,

↵A 2 [0,↵A] and ↵B 2 [max{0,↵B},↵B], is a proper subset of the set of games where EE

payo↵ dominates NN , i.e., ↵A 2 [0,↵+
A) and ↵B 2 [0,↵+

B).

This fact directly follows from Property 3 and 6. Given for i = A,B, ↵i supports ↵+
i

from below it is true that ↵i < ↵+
i except at (↵A,↵B) = (12 ,

1
2)

19, where they are equal. But

we can remove (↵A,↵B) = (12 ,
1
2) as at that point all strategy profiles are Nash equilibria.

In the set of games we are interested in we have ↵A < ↵+
A and ↵B < ↵+

B. A look at the

parametric ranges in the previous paragraph immediately confirms that the games which

have Nash equilibria EE and NN are a proper subset of the games in which EE strictly

payo↵ dominates NN . Look at Figures 11 and 12.

Proof of Proposition 5

Let us first consider the terms ⇧NN
A �⇧EN

A and ⇧NN
B �⇧NE

B . In general, for i = A,B we

are have to consider ⇧NN
i �⇧�A�B

i , where group i is the one which chooses E when the two

group choose di↵erent strategies.

From Lemma 2 and 4 we can write the di↵erence as follows

⇧NN
i � ⇧�A�B

i =
⇣

ni+ni(nj�1)↵j�nj(ni�1)↵i

N

⌘⇣
1+↵i(ni�1)+↵j(nj�1)

N

⌘
� (1+↵j(nj�1))2

(nj+1)2 (57)

Simplifying we get the following condition

18In the diagram in the ↵A↵B plane it seems that ↵A supports ↵+
A from above not below. But it has to

be noted that that the domain ↵B 2 [0, 1] is the vertical axis and not the horizontal axis
19(↵A,↵B) = ( 12 ,

1
2 ) is the point at which the lines ↵i s support the curves
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⇧NN
i � ⇧�A�B

i = (ni�1)
N2(nj+1)2

 
(n2

j � ni)(1 + ↵j(nj � 1))2 + (nj + 1)2(ni � nj)(1 + ↵j(nj � 1))↵i

�nj(nj + 1)2(ni � 1)↵2
i

!

(58)

Let us define

�i =
(n2

j � ni)(1 + ↵j(nj � 1))2 + (nj + 1)2(ni � nj)(1 + ↵j(nj � 1))↵i � nj(nj + 1)2(ni � 1)↵2
i

(ni � 1)
(59)

Using the definition of ↵i and ↵i in (15) and (16) we can simplify and rewrite the above

condition as follows

�i = nj(nj + 1)2
h
(↵i � ↵i)(↵i � ↵i)

i
(60)

Using this definition of �i in (59) we can write equation (58) as

⇧NN
i � ⇧�A�B

i =
(ni � 1)2

N2(nj + 1)2
�i (61)

Now let us consider ⇧EE
A � ⇧NE

A and ⇧EE
B � ⇧EN

B . In general for i = A,B we are

interested in ⇧EE
i � ⇧�A�B

i , where group i is the one which chooses N when the two groups

choose di↵erent strategies.

From Lemma 1 and 2 we can write the di↵erence as

⇧EE
i � ⇧�A�B

i = 1
4 �

1+(1�↵i)(ni�1)
(ni+1) � (1+(1�↵i)(ni�1))2

(ni+1)2

= (12 �
1+(1�↵i)(ni�1)

(ni+1) )2
(62)
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This can be simplified and written as

⇧EE
i � ⇧�A�B

i =
(ni � 1)2

4(ni + 1)2
(1� 2↵i)

2 (63)

For NN to risk dominate EE we must have

(⇧NN
A � ⇧EN

A )(⇧NN
B � ⇧NE

B ) > (⇧EE
A � ⇧NE

A )(⇧EE
B � ⇧EN

B ) (64)

Using equations (61) and (63) for groups i = A,B, we can immediately conclude that

inequality (64) is satisfied i↵

N4(1� 2↵A)
2(1� 2↵B)

2 6 16�A�B

.
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Appendix 2

Best Response Functions

Here we study the properties of the best response functions of the individual’s in the two

groups. To do that we start with a few notations.

We denote the best response function of the kth member of group i 2 {A,B}, when the

group chooses �i 2 {E,N} as R�i
ik(Xj). For example, if group A chooses E, then the best

response function of the kth member of group A will be denoted RE
Ak(XB), and if it chooses

N , then RN
Ak(XB).

When group i chooses E, the best response Function of member k , RE
ik(Xj) can be ob-

tained by maximizing (4). It is implicitly characterized by the following first order condition:

Xj

(Xi +Xj)2
= 1 (65)

Similarly, when group i chooses N , its best response function of member k, RN
ik(Xj)

is obtained by maximizing (3). It is implicitly characterized by the following first order

condition:

Xj

(Xi +Xj)2
[(1� ↵i)

xki

Xi
+

↵i

ni
] +

Xi

Xi +Xj
[
(1� ↵i)(Xi � xki)

X2
i

] = 1 (66)

Because group members are symmetric in all respects, the best response functions are

the same. We can therefore apply symmetry and obtain the best response function of a

representative agent of the group, which we denote R�i
i (Xj). This is the same notation

introduced above but without the subscript k.

In the Proposition that follows, we use the following notation:

For i 2 {A,B}

✓i = (1� ↵i)(ni � 1)
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✓i is a measure of competitiveness of group i weighted by group size. If ↵i is low ✓i is high, so

that more competitive groups will tend to have a higher ✓i. If such a group is also large, then

the competitive nature of the group gets accentuated by its size. Therefore, larger groups

with lower ↵i’s have higher ✓i’s and are the most competitive ones.

Next, we state a general result about best response functions of the groups. We state the

result without proof 20 but do a detailed diagrammatic analysis.

Proposition 8

For i, j 2 {A,B} and j 6= i

(A) If group i chooses E, then the slope of the best response function is as follows:

RE
i (Xj)

dXj
=

Xi �Xj

2Xj

Therefore, Xi is a strategic complement to Xj i↵ Xi > Xj.

(B) If group i chooses N, then the slope of the best response function is as follows:

RN
i (Xj)

dXj
=

(Xi �Xj)� ✓i(Xi +Xj)

2Xj + 2✓i(Xi +Xj)

Therefore, Xi is a strategic complement to Xj i↵ Xi
Xj

> 1+✓i
1�✓i

.

We next discuss the results summarized in Proposition 8.

⌅ Both groups choose E: The best Response Functions in this case are represented in

Figure 13. Both RE
A(XB) and RE

B(XA) are strictly increasing when XA < 1
4 and XB < 1

4 .

Here, XA and XB are strategic complements.

The Best Response functions are well defined except at (XA, XB) = (0, 0) and they

intersect at (XEE
A , XEE

B ) = (14 ,
1
4), which is the unique Nash equilibrium in group e↵orts.

20Available on request
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At the equilibrium point, XA and XB are strategically independent, i.e., neither strategic

complements nor strategic substitutes.

It is also important to notice that the Best Response Functions are independent of the

parameters in the model.

⌅ Group i chooses E, Group j chooses N: Here, we will analyze the Best response

functions of group i, which chooses E and group j, which chooses N . For ease of exposition

we will assume that i = A and j = B. The Best Response Functions in this case are

represented in Figure 14. The Best Response function for group A, RE
A(XB), is the same as

in the previous case.

The Best Response Function of group B, RN
B (XA), is increasing when XB

XA
> 1+✓B

1�✓B
. The

term on the right hand side is positive only when ↵B 2 (nB�2
nB�1 , 1]. In all other cases, the

condition is trivially satisfied.

To see this clearly, in Figure 14, we have plotted the Best Response Function of group B

for ↵B = 0, 12 , 1. When we increase ↵B, RN
B (XA), shifts inwards, because free riding increases

within group B, which causes XB to fall for the same group size nB.

The Best Response Functions have a unique intersection and it is always at a point, where

RN
B (XA) is strictly decreasing. So, XB is a strategic substitute of XA in the neighborhood

of any Nash equilibrium in group e↵orts .

XA, on the other hand, is a strategic substitute to XB as, long as XB > 1
4 . So, when

XB > 1
4 , XA and XB are strategic substitutes. The Nash equilibrium in group e↵ort levels,

is stable.

However, when XB < 1
4 , XA is a strategic complement to XB, while XB is a strategic

substitute of XA. The Nash equilibrium in group e↵ort levels, is unstable.
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⌅ Both groups choose N: The Best Response Functions in this case are represented in

Figure 15. As in the previous case the Best Response Function of group B, RN
B (XA), is

strictly increasing when XB
XA

> 1+✓B
1�✓B

. However, now the Best Response function of group A,

RN
A (XB), is also increasing when XA

XB
> 1+✓A

1�✓A
. The functions intersect uniquely to yield the

Nash equilibrium in group e↵orts.

The functions intersect at a point, where RN
B (XA) is decreasing. Therefore, XB is a

strategic substitute for XA in the neighborhood of any Nash equilibrium. If, additionally at

the equilibrium we have that XA
XB

< 1+✓A
1�✓A

, so that RN
A (XB) is also decreasing, then XA is also

a strategic substitute for XB and the Nash equilibrium is stable.

If, however, ↵A 2 (nA�2
nA�1 ,

nA(2�N)
(nB�nA)(nA�1) +

2nA(nB�1)
(nB�nA)(nA�1)↵B), the functions intersect at a

point where RN
A (XB) is increasing. Here, XA is a strategic complement to XB. In this case

the Nash equilibrium is unstable.

For this case to arise, we need both ↵A and ↵B to be su�ciently high and close to 1. One

example of such a case is where ↵A = 1 and ↵B = 1. This is shown in Figure 15. When

↵i rises, i 2 {A,B}, RN
i (Xj) shifts in as free riding increases within group i but RN

j (Xi) is

una↵ected.

One interesting phenomenon, which arises in this case, is Monopolization of a group from

the contest. If ✓B
nB

> 1+✓A
nA

, then the Best Response Function of group A is contained within

the Best Response Function of group B, so that they do not intersect at any point in the

interior, where both XA > 0 and XB > 0. Then in the Nash equilibrium in e↵orts, group

B puts in an aggregate e↵ort of XNN
B = 1+✓A

nA
and group A members best respond with zero

e↵ort, so that XNN
A = 0. So, we say that group A has been monopolized by group B. This

phenomenon is captured in Figure 16. In a similar manner, group B is monopolized by group

A when, ✓A
nA

> 1+✓B
nB

.
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