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Abstract

This paper examines the structure of consistent, multidimensional, multilevel ag-

gregators in two distinct models- one where the set of evaluations is the unit interval

and the other, where it is finite. In the evaluations model, we characterize a class of

separable rules called component-wise α-median rules. In the finite model, separability

is no longer guaranteed. In addition to consistency, stronger notions of unanimity and

anonymity are required to characterize a class of separable rules called Bipartite Rules.
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1 Introduction

It is well known that political parties can manipulate or gerrymander voting results by di-

viding and redistributing voters among districts. This phenomenon has been observed at

regional and national levels in the U.S, Canada, India, the United Kingdom, Germany, Aus-

tralia and France.1 An important consideration in the design of voting rules is to ensure

that they are immune to such manipulation. The specific property of voting rules or aggre-

gators that guarantees this form of non-manipulability has been called consistency. There

are several papers that have studied the structure of consistent voting rules satisfying vari-

ous versions of consistency. Virtually all these papers have considered models where voters

express opinions about a single alternative which have to be aggregated into a social opinion

about that alternative. Our goal in this paper is to investigate the consistency of voting

rules in models where voter opions over several alternatives have to be aggregated.

Multidimensional voting models arise naturally in many contexts. Consider the case

where there is a finite set of public projects that is under consideration by the Government.

Not all projects are feasible because of resource constraints. The Government therefore needs

to aggregate the opinions of all voters over all projects by means of a voting rule. We note

that multidimensional voting models have been received a great deal of attention in social

choice and positive political theory - see Austen-Smith and Banks (2000), (2005) for an

extensive review of the literature.

We consider a model of aggregation where voter opinions have to be aggregated over

several alternatives. Each voter submits an evaluation for each alternative (or component)

indicating the intensity with which she likes the alternative.2 The set of permissible evalu-

ations for any alternative is the closed unit interval. An aggregator considers an arbitrary

collection of voter evaluations and transforms them into an aggregate opinion.

Voters can be divided into mutually exclusive subgroups. This could be based, for exam-

ple, on geographical regions/districts or political constituencies. The aggregator generates

an aggregate for each subgroup. It can also be used to aggregate subgroup opinions into an

opinion for the whole population. Consistency requires the same opinion for the population

to emerge (for every possible configuration of voter opinions) irrespective of the way the

population is split into subgroups. This paper examines the implications of consistency on

aggregators.

We characterize component-wise α median rules. These rules are separable, i.e. the

outcome for an alternative depends only on voter opinions for that alternative. Moreover,

the outcome for each alternative is the median of the minimum utility (across voters), the

maximum utility (across voters) and a fixed but arbitrary number αj for each alternative j.

Consistent voting rules have also been analyzed in Chambers (2008), Chambers (2009)

1Katz (1998) and Samuels and Snyder (2001) provide empirical evidence of gerrymandering in different

electoral systems and countries respectively.
2Macé (2013) provides another model of aggregation over evaluations.
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and Nermuth (1994).3 Both the Chambers’ papers consider a different notion of consistency

where the sub-group aggregate opinion is replicated the same number of times as the number

of voters in that subgroup. This notion is inspired by the electoral college voting system in

U.S Presidential elections. Our notion of consistency is similar to that in Nermuth (1994).

Both the Nermuth and Chambers papers consider a single alternative voting model.

Our result is a generalization of the result of Fung and Fu (1975) who prove an α-median

characterization result for the one alternative case. There are significant difficulties involved

in the extension to the multidimensional case due to its additional richness. However, these

are resolved using the same set of axioms as in Fung and Fu (1975) defined suitably for the

multidimensional model.

The separability result depends critically on the structure of the model, in particular on

the fact that the set of possible evaluations is a continuum. The result no longer holds if

the set of evaluations is finite. We investigate this issue in a special “finite” model. This is

a model where there are m alternatives and voter/social opinions pertain to the selection

of set of these candidates. The set of possible evaluations for a candidate is either 0 or 1

indicating disapproval and approval respectively. We characterize a class of separable rules

called Bipartite Rules by consistency and some stronger versions of some of the axioms

used for the earlier result. The Bipartite Rule partitions the set of alternatives into two sets

(independently of opinions). Alternatives in the first set are assigned value 1 unless all voters

disapprove, while alternatives in the second are never selected unless they are unanimously

approved.

The paper is organized as follows. We discuss the Evaluations model formally and the

notion of consistency in Section 2.1 A discussion of the other axioms is contained in Section

2.2. Section 2.3 presents the component-wise α-median result and its proof followed by a

discussion in Section 2.4. Section 3 considers the finite set selection model while Section 4

concludes.

2 The Evaluation Model

The set of components or alternatives is X with |X| = m. The set of voters is N =

{1, 2, ..., n}. Each voter submits an evaluation for each candidate. The set of evaluations

is normalized without loss of generality to be the set [0, 1]. A voter submits vi ∈ [0, 1]m

and we denote the set [0, 1]m by A. A vote profile v ∈ An is the set of voter evaluations

v = (v1, . . . , vn). A component vij ∈ [0, 1] can be interpreted as the evaluation by voter i for

alternative j.

A district or a group is a non-empty set N ⊂ N. A vote profile is a collection of vi for all

voters i ∈ N such that N ⊆ N. A vote profile vS is the restriction of v to the set of voters

S ⊆ N. An aggregator is a function f : ∪N∈NAn → A which aggregates vote profiles for

3Perote-Peña (2005), Bervoets and Merlin (2012) and Plott (1973) analyze models that are similar in

spirit to ours with related notions of consistency.
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any district or subset N. Some examples of aggregators are given below.

• A constant aggregator, f c : An → A for every profile v outputs a fixed set of evaluations

c in A,

f c(v) = c ∀v ∈ An ∀N ∈ N.

• A mean aggregator, fmean : An → A outputs the arithmetic mean of the evaluation

values for each alternative,

fmean
j (v) =

∑
i vij
N

∀j ∈ X v ∈ An ∀N ∈ N.

• The median denoted by med(.) of a set of K numbers is
K

2

th

lowest evaluation when

K is even, or the
K + 1

2

th

lowest evaluation if K is odd. A median aggregator selects

the median for each component, fmed : An → A,

fmed
j (v) = medi∈N(vij) ∀j ∈ X ∀v ∈ An ∀N ∈ N.

• A min aggregator, fmin : An → A outputs the minimum evaluation from the set of

numbers submitted by the voters for each alternative.

fmin
j (v) = min

i∈N
(vij) ∀j ∈ X ∀v ∈ An ∀N ∈ N.

A max aggregator can be similarly defined.

• An aggregator fα : An → A is component-wise α-median aggregator if ∃ α ∈ A such

that,

fαj (v) = med(min
i∈N

(vi), αj,max
i∈N

(vi)) ∀j ∈ X ∀v ∈ An ∀N ∈ N.

For each alternative j the aggregator fα picks median of the following three numbers-

the smallest and greatest among the set of evaluations submitted by all the voters and

the jth component of α.

Component-wise α-median aggregators are generalizations of the min and max aggre-

gators. The min and max rules are α-median rules with α = 0 and α = 1 respectively.

• Let � be a strict ordering on components. Pick an arbitrary v ∈ An. The lexicographic-

minimum or L-min voter for v,N is a voter whose evaluation for the �-max alternative

is lowest. If there is more than one such voter, break ties by picking a voter whose

evaluation for the next-highest alternative according to � is lowest and so on. The L-

min rule at v,N picks the evaluation vector of the L-min voter, i.e fL−min(v) = vL-min.

The L-max rule can be defined analogously.
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It is worth drawing attention to the feature of the rules above. The constant, median,

mean, min and max aggregators are component-separable rules i.e they aggregate the out-

come for each component or alternative separately. The left-aligned and L-min aggregators

are not component-separable.

2.1 Consistency of Aggregators

Definition 1 (Consistency) An aggregator f satisfies consistency if for all N ∈ N, for

all partitions {N1, N2, ..., NK} of N and all v ∈ A,

f(v) = f (f(vN1), f(vN1), ..., f(vNK
)) .

A vote profile v can be aggregated directly by f . It can also be aggregated indirectly

as follows. The profile v can be split into the opinions of subgroups (vN1 , . . . , vNK
). Since

f is defined for arbitrary collections of opinions, f can be applied to each sub-collection

vN1 , . . . , vNK
. This yields a K sized opinion profile on which f can be applied again. If f is

consistent, the direct and indirect procedures generate the same outcome.

Consistency prevents manipulation by re-assigning voters to subgroups. It is a strong

requirement as many of the aggregators described earlier do not satisfy it.

1. (Median) The median aggregator violates consistency. Let N = {1, 2, 3} and m = 2.

Considering the partition I = {{1, 2}, {3}} of N we have,

fmed

(
fmed

(
0.4

0.3

0.1

0.8

)
,

0.7

0.4

)
= fmed

(
0.1

0.3

0.7

0.4

)
=

(
0.1

0.3

)
6=

(
0.4

0.4

)
= fmed

(
0.4

0.3

0.1

0.8

0.7

0.4

)
.

Note that our definition of the median aggregator picks the “lower median evaluation”

in societies with an even number of voters. The violation of consistency by the median

rule does not depend on this assumption.

2. (Mean) The mean aggregator also violates consistency.
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Consider the same example and partition as before. We have,

fmean

(
fmean

(
0.4

0.3

0.1

0.8

)
,

0.7

0.4

)
= fmean

(
0.25

0.55

0.7

0.4

)
=

(
0.475

0.475

)
6=

(
0.4

0.5

)
= fmean

(
0.4

0.3

0.1

0.8

0.7

0.4

)
.

On the other hand, the constant rule, the min rule, the L-min rule and their max coun-

terparts and the component-wise α-median rules satisfy consistency. The consistency of

the constant aggregator is trivial. The consistency of the component-wise α-median rule is

demonstrated in the proof of the theorem. We show the consistency of the min and L-min

rule below.

1. (Min) Pick an arbitrary profile v and alternative j. Suppose that the miminum evalu-

ation for j in v is vj. Let vj = vij. Consider an arbitrary partition I = {N1, . . . , NK} of

N and suppose i ∈ Nk. Then fmin
j (vNk

) = vj and fmin
j (vNk

) ≤ fmin
j (vNk′

) for all Nk′ ∈ I.

Therefore, fmin
j (fmin(vN1), . . . , f

min(vNK
)) = minNk′∈I{f

min
j (vNk′

)} = vj = fmin
j (v).

Similarly max rules also satisfy consistency. So do aggregators that pick the minimum

for some alternatives and the maximum for others.

2. (L-min) Let j be the alternative that is � maximal. Let v be an arbitrary profile. The

argument for the min rule for alternative j suffices to show that the L-min aggregator

is consistent.

2.2 Further Axioms

In addition to consistency, we impose certain axioms.

Definition 2 (Anonymity) An aggregator f is anonymous if for all N ∈ N for all v, v′ ∈
An and for all bijections Πi : N → N ,[

vi = v′Π(i) for all i ∈ N
]
⇒
[
f(v) = f(v′)

]
.

An aggregator satisfies anonymity if it is invariant with respect to changes in the iden-

tities of voters. All the aggregators mentioned above are anonymous. Its easy to construct

aggregators that are non-anonymous, for instance, by constructing a“dictator” for every sub-

set of N. Consider the case when N = {1, 2, 3}. Let 1 be the dictator for {1, 2} and {1, 2, 3},
2 be dictator for {2, 3} and 3 be the dictator for {1, 3}. The outcome at any collection of

voter opinions is the evaluation vector of the dictator for that subset of voters.
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Definition 3 (Unanimity) An aggregator f is unanimous if for all N ∈ N for all v ∈ An
and any j ∈ X, [

vi = v̄ for all i ∈ N
]
⇒
[
f(v) = v̄

]
.

An aggregator that satisfies unanimity respects consensus. Our notion of unanimity is,

therefore, very weak. Note that the unanimity condition does not apply if all voters are

unanimous over a subset of the alternatives. All the aggregators mentioned earlier except

the constant aggregator are unanimous.

(Continuity) An aggregator specifies a collection of maps that aggregates arbitrary sets

of m-dimensional voter opinions into an aggregate opinion i.e it is a collection of maps

f : Rml → Rm where l = 1, . . . , n. The aggregator satisfies continuity if each of these maps

is continuous in the usual sense.

All aggregators discussed earlier except the L-min aggregator satisfy continuity. The

violation by L-min is shown below.

Let the set of voters be N = {1, 2} and m = 2. Let vt, t = 2, 3 . . . be a sequence

of profiles such that vt1 =

(
0.7

0.4

)
and vt2 =

(
0.7− 1

t

0.1

)
, t = 2, 3 . . .. Clearly, vt →(

0.7 0.7

0.4 0.1

)
= v̄ and fL-min(vt) =

(
0.7− 1

t

0.4

)
for all t. Therefore, fL-min(vt)→

(
0.7

0.4

)
.

However, fL-min(v̄) =

(
0.7

0.1

)
.

The next axiom uses the order structure on the set A.

Definition 4 (Monotonicity) An aggregator f is monotonic if for all N ∈ N, for all

v, v′ ∈ An, [
vij ≥ v′ij for all i, j

]
⇒
[
fj(v) ≥ fj(v

′) for all j
]
.

Fix an arbitrary collection of voters. Suppose all voters in this collection weakly increase

their evaluations of all alternatives. Then the aggregate opinion outputted by a monotonic

aggregator must weakly increase for all alternatives. This is clearly a weak condition and ag-

gregators described earlier, satisfy the axiom. It is of course, easy to construct an aggregator

that does not satisfy the axiom.

2.3 The Main Result

The main result shows that the component-wise α-median aggregators are characterized by

the axioms of consistency, unanimity, anonymity, monotonicity and continuity.
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Theorem 1 An aggregator satisfies consistency, unanimity, anonymity, monotonicity and

continuity if and only if it is a component-wise α-median aggregator.

Proof : It is easy to verify that component-wise α-median aggregators satisy anonymity,

unanimity, continuity and monotonicity. We show that is satisfies consistency.

Consistency: Let fα be a component-wise α-median aggregator. In view of the separa-

bility of component-wise aggregators it clearly suffices to show that it satisfies consistency

for any arbitrary alternative.

Pick a profile v ∈ A and alternative j. Then fαj (v) ∈ {mini∈N(vij), αj,maxi∈N(vij)}.
If fαj (v) = mini∈N(vij) i.e αj < mini∈N , consistency follows from the same argument used

to show that the min aggergator is consistent. Likewise, the arguments used to show that

the max aggregator is consistent can be used to show that fα is consistent when fα(v) =

maxi∈N(vij) i.e αj > maxi∈N(vij).

If αj ∈ [mini∈N(vi),maxi∈N(vi)], then fαj (v) = αj. Let I = {Ni, . . . , NK} be any partition

of N . There exists a set Nk ∈ I such that for some i ∈ Nk, vij ≤ αj. By definition, fαj (vNk
) ≤

αj. Therefore, αj ≥ minNl∈I
(
fαj (vNk

)
)
. Similarly, there exists Nk′ ∈ I such that for some

i′ ∈ Nk′ , vi′j ≥ αj. By definition, fαj (vNk′
) ≥ αj. Therefore, αj ≤ maxNl∈I

(
fαj (vNl

)
)
.

By the above arguments we have, αj ∈ [minNl∈I
(
fαj (vNl

)
)
,maxNl∈I

(
fαj (vNl

)
)
]. By defini-

tion, fαj (fα(vN1), . . . , f
α(vNK

)) = αj. Therefore, component-wise α-median aggregators are

consistent.

Let f be an aggregator which satisfies consistency, unanimity, anonymity, monotonicity

and continuity. Observe that f is actually a collection of rules {fk}, k = 1, . . . , |N| where

fk is an aggregator for any k-size collection of voter opinions. The next lemma shows that

f can be constructed by a repeated application of the function f 2.

Lemma 1 Let N = {i1, . . . , in} ⊆ N and let vik ∈ A for k = 1, . . . n. Then fn(vi1 , ..., vin) =

f 2(. . . f 2(f 2(vi1 , vi2), vi3) . . . vin).

This lemma follows directly by the application of consistency. For instance, ifN = {1, 2, 3, 4},
then

f 4(v1, v2, v3, v4) = f 2(f 3(v1, v2, v3), v4) = f 2(f 2(f 2(v1, v2), v3), v4).

By Lemma 1 we can restrict attention to f 2.

Applying Lemma 1 we can restrict attention to the two voter aggregator f 2. From now

onwards, we simply write f in place of f 2 for simplicity of notation. In some cases, we will

revert back to f 2 where necessary. We introduce the notion of two evaluations being ordered.

Let v, v′ ∈ An, N ∈ N. If either vj ≥ v′j or vj ≤ v′j for all j ∈ X then v is ordered with v′.

We define a Box as follows. Let vi, vk be a pair of voter opinions. Then

Box(vi, vk) =

{
vt ∈ A2

∣∣∣∣ vij ∈ [min
i∈N

(vij),max
i∈N

(vkj)
]
∀j ∈ X

}
.

Lemma 2 Let vi, vk ∈ A. Then f(vi, vk) ∈ Box(vi, vk).
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Proof : We consider two cases.

• Case 1: vi and vk are ordered. Assume w.l.o.g. vi ≥ vk. The case where vk ≥ vi can

be dealt with by using a symmetric argument. Applying monotonicity,

f(vi, vk) ≥ f(vk, vk) = vk.

The last inequality holds due to unanimity. Similarly,

f(vi, vk) ≤ f(vi, vi) = vi.

Therefore f(vi, vk) ∈ Box(vi, vk).

• Case 2: Case 1 does not hold. Let v be such that,

vj = min(vij, vkj) ∀j ∈ X.

Similarly, let v is such that,

vj = max(vij, vkj) ∀j ∈ X.

Note that Box(vi, vk) = Box(v, v). By monotonicity,

f(vi, vk) ≥ f(v, v) = v.

Similarly,

f(vi, vk) ≤ f(v, v) = v.

Therefore, f(vi, vk) ∈ Box(vi, vk).

�

The next lemma is illustrated in Figure 1.

Lemma 3 Let vi, vk ∈ A be ordered (assume w.l.o.g. vi ≤ vk) and f(vi, vk) = vt. Then for

all vr, vu ∈ A such that vr ∈ Box(vi, vt) and vu ∈ Box(vt, vk),

f(vr, vu) = vt, f(vr, vt) = vt, f(vt, vu) = vt .

Proof : By Lemma 1 and unanimity,

f(vi, vt) = f 2(vi, f
2(vi, vk)) = f 3(vi, vi, vk)

= f 2(f 2(vi, vi), vk) = f(vi, vk) = vt.

By an analogous argument f(vt, vk) = vt. By monotonicity,

f(vr, vu) ≤ f(vt, vu) ≤ f(vt, vk) = vt.
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Figure 1: Illustration for Lemma 3

Similarly,

f(vr, vu) ≥ f(vi, vu) ≥ f(vi, vt) = vt.

Therefore f(vr, vu) = vt. Again by monotonicity,

f(vr, vt) ≤ f(vt, vk) = vt.

Also,

f(vr, vt) ≥ f(vi, vt) = vt.

Therefore f(vr, vt) = vt. By a similar argument it follows that f(vt, vu) = vt. �

Lemma 4 Let vi, vk, v
′
i, v
′
k be such that (i) vi is ordered with vk, v

′
i is ordered with v′k (ii)

f 2(vi, vk) = vt ∈ intBox(vi, vk)
4 and (iii) f(v′i, v

′
k) = v′t ∈ intBox(v′i, v

′
k). Then v′i < vt and

vk > v′t both cannot hold.

Proof : We prove this by contradiction. So suppose v′i < vt and vk > v′t hold. Then

by applying Lemma 3 on Box(vi, vk) we have f(vt, v
′
t) = vt and by applying Lemma 3 on

Box(v′i, v
′
k) we have f(vt, v

′
t) = v′t. This is a contradiction. Therefore both v′i < vt and

vk > v′t cannot be true. �

Let vt ∈ A. The box MBox(vt) = Box(v̄i, v̄k) is a maximal box for vt if there does not

exist v′i < vi and v′k > vk such that f(v′i, v
′
k) = vt. Suppose vt is in the range of f . Then

MBox(vt) exists by the virtue of continuity of f . Note that a maximal set may not be

unique. By similar arguments as in Lemma 3 we can prove the following Lemma.

Lemma 5 Let MBox(vt) be a maximal box for vt. Let vr, vu ∈ A such that vr ∈ Box(vi, vt)

and vu ∈ Box(vt, vk). Then,

4intBox(.) denotes the interior of Box(.).
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(i) f(vr, vu) = vt, f(vr, vt) = vt, f(vt, vu) = vt.

(ii) Let {vqt }∞q=1 be a sequence such that limn→∞ v
q
t = vt. Then,

lim
n→∞

MBox(vqt ) = MBox(vt).

Proof : The first part of the proof is proved analogously as in the previous Lemma 3. The

second part is an implication of the continuity of f 2. �

Lemma 6 Let vi, vk and v′i, v
′
k, v
′
t be such that (i) vi is ordered with vk, v

′
i is ordered with

v′k and vt is ordered with v′t (ii)f(vi, vk) = vt ∈ intBox(vi, vk) and (iii) f(v′i, v
′
k) = v′t ∈

intBox(v′i, v
′
k). Then ∃ v′′i , v′′k and v′′t such that (a) v′′i , v

′′
k , v
′′
t ∈ Box(vt, v

′
t) (b) f(v′′i , v

′′
k) = v′′t

and v′′t ∈ intBox(v′′i , v
′′
k) (c) v′′t /∈ {vt, v′t}.

Proof : W.l.o.g. let vi ≤ vk, v
′
i ≤ v′k and vt ≤ v′t. By Lemma 4 we have

Box(vi, vk) ∩Box(vt, v
′
t) 6= ∅ and Box(vi, vk)

C ∩Box(vt, v
′
t) 6= ∅.5

or Box(v′i, v
′
k) ∩Box(vt, v

′
t) 6= ∅ and Box(v′i, v

′
k)
C ∩Box(vt, v

′
t) 6= ∅.

Therefore assume w.l.o.g.

Box(v′i, v
′
k) ∩Box(vt, v

′
t) 6= ∅ and Box(v′i, v

′
k)
C ∩Box(vt, v

′
t) 6= ∅. (#)

Pick vr ∈ Box(vi, vt) and vu ∈ Box(v′t, v
′
k). By applying Lemma 3 to Box(vi, vk) and

Box(v′i, v
′
k) we have f(vr, vu) ≥ f(vi, vt) = vt and f(vr, vu) ≤ f(v′t, v

′
k) = v′t respectively. If

f(vr, vu) /∈ {vt, v′t} then the Lemma holds with v′′i = vr, v
′′
k = vu and v′′t = f(vr, vu). So

suppose f(vr, vu) ∈ {vt, v′t}. We consider two cases.

Case 1: f(vr, v
′
u) = vt. Consider an increasing sequence {vqr} such that limn→∞ v

q
r = v′t.

In view of (#) there exists a q such that vqr is on the boundary of Box(v′i, v
′
k) and is in

Box(vt, v
′
t). By continuity limn→∞ f(vrt , v

′
t) = v′t. By choosing a point q′ sufficiently close to

vrt we can satisfy the conditions of the Lemma.

Case 2: f(vr, vu) = v′t. Suppose vk ≥ v′t. By applying Lemma 3 to Box(vi, vk) and

Box(v′i, v
′
k) we have f(vr, vu) = vt and f(vr, vr) = v′t. This is a contradiction. Hence vk ≤ v′t.

Now by repeating the arguments in Case 1 the Lemma holds with v′′i = vr, v
′′
k = vu and

v′′t = f(vr, vu). �

The next Lemma states that there exists at most one element in the range of f which is

in the interior of its relevant box.

Lemma 7 There do not exist vi, vk, v
′
i, v
′
k such that (i) vi is ordered with vk and v′i is ordered

with v′k (ii) f(vi, vk) ∈ intBox(vi, vk) (iii) f(v′i, v
′
k) ∈ intBox(v′i, v

′
k) and (iv) f(vi, vk) 6=

f(v′i, v
′
k).

5AC is the complement of set A.
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Proof : We prove the Lemma by contradiction i.e there exist vi, vk, v
′
i, v
′
k as specified in the

statement of Lemma 7. Let f(vi, vk) = vt and f(v′i, v
′
k) = v′t.

1. Case 1: Suppose vt, v
′
t are ordered. Assume w.l.o.g. vt ≤ v′t. By Lemma 5 there exists

v′′i , v
′′
k such that f(v′′i , v

′′
k) = v′′t and v′′t ∈ intBox(v′′i , v

′′
k). In fact, by applying the Lemma

repeatedly we can contruct a sequence {vqt }∞q=1 such that f(vqi , v
q
k) = vqt ∈ intBox(vqi , v

q
k)

for all q and lim vqt = v′t.

Let {ṽtq}∞q=1, be a subsequence of {vqt } such that ṽt
q ∈ MBox(vt) for all q. Note

that Box(vi′ , v
′
t) ∩ Box(ṽi

q, ṽt
q) 6= ∅. We claim that ṽk

q ≥ v′t cannot hold. Suppose

contrariwise that ṽk
q ≥ v′t. Pick vr ∈ Box(v′i, v

′
t)∩Box(ṽi

q, ṽt
q) and vu ∈ Box(v′t, v

′
k)∩

Box(ṽt
q, ṽk

q). Applying Lemma 3 to the boxes Box(ṽi
q, ṽt

q) and Box(v′i, v
′
k) we have

f(vr, vu) = ṽt
q and f(vr, vu) = v′t respectively. This is a contradiction. Therefore

ṽk
q ≥ v′t cannot hold and we have

lim
n→∞

ṽt
q = v′t ⇒ lim

n→∞
ṽk
q = v′t.

Since ṽt
q → v′t we know by Lemma 4 that limn→∞MBox(ṽt

q) = MBox(v′t). Hence

limn→∞MBox(ṽt
q) = MBox(v′t) = Box(v̄i

q, v′t) where v̄i
q = limn→∞ ṽi

q, i.e v′t /∈
intMBox(v′t) = Box(v̄i

q, v′t). However v′t ∈ intBox(v′i, v
′
k) implies v′t ∈ intMBox(v′t) by

assumption. Thus we have a contradiction.

2. Case 2: vt and v′t are not ordered. Pick vr ∈ Box(0, vt) ∩ Box(0, vt).
6 By Case 1

f(vr, vt) /∈ intBox(vr, vt) and f(vr, v
′
t) /∈ intBox(vr, v

′
t).

0 1

1

v′i

v′k

vt

v′t
�

�

�

�

vr

vk

vu

vi

Figure 2: Illustration for Case 2

We claim that f(vr, vt) = vt. Suppose this is false. By virtue of the fact that f(vr, vt) /∈
intBox(vr, vt), f

2(vr, vt) must lie on the boundary of Box(vr, vt) but not equal to vt. By

6Recall that 0 = (0, 0, ..., 0) ∈ A and 1 = (1, 1, ..., 1) ∈ A.
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constructing a sequence {vqr}∞q=1 → vt and using arguments from Lemma 5 we obtain a

contradiction. Therefore f(vr, vt) = vt. By an identical argument f(vr, v
′
t) = v′t.

Pick vu ∈ Box(vt,1)∩Box(v′t,1). Using the same arguments as in the previous paragraph,

we have f(vu, vt) = vt and f(vu, v
′
t) = v′t. Applying Lemma 3 and monotonicity,

f(vr, vu) ≥ f(vr, vt) = vt.

f(vr, vu) ≤ f(vt, vu) = vt.

Therefore f(vr, vu) = vt. However, the same argument with v′t substituted for vt yields

f(vr, vu) = v′t. We have a contradiction. �

Lemma 8 Let vi, vk be ordered and f(vi, vk) = vt. Then[
vr, vu ∈ Box(vi, vt), vr ≤ vu

]
⇒
[
f(vr, vu) = vu

]
.[

vr, vu ∈ Box(vt, vk), vr ≤ vu
]
⇒
[
f(vr, vu) = vr

]
.

Proof : Suppose vr, vu ∈ Box(vi, vt), vr ≤ vu and f(vr, vu) 6= vu. Suppose f(vr, vu) = v′t. By

Lemma 7, v′t /∈ intBox(vr, vu). By applying Lemma 3 on Box(vr, vu) we have f(v′t, vs) = v′t
for all vs ∈ Box(vr, v

′
t). Similarly, by applying Lemma 3 on Box(vi, vt) we have f(vr, vt) = vt.

This implies that there exists v′k ≥ vu such that f(vr, v
′
k) > v′t and f(vr, v

′
k) ∈ Box(vr, v

′
t).

By applying Lemma 3 on Box(vr, v
′
t) we have f(f(vr, v

′
k), v

′
t) = v′t. However, by Lemma 3

on Box(f(vt, v
′
k), v

′
k) we have f(v′t, f(vr, v

′
k)) = f(vr, v

′
k). This is a contradiction. Therefore,

f(vr, vu) = vu.

The case where vr ≤ vu with vr, vu ∈ Box(vt, vk) can be proved by an argument similar

to the one above. �

Lemma 9 Pick any vi, vk ∈ A. Then f(vi, vk) = f(v, v) where v and v are as defined before.

Proof : There is nothing to prove in the case where vi and vk are ordered. Therefore assume

that vi, vk are not ordered. Let f(v, v) = vt. For each j ∈ X we have vjt , v
′j
t such that

(i) vjtj = vtj, v
j
tj′ = min(vij′ , vkj′) ∀j′ ∈ X.

(ii) v′jtj = vtj, v
′j
tj′ = max(vij′ , vkj′) ∀j′ ∈ X.

Note that vjt ∈ Box(v, vt) and v′jt ∈ Box(vt, v) for all j. By applying Lemma 8 to Box(v, vt)

and Box(vt, v) and using monotonicity we have

f(vi, vk) ≥ f(vjt , v
′
t) = vjt .

f(vi, vk) ≤ f(v′jt , v
′
t) = v′jt .

This implies f(vi, vk) = f(v, v) = vt. �

As an implication of Lemma 9 we can restrict attention to any ordered pair vi, vk. Our

final Lemma proves the theorem.
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Lemma 10 There exists α ∈ A such that for all vi, vk ∈ A

fj(vi, vk) = med(min
i∈N
{vij},max

i∈N
{vij}, αj) ∀j ∈ X.

Proof : Let f(0,1) = v∗t . We show that f is an α-median rule with α = v∗t . Let vi, vk ∈ An.

By Lemma 9 we only need to consider the case where they are ordered. W.l.o.g. assume

vi ≤ vk.

1. Case 1: Suppose vi, vk are both ordered with respect to v∗t . We show that f is an

α-median rule with α = v∗t . By Lemma 3, f(vi, vk) = v∗t for all vi ∈ Box(0, v∗t ) and

vk ∈ Box(v∗t ,1). By Lemma 8, f(vk,1) = vk for all vk ∈ Box(v∗t ,1) and f(0, vi) = vi
for all vi ∈ Box(0, v∗t ). By Lemma 8 and 9,

f(vi, vk) = f(v, v) = v ∀ vi, vk ∈ Box(0, v∗t ).

f 2(vi, vk) = f 2(v, v) = v ∀ vi, vk ∈ Box(v∗t ,1).

Therefore v∗t is the α-median for all vi and vk ordered such that either vi, vk ∈ Box(0, v∗t )

or vi, vk ∈ Box(v∗t ,1). If vi, vk ∈ Box(0, v∗t ) are not ordered then by Lemma 8 and 9,

f 2(vi, vk) = v. Similarly if vi, vk ∈ Box(v∗t ,1) are not ordered then by applying Lemma

8 and 9, f 2(vi, vk) = v. Therefore, in both the cases f picks the component-wise

α-median for j ∈ X with α = v∗t .

2. Case 2: Suppose vi is ordered with v∗t but vk is not ordered with v∗t . Pick vγt ∈
Box(vi, vk) ∩ Box(0, v∗t ) such that vγtj = med(vij, vkj, αj) for all j ∈ X. By Lemma 3

and 8 and monotonicity, f(0, v∗t ) = vγt ≤ f(vi, vk) and f(v∗t ,1) = v∗t ≤ f(vi, vk). This

implies f(vi, vk) = vγt . The same arguments hold for the case when vi is not ordered

with v∗t but vk is ordered with v∗t .

3. Case 3: Neither vi nor vk is ordered with respect to v∗t . Pick vi, vk, vi, vk such that

vij = min(vij, v
∗
tj), vkj = min(vkj, v

∗
tj), vij = max(vij, v

∗
tj) and vkj = max(vkj, v

∗
tj). By

applying Lemma 8 to Box(0, v∗t ) and Box(v∗t ,1) and using monotonicity ,

f(vi, vk) = vk ≤ f(vi, vk).

f(vi, vk) = vi ≥ f(vi, vk).

This implies f(vi, vk) = med(vij, vkj, αj).

�

Let f(0,1) = v∗t such that v∗t ∈ A. We have proved that f 2 is a component-wise α-

median aggregator with α = v∗t . Note that fk is also a component-wise aggregator i.e the

aggregation over an alternative is independent of the opinions over other alternatives. We

show that fk is a component-wise α-median rule for k = 1, 2, ..., n.

14



Let v ∈ Ak, k ∈ N be a profile. We show that

fj(v) = med( min
i=1,...,k

vij, max
i=1,...,k

vij, αj)

for all j ∈ X. There are several cases to consider. Pick j ∈ X. Suppose vij ≤ αj for all

i ∈ N . Since f 2 is a component-wise α-median aggregator f 2(vij, vi′j) = max(vij, vi′j) for all

i, i′. Therefore,

fk(v1j, ..., vkj) = f 2(...f 2(f 2(v1j, v2j), ..., vkj)

= max(...max(max(v1j, v2j)..., vkj)

= max(v1j, ..., vkj)

= fk(v1j, ..., vkj)

= med(min
i

(vij),max
i

(vij), αj).

Suppose vij ≥ αj for all i ∈ N . An argument analogous to the previous one gives

fk(v1j, ..., vkj) = min(v1j, ..., vkj) = med(mini(vij),maxi(vij), αj).

Finally consider the case where αj ∈ (mini(vij),maxi(vij)). Let

f 2(v1j, v2j) = z1.

f 2(f 2(v1j, v2j), v3j) = z2.

...

f 2(...(f 2(v1j, v2j), ...vkj)) = zk−1.

In view of the nature of f 2 there must exist q such that zq = αj and zq
′

= αj for all q′ ≥ q.

Therefore fk(v1j, ..., vkj) = med(mini(vij),maxi(vij), αj). This completes the proof. �

2.4 Discussion

Theorem 1 generalizes the Fung and Fu (1975) result from the one dimensional to the mul-

tidimensional case. The structure of the proof broadly follows that of Fung and Fu (1975).

However, the generalization of specific arguments is not straightforward since several “new”

cases can arise regarding the location of the evaluation vectors chosen for aggregation.

2.5 Independence of axioms

We show that the axioms used in Theorem 1 are independent. We consider each axiom in

turn and show that there exists an aggregator that satisfies the other axioms.

Consistency: The median aggregator satisfies all the axioms except consistency.
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Unanimity: Constant aggregators satisfy all the axioms except unanimity.

Anonymity: We define an aggregator that specifies a dictator for every subset of the

voters and outputs the vector of evaluations of the dictator for all profile. We proceed as

follows. Let i(N) = mini∈N #i. Then fD is a sequential dictator aggregator if fD = vi(N)

for all N ∈ N for all v ∈ An.

The aggregator is consistent as we show below. Consider a profile v ∈ An. Then by

definition of the aggregator, fD(v1, . . . , vn) = v1. Consider any partition I = {N1, . . . , NK}.
By applying the rule to the sub-groups we have,

fD(fD(vN1), . . . , f
D(vNK

)) = f(vi(N1), . . . , vi(NK)) = vi(N) = fD(v) = v1.

The sequential dictatorship clearly violates anonymity.

Continuity: We have shown earlier that the L-min aggregator satisfies all the axioms

other than continuity.

Monotonicity: We define an aggregator for the case when the number of alternatives

is two. The construction can be easily generalized to an arbitrary number of alternatives.

Define f 2 as follows. Pick v̄ ∈ A with v̄2 > 0. The aggregator will be separable. For the

first component, f 2 picks the smaller of the first component of the two voter evaluations, i.e

f1(vi, vk) = min(vi1, vk1) for all vi, vk ∈ A. For the second component, there are three cases:

(i) max(vi2, vk2) ≤ v̄2. Then f2(vi, vk) = max(vi2, vk2) .

(ii) min(vi2, vk2) ≥ v̄2. Then f2(vi, vk) = min(vi2, vk2).

(iii) min(vi2, vk2) < v̄2 and max(vi2, vk2) > v̄2. Then

f1(vi, vk) = max
(

min(vi2, vk2), v̄2 − |v̄2 −max(vi2, vk2)|
)
.

The aggregator fk, k ∈ {1, . . . , n} can be obtained from f 2 in the following way. For any

v ∈ Ak,
f(v1, . . . , vk) = max

(
min
i
vi2, v̄2 − |v̄2 −max

i
vi2|
)
.

We show that the rule is not monotonic. In Figure 3 vr ∈ A satisfies vrj < v̄j, j ∈ {1, 2}.
For the profile v = (vr, v̄) we have f(vr, v̄) = v̄. Pick vu such that vuj > v̄j, j ∈ {1, 2} and

f(vr, vu) = vt where vt2 < v̄2. Therefore, the rule violates monotonicity.

The aggregator is consistent for any profile v ∈ An. Suppose ī such that vī2 = maxi∈N vi2.

Consider a partition I = {N1, . . . , NK}. Suppose ī ∈ Nk for some k ∈ {1, . . . , K}. Note that

mini∈Nk
vi2 ≥ mini∈Nk

vi2. Therefore,

max
(

min
i∈Nk

vi2, v̄2 − |v̄2 −max
i∈Nk

vi2|
)
≥ max

(
min
i∈Nk′

vi2, v̄2 − |v̄2 − max
i∈Nk′

vi2|
)

for all Nk′ ∈ I. Therefore,

f(f(vN1 , . . . , f(vNK
)) = max

(
min
i∈N

vi2, v̄2 − |v̄2 − vī2|
)

= f(v).
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Figure 3: Violation of monotonicity

Figure 4 shows the continuity of the aggregator. Continuity is an issue only for sequences

of the following kind: {(vq1, v
q
2)}, q = 1, 2 . . . such that (i) vq1 = vrj ≤ v̂j for all q and for

j ∈ {1, 2} and (ii) {vq2} → v̂. In this case, f(vq1, v
q
2) → vt and f(vr, v̂) = vt so that f is

continuous.

0 1

1

vi

vk

v̂

vq

vr

vt v̄

vqt

� �
�

�
�

Figure 4: Continuity of the aggregator

3 The Finite Case: Aggregating Sets of Alternatives

In the previous model, voters submited a utility number for each alternative with utilities

normalized to lie in the set [0, 1]. In this section we depart radically from this model and

consider a model where voters have binary choices over each alternative. They can either

declare 0 for an alternative indicating disapproval or 1 indicating approval. The aggregation
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rule takes tuples of voter opinions as inputs and outputs an aggregate binary opinion for

each candidate. This is therefore a model of the aggregation of sets. Our goal is to study

the role of consistency in this framework. 7

Our first observation is that Theorem 1 no longer holds in this setting. For example,

the L-min rule satisfies all the axioms of Theorem 1 since continuity holds vacuously. In

particular, separability across components in the aggregation rule is no longer guaranteed.

We shall impose further axioms that are natural in this context to show that the aggregation

rule must be constant over a large class of profiles. We show that an aggregator satisfies

consistency, component unanimity and component anonymity if and only if it is a Bipartite

Rule. These aggregators pick the same set of alternatives for “almost” all vote profiles. These

aggregators pick a fixed set of alternatives unless voters unanimously approve that alternative

and always reject an alternative unless voters unanimously reject its selection. We proceed

to details.

The set of candidates or alternatives is X with |X| = m. The set of voters is N =

{1, 2, ..., n}. A voter submits vi ∈ {0, 1}m an we denote the set {0, 1}m by A. A component

vij = 0 indicates that voter does not approve of j while a value of 1 indicates approval.

A district or a group is a non-empty set N ⊂ N. A vote profile is a collection of vi for

all voters i ∈ N such that N ⊆ N. A vote profile vS is the restriction of v to a vote profile

for voters in S ⊆ N. An aggregator is a function f : ∪N∈NAn → A which aggregates voter

profiles for any district or subset N.

Several aggregators introduced in Section 2 are not well-defined in this model. These

include the median and the mean aggregators. Component-wise α-medians rules are also

not well-defined unless αj is either 0 or 1. The min., left-aligned, constant and L-min.

aggregators are well-defined in this setting.

We now turn to axioms. The main axiom as before will be consistency which is de-

fined exactly as before. Monotonicity is no longer required and continuity holds vacuously.

However, some new axioms are introduced.

Definition 5 (Component unanimity) An aggregator f satisfies component unanimity

if for all j ∈ X, N ∈ N and v ∈ An,[
vij = v̄j ∀i ∈ N

]
⇒
[
fj(v) = v̄j.

]
The axiom requires the aggregator to select alternatives that have been approved unani-

mously and reject alternatives that have been rejected unanimously. Aggregators that satisfy

component unanimity are the min, max and L-min. Constant rules violate this condition.

Definition 6 (Component anonymity) An aggregator f satisfies component anonymity

if for all N ∈ N for all bijections σij : N ×K → N and all j ∈ X v, v′ ∈ A ,[
vij = v′σ(ij)j for all i ∈ N

]
⇒
[
fj(v) = fj(v

′)
]
.

7There is a fairly extensive literature on the aggregation of sets of alternatives - see for instance, Barberà

et al. (1991), Plott (1973), Goodin and List (2006), Kasher and Rubinstein (1997).
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Component anonymity requires the component outcome to be invariant to premutations

of opinions an alternative j. The min, max and constant aggregators satisfy this condition.

The following piece of notation will be used for the next definition. Let W (v) = {j| vij =

1 for all i ∈ N} and L(v) = {j| vij = 0 for all i ∈ N}.

Definition 7 (Bipartite Rule) An aggregator fBR is a Bipartite Rule if there exists a

partition {F, FC} of X such that

(i)
[
j ∈ F

]
⇒
[
fBF
j (v) = 1 for all v such that j /∈ L(v)

]
.

(ii)
[
j ∈ F c

]
⇒
[
fBR
j (v) = 0 for all v such that j /∈ W (v)

]
.

Bipartite Rule divides the set of alternatives X into favoured (F ) and non-favoured sets

(FC). Alternatives in the favoured set are always selected by the aggregator unless all voters

reject it. An alternative in the non-favoured set does not get selected unless all voters

approve.

Bipartite Rules satisfy component unanimity and component anonymity. These aggre-

gators are consistent and separable. To see that they are consistent suppose v ∈ An and

I = {N1, . . . , Nk} is a partition of N . Let j ∈ X be any alternative. There exists a

set Nk ∈ I such that if there is no unanimous decision over j in the profile for n voters

then there is no unanimity over j in vNk
. This implies fBR

j (vNk
) = fBR

j (v). Therefore,

f(f(vN1), . . . , f(vNK
)) = f(v).

Bipartite Rules are constant over a “large” number of vote profiles. If the number of

voters is large, the set of profiles where voters are unanimous over a component is “small”.

Consequently, a Bipartite Rule will be “nearly” constant.

Remark. Note that Bipartite Rules are a type of component-wise α-median rule with

αj = 1 or 0 for each alternative.

Example 1 The set of voters N = {1, 2, 3} and set of alternatives X = {a, b, c, d}. Let fQ

be a Bipartite Rule with the set of favoured alternative F = {a, c} and the set of non-favoured

alternatives be F c = {b, d}. Then,

fBR


1 0 1

1 1 1

0 0 0

1 1 0

 =


1

1

0

0

 .

Our next result is a characterization of Bipartite Rules.
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3.1 The Result

Theorem 2 An aggregator satisfies consistency, component unanimity and component anonymity

if and only if it is a Bipartite Rule.

Proof : Suppose an aggregator satisfies consistency, component unanimity and component

anonymity. Define the order (�) on An as follows.

vi � vk if f(vi, vk) = vi for all vi, vk ∈ A.

We show that the order (�) is a partial order i.e it satisfies the following three properties.

(i) Reflexivity: Pick any vi ∈ A. By component unanimity, f(vi, vi) = vi. Therefore,

vi � vi for all vi ∈ A.

(ii) Anti-symmetry: Suppose vi, vk ∈ A such that vi � vk and vk � vi. Then by definition,

f(vi, vk) = vi and f(vk, vi) = vk. By component anonymity, f(vi, vk) = f(vk, vi) =

vi = vk.

(iii) Transitivity: Suppose vi, vk, vt ∈ A such that vi � vk and vk � vt. By definition,

f(vi, vk) = vi and f(vk, vt) = vk. Therefore, by consistency and component unanimity,

f(vi, vt) = f 2(f(vi, vk), f(vk, vt)) = f 4(vi, vk, vk, vt).

= f 3(vi, f(vk, vk), vt) = f 3(vi, vk, vt) = f 2(vi, f(vk, vt)) = f(vi, vk) = vt.

Therefore, the ordering (�) is a partial order. We claim the following. Suppose vi � vk for

some vi, vk ∈ An. Then f(vi, vt) � f(vk, vt) for all vt ∈ A2.

By consistency and component unanimity we have,

f 2(f(vi, vk), f(vk, vt) = f 4(vi, vk, vk, vt) = f 3(vi, vk, vt).

= f 2(f(vi, vk), vt) = f(vi, vt).

Therefore, the aggregator is increasing in the order (�). We claim that f(vi, vk) � vi and

f(vi, vk) � vk. By consistency, component anonymity and component unanimity,

f 2(f(vi, vk), vi) = f 3(vi, vk, vi) = f 2(f(vi, vi), vk) = f(vi, vk).

Therefore, by the definition of (�) we have f(vi, vk) � vi. Similarly, we can show that

f(vi, vk) � vk. Therefore, the aggregator outputs a vector of evaluations which is a lower

bound according to (�). We finally show that the aggregator must select the unique greatest

lower bound vector of opinions for any pair of voter opinions.
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Suppose f(vi, vk) = vt. We have shown that vt must be a upper bound of vi and vk. We

claim that vt is the unique greatest lower bound. We prove this by contradiction. Suppose

v′t is another lower bound. By definition,

f(vi, v
′
t) = v′t and f(vk, v

′
t) = v′t.

Therefore, by consistency,

f(vi, v
′
t) = f 2(vi, f(vk, v

′
t)) = f 3(vi, vk, v

′
t).

= f 2(f(vi, vk), v
′
t) = f(vt, v

′
t).

Since f(vi, v
′
t) = v′t we have f(vt, v

′
t) = v′t. Therefore, v′t � vt = f(vi, vk). Therefore, f(vi, vk)

is the unique greatest lower bound of vi and vk.

We show that the aggregator is invariant to permutations of opinions over an alternative.8

We claim the following. Let π : N ×X → N be a bijection. Suppose v, v′ ∈ A2 such that

v′ij = vπ(ij)j for some j ∈ X and v′ij′ = vij′ for all j′ ∈ X, j′ 6= j. Then f(v) = f(v′).

We prove the above claim by contradiction. Consider a profile v ∈ A2 and an alternative

j ∈ X. The claim is trivially true if j ∈ L(v) ∪ W (v). Suppose j /∈ L(v) ∪ W (v). Let

v = (vi, vk) and v′ = (v′i, v
′
k) such that vij = v′kj, vkj = vij, v

′
ij′ = vij′ and v′kj′ = vkj′ for all

j′ 6= j, fj(v) = fj(v
′) and fj′(v) 6= fj′(v

′). Therefore, the bijection π is such that π(i, j) = k

and π(k, j) = i and π(i′, j′) = i′ for all i′ ∈ N and j′ ∈ X, j′ 6= j.

We claim that f(v) must be ordered with f(v′). Suppose contrariwise, that f(v) is not

ordered with f(v′). Then f(f(v), f(v′)) = v′′ where v′′ /∈ {f(v), f(v′)}. W.l.o.g assume

that v′′j′ = fj′(v). By definition of (�), we have fj′(vi, v
′
i) = fj′(v

′). This is a violation of

component unanimity. Therefore, f(v) is ordered with f(v′).

W.l.o.g suppose f(v) � f(v′). By the definition of (�), we have fj′(vi, f(v′)) = fj′(v).

This is a contradiction to component anonymity since by our construction fj′(v) = fj′(v
′) =

1 − fj′(v). Similar arguments can be made when f(v′) � f(v). The final claim proves

separability.

We claim the following. For all v, v′ ∈ A2,
[
vj = v′j

]
⇒
[
fj(v) = fj(v

′)
]

for all j ∈ X.

Let v̄ = (v1, v2) ∈ A2 be a profile such that v̄1j + v̄2j = 1. To prove the claim it is

sufficient to show that for all v ∈ A2,
[
v1j + v2j = 1

]
⇒
[
fj(v) = fj(v̄)

]
for all j ∈ X. So

pick any j ∈ X and v ∈ A2 such that v1j +v2j = 1. By definition f 4(v̄, v̄) = f 2(f 2(v̄), f 2(v̄)).

By the property of v̄ there exists a profile v̂ = (v̂1, v̂2) ∈ A2 such that f 4(v̄, v̄) = f 4(v, v̂).

We construct v̂ as follows: (1) v̂ij = vij (ii) v̂ij′ = vij′ for all j′ /∈ L(v) ∪W (v), j′ 6= j (iii)

v̂ij′ = 1 − vij′ for all j′ ∈ L(v) ∪W (v), j′ 6= j for i ∈ {1, 2}. Therefore, (v, v̂) is contructed

by permutations of component values in the profile (v̄, v̄).

By our previous claim and consistency, we have f 4(v̄, v̄) = f 4(v, v̂) = f 4(f(v), f(v), v̂).

Now, we construct a profile ṽ = (ṽ1, ṽ2) ∈ A2 such that f 4(v, v̂) = f 4(ṽ, v). We construct ṽ

8Recall that component anonymity only states that the aggregator is invariant only over the alternative

for which the opinions are permuted.
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as follows: (1) ṽij = fj(v) (ii) ṽij′ = vij′ for all j′ /∈ L(v)∪W (v), j′ 6= j (iii) ṽij′ = 1− vij′ for

all j′ ∈ L(v)∪W (v), j′ 6= j for i ∈ {1, 2}. Therefore, (ṽ, v) is contructed by permutations of

component values in the profile (f(v), f(v), v̂).

By our previous claim, we have f(v, v̂) = f(ṽ, v). Also, note that fj(ṽ) = fj(v). By

consistency, component anonymity and component unanimity, we have f 4
j (v̄, v̄) = f 4

j (v, v̂) =

f 3
j (f(v), v̂) = f 4(f(v), f(v), v̂) = f 4

j (ṽ, v) = f 3
j (fj(v), v) = f 2

j (v).

Therefore, our claim is true and f 2 is a Bipartite Rule where an alternative j ∈ X is in

the favoured set F ⊂ X if fj(0, 1) = 1 and it is in the non-favoured set FC if fj(0, 1) = 0.

We show that if f 2 is a Bipartite Rule then fk is a Bipartite Rule, k ∈ {1, . . . , N}. To

see this, take any profile v ∈ AK . Then we have f(v) = f 2(. . . f 2(f 2(v1, v2), v3), . . . , vK).

Since f 2 is separable, we can focus our attention to any arbitrary alternative j. Suppose

j ∈ L(v). Then by component unanimity fj(v) = 0. Similarly fj(v) = 1 if W (v). Suppose

j /∈ L(v) ∪W (v). Let

f 2(v1j, v2j) = z1.

f 2(f 2(v1j, v2j), v3j) = z2.

...

f 2(...(f 2(v1j, v2j), ...vkj)) = zk−1.

In view of the nature of f 2 there must exist q such that zq ∈ {0, 1} such that zq
′
= zq for all

q′ ≥ q. Therefore, fK is a Bipartite Rule with j ∈ X in the favoured set F if fj(0, 1) = 1 or

j in the non-favoured set FC if fj(0, 1) = 0. This completes the proof. �

Theorem 2 implies that the result of the previous model holds in this setting but with a

stronger set of axioms. These aggregators are also similar to Unanimity Rules described in

Bervoets and Merlin (2012).

3.2 Indepedence of axioms

We show the independence of the axioms below.

Component unanimity: Constant Rules satisfy all axioms except component unanim-

ity.

Component anonymity: L-min aggregators satisfy all axioms except component anonymity.

Consistency: The following aggregator satisfies all the axioms except consistency. An

aggregator fP is a Parity aggregator if for any profile v ∈ An, N ∈ N: (i) fPj (v) = mini∈N(vij)

if N is odd and (ii) fPj (v) = maxi∈N(vij) if N is even. This aggregator satisfies the other com-

ponent unanimity and component anonymity but is not consistent. We show that it violates

consistency. Note that the aggregator is separable so it is sufficient to show its violation of

consistency for some arbitrary alternative j. Suppose vj = (0, 1, 1) is the vector of opinions

of voters 1, 2 and 3 for an alternative j. By definition we have fPj (vj) = min(0, 1, 1) = 0.
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Consider the partition I = {{1, 2}, {3}}. By applying the aggregator to the subgroups we

have fPj (fPj (0, 1), 1) = fP (1, 1) = 1. Therefore, fPj (vj) 6= fPj (fPj (v{1,2}), f
P
j (v3)).

None of the axioms can be weaked to give separability of the aggregator. To see this

note that the L-min aggregator satisfies consistency, component unaninimity and anonymity

but not component anonymity. Moreover, the L-min aggregator is not separable. Therefore,

component anonymity plays a vital role in characterizing separable aggregators.

4 Conclusion

This paper examines the structure of consistent, multidimensional, multilevel aggregators

in two distinct models. We characterize a class of separable rules called component-wise

α-median rules and generalize the one-dimensional results of Fung and Fu (1975). These

can also be seen as component-wise α-median aggregators. If the set of evaluations is finite,

separability is no longer guaranteed. In addition to consistency, stronger notions of unanimity

and anonymity are required to characterize a class of separable rules called Bipartite Rules.

References

Austen-Smith, D. and J. S. Banks (2000): Positive Political Theory I: Collective Pref-

erence, University of Michigan Press.

——— (2005): Positive Political Theory II: Strategy and Structure, University of Michigan

Press.
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