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This paper estimates the climate sensitivity of electricity demand in Delhi using daily data on electricity de-
mand and apparent temperature for the period 2000–09. The study adopts a semi-parametric variable coef-
ficient model in order to investigate the impact of climatic factors on electricity demand. As evident from
previous studies, electricity demand is a U-shaped function of temperature. We find the rising part of the
temperature–electricity curve to become more pronounced over time implying an increase in cooling de-
mand per unit increase in summer temperatures. The study therefore predicts the adverse effects of climate
change on electricity demand to be asymmetrically distributed in different seasons in the future, resulting in
a serious disequilibrium in the hot months.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

There is growing consensus among scholars on the plausibility of in-
creases in the Earth's mean temperature. It has stimulated attempts to
assess the impact of such changes on different sectors. In light of this in-
terest, the present paper attempts to quantify how climate change will
affect electricity demand in the continental climate of Delhi (28°30′N),
which is one of the most populous cities in India. For this purpose, we
use a semi-parametric variable coefficient approach to estimate the ef-
fects of apparent temperature1 on daily electricity demand over a 10-
year period (2000–09).Weuse the estimatedmodel to simulate the im-
pact of 1 °C, 2 °C and 3 °C increases in apparent temperature on the
electricity demand of Delhi up to 2030.

Existing literature highlights a U-shaped non-linear temperature–
electricity curve (TEC) where, starting from low levels, rising tempera-
tures first decrease electricity demand due to lower heating require-
ments in cold weather but where the demand begins to increase due
to the higher cooling demand in hot weather once, the level of temper-
ature exceeds theminimumelectricity demand threshold. The expected
net effect of global warming on electricity demand is therefore ambigu-
ous prima facie. Previous studies have shown that the heating effect

dominates the cooling effect in cold countries such as Sweden, which
means that global warming would result in a decline in electricity de-
mand in these countries. However, scholars have predicted the reverse
for Germany with the cooling effect dominating the heating effect
(Bessec and Fouquau, 2008). This suggests that muchwarmer countries
such as India are also likely to experience a net increase in their electric-
ity demand due to climate warming. No studies exist yet of the nature
and extent of the climate warming effects on electricity demand in
case of India. The present paper attempts such a quantification.

This is the first study to estimate a temperature–electricity curve
for India, the key contribution of this paper being that it recognizes
and addresses two special problems in the estimation of temperature–
electricity curves for developing countries. Firstly, with rapid
changes in the economic structure of such countries in future, the re-
lation is likely to shift over time. In this paper, we address this issue
by estimating a semi-parametric variable coefficient model that
allows the temperature–electricity relation to vary over time. As in
Engle et al. (1986), we model the temperature–electricity rela-
tion non-parametrically using cubic regression splines, so that
weather extremes can have relatively larger impacts on electricity
demand, while the other predictor variables enter the regression lin-
early. The innovation of this paper is to allow the non-parametric
temperature–electricity relation to vary across years by interacting
the non-parametric component with year. Secondly, black-outs or
power-outages are common in many developing countries. This
means that observed electricity use is typically less than the notional
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midity and windspeed feel like based on human physiology and clothing science and
the need for the body to maintain a thermal equilibrium.
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electricity demand (which is the object of interest in this study). We
adjust daily electricity consumption using daily shortage data in
order to obtain the unrestricted electricity demand in Delhi.

One important limitation of this study is that it takes a broad per-
spective, estimating the average temperature–electricity curve for the
aggregate electricity demand of Delhi whereas the temperature–
electricity sensitivities may differ across sectors significantly. For in-
stance, while a large chunk of this demand is due to space conditioning
and water heating in the residential and commercial sectors, which is
highly sensitive to temperature, in agriculture and industrial sectors,
electricity demand is determined by the level of economic activity,
which is thus largely temperature insensitive. Since, given the data lim-
itations, it is not possible to obtain the daily electricity demand data for
different sectors, we have adopted an aggregated approach in this
study. In the case of Delhi where 97.5% of the population is urban, the
residential and commercial sectors taken together account for approxi-
mately 80% of the total electricity demand.

A second limitation is that while electricity demand can be
modeled structurally, where electricity consumption is chosen to
maximize the expected utility of the households and profits of the
firms, we have not adopted this model because a) the data on prices,
utilization and efficiency of electricity using equipment at the house-
hold and firm level over time is not available and b) a structural
model is hard to implement. Thus, as is the case with much of the lit-
erature, our study too works with a reduced form model.

Three results from our analysis have important implications for
electricity–climate policy: Firstly, we observe that the rising part of
the temperature–electricity curve is becoming more pronounced
over time, implying an increase in the cooling demand per unit in-
crease in summer temperatures. For instance, a 1 °C increase in tem-
perature at 30 °C increased the electricity demand by over 3 MkWh in
2009 as compared to only over 1 MkWh in 2000. On the other hand, a
1 °C increase in temperature at 15 °C decreased the electricity de-
mand by only 0.8 MkWh in 2009 as compared to 0.7 MkWh in
2000. Secondly, the increasing temperature dependence of the cooling
demand shifts the temperature–electricity curve of Delhi leftwards. In
particular, the minimum temperature threshold (TT) shifts from about
20–22 °C in the first half (2000–05) to about 18.5–20.5 °C in the second
half (2006–09) of the period. Thirdly, the results suggest that the ad-
verse effects of global warming will be asymmetrically distributed in
the different seasons. While higher temperatures would increase elec-
tricity demand in all seasons except winters, the maximum impact is
likely to be felt in the hot month of April, with average apparent tem-
peratures of 30 °C, followed by October and May. Given the dominance
of summer electricity demand in the Indian electricity consumption
pattern, increasing temperature dependence in the summer months
with extreme temperature events may lead to capacity problems.

The rest of the paper is organized as follows. Section 2 explains time-
varying temperature–electricity curves. Section 3 reviews existing studies
and models that assess the impact of temperature on electricity demand.
Section 4 discusses the estimation strategy while Section 5 describes the
data sources. In Section 6, we discuss summary statistics and results of
the empirical model and in Section 7 we simulate future electricity de-
mand impacts under three different climate scenarios. Section 8 con-
cludes the paper.

2. Understanding the time-varying temperature–electricity curve

Let us consider a hypothetical temperature–electricity curve as repre-
sented in Fig. 1. In this U-shaped curve, theminimum point is the thresh-
old. A large number of socio-economic and physical factors such as the
growth in incomes, extent of electrification, energy efficiency improve-
ments, cultural habits, and prevailing climatic conditions influence the
temperature–electricity curve. Hekkenberg et al. (2009) argue that over
time temporal dynamics could influence the slopes as well as the thresh-
old temperature of the temperature–electricity curve. For instance,

increased internal heat gains in commercial buildings from an increase
in the use of computers, or even a decrease in the tolerance for heat
with higher income levels, lead to a general shift towards a lower heating
demand and a higher cooling demand. Thus, neglecting a downward
shifting threshold temperature results in the underestimation of the elec-
tricity demand that arises from a temperature increase. On the other
hand, ignoring an upward shifting threshold temperature results in the
overestimation of the electricity demand.

The number of households owning temperature control devices
(such as air conditioners and air coolers) is increasing very rapidly
in India with increasing electricity access and income. According to
the National Sample Survey Organization (NSSO) surveys (50th,
61st and 66th), the number of households owning an air cooler2 or
an air conditioner doubled from 32.9% in 1993 to 60% in 2009 in
urban Delhi (which represents 97.5% of the total Delhi population as
per the Census 2011) while it increased from 20.6% to 26% in rural
Delhi. In the case of refrigerators, the upward trend was even more
impressive, with penetration increasing from 29% in 1993 to 61.3%
in 2009 in urban Delhi and from 17.7% to 38% in rural areas. In the
2004–05 NSSO survey (which provides data on the ownership of air
coolers and air conditioners separately unlike in the previous rounds)
only 9% have access to air conditioners and only 58% to air coolers in
Urban Delhi. However, with increasing incomes, there is a very high
probability that the total air conditioning electricity demand could in-
crease substantially. Further, with increased purchasing power, the
sensitivity of households to higher temperatures is likely to increase,
which may further shift the location of the minimum point of the
temperature–electricity curve. For instance, higher income house-
holds may want to switch on their air conditioners when the average
temperature is just 19 °C in 2015 as compared to 22 °C in 2000.

According to Kothawale et al.(2010) temperatures (mean, maximum
and minimum) increased by about 0.2 °C per decade for the period
1971–2007, with a much steeper increase in minimum temperature
than maximum temperature. On a seasonal scale, they observed signifi-
cant warming trends in mean temperature in two seasons characterized
byhighhumidity: i.e.,monsoon andpost-monsoonperiods.Moreover, in-
creasing night temperatures in these humid seasons could have signifi-
cant implications for the use of air conditioners and thus for electricity
demand. Since the market saturation of air conditioners is currently
quite low, the response of its diffusion (along with the rising standard

Fig. 1. Temperature–electricity curve.

2 Air coolers based on a fan for cooling consumes much less power than air condi-
tioners that operate on the principle of gas compression.
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of living) to a long-term increase in the number of hot days and extreme
temperature eventsmay play an important role in determining how elec-
tricity consumption on the whole would respond to global warming.

3. The temperature–electricity curve: ‘The studies so far’

The simplest way to estimate a U-shaped temperature–electricity
curve is to use a regression model that is quadratic in temperature.
However, such a model assumes a symmetric relationship because, at
any point in the curve, upward and downward changes in temperature
of equal magnitude would lead to identical changes in electricity de-
mand. This is an extremely strong assumption and many past studies
have shown that the sensitivity of electricity demand to temperature
changes depends on initial temperature levels (Valor et al., 2001;
Henley and Peirson, 1997). Nonetheless, a linear parametric model
can still be used to estimate a non-linear relation by using the degree
day approach (Al Zayer and Al Ibrahim, 1996; Mirasgedis et al., 2007;
Pardo et al., 2002; Sailor, 2001; Sailor and Pavlova, 2003; Sailor and
Munoz, 1997; Valor et al., 2001;Wangpattarapong et al., 2008). This ap-
proach defines heating degree days (HDD) and cooling degree days
(CDD). CDD and HDD quantify the difference between the daily mean
temperatures above or below a threshold temperature (where 18 °C is
used as a common threshold temperature), respectively. The HDD
index is calculated on the basis of the relation: HDD=max (0,18−
Td), where Td is the average daily air temperature on day d. The CDD
index is calculated on the basis of the relation: CDD=max (0,Td−
18). These studies estimated the temperature–electricity curve with
the ordinary least squares regression model using annual, monthly or
daily data in the following manner:

ed ¼ β0 þ β1TRENDd þ β2CDDd þ β3HDDd þ β4CDDd þ β5HDDd

þ
X11
k¼1

ϕkMONTHkd þ
X6
b¼1

φbWDb
d þ β6HOLIDAYd þ β7Xd þ εd

where e is the demand for electricity on day d,WD is a set of week data
dummies, MONTH is a set of month dummies, HOLIDAY is dummy for
holidays, X includes socio-economic factors such as income and popula-
tion, and ε is the residual term. Although this approach estimates sepa-
rate linear relationships of electricity demand due to the heating and
cooling demand, it relies on an arbitrary choice of threshold value
(18 °C in most cases).

However, more recent studies such as those of Moral-Carcedo and
Vicens-Otero (2005) and Bessec and Fouquau (2008) have estimated
the above non-linear relationship by obtaining these thresholds endog-
enously rather than choosing it a priori using different types of non-
linear threshold regression models. These studies estimated the above
relationship in the following manner:

ed ¼ β0 þ β1TRENDd þ β2 TRENDdð Þ2 þ β3 TRENDdð Þ3 þ
X6
b¼1

φbWDbd

þβ4HOLIDAYd þ β5Xd þ β6g Td;γ; cð Þ þ εd

where g(Td;γ,c) is a function of the temperature Td that allows a transi-
tion froma cold to awarmregime. In the literature, the transition function
has been specified in different ways as piece-wise linear or as a smooth
function (exponential or logistic). The assumption of particular functional
forms for the transition function is a limitation of such models.

Other researchers have attempted to address this limitation by using
non-parametric methods, also known as smoothing models, to achieve
greater flexibility in the functional form. To estimate the functional
form from data, such models replace global estimates of the electricity–
temperature function with local estimates. Local methods estimate a re-
gression between electricity demand (E) and temperature (T) for some
restricted range of E and T. This local estimate of the dependency is re-
peated across the range of E and T and the series of local estimates is
then aggregated to summarize the relationship between the two

variables. The resulting non-parametric estimate does not impose a par-
ticular functional form on the relationship between E and T, and thus
minimizes specification errors (Keele, 2008; Powell, 1994; Ruppert et
al., 2003). The estimates are also consistent under more general condi-
tions than are parametric estimates (Wadud et al., 2010; Yatchew,
2003). Both loess and splines are common non-parametric regression
models that rely on local estimates to estimate functional forms from
data. Engle et al. (1986) estimated the impact of weather on the electric-
ity sales of four USutilitieswith smoothing splines usingmonthly data for
7–8 years. The semi-parametric partial linear regressionmodel estimated
by them is given by

E ¼ Zγ þ f Tð Þ þ ε:

In the above regression, temperature (T) is assumed to affect elec-
tricity sales non-linearly by an unknown cubic smoothing spline func-
tion f. However, other important variables (Z) such as income and
prices enter linearly in the model. The semi-parametric model con-
sists of a conventional parametric and a non-parametric part at the
same time. A fully non-parametric model is computationally complex
in the presence of numerous predictors. Hyndman and Fan (2008),
Harvey and Koopman (1993), and Henley and Peirson (1997) are
some studies that use semi-parametric regressions in order to
model the temperature–electricity relationship.

Ramesh et al. (1988) is the only study that estimates the tempera-
ture–electricity relation for Delhi, assessing the impact of weather vari-
ables on the peak electricity load separately for summers and winters,
separately during the period 1980–85, using the ordinary least squares
parametric regression. However, as mentioned earlier, electricity de-
mand has increased greatly since then.Moreover, while this study inves-
tigates the relationship between electricity demand and climatic
conditions in Delhi in the past for the purpose of peak demand fore-
casting, ours is the first study that derives the non-linear dynamic
temperature–electricity curve of Delhi and focuses on the time-
varying impact of global warming on electricity demand using a semi-
parametric variable coefficient model. Not only did the previous study
not control for important climatic factors such as rainfall andwindspeed,
it also did not make any adjustment for the unmet electricity demand.

4. Estimation strategy: ‘The reduced-form model’

We estimate fourmodels in the study.While the firstmodel is based
on simple linear regression, the second specifies a semi-parametric ad-
ditive model using unpenalized splines. The third estimates a semi-
parametric additive model with penalized splines while the fourth
model is a variable coefficient model where a smooth function of the
temperature index is interacted with year to capture the time-varying
impact of temperature on electricity demand.

Model 1 estimates the non-linear relationship between electricity
demand (E) and apparent temperature (AT) by including a global
cubic polynomial in AT in the regression equation. This model takes
the following form:

etd ¼ β0 þ β1MAJHtd þ β2MINHtd þ β3RAINtd þ
X9
t¼1

ϕtyt

þ
X6
b¼1

φbWDb
td þ β4ATtd þ β5AT

2
td þ β6AT

3
td þ εtd

ð1Þ

where e is electricity demand on day d of year t, MAJH is a dummy
variable that takes the value one for the major holiday, and zero oth-
erwise, MINH is a dummy variable that takes value one for the minor
holiday, and zero otherwise,3 RAIN represents daily rainfall in

3 A major holiday is one that is declared to be a holiday for all government em-
ployees (on account of national events or religious events). Minor holidays are the 2
additional days of holidays that government employees are entitled to select for minor
religious festivals from a list of scheduled holidays.
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millimeters (mm). WD is the set of six day dummies to describe the
weekly periodicity of electricity demand where Wednesday is taken
as the reference day. y is a set of nine-year dummies with 2000 as
the base year to identify the deterministic long-term trend connected
with the impact of demographic, technological, and socio-economic
factors such as prices, urbanization, and the increasing number of
air conditioners and air coolers on electricity demand. The inclusion
of year-fixed effects accounts for any fixed differences across years
that may be correlated with all unobservable factors. In matrix nota-
tion Eq. (1) can be rewritten in the following form

E ¼ Zγþ Tηþ ε ¼ Xβþ ε ð2Þ

where, E is an n×1 vector of electricity demands, ε is an n×1 vector of
errors, andZ is ann×p1matrix of p1 non-temperature predictors,γ is an
p1×1 vector of coefficients of predictors in Z, T is an n×p2 matrix of AT
temperature predictors, η is an p2×1 vector of coefficients of predictors
in T, X is an n×p (=p1+p2) matrix of all predictors and β is an p×1
vector of coefficients of X predictors. The least squares and maximum

likelihood estimator of β is β̂ ¼ XTX
� �−1

XT Ê and Hat matrix H is a

n×n matrix, such that Ê ¼ HE. We can obtain H ¼ X XTX
� �−1

XT and

show that trace Hð Þ ¼ trace X XTX
� �−1

XT
� �

¼ tr Ip
� �

¼ p ¼ estimated

degrees of freedom EDFð Þ as measured by the number of parameters
in the model. This model assumes that the relationship between E and
AT is strictly cubic regardless of whether this is true or not. When it is
not, the power transformations often cannot adequately capture the
nonlinear relationship in the data.

Model 2 estimates a semi-parametric model given by

E ¼ Zγþ f ATð Þ þ ε: ð3Þ

Here, f ATð Þ ¼ f AT1ð Þ;…f ATnð Þð Þ′ is a n×1 vector, where f(AT) is an
unknown smooth function, i.e., continuous and sufficiently differentia-
ble function of AT. In this paper, we estimate f(AT) by cubic regression
splines4 using cardinal basis functions.5 Such basis functions parame-
terize the spline in terms of its values at the knots and thus have advan-
tages in terms of the interpretability of the parameters along with good
mathematical properties and numerical stability. f(AT) can be repre-
sented as a linear combination of the basis functions of regression
splines. For instance,

f ATið Þ ¼
XN
j¼1

bj ATið Þηj ¼ B ATið Þη ð4Þ

where bj(AT) is the basis at the jth point (commonly known as a knot),
B ATð Þ is themodelmatrix containingN cubic spline basis for f(AT) and η
is the corresponding regression parameter vector. Thus Eq. (3) becomes

E ¼ Zγþ B ATð Þηþ ε ¼ Xβþ ε ð5Þ

where X is an n×(p1+(N−1)) model matrix. One degree of freedom is

lost due to the identification constraint on f(AT) i.e.
Pn
i¼1

f ATið Þ ¼ 0. Using

the Akaike Information Criterion6, we select twelve knots (N=12) or
elevenbasis functions. Givenknots, thismodel becomes a fully parametric
model with an expanded model matrix. We estimate predictor variable
coefficients by minimizing ∥E−Xβ∥2. The key limitation of this model,
however, is that it requires the analyst to select the number and location
of the knots. The number of knots directly controls the degrees of freedom
of a smooth term. In order to deal with the knot selection problem, we
adopt the penalized cubic spline approach. Thesemodels construct a pen-
alty on f()whichwill be large if f is verywiggly and small if it is nearly flat.

Model 3 adds a quadratic penalty as λβTPβ and solves the follow-
ing minimization problem:

‖E−Xβ‖2 þ λβTPβ ð6Þ

where P is the penalty matrix whose coefficients depend on the second
derivatives of f, a measure used commonly to represent the roughness
of the smooth terms.7 λ is the smoothing parameter that controls the
trade-off between model fit and model smoothness. For λ→0 the min-
imization gives a wiggly function whereas letting λ→∞ gives a linear
fit. The optimal λ is selected by cross validation where it works as fol-
lows: for a given value of λ, we omit the ith observation from data
and fit the penalized spline to this slightly truncated data set. We de-
note this prediction of ei as ê−i. Themodel prediction errors are calculat-
ed, and this is repeated as each observation is dropped in turn. The
cross-validation score is calculated as the average of the individual
model prediction errors. One should choose the value of λ with the
smallest cross-validation score. In practical applications one replaces
the cross validation (CV) criteria by the generalized cross validation
(GCV) as the CV is computationally very intensive and has other prob-
lems (Woods, 2006). Like the adjusted R-square, the GCV adjusts the
averagemodel prediction errors with the degrees of freedom (the num-
ber of parameters estimated in themodel). For penalized splinemodels,
the GCV score is

GCV λð Þ ¼

Pn
i¼1

ei−ê�i

� �2n
n−tr Hλð Þ½ �2 : ð7Þ

Minimizing GCV(λ) with respect to λ gives an estimate λ̂. Given λ,

Eq. (6) is minimized w.r.t β. We get β̂ ¼ XTXþ λP
h i−1

XTE and the

hat matrix Hλ ¼ X XTXþ λP
h i−1

XT . The trace of Hλ, as in the linear re-
gression, represents the degrees of freedom in the spline model and is
nearly equivalent to the number of parameters in the spline fit. Due to
shrinkage from the penalty term, the degrees of freedom for a penalized
spline model will not be an integer. With penalized splines the exact
choice of the basis dimension is not generally critical as actual effective
degrees of freedomare controlled byλ. It is necessary to select the num-
ber of knots to be large enough to have enough degrees of freedom to
represent the underlying true structure of the data reasonably well
but small enough to maintain reasonable computational efficiency
(Woods, 2006).

Model 4 extends Model 3 to a variable coefficient model ( See
Hastie and Tibshirani (1993)) to capture the time-varying impact of
climate on electricity demand. Model 4a estimates the least

4 Suppose there is a knot sequence K,ATmin=k1b..kN=ATmax, where k2…kN−1 are
interior knots, and k1,kN are two knots at the boundaries of the data [ATmin,ATmax], di-
viding the data into N−1 subintervals [k1,k2] …[kN−1,kN]. A spline is a piecewise-
polynomial real function:f : AT min;AT max½ �→R on an interval [ATmin,ATmax] composed
of N−1 ordered disjoint subintervals [k1,k2] …[kN−1,kN]. The restriction of f to an in-
terval i is a polynomial Pi

Pi : ki−1;ki
� �

→R

5 For full details of cardinal basis functions, see Wood (2006) and Lancaster and
Salkauskas (1986).

6 The Akaike Information Criterion is a measure of the relative goodness of fit of a
statistical model: AIC=2k−2ln(L), where k is the number of parameters in the model,
and L is the maximized value of the likelihood function. In practice, it is customary to
use the Akaike Information Criterion in order to select the optimal number of knots.
Researchers prefer a model with a lower value of the Akaike Information Criterion. In
practice, it is customary to use the Akaike Information Criterion in order to select the
optimal number of knots. Researchers prefer a model with a lower value of the Akaike
Information Criterion.

7 Wood and Augustine (2002) derive the following wiggliness measure

j fð Þ ¼ ∫ f ″ ATð Þ
h i2

dAT

f ″ ATð Þ ¼
XN
j¼1

b″ j ATð Þηj ¼ B″ ATð Þη:

1410 E. Gupta / Energy Economics 34 (2012) 1407–1421
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constrained factor variable coefficient model by interacting f(AT) by
ten year dummies. It estimates a different smooth function of temper-
ature for each year. Model 4b estimates a simple numeric variable coef-
ficient model by adding an additional term in Model 3 that interacts
f(AT) with the year number. It assumes that the coefficients of the
smooth function of temperature change linearly with the year. One
can capture the time-varying effect by estimating a separate model
(like Model 3) for each year. However, by pooling data for all 10 years
we get more robust estimates that are preferable for the purpose of an-
alyzing the long-term impact of climate on electricity demand.

Model 4a: We first select the number of knots for each year (Nt)
and corresponding basis functions Bt ATð Þ

f t ATð Þ ¼
XNt

jt¼1

bjt ATð Þηjt ¼ Bt ATð Þηt : ð8Þ

In general, knots are placed at evenly spaced quantiles of the unique
data. We select the same 10 knots every year. The selected knots
are [k0=6.17,14.39,18.47,22.67,26.84,30.98,33.87,35.78,37.59,43.83=
k10] ∀ t. Bt ATð Þ is a row vector of basis functions for year t. ηt is the coef-
ficient vector of the basis functions of year t. The model becomes:

E ¼ Zγþ f ATð ÞY þ ε ¼ Zγþ
X10
t¼1

f ATð Þyt þ ε ¼ Zγþ
X10
t¼1

ft ATð Þ þ ε ð9Þ

where, ft ATð Þ is a vector of the smooth function of the temperature index
of year twith dimension n×1. Here, t indexes the year with t=1 for year
2000 and t=10 for year 2009.Y is an n×10matrix of year dummies.yt is
the tth column ofY. The yt represents the year dummy for year t. The de-
grees of freedom for ft ATð Þ will be determined by the choice of λt. Note
that the same λt is chosen for all years resulting in the same degrees of
freedom for each year. Thus, the fitting problem becomes similar to any
other generalized additive models:

min ‖E−Xβ‖2 þ∑
t
λtβ

TPtβ ð10Þ

where X is a n×(p1+((N−1)×10)) model matrix. Given λt, Eq. (10)
can be minimized w.r.t β. We get β̂ ¼ XTXþ∑t λtPt

h i−1
XTE ¼

XTXþ K
h i−1

XTE; with ∑t λtPt ¼ K. A smoother matrix for penalized
splines with interaction can be derived as Hλ ¼ X XTXþ∑t λtPt

h i−1
XT ¼

X XTXþ K
h i−1

XT . As discussed previously, one degree of freedom is
lost due to the identification constraint on ft ATð Þ, which requiresPN
i¼1

ft ATið Þ ¼ 0∀t. From the above, we obtain the electricity demand on

a particular day

etd ¼ z′tdγþ f t ATtdð Þ þ εtd ð11Þ

where etd is electricity demand on day d of year t. z′td is a row vector of
parametric predictors for day d of year t. We can write the full form of
Eq. (11) therefore as

etd ¼ β0 þ β1MAJHtd þ β2MINHtd þ
X9
t¼1

ϕtyt þ
X6
b¼1

φbWDb
td

þ β3RAINtd þ tt ATtdð Þ þ εtd: ð12Þ

As the errors from Eq. (12) are likely to be serially correlated, we
carry out the following adjustment given in Li and Racine (2007).8

By dropping year dummies and estimating Eq. (12) separately for
each year, we obtain ε̂d for each t. For each year t, a first order station-
ary auto-regressive model is defined as
εd ¼ ρtε d−1ð Þ þ νd ð13Þ
where νd is white noise, is estimated . By regressing ε̂d on ε̂d−1 of year t,
we obtain an estimate of ρt (ρ̂t). Themodel is then transformed in order
to have serially uncorrelateddisturbances by subtracting estimated pre-
vious day errors ε̂ d−1 from the electricity demand on a givenday ed in the
following manner:

e�d ¼ ed−ρ̂t ε̂ d−1
: ð14Þ

By pooling estimated transformed electricity demand ed for each t,
the final model becomes

e�td ¼ β0 þ β1MAJHtd þ β2MINHtd þ β3RAINtd þ
X9
t¼1

ϕtyt

þ
X6
b¼1

φbWDb
td þ f t ATtdð Þ þ utd

ð15Þ

where utd are serially uncorrelated disturbances and we get consis-
tent estimates of the coefficients.9

Model 4b on the other hand interacts f(AT) with year as a numeric
rather than as a factor variable (as was the case in Model 4a) and thus
assumes that the coefficients of the smooth of temperature change
linearly with year. The model becomes:

E ¼ Zγþ f ATð Þ þ Y0f ATð Þ þ ε: ð16Þ
Here, Y0 is a n×n diagonal matrix with year numbers y0 ¼

1;2;3…10ð Þ on its leading diagonal. In this model each row of the
model matrix of f(AT) is multiplied by the corresponding value of the
year number. The fitting problem as in any other generalized additive
model is

min ‖E−Xβ‖2 þ λ1β
TP1βþ λ2β

TP2β ð17Þ

where λ1 and P1 correspond to f ATð Þ and λ2 and P2 correspond to
Yof ATð Þ. Thus this model is also estimated as a generalized additive
model as discussed in detail above. The selected knots for this model are
the same as in Model 4a [k0=6.17,14.39,18.47,22.67,26.84,30.98,
33.87,35.78,37.59,43.83=k10]. Electricity demand on a particular day is
obtained as

e�d ¼ β0 þ β1TRENDy þ β2MAJHd þ β3MINHd

þβ4RAINd þ
X6
b¼1

φbWDb
d þ f ATdð Þ þ f ATdð Þ � yo þ ud:

ð18Þ

In this model, we replace the year dummies with linear year trend
TRENDy, which ranges from 1 for the year 2000 to 10 for 2009. Fur-
ther, instead of correcting for within year first order autocorrelation
as was the case in Model 4a, we correct for the first order autocorre-
lation after pooling all the years for Model 4b.

5. Data

5.1. Electricity consumption and shortage

We obtained the data on daily electricity consumption in Delhi for
2000–09 from the operator of the national electricity grid, the Nation-
al Load Dispatch Centre (NLDC). In order to estimate the impact of
global warming on electricity demand, we need to recognize that
the electricity systems in India are continually inhibited with power
shortages, which result in rationing and disrupted electricity usage

8 For more details, refer Li and Racine (2007) in chapter 18, section 18.2.2.

9 In this process we lose one observation per year and thus the total number of ob-
servations falls to 3643 from 3653.
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patterns. When there are regular power failures, consumers are
not able to consume the quantity they need forcing them thereby to
either substitute electricity with alternative energy sources such as
diesel and kerosene, or resort to independent generation. As a result,
the electricity consumption reported by the NLDC is constrained
electricity demand, which is equal to the electricity supplied by the
utilities. In order to obtain the unrestricted electricity demand for
Delhi, we adjust the daily total electricity consumption of Delhi with
the observed daily shortage10 using daily electricity supply shortage
data obtained directly from the Delhi Transco Ltd. This gives us

ed ¼ cd þ sd

where ed denotes electricity demand on day d, cd denotes electricity
consumption on a given day d and sd is the shortage (or the unmet de-
mand) on day d. Fig. 2 plots the reliability index of electricity (i.e., the
total electricity demandmet as a percentage of the total demand includ-
ing the shortage). The graph shows that there has been a significant re-
duction in shortages in the post-2005 period.

5.2. Apparent temperature and rainfall

We obtained data on all the climatic factors from the website
www.tutiempo.net/en/climate/India, which gives station-wise data
for all the major weather stations in India. We first constructed the
apparent temperature index (AT) for Delhi (Safdarjung station)
using Steadman's (1994) formula by adjusting dry bulb temperature
with humidity and wind speed, which is given below:

ATtd ˚Cð Þ ¼ Ttd þ 0:33vtd−0:07wtd−4

vtd ¼ htd
100

� 6:105þ e

17:27T
237:7þ T

� �

where T denotes average temperature in degree Celsius (°C), v de-
notes evaporation, w denotes wind speed (m/s), and h denotes rela-
tive humidity (%).

6. Results: ‘The effect of apparent temperature on electricity demand’

6.1. Summary statistics

Table 1 displays the basic summary statistics that will be used to
analyze the salient characteristics of the distribution of electricity de-
mand and apparent temperature in the city of Delhi. Over the period,
the average daily electricity demand (ED) increased from 50 MkWh
in 2000 to 65 MkWh in 2009, with the highest daily demand increas-
ing from 65 MkWh in 2000 to 94 MkWh in 2009. At the same time,
the standard deviation of the daily electricity demand increased
from 6 MkWh in 2000 to 15 MkWh in 2009. During this period, the
average daily apparent temperature ranged from 26.5 and 27.7,
with the peak occurring in 2009 and 2002 and the trough occurring
in 2005. Fig. 3a presents the box plot of daily electricity demand
and daily apparent temperature by months. It shows that the greatest
consumption occurs during the summer (led by May) and monsoon
months (led by July) and the lowest consumption occurs in the
post-monsoon (led by November) and winter months. Fig. 3b pre-
sents a box plot of daily electricity demand by week days in order to
examine the variation in electricity demand according to week days.

Fig. 2. Daily reliability index of electricity supply (%) of Delhi (2000–2009).

Table 1
Summary statistics for electricity demand (E) and apparent temperature (AT) 2000–2009.

Variable No of days Mean Standard
deviation

Min Max

2000 E 366 49.77 6.16 32.52 64.64
AT 27.23 9.45 7.62 42.53

2001 E 365 51.57 6.90 36.20 64.34
AT 27.24 9.05 9.06 40.82

2002 E 365 54.47 8.02 39.47 70.47
AT 27.70 9.25 9.33 42.53

2003 E 365 55.06 7.59 38.58 72.21
AT 27.07 9.04 8.71 40.90

2004 E 366 57.73 8.50 39.80 74.66
AT 27.37 8.79 7.67 39.91

2005 E 365 58.78 8.94 40.55 77.88
AT 26.45 9.08 8.61 43.45

2006 E 365 61.44 10.61 40.01 83.26
AT 27.30 8.42 6.17 40.27

2007 E 365 61.35 11.26 39.72 85.30
AT 27.27 9.35 7.15 43.83

2008 E 366 62.05 11.16 41.75 84.62
AT 27.28 8.89 6.97 40.53

2009 E 365 65.31 14.70 38.41 94.31
AT 27.69 8.81 11.06 42.54

10 The daily shortage data comprises five components: shedding due to transmission
and distribution constraints; shedding by discoms in theft-prone areas; shedding in or-
der to restrict over drawal; shedding due to grid constraints; and shedding in order to
restrict under-frequency operations.
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According to the chart, non-working days – Sundays and Saturdays –
record lower consumption than working days.

6.2. Main results

Tables 2a, 2b and 2c summarizes the results of the estimated
models. We estimate all models by the likelihood maximization ap-
proach or the penalized likelihood maximization (for Models 3 and
4) using the mgcv package in R. For Models 1 and 2, we use the
usual frequentist approach in order to calculate standard errors and
p-values for model coefficients. In case of Models 3 and 4, we report
the Bayesian p-values and standard errors. We perform the Wald
tests of significance for each parametric and smooth term.

Model 2 estimates the non-linear relationship by unpenalized splines
using 12 knots selected by theAkaike Information Criterion. The goodness
of fit diagnostics and Table 3a show thatModel 2 is a significant improve-
ment onModel 1 at 99% confidence levels. An F-test based on the residual
values of the semi-parametricModel 2 and the parametricModel 1 yields
an F-statistic of 43.984, which has a p-value of .0. This implies that a local
fit captures the non-linearity between electricity demand and tempera-
ture much more accurately than the global fit of the parametric model.

Model 3 estimates penalized splineswith 20 knots as compared to the
12 knots used for the unpenalized spline in Model 2. The goodness of fit
diagnostics and Table 3b show that the results fromModel 3 are not sta-
tistically different from Model 2. The F-test based on residual values of

Models 2 and 3 yields an F statistic of 2.04 and a p-value of 0.12.11 The ad-
vantage of using penalized splines is that the results are not influenced by
the number of knots when a fairly large number of knots are selected.

Model 4a, in comparisonwithModel 3 in Table 3c, shows a significant
improvement at the 99% confidence level (with F-statistic=59.31 and p-
value=0). Both the generalized cross-validation (GCV) and Akaike Infor-
mation Criterion (AIC) aremuch lower forModel 4. It has a high adjusted
R square of .94 implying that it has the ability to explain 94% variation in
the electricity demand. The Durbin–Watson statistic (2.01) shows that
the estimated model has no autocorrelation.

Model 4a performs only marginally better than Model 4b in re-
spect of adjusted R and other goodness of fit diagnostics. The
Durbin–Watson statistic (2.1) shows that the estimated model has
no autocorrelation. Moreover, Model 4a has the limitation that we
cannot forecast for the future from this model. Fig. 4a plots year-
fixed effects from Model 4a which shows that the yearly trend is
nearly linear. Similarly, the basis coefficients of Model 4a seem to
change linearly over 2000–09 in Fig. 4b. We therefore estimate the
much simpler Model 4b imposing linearity assumptions on these co-
efficients. The advantage of using Model 4b is that we can forecast the
time-varying temperature–electricity curves for the future.

We find Models 4a and 4b to give similar results with regard to lin-
ear predictors. We observe rainfall to have a significant negative impact
on electricity demand, with a 1 mm increase in rainfall reducing elec-
tricity demand by 0.05 MkWh in both models. As expected, both holi-
day dummies turned out to be highly significant and negative. On a
major holiday, electricity demand is estimated to be about 3 MkWh
lower than the average demand. On a minor holiday, on the other
hand, the reduction in demand was only 0.4 MkWh. The estimates of
parameters which model the weekly cycle of electricity demand indi-
cate that on Mondays, Saturdays and Sundays electricity demand
tends to be lower than the average level (withWednesday as the refer-
ence day) while it is higher on Fridays. These results are as expected
since holiday and weekend loads show quite a different response to
temperature than those on weekdays. Mondays show a lower demand
possibly due to the holiday effect of the previous day (also called holi-
day inertia) while Fridays show a relatively higher demand, due possi-
bly to the build-up of work at the end of the week. Thus, most of the
parametric results are in linewith previous studies done in this context.

The effect of apparent temperature on electricity demand is clearly
non-linear. The estimated degrees of freedom (edf) for the temperature
smooth term estimates and their p-values support the hypothesis that
the coefficients are statistically significant. The same smoothing param-
eter λt is chosen for all years resulting in equal degrees of freedom (ap-
proximately 6) for each year ft ATð Þ inModel 4a. In the case of Model 4b,
the estimated degrees of freedom are also about 6 for f(AT) and about 9
for f ATð Þ � y0. Fig. 5 plots all the estimated temperature–electricity cur-
ves along with the Bayesian confidence intervals12 (the shaded region)

Fig. 3. A. Box plot of daily electricity demand and apparent temperature by months
(2000–2009). B. Box plot of daily electricity demand by week days (2000–2009).

11 The test statistic is defined as:

F ¼
RSSsmaller−RSSlarger
� �

= df res;larger−df res;smaller

h i
RSSlarger
� �

= df res;larger
h

12 As the penalized splines fit is a trade-off between bias and variance one should ac-
count for possible bias in the estimate of f in the determination of variability bands.
Wahba (1983) and Nychka (1988) have demonstrated how the Bayesian approach
take into account possible bias in the estimate of f̂ . Models 3 and 4, effectively impose
prior beliefs about the likely characteristics of the correct model by imposing a partic-
ular penalty (Woods, 2006). In this approach, we specify a prior distribution on the pa-
rameters β such that it reflects our belief that smooth models are more likely than
wiggly models. The prior distribution on β is chosen to give a convenient form for
the posterior distribution of β given the assumed normal distribution of electricity de-

mand (E) i.e., (β|E). For Model 4a, it is β E eN β̂ ; XTXþ∑
t
λtPt

� 	−1

σ2

 !




 and for Mod-

el 4b it is β E∼N β̂; XTXþ λ1P1 þ λ2P2

h i−1
σ2

� �
;





 with σ̂ 2 ¼ ‖E−Xβ‖2
n−tr Hλð Þ½ �.
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for both models. For Model 4a it plots f̂ t ATið Þ for each t and i along with

f̂ t ATið Þ � 2� SE f̂ t ATið Þ
� �

. For Model 4b it plots f̂ ATið Þ þ f̂ ATið Þ � y0
with f̂ ATið Þ þ f̂ ATið Þ � y0

� �
� 2� SE f̂ ATið Þ þ f̂ ATið Þ � y0

� �
:

Fig. 6 plots the marginal effect (first derivative) curve from both
models of each temperature–electricity curve in Fig. 5 with 95%
Bayesian confidence intervals (see shaded region). For Model 4a it

plots f̂ t ′ ATið Þ for each t along with f̂ t ′ ATið Þ � 2� SE f̂ t ′ ATið Þ
� �

. For

Model 4b it plots f̂
′
ATið Þ þ f̂

′
ATið Þ � y0 with f̂ ′ ATið Þ þ f̂ ′ ATið Þ � y0

� �
�

2� SE f̂
′
ATið Þ þ f̂

′
ATið Þ � y0

� �
:

Table 2a
Parametric results.

Models 1 2 3 4a 4b

Constant 88.11 ⁎⁎ (1.45) 49.96⁎⁎ (.24) 49.96⁎⁎ (.24) 50.15⁎⁎ (.17) 49.35⁎⁎ (.14)
2001 2.22⁎⁎ (.28) 2.29⁎⁎ (.27) 2.29⁎⁎ (.27) 2.08⁎⁎ (.20)
2002 4.7⁎⁎ (.281) 4.8⁎⁎ (.27) 4.8⁎⁎ (.27) 4.7⁎⁎ (.20)
2003 5.9⁎⁎ (.28) 6.2⁎⁎ (.27) 6.2⁎⁎ (.27) 5.88⁎⁎ (.20)
2004 8.5⁎⁎ (.281) 8.64⁎⁎ (.27) 8.64⁎⁎ (.27) 8.45⁎⁎ (.20)
2005 10.11⁎⁎ (.28) 10.27⁎⁎ (.27) 10.27⁎⁎ (.27) 10.09⁎⁎ (.20)
2006 12.58⁎⁎ (.28) 12.86⁎⁎ (.27) 12.84⁎⁎ (.27) 12.57⁎⁎ (.20)
2007 11.75⁎⁎ (.28) 12.07⁎⁎ (.27) 12.05⁎⁎ (.27) 11.82⁎⁎ (.20)
2008 12.69⁎⁎ (.28) 13.09⁎⁎ (.27) 13.06⁎⁎ (.27) 12.82⁎⁎ (.20)
2009 16.14⁎⁎ (.28) 16.30⁎⁎ (.27) 16.30⁎⁎ (.27) 16.03⁎⁎ (.20)
Friday 0.96⁎⁎ (0.23) 0.93⁎⁎ (0.22) 0.93⁎⁎ (0.22) 0.95⁎⁎ (0.16) .98⁎⁎ (.16)
Monday _0.58⁎ (0.23) _0.54⁎ (0.22) _0.54⁎ (0.22) _0.54⁎ (0.16) _0.54⁎ (0.16)
Saturday _0.99⁎⁎ (0.23) _0.98⁎⁎ (0.22) _0.98⁎⁎ (0.22) _0.95⁎⁎ (0.16) _0.95⁎⁎ (0.16)
Sunday _3.62⁎⁎ (0.23) _3.55⁎⁎ (0.22) _3.55⁎⁎ (0.22) _3.56⁎⁎ (0.16) _3.56⁎⁎ (0.16)
Thursday .28 (0.23) .24 (0.22) .25 (0.22) .32 (0.16) .31 (.16)
Tuesday _.11 (0.24) _.08 (0.22) _.08 (0.22) _.06 (0.16) _.08 (0.16)
Major _3.5⁎⁎ (0.32) _3.4⁎⁎⁎ (0.31) _3.4⁎⁎⁎ (0.31) _3.3⁎⁎ (0.22) _3.4⁎⁎ (0.22)
Minor _.38 (0.26) _.27 (0.25) _.27 (0.25) _.42 ⁎ (0.18) _.47 ⁎ (0.18)
Rainfall _.043⁎⁎ (.01) _.052⁎⁎ (.01) _.052⁎⁎ (.01) _.053⁎⁎ (.01) _.053⁎⁎ (.01)
AT _5.91⁎⁎ (0.19)
AT2 .21⁎⁎ (0.01)
AT3 _.002⁎⁎ (0.0001)
Trend (year) 1.56⁎⁎ (.02)

Dependent variable for all models is electricity demand. Standard errors are given in brackets ().
Notes:

⁎⁎ Significant at 99% significance level.
⁎ Significant at 95% significance level.

Table 2b
Approximate significance of smooth terms in semiparametric models.

EDF F p-value

Model 2
f(AT) 11 1856 0.000

Model 3
f(AT) 8.73 1899 0.000

Model 4a
f(AT): 2000 6.4 218.6 0.000
f(AT): 2001 6.2 279.3 0.000
f(AT): 2002 6.3 369 0.000
f(AT): 2003 6.3 314.1 0.000
f(AT): 2004 6.2 448.9 0.000
f(AT): 2005 6.5 460.4 0.000
f(AT): 2006 6.3 712.5 0.000
f(AT): 2007 6.5 764.5 0.000
f(AT): 2008 6.2 767.3 0.000
f(AT): 2009 6.1 1417.6 0.000

Model 4b
f(AT) 5.8 0.000
f(AT): year no 8.9 0.000

Table 2c
Goodness of fit diagnostics.

Model 1 2 3 4a 4b

Adjusted R2 0.873 0.884 0.884 0.94 0.93
AIC 20031.87 19,709 19,709 17474.5 17,638
GCV 14.301 13.09 13.091 7.09 7.3
No obs 3643 3643 3643 3643 3652
Model DF
(degrees
of freedom)

22 30 26.67585 81.918 25.7

Residual DF
(N-DF)

3621 3613 3616.33 3561.08 3626.3

Table 3a
Comparing Model 1 and Model 2 (F-test).

Residuals
(1)

Res. df
(2)

Diff. df
(3)

Diff. res
(4)

F ¼ 4ð Þ= 3ð Þ
Model2 1ð Þ= 2ð Þ p-

value

Model
I

51,472 3621

Model
2

46,904 3613 8 4568 43.984 000

Table 3b
Comparing Model 2 and Model 3 (F-test).

Residuals
(1)

Res. df
(2)

Diff. df
(3)

Diff. res
(4)

F ¼ 4ð Þ= 3ð Þ
Model3 1ð Þ= 2ð Þ p-value

Model 2 46,904 3613
Model 3 46,964 3615 −2.26 −60.177 2.0436 0.1229

Table 3c
Comparing Model 3 and Model 4a (F-test).

Residuals
(1)

Res. df
(2)

Diff. df
(3)

Diff. res
(4)

F ¼ 4ð Þ= 3ð Þ
Model4 1ð Þ= 2ð Þ p-value

Model 3 46,964 3615.3
Model 4 24,684 3561.1 54.2 22,277 59.31 000

1414 E. Gupta / Energy Economics 34 (2012) 1407–1421



Author's personal copy

Weobtain theminimumtemperature threshold for the corresponding
year when amarginal effect curve cuts the zero line from the y-axis. Over
time, it is evident that the minimum temperature threshold is falling and
the temperature dependence curves of Delhi are moving leftwards. Fig. 7
plots these estimated threshold intervals represented by the shaded re-
gion (at zero line) in Fig. 6. It is clear that threshold intervals have shifted
fromapproximately 20–22 °C in 2000–05 to about 18.5–20 °C in 2006–09
during the period of analysis.

It is possible to explain this shift through reference to the increase
in the use of air conditioners and air coolers with rising incomes. In
other words, people's sensitivity to hot temperatures is likely to in-
crease with their ability to afford expensive cooling devices, which
would in turn result in their switching of such devices at relatively
lower temperatures.

In addition to the leftward shift of the temperature–electricity
curve, we observe that the rising part of the curve is becoming steep-
er over time, implying an ever increasing cooling demand per unit
increase in summer temperatures. As discussed previously, this
may partly be attributable to the increasing penetration of energy in-
tensive cooling devices such as air conditioners that give greater
control over rising temperatures to the residents, especially in the
humid summer climate of Delhi. The effect of the decline in heating
demand per unit increase in winter temperatures, however, is much
lower than the increase in cooling demand in summers. For instance,
in both models, a 1 °C increase in temperature at 30 °C in the sum-
mer increased electricity demand by over 3 MkWh in 2009 as com-
pared to only over 1 MkWh in 2000. On the other hand, a 1 °C
increase in temperature at 15 °C in the winter decreased electricity
demand by only 0.8 MkWh in 2009 as compared to 0.7 MkWh in
2000.

In an earlier study which estimated a threshold transition model,
Moral-Carcedo and Vicens-Otero (2005) found 15.5 °C as the upper
heating demand threshold and 18.4 °C as the lower cooling demand
threshold for Spain. The smooth transition model obtained 15.4 °C
as an optimal threshold temperature. In another study, Bessec and
Fouquau (2008) found the threshold temperature to be about 16 °C

for the whole sample of European countries while it was 14 °C for
the sample of cold European countries and 22.4 °C for the sample of
hot European countries. Although the thresholds obtained in this
paper are not directly comparable with the previous studies, due to
the average temperatures that those studies are based on in contrast
with the apparent temperatures used in the present study, the
thresholds give a fairly good idea about how threshold temperatures
may vary both spatially and temporally with economic growth and
that therefore they cannot be assumed to be static.

7. Global warming and electricity demand

The leftward shifting temperature–electricity curve and the right-
ward shifting temperature distribution may have significant implica-
tions for electricity demand in India in future.

7.1. Key assumptions

Based on the existing global warming projections for India by the
Intergovernmental Panel on Climate Change (IPCC) and the Hadley
Centre, we assume three hypothetical scenarios for global warming:
a uniform 1 °C, 2 °C and 3 °C increase in daily apparent temperatures
between 2009 and 2030 over the daily apparent temperature for
2009. Assuming that other predictor variables are the same as in the
year 2009, we therefore use the estimated model to predict the im-
pact of 1 °C, 2 °C and 3 °C increase in daily apparent temperatures
on the electricity demand in Delhi till the year 2030.

7.2. Results: the impact of global warming

As shown in the previous section, the impact of temperature
change or global warming on electricity demand is likely to be time-
varying. Fig. 8 therefore plots the forecasted temperature–electricity
curve, the marginal effect curve and the threshold temperature up to
2030 under the baseline scenario (i.e., assuming that the temperature
remains the same as in 2009) using Model 4b.

The results show that the rising part of the curve is likely to
become much steeper in the future. A 1 °C increase in apparent
temperature at 30 °C is expected to increase electricity demand by
over 5 MkWh in 2015, 6 MkWh in 2020, 7 MkWh in 2025 and
about 8 MkWh in 2030. We observe that the threshold apparent
temperature is likely to fall from about 19 °C in 2009 to 17.7 °C by
2030.

Fig. 9 displays the results for the three global warming scenarios. A
1 °C increase in apparent temperature increases the electricity demand
by about 402 MkWh (or 1.7%) in 2009 over its base electricity demand
of 23,827 MkWh, 564 MkWh (or 2.1%) in 2015 over its base electricity
demand of 27,522 MkWh, and 968 MkWh (or 2.6%) in 2030 over its
base electricity demand of 36,761 MkWh. A 2 °C increase in apparent
temperature, on the other hand, increases net electricity demand by
about 842 MkWh (or 3.5%) in 2009, 1182 MkWh (or 4.3%) in 2015
and 2032 MkWh (or 5.5%) in 2030. Similarly, a 3 °C increase in the ap-
parent temperature increases the net electricity demand by about
1321 MkWh (or 5.5%) in 2009, 1856 MkWh (or 6.7%) in 2015 and
3191 MkWh (or 8.7%) in 2030.

In addition, Fig. 9 also disaggregates the impacts of global warming
by months. Higher temperatures increase electricity demand in the
summers (led by April and May) and in the monsoon period (led
by September) and post-monsoon period (led by October) while
lower temperatures decrease the electricity demand in winters (led
by January). It is evident that the maximum impact is likely to be
felt in the hot month of April with an average apparent temperature
of 30 °C, followed by the months of October and May. The marginal
effect curve peaks at about 30 °C, indicating themaximum sensitivity
of electricity demand to temperature at this level. As demand peaks
during the months of June and July, the additional increments in

Fig. 4. A. Year-fixed effects fromModel 4a. Note: base year is 2000 and it plots coefficients
of year dummies from 2001 to 2009 as obtained from the factor variable coefficientmodel.
B. Basis coefficients from Model 4a. Note: it plots nine coefficients corresponding to nine
basis functions of each year from 2000 to 2009 as obtained from the factor variable coef-
ficient model. Although there are 10 knots for each year but as discussed in the paper one
degree of freedom is lost due to the identification constraint.
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electricity demand due to higher temperatures (over 30 °C) slow
down and the marginal effect curve stabilizes.

Although a 1 °C increase in temperature increases the total electric-
ity demand by 1.7% in 2009, the demand increases by about 3.6% in
April, by 3.1% in October, and by 2.4% in September, May, and March.
On the other hand, a 1 °C increase in temperature decreases electricity
demand by 1.2% in January, 0.4% in February and 0.9% in December.
Moreover, although at present higher temperatures reduce electricity
demand in themonth of February, this trendmay be reversed in the fu-
ture years with a leftward shift of the temperature threshold shifting
the balance between the decreasing electricity demand for heating
and the increasing electricity demand for cooling resulting from global
warming. With a 2 °C and 3 °C increase in apparent temperature we
may witness this trend much faster. Since electrical energy saved in
winters cannot be easily stored for use in summers, global warming
could result in a serious disequilibrium in electricity supply and demand
during some months of the year in the future.

In order to evaluate the prediction performance, we have com-
pared the actual demand of two years (2008–09) with the predicted
demand. In this evaluation, we have calculated the predicted demand
for the two years using coefficients of the estimated model (based on
2000–07 data), known temperatures, and information on other
drivers in these years. We have not used data from the forecast period
for the model estimation. Fig. 10 illustrates the difference between
observed and predicted electricity demand in 2008 and 2009. These
graphs demonstrate that the model predicts demand in both years re-
markably well. For instance, in 2008 themean observed electricity con-
sumption is about 62 MkWh while its standard deviation is about
11 MkWh. The root mean square error of predicted electricity con-
sumption is 4.3 MkWh and the mean absolute error is 3.4 MkWh.
Both these measures are much lower than the standard deviation of
the electricity demand.

There are limitations to our research design when it comes to
measuring the impacts of global warming on electricity demand in

Fig. 5. A. Estimated temperature–electricity curves along with the 95% Bayesian confidence intervals from Model 4a. Note: It plots f̂ t ATið Þ for each t alongwith f̂ t ATið Þ � 2�
SE f̂ t ATið Þ
� �

as represented by the shaded region. B. Estimated temperature–electricity curves along with the 95% Bayesian confidence intervals from Model 4b. Note: it plots

f̂ t ATið Þ þ f̂ t ATið Þ � y0 for each t along with f̂ t ATið Þ þ f̂ t ATið Þ � y0
� �

� 2� SE f̂ t ATið Þ þ f̂ t ATið Þ � y0
� �

as represented by the shaded region.
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Delhi. Firstly, the impact of global warming on electricity demand is
addressed by making a prediction for 20 years ahead. The model
that is used for the prediction is based on the past 10 years of data
and validated using 2-year-ahead prediction checks. Clearly, the pre-
diction will be correct only if there is not too much structural change
in the next 20 years. For instance, using the factor variable coefficient
model we observe that the basis coefficients change almostly linearly
with time over the past 10 years and we thus imposed the assump-
tion that these coefficients will change linearly with time in the nu-
meric variable coefficient model. However, these assumptions may
not hold true in 2030 if there are significant structural changes in
the economy. Hence, the results obtained in this study should not be
interpreted as exact forecasts but as simply indicative of the direction
and magnitude of the effects that might be expected from climate
change. Secondly, as against the uniform globalwarming scenarios con-
sidered in the paper, there is a large body of evidence which suggests

that temperature change has been non-homogeneous across months
and seasons in the past. As discussed in Section 2, summers and post-
monsoon seasons have shown themaximum shift. For instance, the av-
erage apparent temperature in April has shown amaximum increase of
2.21 °C over two decades (1990–99 and 2000–10). Rising temperatures
during this season coupled with the peaked marginal effect curve dur-
ing this period (Fig. 6) will intensify the disequilibrium problem. A
monthly disaggregation of climate impacts will therefore enhance the
policy relevance of the scenarios considered in this paper. Thirdly, this
study only investigates the total electricity demand pattern for possible
changes related to apparent temperature. Apart from the effect of global
warming on total electricity demand, global warming will have signifi-
cant impacts on future peak electricity demands and its variability.
Colombo et al. (1999), using Canadian data, have shown that with cli-
mate change, the average peak demand may not increase drastically;
instead, the number of high-electricity-consumption daysmay increase

Fig 6. A. Estimated marginal effect curves along with the 95% Bayesian confidence intervals fromModel 4a. Note: it plots f̂ t ′ ATið Þ for each t along with f̂ t ′ ATið Þ � 2� SE f̂ t ′ ATið Þ
� �

as

represented by the shaded region. B. Estimated marginal effect curves along with the 95% Bayesian confidence intervals from Model 4b. Note: It plots f̂ t ′ ATið Þ þ f̂ t ′ ATið Þ �
y0 for each t along with f̂ t ′ ATið Þ þ f̂ t ′ ATið Þ � y0

� �
� 2� SE f̂ t ′ ATið Þ þ f̂ t ′ ATið Þ � y0

� �
as represented by the shaded region.
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appreciably due to higher variability, placing a stress on power utility to
meet this higher demand. However, due to data limitations, we have
not considered peak demand, which is left for future research.

8. Conclusions

Both changing lifestyles and economic conditions in India have
made electricity demand increasingly sensitive to temperature. This
paper provides valuable insights into potential interactions between
increasing cooling degree days and increasing incomes, and the im-
pact of the resulting long-term adjustments (such as the higher pen-
etration of air cooling devices) in the electricity sector. The results
from a semi-parametric variable coefficient model indicate that the
variation in the slope of the temperature–electricity curve and the
threshold temperature is important for future electricity demand pro-
jections. An important contribution of the paper is the estimation of
climate impacts by months. The model projects that the warming
can result in significant increases in future demand, particularly

during the hot months of April and May. These results can be ex-
tremely useful in managing the seasonal electricity disequilibrium sit-
uation in Delhi. For instance, demand-side management by shifting
electricity loads from periods of deficit supply to surplus supply via
dynamic pricing and other control mechanisms may help those in
charge of energy policy-making and policy-implementation to cope
with the problem.

Policymakerswill moreover need to come upwith newmeasures to
meet increased electricity demand due to global warming. They would,
for instance, have to make a choice between fossil fuels and renewable
energy sources for electricity generation. The results obtained in our
study will be of use to electricity production and sales companies too
in order to a) understand existing temperature–electricity sensitivity
so as to manage risks related to unpredictable changes in energy de-
mand under extreme weather events, for e.g., a heat wave; b) quantify
the impact of projected global warming on electricity use; and c) fore-
cast required future capacity investments in the electricity sector. The
estimated threshold temperature of our study would be of use to
HVAC13 (heating, ventilation and air-conditioning) designers for the
purpose of improving the efficiency of electricity use in their products.
At present, the comfort standard practiced by HVAC designers is the
same as that adopted in the U.S.A. for cooling buildings (i.e., air-
conditioned buildings). Since a large amount of electricity is consumed
by HVAC systems in buildings, designing HVAC (for comfort) as per the
changing climatic conditions in India could bring down the electricity
demand drastically.

Comprehensive assessment of impacts however requires not just
sound empirical research but more geographical coverage, especial-
ly in areas where severe global warming is likely to occur. Hence,
any future work on the topic should seek to extend the approach
to other states in India in order to get an overall estimate of global
warming on total electricity demand in India since the differ-
ent socio-economic profiles of the states would lead to different
temperature–electricity curves. It is our hope nevertheless that
the present study would contribute to a better understanding of
the dynamic non-linear temperature–electricity curve in a rapidly
growing city.
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1419E. Gupta / Energy Economics 34 (2012) 1407–1421



Author's personal copy

November 2011 at IIT Delhi and Seventh Annual Conference on Eco-
nomic Growth and Development December 2011 at ISI Delhi. We
gratefully acknowledge the funding received from the European

Commission's Climate Policy Outreach project (SERVICE CONTRACT n.
21.040100/2009/551481/SER/C1) and the Planning & Policy Research
Unit (PPRU) at ISI.

Fig. 9. A. Forecasted temperature–electricity curves till 2030. B. Forecasted temperature–electricity marginal effect curves till 2030. C. Forecasted minimum apparent temperature
thresholds till 2030 from Model 4b.

1420 E. Gupta / Energy Economics 34 (2012) 1407–1421



Author's personal copy

References

Al Zayer, J., Al Ibrahim, A.A., 1996. Modeling the impact of temperature on electricity
consumption in the Eastern Province of Saudi Arabia. J. Forecast. 15 (2), 97–106.

Bessec, M., Fouquau, J., 2008. The non-linear link between electricity consumption and
temperature in Europe: a threshold panel approach. Energy Econ. 30 (5), 2705–2721.

Colombo, A.F., Etkin, D., Karney, B.W., 1999. Climate variability and the frequency of ex-
treme temperature events for nine sites across Canada: implications for power
usage. J. Clim. 12, 2490–2502.

Engle, F., Granger, C.W.J., Rice, J., Weiss, A., 1986. Semi parametric estimates of the re-
lation between weather and electric sales. J. Am. Stat. Assoc. 81 (394), 310–320.

Harvey, A., Koopman, S.J., 1993. Forecasting hourly electricity demand using time-
varying splines. J. Am. Stat. Assoc. 88 (424), 1228–1236.

Hastie, T., Tibshirani, R., 1993. Varying-coefficient models. J. R. Stat. Soc. B Methodol. 55 (4),
757–796.

Hekkenberg, M., Moll, H.C., Uiterkamp, A.J.M., 2009. Dynamic temperature dependence
patterns in future energy demand models in the context of climate change. Energy
34 (11), 1797–1806.

Henley, A., Peirson, J., 1997. Non linearities in electricity demand and temperature:
parametric versus non parametric methods. Oxf. Bull. Econ. Stat. 59 (1), 149–162.

Hyndman, R.J., Fan, S., 2008. Forecasting long-term peak half-hourly electricity demand
for South Australia. Report for Electricity Supply Industry Planning Council (SA).
Monash University Business and Economic Forecasting Unit, Australia.

Keele, L., 2008. Semiparametric Regression for the Social Sciences. Wiley Online Library.
(http://onlinelibrary.wiley.com/doi/10.1002/9780470998137.ch8/summary (ACCESSED
ON: 31st Jan 2012)).

Kothawale, D.R., Munot, A.A., Kumar, K.K., 2010. Surface air temperature variability
over India during 1901–2007 and its association with ENSO. Clim. Res. 42, 89–104.

Lancaster, P., Salkauskas, K., 1986. Curve and Surface Fitting: An introduction. Academic
Press, London.

Li, Q., Racine, J.S., 2007. Nonparametric Econometrics: Theory and Practice. Princeton
University Press, New Jersey.

Mirasgedis, S., Sarafidis, Y., Georgopoulou, E., Kotroni, E., Lagouvardos, Y., Lalas, D.P., 2007.
Modeling framework for estimating impacts of climate change on electricity demand
at regional level: case of Greece. Energy Convers. Manage. 48 (5), 1737–1750.

Moral-Carcedo, J., Vicens-Otero, J., 2005. Modeling the non-linear response of Spanish
electricity demand to temperature variations. Energy Econ. 27 (3), 477–494.

Nychka, D., 1988. Bayesian Confidence Intervals for Smoothing Splines. J. Am. Statist.
Assoc. 83 (404), 1134–1143.

Pardo, A., Meneu, V., Valor, E., 2002. Temperature and seasonality influences on Spanish
electricity load. Energy Econ. 24 (1), 55–70.

Powell, J., 1994. Estimation of semiparametric models. In: Engle, R.F., McFadden,
D.L. (Eds.), Handbook of Econometrics, vol. 4. Elsevier Science B.V., Amsterdam,
pp. 2443–2521.

Ramesh, S., Natarajan, B., Bhagat, G., 1988. Peak load prediction using weather vari-
ables. Energy 13 (8), 671–679.

Ruppert, D., Wand, M.P., Carroll, R.J., 2003. Semiparametric Regression. Cambridge Uni-
versity Press, Cambridge, UK.

Sailor, D.J., 2001. Relating residential and commercial sector electricity loads to climate–
evaluating state level sensitivities and vulnerabilities. Energy 26 (7), 645–657.

Sailor, D.J., Muñoz, J.R., 1997. Sensitivity of electricity and natural gas consumption to
climate in the U.S.A.—Methodology and results for eight states. Energy 22 (10),
987–998 (October, ISSN 0360-5442, 10.1016/S0360-5442(97)00034-0).

Sailor, D.J., Pavlova, A.A., 2003. Air conditioning market saturation and long-term re-
sponse of residential cooling energy demand to climate change. Energy 28 (9),
941–951.

Steadman, R.G., 1994. Norms of apparent temperature in Australia. Aust. Meteorol.
Mag. 43 (1).

Valor, E., Meneu, V., Caselles, V., 2001. Daily air temperature and electricity load in
Spain. J. Appl. Meteorol. 40 (8), 1413–1421.

Wadud, Z., Noland, R.B., Graham, D.J., 2010. A semiparametric model of household gas-
oline demand. Energy Econ. 32 (1), 93–101.

Wahba, G., 1983. Bayesian "Confidence Intervals" for the cross-validated smoothing
spline. J. R. Stat. Soc. Series B Methodol. 45 (1), 133–150.

Wangpattarapong, K., Maneewan, S., Ketjoy, N., Rakwichian, W., 2008. The impacts of
climatic and economic factors on residential electricity consumption of Bangkok
metropolis. Energy Build. 40 (8), 1419–1425.

Wood, S.N., 2006. Generalized Additive Models: An Introduction with R. CRC Press,
NW.

Wood, S.N., Augustin, N.H., 2002. Gams with integrated model selection using penal-
ized regression splines and applications to environmental modeling. Ecol. Model.
157 (2), 157–177.

Yatchew, A., 2003. Semiparametric Regression for the Applied Econometrician.
Cambridge University Press, Cambridge, UK.

Fig. 10. A. Model evaluation: Predicted and observed electricity demand in 2008. B. Model evaluation: predicted and observed electricity demand in 2009.

1421E. Gupta / Energy Economics 34 (2012) 1407–1421


