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This short write-up can be considered as background material for the short
course on Martingale Problems. It is intended to serve a twofold purpose -

• The uninitiated can familiarise themselves with some of the Definitions
and results by going through the write-up before the Lectures.

• It can serve as a ready reference during the lectures.

We also indicate texts/references at the end to which the reader can refer for
more details. The list of references is not intended to be complete. This is
done with the understanding that those familiar with these concepts will not
need them, while for those who are looking at any of the following material
for the first time, the given reference(s) can serve as a starting point.
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1 Metric Spaces

Throughout the course, our state space will be a complete, separable metric
space. We give below the relevant definitions. A more general account can
be found e.g. in [Rud66] and [Rud76].
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Definitions

1. Let E be an arbitrary set. Let d : E × E → [0,∞) be a function
satisfying

(a) d(x, y) = 0 if and only if x = y

(b) d(x, y) = d(y, x) for all x, y ∈ E

(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ E (triangle inequality)

(E, d) is called a metric space with metric d.

2. A sequence {xn} ⊂ E converges to x ∈ E if d(xn, x) → 0 as n →∞.

3. A sequence {xn} ⊂ E is said to be a Cauchy sequence if d(xn, xm) → 0
as n, m →∞.

4. A metric space (E, d) is complete if every Cauchy sequence in E con-
verges.

5. A subset F ⊂ E is dense in E if for every ε > 0 and any x ∈ E, there
exists a y ∈ F with d(x, y) < ε.

6. A metric space (E, d) is separable if it contains a countable dense sub-
set.

7. A subset F ⊂ E is closed if

{xn}n≥1 ⊂ F and lim
n→∞

d(xn, x) = 0 implies x ∈ F.

8. A subset O ⊂ E is open if Oc is closed.

9. A subset K ⊂ E is compact if and only if every sequence {xn} ∈ K
has a convergent subsequence {xnj

} such that limj→∞ xnj
∈ K.

2 General Theory of Processes

A more general account can be found in [IW81].
Let (E, d) be a complete, separable metric space. Let E denote the Borel

σ-field on E, i.e. the smallest σ-field containing all open sets in E.
Let (Xt){t≥0} be a E-valued stochastic process defined on a probability

space (Ω,F , P).
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Definition 2.1 The process X is measurable if it is jointly measurable in
t and ω. i.e. X : [0,∞)× Ω → E is E/B([0,∞))⊗F .

Let (Ft)t≥0 be a filtration or an increasing family of sub-σ-fields of F .
(Ω,F , (Ft)t≥0, P) is called a filtered probability space.

Definition 2.2 A process X is (Ft)t≥0 - adapted if Xt is Ft measurable
for each t ≥ 0.

Definition 2.3 A process X is (Ft)t≥0 - progressively measurable if the
restriction of the process X to [0, t] × Ω is E/B([0, t]) ⊗ Ft measurable for
each t ≥ 0.

The law of the process is completely determined by its finite dimensional
distributions.

Definition 2.4 Two processes X and Y (possibly defined on different prob-
ability spaces) are said to be versions of each other if they have the same
finite dimensional distributions.

Definition 2.5 If X and Y are defined on the same probability space,

• Y is said to be a modification of X if P{Xt = Yt} = 1 for all t ≥ 0.

• X and Y are said to be indistinguishable if P{Xt = Yt for all t ≥ 0} =
1. i.e. ∃N ∈ F , with P(N) = 0, N being independent of t, such that
for ω 6∈ N , Xt = Yt for all t ≥ 0.

2.1 Martingales

We will be using several results and ideas from Martingale Theory throughout
the lecture series. Here we give the basic definitions. We start with the
definition of conditional expectation.

Definition 2.6 Let X be a random variable defined on (Ω,F , P) such that
E|X| < ∞. Let G be a sub σ-algebra of F . Then there exists an almost surely
unique G measurable random variable Y satisfying∫

F

XdP =

∫
F

Y dP ∀ F ∈ G.

Y is called the Conditional Expectation of X given G and is denoted by
E [X|G].
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For properties and more details see [Wil91].
Let (Ω,F , (Ft)t≥0, P) be a filtered probability space.

Definition 2.7 A real valued process M defined on (Ω,F , P) is called a
martingale if

1. M is (Ft)t≥0 - adapted

2. E|Mt| < ∞ for all t ≥ 0

3. E [Mt|Fs] = Ms a.s. for all 0 ≤ s ≤ t.

Definition 2.8 A real valued process M defined on (Ω,F , P) is called a
submartingale (supermartingale) it satisfies conditions 1 and 2 of Definition
2.7 and the equality in condition 3 of 2.7 is replaced by ≥ (≤ respectively).

We state a the following result.

Theorem 2.1 Let M be a submartingale with respect to a filtration (Ft)t≥0.
Then there exists an Ω0 ∈ F with P(Ω0) = 1, and such that for every ω ∈ Ω0

Mt+ = lim
s↓t

s∈Q

Ms, & Mt− = lim
s↑t

s∈Q

Ms

exist for all t ≥ 0 and t > 0 repectively.
Further, (defining Mt+(ω) suitably for ω 6∈ Ω0 the process,) (Mt+) is

r.c.l.l. and is also a submartingale with respect to a filtration (Ft)t≥0.
If, in addition, M is a martingale, then (Mt+) is a r.c.l.l. modification

of (Mt).

For a proof see e.g. [KS91, Proposition I.3.14].

Definition 2.9 A martingale is square integrable if EM2
t < ∞ for all t ≥ 0.

Theorem 2.2 Let M be a square integrable martingale. Then M2 is a sub-
martingale.

We will also use the following result during the lectures.
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Theorem 2.3 Let M be a r.c.l.l. square integrable martingale with respect
to a filtration (Ft)t≥0. Then there exists a r.c.l.l. (Ft)t≥0 - martingale (Nt)
and a (Ft)t≥0 - adapted, increasing process (At) such that

M2
t = Nt + At.

If the increasing process (At) is continuous with A0 ≡ 0, then the above
decomposition is also unique. In such a case A is called the (predictable)
quadratic variation process of M and is denoted by 〈M, M〉.

There is a similar concept of cross quadratic variation of martingales M1

and M2, denoted by 〈M1, M2〉 and has the property that M1
t M2

t −〈M1, M2〉t
is a martingale.

If M1 and M2 are independent, then 〈M1, M2〉 ≡ 0.
(Note: The above two definitions given are not the most general, but will

suffice for the purposes of the lectures.)

2.2 Some special processes

2.2.1 Brownian Motion

A R-valued process W is a Standard Brownian motion if

1. W0 ≡ 0, Wt ∼ N(0, t) for all t > 0. (Gaussian)

2. L(Wt −Ws) = L(Wt−s) for all 0 ≤ s < t. (Stationary increments)

3. (Wt − Ws) is independent of FW
s for all 0 ≤ s < t. (Independent

increments)

4. (Wt) is continuous almost surely.

Using the independent increment property of Brownian motion and the
fact that E(Wt) = 0 one can show that Wt and W 2

t − t are martingales.
A Rd-valued process W = (W 1, . . . ,W d) is a d-dimensional Standard

Brownian motion if W 1, . . . ,W d are independent (1-dimensional) standard
Brownian motions.

As before, it is easy to check that W i
t and W i

t W
j
t − δijt are martingales.

If, W0 ≡ x ∈ Rd in the above definition, W is called a Brownian motion
starting at x.
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2.2.2 Poisson Process

A R-valued process N is a Poisson Process with intensity λ if

1. N0 ≡ 0, Nt ∼ Poisson(λt) for all t > 0.

2. L(Nt −Ns) = L(Nt−s) for all 0 ≤ s < t. (Stationary increments)

3. (Nt − Ns) is independent of FN
s for all 0 ≤ s < t. (Independent

increments)

Definition 2.10 Let Nt be a Poisson Process with intensity λ. Define

Ñt = Nt − λt for all t ≥ 0.

Ñt is called the compensated Poisson process.

Using the independent increment property of Poisson processes and the fact
that E(Nt) = λt one can show that Ñt and Ñ2

t − λt are martingales.

3 Stochastic Calculus

Let B be a standard Brownian motion. We will use the stochastic integral∫
fdB along with some of its properties during the lectures. However, we

skip the definition here and direct the reader to [KS91]. We will however
state some the properties of the integral.

1. The integral Xt =
∫ t

0
fsdBs is defined for all (FB

t )t≥0 - adapted pro-
cesses f satisfying

E
∫ t

0

f 2
s d〈B, B〉s = E

∫ t

0

f 2
s ds < ∞.

2. Xt is a continuous, square-integrable martingale with EX2
t =

∫ t

0
f 2

s ds.

3. For any two processes f and g as above, the cross-quadratic variation
between the stochastic integrals

∫
fdB and

∫
gdB is given by〈∫

fdB,

∫
gdB

〉
t

=

∫ t

0

fsgsds.
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More generally, if M is a square-integrable martingale, then the stochastic
integral

∫
fdM , defined for a suitable class of processes, is a square integrable

martingale. Further for any two martingales M and N and processes f and
g for which the stochastic integrals are defined〈∫

fdM,

∫
gdN

〉
t

=

∫ t

0

fsgsd〈M, N〉s.

3.1 Ito’s formula

We end this write-up by giving the change of variable formula or Ito’s formula
for continuous semi-martingales.

Definition 3.11 A continuous (Ft)t≥0 - adapted process X is a (Ft)t≥0 -
semimartingale if it can be written as

Xt = X0 + Mt + (A1
t − A2

t )

where M is a (Ft)t≥0 - martingale, and Ai, (i = 1, 2) are (Ft)t≥0 - adapted
increasing processes.

Theorem 3.4 Let X be a continuous semimartingale as above and let f ∈
C2

b (R). Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈M, M〉s

= f(X0) +

∫ t

0

f ′(Xs)dMs +

∫ t

0

f ′(Xs)d(A1 − A2)s

+
1

2

∫ t

0

f ′′(Xs)d〈M, M〉s

(3.1)

Note that the theorem 3.4 implies that f(Xt) is also a semimartingale.

3.2 Stochastic Differential Equations

Equation (3.1) is also frequently written in differential form (where the dif-
ferentials are to be interpreted as (stochastic) integrals) as

df(Xt) = f ′(Xt)dXs +
1

2
f ′′(Xt)d〈M, M〉t

= f ′(Xt)dMt + f ′(Xt)d(A1 − A2)t +
1

2
f ′′(Xt)d〈M, M〉t.
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More generally, an equation of the type

dZt = a(Zt)dt + b(Zt)dBt

is called a Stochastic Differential Equation (SDE) driven by the Brownian
motion B. This is once again to be interpreted as a Stochastic integral
equation. In particular, a process Z is a solution if it satisfies

Zt = Z0 +

∫ t

0

a(Zs)ds +

∫
b(Zs)dBs a.s.

For more on this, see [IW81], [KS91].
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