Martingale Problems

Abhay G. Bhatt
Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi
Lectures on Probability and Stochastic Processes III Indian Statistical Institute, Kolkata

$$
\text { 20-24 November } 2008
$$

Outline

(1) Markov Processes

- Introduction
- Associated Semigroups and Generators
(2) Martingale Problem
- Preliminary results \& Definitions
- Markovian Solutions
- Path Properties
(3) Independence
- Time-Inhomogeneous Martingale Problem
- Jump Perturbations

Markov Processes

Let X be a E-valued process.

- X satisfies the Markov property if

$$
\mathbb{P}\left(X_{t+r} \in \Gamma \mid \sigma\left(X_{s}: 0 \leq s \leq t\right)\right)=\mathbb{P}\left(X_{t+r} \in \Gamma \mid X_{t}\right)
$$

- A function $P(t, x, \Gamma)$ is called a transition function
- if $P(t, x, \cdot)$ is a probability measure for all $(t, x) \in[0, \infty) \times E$
- $P(0, x, \cdot)=\delta_{x}$ for all $x \in E$
- $P(\cdot, \cdot, \Gamma)$ is measurable for all $\Gamma \in \mathcal{E}$
(Interpretation) $\mathbb{P}\left(X_{t} \in \Gamma \mid X_{0}=x\right)=P(t, x, \Gamma)$
- X is a Markov process if it admits a transition function so that

$$
\mathbb{P}\left(X_{t+s} \in \Gamma \mid \mathcal{F}_{t}^{X}\right)=P\left(s, X_{t}, \Gamma\right) \quad \forall t, s \geq 0, \Gamma \in \mathcal{E}
$$

Equivalently

$$
\mathbb{E}\left[f\left(X_{t+s}\right) \mid \mathcal{F}_{t}^{X}\right]=\int f(y) P\left(s, X_{t}, d y\right) \quad \forall f \in C_{b}(E)
$$

Associated Semigroups

Define

$$
\begin{aligned}
& T_{t} f(x)=\int f(y) P(t, x, d y)=\mathbb{E}\left[f\left(X_{t}\right) \mid X_{0}=x\right] \\
& T_{t} T_{s}=T_{t+s} \text { semigroup property } \\
& T_{t} f \geq 0 \text { whenever } f \geq 0 \text { positivity } \\
&\left\|T_{t} f\right\| \leq\|f\| \text { contraction } \\
& \mathbb{E}\left[f\left(X_{t+s}\right) \mid \mathcal{F}_{t}^{X}\right]=T_{s} f\left(X_{t}\right)
\end{aligned}
$$

Generator

- A contraction semigroup $\left\{T_{t}\right\}$ satisfying

$$
\lim _{t \downarrow 0} T_{t} f=T_{0} f=f
$$

is called a Strongly continuous contraction semigroup

- The Generator L of a strongly continuous contraction semigroup is defined as follows.

$$
\begin{gather*}
D(L)=\left\{f: \lim _{t \downarrow 0} \frac{T_{t} f-f}{t} \text { exists }\right\} . \\
L f=\lim _{t \downarrow 0} \frac{T_{t} f-f}{t} . \\
T_{t} f-f=\int_{0}^{t} T_{s} L f d s \quad \forall f \in D(L) \tag{1}
\end{gather*}
$$

Martingale Problem

Proposition 1

Let $X, P,\left(T_{t}\right)$ and L be as above. Then X is a solution of the martingale problem for L.

Proof. Fix $f \in D(L)$ and let $M_{t}=f\left(X_{t}\right)-\int_{0}^{t} L f\left(X_{s}\right) d s$.

$$
\begin{aligned}
\mathbb{E}\left[M_{t+s} \mid \mathcal{F}_{t}^{X}\right] & =\mathbb{E}\left[f\left(X_{t+s}\right) \mid \mathcal{F}_{t}^{X}\right]-\int_{0}^{t+s} \mathbb{E}\left[L f\left(X_{u}\right) \mid \mathcal{F}_{t}^{X}\right] d u \\
& =T_{s} f\left(X_{t}\right)-\int_{t}^{t+s} T_{u-t} L f\left(X_{t}\right) d u-\int_{0}^{t} L f\left(X_{u}\right) d u \\
& =T_{s} f\left(X_{t}\right)-\int_{0}^{s} T_{u} L f\left(X_{t}\right) d u-\int_{0}^{t} L f\left(X_{u}\right) d u \\
& =f\left(X_{t}\right)-\int_{0}^{t} L f\left(X_{u}\right) d u=M_{t} \quad \text { (using (1)) }
\end{aligned}
$$

Outline

(1) Markov Processes

- Introduction
- Associated Semigroups and Generators
(2) Martingale Problem
- Preliminary results \& Definitions
- Markovian Solutions
- Path Properties
(3) Independence
- Time-Inhomogeneous Martingale Problem
- Jump Perturbations

Finite Dimensional Distributions

Lemma 1

A process X is a solution to the martingale problem for A if and only if
$\mathbb{E}\left[\left(f\left(X_{t_{n+1}}\right)-f\left(X t_{n}\right)-\int_{t_{n}}^{t_{n+1}} A f\left(X_{s}\right) d s\right) \prod_{k=1}^{n} h_{k}\left(X_{t_{k}}\right)\right]=0$
for all $f \in D(A), 0 \leq t_{1}<t_{2}<\ldots<t_{n+1}, h_{1}, h_{2}, \ldots, h_{n} \in B(E)$, and $n \geq 1$.

Thus, (being a) solution of the martingale problem is a finite dimensional property.
Thus if X is a solution and Y is a modification of X, then Y is also a solution.

The space $D([0, \infty), E)$

- $D([0, \infty), E)$ - the space of all E valued functions on $[0, \infty)$ which are right continuous and have left limits
- Skorokhod topology on $D([0, \infty), E)$
- $D([0, \infty), E)$ - complete, separable, metric space
- \mathcal{S}_{E}, the Borel σ-field on $D([0, \infty), E)$.
- $\theta_{t}(\omega)=\omega_{t}$ - co-ordinate process
- r.c.I.I. process - process taking values in $D([0, \infty), E)$

r.c.I.I. Solutions

Definition 2.1

A probability measure $P \in \mathcal{P}(D([0, \infty), E))$ is solution of the martingale problem for (A, μ) if there exists a $D([0, \infty), E)$ - valued process X with $\mathcal{L}(X)=P$ and such that X is a solution to the martingale problem for (A, μ)
Equivalently,
$P \in \mathcal{P}(D([0, \infty), E))$ is a solution if θ defined on
$\left(D([0, \infty), E), \mathcal{S}_{E}, P\right)$ is a solution

- For a r.c.I.I. process X defined on some $(\Omega, \mathcal{F}, \mathbb{P})$, we will use the dual terminology
- X is a solution
- $\mathbb{P} \circ X^{-1}$ is a solution

Well-posedness - Definitions

Definition 2.2

The martingale problem for (A, μ) is well - posed in a class \mathcal{C} of processes if there exists a solution $X \in \mathcal{C}$ of the martingale problem for (A, μ) and if $Y \in \mathcal{C}$ is also a solution to the martingale problem for (A, μ), then X and Y have the same finite dimensional distributions. i.e. uniqueness holds

- When \mathcal{C} is the class of all measurable processes then we just say that the martingale problem is well - posed.

Definition 2.3

The martingale problem for A is well - posed in \mathcal{C} if the martingale problem for (A, μ) is well-posed for all $\mu \in \mathcal{P}(E)$.

Well-posedness in $D([0, \infty), E)$

- finite dimensional distributions characterize the probability measures on $D([0, \infty), E)$

Definition 2.4

The $D([0, \infty), E)$ - martingale problem for (A, μ) is well - posed if there exists a solution $P \in \mathcal{P}(D([0, \infty), E))$ of the $D([0, \infty), E)$ martingale problem for (A, μ) and if Q is any solution to the $D([0, \infty), E)$ - martingale problem for (A, μ) then $P=Q$.

Bounded-pointwise convergence

Definition 2.5

- Let $f_{k}, f \in B(E) . f_{k}$ converge bounded-ly and pointwise to f $f_{k} \xrightarrow{b p} f$ if $\left\|f_{k}\right\| \leq M$ and $f_{k}(x) \rightarrow f(x)$ for all $x \in E$.
- A class of functions $\mathcal{U} \subset B(E)$ bp-closed if $f_{k} \in \mathcal{U}, f_{k} \xrightarrow{\text { bp }} f$ implies $f \in \mathcal{U}$.
- bp-closure (\mathcal{U}) - the smallest class of functions in $B(E)$ which contains \mathcal{U} and is bp-closed.
i.e. \mathcal{E}_{0} - a field; $\quad \sigma\left(\mathcal{E}_{0}\right)=\mathcal{E}$
\mathcal{H} - class of all \mathcal{E}_{0}-simple functions
Then bp-closure $(\mathcal{H})=$ class of all bounded, \mathcal{E} - measurable functions.

Separability condition

Definition 2.6

The operator A satisfies the separability condition if

- There exists a countable subset $\left\{f_{n}\right\} \subset D(A)$ such that

$$
b p-\operatorname{closure}\left(\left\{\left(f_{n}, A f_{n}\right): n \geq 1\right\}\right) \supset\{(f, A f): f \in D(A)\}
$$

- Let $A_{0}=\left.A\right|_{\left\{f_{n}\right\}}$, the restriction of A to $\left\{f_{n}\right\}$
- Solution of martingale problem for A
\Longrightarrow solution of martingale problem for A_{0}

Separability condition

Definition 2.6

The operator A satisfies the separability condition if

- There exists a countable subset $\left\{f_{n}\right\} \subset D(A)$ such that

$$
b p-\operatorname{closure}\left(\left\{\left(f_{n}, A f_{n}\right): n \geq 1\right\}\right) \supset\{(f, A f): f \in D(A)\}
$$

- Let $A_{0}=\left.A\right|_{\left\{f_{n}\right\}}$, the restriction of A to $\left\{f_{n}\right\}$
- Solution of martingale problem for A
\Longleftrightarrow solution of martingale problem for A_{0} from Lemma 1 Use Dominated convergence Theorem to show that the set of all $\{(g, A g)\}$ satisfying (2) is bp-closed

Markov Family of Solutions

Theorem 1

Let A be an operator on $C_{b}(E)$ satisfying the separability condition. Suppose the $D([0, \infty), E)$ - martingale problem for $\left(A, \delta_{x}\right)$ is well-posed for each $x \in E$. Then
(1) $x \mapsto P_{x}(C)$ is measurable for all $C \in \mathcal{S}_{E}$.
(2) For all $\mu \in \mathcal{P}(E)$, the $D([0, \infty), E)$ - martingale problem for (A, μ) is well - posed, with the solution P_{μ} given by

$$
P_{\mu}(C)=\int_{E} P_{x}(C) \mu(d x)
$$

(3) Under P_{μ}, θ_{t} is a Markov process with transition function

$$
\begin{equation*}
P(s, x, F)=P_{x}\left(\theta_{s} \in F\right) \tag{3}
\end{equation*}
$$

Proof of (1)

- Choose $M \subset C_{b}(E)$ - countable such that $B(E) \subset$ bp-closure (M).
- Let $H=\{\eta$:

$$
\eta(\theta)=\left(f_{n}\left(\theta_{t_{m+1}}\right)-f_{n}\left(\theta_{t_{m}}\right)-\int_{t_{m}}^{t_{m+1}} A f_{n}\left(\theta_{s}\right) d s\right) \prod_{k=1}^{m} h_{k}\left(\theta_{t_{k}}\right)
$$

where $\left.h_{1}, h_{2}, \ldots, h_{m} \in M, 0 \leq t_{1}<t_{2} \ldots<t_{m+1} \subset \mathbb{Q}\right\}$

- H is countable
- Lemma $1 \Longrightarrow \mathcal{M}_{1}=\cap_{\eta \in H}\left\{P: \int \eta d P=0\right\}$ is the set of solutions of the martingale problem for A.
- $P \mapsto \int \eta d P$ is continuous. Hence \mathcal{M}_{1} is Borel set

Proof of (1) (Contd.)

- $G: \mathcal{P}(D([0, \infty), E)) \rightarrow \mathcal{P}(E)$

$$
G(P)=P \circ \theta(0)^{-1}
$$

G is continuous

- $\mathcal{M}=\mathcal{M}_{1} \cap G^{-1}\left(\left\{\delta_{x}: x \in E\right\}\right)=\left\{P_{x}: x \in E\right\}$ is Borel
- Well-posedness $\Longrightarrow G$ restricted to \mathcal{M} is one-to-one mapping onto $\left\{\delta_{x}: x \in E\right\}$.
- $G^{-1}:\left\{\delta_{x}: x \in E\right\} \mapsto \mathcal{M}$ is Borel
- $G\left(P_{x}\right)=\delta_{x}$. Hence $\delta_{x} \mapsto P_{x}$ is measurable
- $x \mapsto P_{x}=x \mapsto \delta_{x} \mapsto P_{x}$ is measurable

Proof of (2)

- For $F \in \mathcal{E}$

$$
P_{\mu} \circ \theta_{0}^{-1}(F)=\int_{E} P_{x} \circ \theta_{0}^{-1}(F) \mu(d x)=\int_{E} \delta_{x}(F) \mu(d x)=\mu(F)
$$

- For $\eta \in H$,

$$
\int_{D([0, \infty), E)} \eta d P_{\mu}=\int_{E} \int_{D([0, \infty), E)} \eta d P_{x} \mu(d x)=0
$$

Hence P_{μ} is a solution to the martingale problem for (A, μ).

- Let Q be another solution of the $D([0, \infty), E)$ - martingale problem for (A, μ)
- Let Q_{ω} be the regular conditional probability of Q given θ_{0}.

Proof of (2) (Contd.)

- Fix $\eta \in H, h \in C_{b}(E)$. Define $\eta^{\prime}(\theta)=\eta(\theta) h\left(\theta_{0}\right)$.
- $\eta^{\prime} \in H$. Thus

$$
\mathbb{E}^{Q}\left[\eta(\theta) h\left(\theta_{0}\right)\right]=\mathbb{E}^{Q}\left[\eta^{\prime}\right]=0
$$

- Since this holds for all $h \in C_{b}(E)$,

$$
\mathbb{E}^{Q_{\omega}}[\eta]=\mathbb{E}^{Q}\left[\eta \mid \theta_{0}\right]=0 \text { a.s. }-Q .
$$

- Since H is countable, \exists ONE Q-null set N_{0} satisfying

$$
\mathbb{E}^{Q_{\omega}}[\eta]=0 \quad \forall \omega \notin N_{0}
$$

- Q_{ω} is a solution of the martingale problem for A initial distribution $\delta_{\theta_{0}(\omega)}$.
- Well - posedness implies

$$
Q_{\omega}=P_{\theta_{0}(\omega)} \text { a.s. }[Q]
$$

Hence $Q=P_{\mu}$.

Proof of (3)

- Fix s. Let $\theta_{t}^{\prime}=\theta_{t+s}$.
- Let Q_{ω}^{\prime} be the regular conditional probability distribution of θ^{\prime} (under P_{x}) given \mathcal{F}_{s}.
- Q_{ω}^{\prime} is a solution to the martingale problem for $\left(A, \delta_{\theta_{s}(\omega)}\right)$.
- Well-posedness $\Longrightarrow Q_{\omega}^{\prime}\left(\theta_{t}^{\prime} \in F\right)=P\left(t, \theta_{s}(\omega), F\right)($ See (3))
- Hence for $f \in B(E)$,

$$
\begin{aligned}
\mathbb{E}^{P_{x}} f\left(\theta_{t+s}\right) & =\mathbb{E}^{P_{x}}\left[\mathbb{E}^{P_{x}}\left[f\left(\theta_{t+s}\right) \mid \mathcal{F}_{s}\right]\right] \\
& =\mathbb{E}^{P_{x}}\left[\int_{E} f(y) P\left(t, \theta_{s}(\cdot), d y\right)\right] \\
& =\int_{E} \int_{E} f\left(y_{2}\right) P\left(t, y_{1}, d y_{2}\right) P\left(s, x, d y_{1}\right)
\end{aligned}
$$

- $P(s+t, x, F)=P_{x}\left(\theta_{t+s} \in F\right)=\int_{E} P(t, y, F) P(s, x, d y)$

One-dimensional equality

Theorem 2

Suppose that for each $\mu \in \mathcal{P}(E)$, any two solutions X and Y (defined respectively on $\left(\Omega_{1}, \mathcal{F}_{1}, \mathbb{P}_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, \mathbb{P}_{2}\right)$) of the martingale problem for (A, μ) have the same one-dimensional distributions. Then X and Y have the same finite dimensional distributions, i.e. the martingale problem is well - posed.

Proof. To show

$$
\begin{equation*}
\mathbb{E}^{\mathbb{P}_{1}}\left[\prod_{k=1}^{m} f_{k}\left(X_{t_{k}}\right)\right]=\mathbb{E}^{\mathbb{P}_{2}}\left[\prod_{k=1}^{m} f_{k}\left(Y_{t_{k}}\right)\right] \tag{4}
\end{equation*}
$$

for all $0 \leq t_{1}<t_{2}<\ldots t_{m}, f_{1}, f_{2}, \ldots, f_{m} \in B(E)$ and $m \geq 1$.

Induction argument

- Case: $m=1$ - true by hypothesis
- Assume that the Induction hypothesis (4) is true for $m=n$
- Fix $0 \leq t_{1}<t_{2}<\ldots t_{n}, f_{1}, f_{2}, \ldots, f_{n} \in B(E), f_{k}>0$.
- Define

$$
\begin{aligned}
& \mathbb{Q}_{1}\left(F_{1}\right)=\frac{\mathbb{E}^{\mathbb{P}_{1}}\left[\mathbb{I}_{F_{1}} \prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]}{\mathbb{E}^{\mathbb{P}_{1}}\left[\prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]} \quad \forall F_{1} \in \mathcal{F}_{1} \\
& \mathbb{Q}_{2}\left(F_{2}\right)=\frac{\mathbb{E}^{\mathbb{P}_{2}}\left[\mathbb{I}_{F_{2}} \prod_{k=1}^{n} f_{k}\left(Y_{t_{k}}\right)\right]}{\mathbb{E}^{\mathbb{P}_{2}}\left[\prod_{k=1}^{n} f_{k}\left(Y_{t_{k}}\right)\right]} \quad \forall F_{2} \in \mathcal{F}_{2}
\end{aligned}
$$

- Let $\tilde{X}_{t}=X_{t_{n}+t}, \tilde{Y}_{t}=Y_{t_{n}+t}$.
- Fix $0 \leq s_{1}<s_{2}<\ldots, s_{m+1}=t, h_{1}, h_{2}, \ldots, h_{m} \in B(E)$ and $f \in D(A)$.

Induction argument (Contd.)

$$
\begin{aligned}
& \eta(\theta)=\left(f\left(\theta_{s_{m+1}}\right)-f\left(\theta_{s_{m}}\right)-\int_{s_{m}}^{s_{m+1}} A f\left(\theta_{s}\right) d s\right) \prod_{k=1}^{m} h_{k}\left(\theta_{t_{k}}\right) \\
& \mathbb{E}^{\mathbb{P}_{1}}\left[\eta\left(X_{t_{n}+\cdot}\right) \prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]= \\
& \mathbb{E}^{\mathbb{P}_{1}}\left[\left(f\left(X_{s_{m+1}+t_{n}}\right)-f\left(X_{s_{m}+t_{n}}\right)-\int_{t_{n}+s_{m}}^{t_{n}+s_{m+1}} A f\left(X_{u}\right) d u\right)\right. \\
&\left.\prod_{j=1}^{m} h_{j}\left(X_{t_{n}+s_{j}}\right) \prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]=0 .
\end{aligned}
$$

Induction argument (Contd.)

Hence

$$
\mathbb{E}^{\mathbb{Q}_{1}}[\eta(\tilde{X})]=\frac{\mathbb{E}^{\mathbb{P}_{1}}\left[\eta\left(X_{t_{n}+\cdot}\right) \prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]}{\mathbb{E}^{\mathbb{P}_{1}}\left[\prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]}=0
$$

Similarly $\mathbb{E}^{\mathbb{Q}_{2}}[\eta(\tilde{Y})]=0$.

- \tilde{X} and \tilde{Y} are solutions of the martingale problems for $\left(A, \mathcal{L}\left(\tilde{X}_{0}\right)\right)$ and $\left(A, \mathcal{L}\left(\tilde{Y}_{0}\right)\right)$ respectively.

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}_{1}}\left[f\left(\tilde{X}_{0}\right)\right] & =\frac{\mathbb{E}^{\mathbb{P}_{1}}\left[f\left(X_{t_{n}}\right) \prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]}{\mathbb{E}^{\mathbb{P}_{1}}\left[\prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]} \\
& =\frac{\mathbb{E}^{\mathbb{P}_{2}}\left[f\left(Y_{t_{n}}\right) \prod_{k=1}^{n} f_{k}\left(Y_{t_{k}}\right)\right]}{\mathbb{E}^{\mathbb{P}_{2}}\left[\prod_{k=1}^{n} f_{k}\left(Y_{t_{k}}\right)\right]}=\mathbb{E}^{\mathbb{Q}_{2}}\left[f\left(\tilde{Y}_{0}\right)\right] \quad \forall f \in B(E) .
\end{aligned}
$$

This equality follows from induction hypothesis for $m=n$

Induction argument (Contd.)

- Hence \tilde{X} and \tilde{Y} have the same initial distribution.
- One-dimensional uniqueness implies

$$
\mathbb{E}^{\mathbb{Q}_{1}}\left[f\left(\tilde{X}_{t}\right)\right]=\mathbb{E}^{\mathbb{Q}_{2}}\left[f\left(\tilde{Y}_{t}\right)\right] \quad \forall t \geq 0, f \in B(E) .
$$

-

$$
\mathbb{E}^{\mathbb{P}_{1}}\left[f\left(X_{t_{n}+t}\right) \prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]=\mathbb{E}^{\mathbb{P}_{2}}\left[f\left(X_{t_{n}+t}\right) \prod_{k=1}^{n} f_{k}\left(X_{t_{k}}\right)\right]
$$

- Induction Hypothesis (4) is true for $m=n+1$ set $t_{n+1}=t_{n}+t$

Semigroup associated with the Martingale Problem

- Suppose A satisfies the conditions of Theorem 1.
- Associate the Markov semigroup $\left(T_{t}\right)_{t \geq 0}$ with A -

$$
T_{t} f(x)=\int_{E} f(y) P(t, x, d y)
$$

The following theorem can be proved exactly as the previous one.

Strong Markov Property

Theorem 3

Suppose that the $D([0, \infty), E)$ - martingale problem for A is well posed with associated semigroup T_{t}
Let X, defined on $(\Omega, \mathcal{F}, \mathbb{P})$, be a solution of the martingale problem for A (with respect to $\left(\mathcal{G}_{t}\right)_{t \geq 0}$). Let τ be a finite stop time. Then for $f \in B(E), t \geq 0$,

$$
\mathbb{E}\left[f\left(X_{\tau+t}\right) \mid \mathcal{G}_{\tau}\right]=T_{t} f\left(X_{\tau}\right)
$$

In particular

$$
P\left(\left(X_{\tau+t} \in \Gamma\right) \mid \mathcal{G}_{\tau}\right)=P(t, X \tau, \Gamma) \forall \Gamma \in \mathcal{E}
$$

r.c.I.I. modification

Definition 2.7

Let D be a class of functions on E
(1) D is measure determining if $\int f d \mathbb{P}=\int f d \mathbb{Q}$ forall $f \in D$ implies $\mathbb{P}=\mathbb{Q}$.
(2) D separates points in E if $\forall x \neq y \exists g \in D$ such that $g(x) \neq g(y)$.

Theorem 4

Let E be a compact metric space. Let A be an operator on $C(E)$ such that $D(A)$ is measure determining and contains a countable subset that separates points in E. Let X, defined on $(\Omega, \mathcal{F}, \mathbb{P})$, be a solution to the martingale problem for A. Then X has a modification with sample paths in $D([0, \infty), E)$.

Proof

Proof.

- Let $\left\{g_{k}: k \geq 1\right\} \subset D(A)$ separate points in E.
- Define

$$
M_{k}(t)=g_{k}\left(X_{t}\right)-\int_{0}^{t} A g_{k}\left(X_{s}\right) d s
$$

M_{k} is a martingale for all k.

- Then for all t

$$
\lim _{\substack{s \uparrow t \\ s \in \mathbb{Q}}} M_{k}(s), \lim _{\substack{s+t \\ s \in \mathbb{Q}}} M_{k}(s) \text { exist a.s. }
$$

- Hence $\exists \Omega^{\prime} \subset \Omega$ with $P\left(\Omega^{\prime}\right)=1$ and

$$
\lim _{\substack{s \uparrow t \\ s \in \mathbb{Q}}} g_{k}\left(X_{s}(\omega)\right), \lim _{\substack{s \nmid t \\ s \in \mathbb{Q}}} g_{k}\left(X_{s}(\omega)\right) \text { exist } \forall \omega \in \Omega^{\prime}, t \geq 0, k \geq 1
$$

Proof (contd.)

- Fix $t \geq 0,\left\{s_{n}\right\} \subseteq \mathbb{Q}$ with $s_{n}>t, \lim _{n \rightarrow \infty} s_{n}=t$ and $\omega \in \Omega^{\prime}$.
- Since E is compact, \exists a subsequence $\left\{s_{n_{i}}\right\}$ such that $\lim _{i \rightarrow \infty} X_{s_{n_{i}}}(\omega)$ exists.
- Clearly

$$
g_{k}\left(\lim _{i \rightarrow \infty} X_{s_{n_{i}}}(\omega)\right)=\lim _{\substack{s \downarrow t \\ s \in \mathbb{Q}}} g_{k}\left(X_{s}(\omega)\right) \quad \forall k
$$

- Since $\left\{g_{k}: k \geq 1\right\}$ separate points in E, $\lim _{\substack{s \downarrow t \\ s \in \mathbb{Q}}} X_{s}(\omega)$ exists.
- Similarly $\lim _{\substack{s \uparrow t \\ s \in \mathbb{Q}}} X_{s}(\omega)$ exists
- Define

$$
Y_{t}(\omega)=\lim _{\substack{s, t \\ s \in \mathbb{Q}}} X_{s}(\omega)
$$

Proof (contd.)

- For $\omega \in \Omega^{\prime}, Y_{t}(\omega)$ is r.c.I.l. \&

$$
Y_{t}^{-}(\omega)=\lim _{\substack{s \uparrow t \\ s \in \mathbb{Q}}} X_{s}(\omega)
$$

- Define Y suitably for $\omega \notin \Omega^{\prime}$
- Then Y has sample paths in $D([0, \infty), E)$.
- Since X is a solution to the martingale problem for A, for $f \in D(A)$, a measure determining set

$$
\mathbb{E}\left[f\left(Y_{t}\right) \mid \mathcal{F}_{t}^{X}\right]=\lim _{\substack{s \downarrow t \\ s \in \mathbb{Q}}} \mathbb{E}\left[f\left(X_{s}\right) \mid \mathcal{F}_{t}^{X}\right]=f\left(X_{t}\right)
$$

- $\Longrightarrow X=Y$ a.s.

Outline

(1) Markov Processes

- Introduction
- Associated Semigroups and Generators
(2) Martingale Problem
- Preliminary results \& Definitions
- Markovian Solutions
- Path Properties
(3) Independence
- Time-Inhomogeneous Martingale Problem
- Jump Perturbations

Definitions

For $t \geq 0$, let $\left(A_{t}\right)_{t \geq 0}$ be linear operators on $M(E)$ with a common domain $D \subset M(E)$.

Definition 3.1

A measurable process X defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a solution to the martingale problem for $\left(A_{t}\right)_{t \geq 0}$ with respect to a filtration $\left(\mathcal{G}_{t}\right)_{t \geq 0}$ if for any $f \in D$

$$
f\left(X_{t}\right)-\int_{0}^{t} A_{s} f\left(X_{s}\right) d s
$$

is a $\left(\mathcal{G}_{t}\right)$-martingale.
Let $\mu \in \mathcal{P}(E)$. The martingale problem for $\left(\left(A_{t}\right)_{t \geq 0}, \mu\right)$ is well-posed if there exists an unique solution for the martingale problem

Space-Time Process

- Let $E^{0}=[0, \infty) \times E$.
- Let $X_{t}^{0}=\left(t, X_{t}\right)$
- Define

$$
\begin{gathered}
D\left(A^{0}\right)=\left\{g(t, x)=\sum_{i=1}^{k} h_{i}(t) f_{i}(x) h_{i} \in C_{c}^{1}([0, \infty)), f_{i} \in D\right\} \\
A^{0} g(t, x)=\sum_{i=1}^{k}\left[f_{i}(x) \partial_{t} h_{i}(t)+h_{i}(t) A_{t} f_{i}(x)\right]
\end{gathered}
$$

Theorem 5

X is a solution to the martingale problem for $\left(A_{t}\right)_{t \geq 0}$ if and only if X^{0} is a solution to the martingale problem for A^{0}.

Proof.

- Let X be a solution (with respect to a filtration $\left(\mathcal{G}_{t}\right)_{t \geq 0}$) to the martingale problem for $\left(A_{t}\right)_{t \geq 0}$.
- Let $f h \in D\left(A^{0}\right)$
- For $0<s<t$, let $g(t)=\mathbb{E}\left[f\left(X_{t}\right) \mid \mathcal{G}_{s}\right]$.

$$
g(t)-g(s)=\int_{s}^{t} \mathbb{E}\left[A_{u} f\left(X_{u}\right) \mid \mathcal{G}_{s}\right] d u
$$

- Then

$$
\begin{aligned}
g(t) h(t)-g(s) h(s) & =\int_{s}^{t} \partial_{u}[g(u) h(u)] d u \\
& =\int_{s}^{t}\left\{h(u) \mathbb{E}\left[A_{u} f\left(X_{u}\right) \mid \mathcal{G}_{s}\right]+g(u) \partial_{u} h(u)\right\} d u \\
& =\int_{s}^{t} \mathbb{E}\left[A^{0}(f h)\left(X_{u}^{0}\right) \mid \mathcal{G}_{s}\right] d u .
\end{aligned}
$$

Proof (Contd.)

- $f h\left(X^{0}(t)\right)-\int_{0}^{t} A^{0} f h\left(X^{0}(s)\right) d s$ is a martingale
- X^{0} is a solution to the martingale problem for A^{0}.
- The converse follows by taking $h=1$ on $[0, T], T>0$.

A more General Result

- State spaces E_{1} and E_{2}
- Operators A_{1} on $M\left(E_{1}\right)$ and A_{2} on $M\left(E_{2}\right)$
- Solutions X_{1} and X_{2}
- Define

$$
\begin{gathered}
D(A)=\left\{f_{1} f_{2}: f_{1} \in D\left(A_{1}\right), f_{2} \in D\left(A_{2}\right)\right\} \\
A\left(f_{1} f_{2}\right)=\left(A_{1} f_{1}\right) f_{2}+f_{1}\left(A_{2} f_{2}\right)
\end{gathered}
$$

- $\left(X_{1}, X_{2}\right)$ is a solution of the martingale problem for A

Theorem 6

Suppose uniqueness holds for the martingale problem for A_{1}, A_{2}. Then uniqueness holds for the martingale problem for A.

A perturbed operator

- Let A be an operator with $D(A) \subset C_{b}(E)$.
- Let $\lambda>0$ and let $\eta(x, \Gamma)$ be a transition function on $E \times \mathcal{E}$.
- Let

$$
B f(x)=\lambda \int_{E}(f(y)-f(x)) \eta(x, d y) f \in B(E)
$$

Theorem 7

Suppose that for every $\mu \in \mathcal{P}(E)$, there exists a solution to the $D([0, \infty), E)$ martingale problem for (A, μ). Then for every $\mu \in \mathcal{P}(E)$ there exists a solution to the martingale problem for $(A+B, \mu)$.

Proof

Proof.

- For $k \geq 1$, let $\Omega_{k}=D([0, \infty), E), \Omega_{k}^{0}=[0, \infty)$
- Let $\Omega=\prod_{k=1}^{\infty} \Omega_{k} \times \Omega_{k}^{0}$
- Let θ_{k} and ξ_{k} denote the co-ordinate random variables
- Borel σ-fields $-\mathcal{F}_{k}, \mathcal{F}_{k}^{0}$
- Let \mathcal{F} be the product σ-field on Ω.
- Let \mathcal{G}_{k} the σ-algebra generated by cylinder sets $C_{1} \times \prod_{i=k+1}^{\infty}\left(\Omega_{i} \times \Omega_{i}^{0}\right)$, where $\mathcal{C}_{1} \in \mathcal{F}_{1} \otimes \mathcal{F}_{1}^{0} \otimes \ldots \otimes \mathcal{F}_{k} \otimes \mathcal{F}_{k}^{0}$.
- Let \mathcal{G}^{k} be the σ-algebra generated by $\prod_{i=1}^{k}\left(\Omega_{i} \times \Omega_{i}^{0}\right) \times C_{2}$, where $C_{2} \in \mathcal{F}_{k} \otimes \mathcal{F}_{k}^{0} \otimes \ldots$.

Perturbed Solution X

- X evolves in E as a solution to the martingale problem for A till an exponentially distributed time with parameter λ which is independent of the past.
- At this time if the process is at x, it jumps to y with probability $\eta(x, d y)$ and then continues evolving as a solution to the martingale problem for $\left(A, \delta_{y}\right)$.
- To put this in a mathematical framework, we consider that between the $k^{\text {th }}$ and the $(k+1)^{\text {th }}$ jump (dictated by B), the process lies in Ω_{k}.
- The $k^{t h}$ copy of the exponential time is a random variable in Ω_{k}^{0}.

Proof (Contd.)

- Let P_{x}, P_{μ} be solutions of the martingale problems for $\left(A, \delta_{x}\right),(A, \mu)$ respectively.
- Let γ be the exponential distribution with parameter λ.
- Fix $\mu \in \mathcal{P}(E)$. Define, for $\Gamma_{1} \in \mathcal{F}_{1}, \ldots, \Gamma_{k} \in \mathcal{F}_{k}$, $F_{1} \in \mathcal{F}_{1}^{0}, \ldots, F_{k} \in \mathcal{F}_{k}^{0}$,

$$
P_{1}\left(\Gamma_{1}\right)=P_{\mu}\left(\Gamma_{1}\right) \quad ; \quad P_{1}^{0}\left(\theta_{1}, F_{1}\right)=\gamma\left(F_{1}\right)
$$

$$
\begin{aligned}
P_{k}\left(\theta_{1}, \xi_{1}, \ldots, \theta_{k-1}, \xi_{k-1}, \Gamma_{k}\right) & =\int_{E} P_{x}\left(\Gamma_{k}\right) \eta\left(\theta_{k-1}\left(\xi_{k-1}\right), d x\right) \\
P_{k}^{0}\left(\theta_{1}, \ldots, \xi_{k-1}, \theta_{k}, F_{k}\right) & =\gamma\left(F_{k}\right)
\end{aligned}
$$

Proof(Contd.)

- $P_{1} \in \mathcal{P}\left(\Omega_{1}\right)$ and $P_{1}^{0}, P_{2}, P_{2}^{0}, \ldots$ are transition probability functions.
- \exists an unique P on (Ω, \mathcal{F}) satisfying For $C \in \mathcal{G}_{k}$ and $C^{\prime} \in \mathcal{G}^{k+1}$

$$
P\left(C \cap C^{\prime}\right)=\mathbb{E}\left[\int_{C} P\left(C^{\prime} \mid \theta_{k+1}(0)=x\right) \eta\left(\theta_{k}\left(\xi_{k}\right), d x\right)\right]
$$

- Define $\tau_{0}=0, \tau_{k}=\sum_{i=1}^{k} \xi_{i}$
$N_{t}=k$ for $\tau_{k} \leq t<\tau_{k+1}$.
Note that N is a Poisson process with parameter λ.

Proof(Contd.)

- Define

$$
X_{t}=\theta_{k+1}\left(t-\tau_{k}\right), \tau_{k} \leq t<\tau_{k+1}
$$

- $\mathcal{F}_{t}=\mathcal{F}_{t}^{X} \vee \mathcal{F}_{t}^{N}$.
- For $f \in D(A)$

$$
\begin{aligned}
f\left(\theta_{k+1}\left(\left(t \vee \tau_{k}\right) \wedge \tau_{k+1}-\tau_{k}\right)\right) & -f\left(\theta_{k+1}(0)\right) \\
& -\int_{\tau_{k}}^{\left(t \vee \tau_{k}\right) \wedge \tau_{k+1}} A f\left(\theta_{k+1}\left(s-\tau_{k}\right)\right) d s
\end{aligned}
$$

is an $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ martingale.

- Summing over k we get

$$
f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} A f(X(s)) d s-\sum_{k=1}^{N(t)}\left(f\left(\theta_{k+1}(0)\right)-f\left(\theta_{k}\left(\xi_{k}\right)\right)\right)
$$

is an $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ martingale.

Proof(Contd.)

- Also, the following are $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ martingales.

$$
\begin{aligned}
& \sum_{k=1}^{N_{t}}\left(f\left(\theta_{k+1}(0)\right)-\int_{E} f(y)\left(\eta\left(\theta_{k}\left(\xi_{k}\right), d y\right)\right)\right) \\
& \int_{0}^{t} \int_{E}\left(f(y)-f\left(X_{s-}\right)\right) \eta\left(X_{s-}, d y\right) d\left(N_{s}-\lambda s\right)
\end{aligned}
$$

- Hence

$$
f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t}\left(A f\left(X_{s}\right)+B f\left(X_{s}\right)\right) d s
$$

is an $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ martingale.

