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Modulus of continuity

Definition 1.1

The modulus of continuity w is defined by

w(x,0, T) = inf max sup  d(x¢,xs)
{t} 7 ste[ti_t)

where x € D([0,00), E),d >0, T < o0,
and {t;} ranges over all partitions

O=ty<t1<...<th1 < T <ty min (i —ti_1)>6n>1
1<i<n
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Compact Sets of D([0, ), E)

Theorem 1

Let (E,d) be a complete and separable metric space. Then F is
compact in D([0,00), E) if and only if the following two conditions
hold.

@ For every rational t > 0, there exists a compact set [ C E
such that x; € 'y for all x € F.

@ Foreach T >0,

lim sup w(x,d, T) = 0.
6—0xeF
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Relative Compactness of Processes

Theorem 2

Let {X"} be a sequence of processes with sample paths in
D([0,00), E). Then {X"} is relatively compact if and only if the
following two conditions hold.

@ For every n > 0 and rational t > 0, there exists a compact set
I+ C E such that

liminfP{X! €T, :}>1—n.
n—oo
@ fForeveryn >0 and T > 0, there exists a § > 0 such that

limsup P {w(X",4, T) > n} <.

n—0o0
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A Conditional Modulus of Continuity

Let Y" be a sequence of D([0, oc), R)-valued processes. Suppose

o foreverye> 0 andt >0, 3 acompact set K.; C E such that
P{Y/ € Kt} >1—€ Vn

e foreach T >0, 3 a family {yn(d):0<d <1,n>1} of
nonnegative random variables and 3 > 0 satisfying

giﬂ}) Ii;nﬂs;p E[yn(d)]=0
E [V, - PP 1FY ] < B [n@F ]

for0<t< T,0<u<d.
Then {Y"} is relatively compact.
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Theorem 4

Suppose that D(A) C Cp(E) is an algebra. Let A, be operators on
B(E), n=1,2,..., and X" be solutions to the D([0, ), E) -
martingale problem for A,,.

Suppose that for every f € D(A), there exists f, € D(A,) satisfying

limsupE [ sup |f(X{") — F(X{)]

n—o0 tel0,T]

limsupE [HA,,f,, o Xn”p,T] < oo for some p € (1, .

n—oo

Then {f o X"} p>1 is relatively compact for each f € D(A).
More generally, {(g1, 82, ..,8k) o X"}n>1 is relatively compact in
D([07 OO),Rk) for all 81,82,---,8k € D(A)7 1<k <oo.
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Proof.
e Note f € D(A) implies f2 also belongs to D(A).
e Choose f,'s and h,'s in D(A,) for f and 2 respectively and
for some p and p’.
@ Note

(F(XPL,) — FIXD))? = FA(XEL,) — FAXD)
— 2F(X) [F(X[L) = F(X])]
FPXE) - F2XD) = (F(XEu) — Bn(XEL))
— (FA(XD) = ha(XD)) + (hn(XPy) — ha(XD))
F(XEu)—F(XE) = (F(X{4) = fa(XEL)
— (F(XP) = fu(X0)) + (fa(XEhu) — Fa(XT))
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Proof (Contd.)

@ ForO< u <,
E[(FOX0) = FOXD)° 167] < B Dn(6)160)
where

(@) =2 sup |FA(X]) — ha(X)|

s€[0, T+1]
+4[fl] sup  [F(XST) — fa(XS)]
s€[0, T+1]

+ 649 | Agh 71 + 20 £V Aol 1.

@ From the hypothesis

m sup E[y,(d)] = 0

lim li
0—0 pn—ooo
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Proof (Contd.)

@ Relative compactness of f(X") follows
e For fi,h,...,fr € D(A),
define v1,(0) for each f; as above
o Set 1n(5) = Yk 7H(6).
@ Result follows for all k < co
@ Relative compactness for k = oo follows

Abhay G. Bhatt Chapter 3



Weak Convergence Preliminary Results
Compact Embedding
The Martingale Problem Approach

Compactification of state space

@ A be an operator on Cp(E).
o Let {gx} C D(A) be as in the separability condition i.e.

{(f,Af): f € D(A)} C bp-closure ({(gk,Agx): k > 1}

o Let |gk|| = ak and E = T[>, [~ ax, ak]
o Define g : E — E by

g(x) = (g1(x), ..., gk(x), ....)

@ g is continuous & one-to-one if {gx} separate points
o 3(E) is Borel & g71: g(E) — E is measurable
o Extend g1 to E by setting 7 1(z) = e for z & Z(E).
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Embedding

@ Let U be the algebra generated by
{ug € C(E) : ue((z1 s 2is -.2)) = zi}-

@ Define operator A with domain U/ as follows.

Agi G, ... 8i ifz=2g
Alcu y,)(2) = | 8880 1T 2 =80
0 otherwise.

@ Note

uk(&(x)) = gk(x) and  Auk(8(x)) = Agk(x)-

Let X be a solution of the martingale problem for A. Let
Zy = g(X¢) for all t. Then Z is a solution to the martingale
problem for A.
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Proof of Lemma 1

Proof:
e Zis a g(E) valued process.
o Let u e U with u(g(x)) = g(x).
oFor0<ti <ty < ---<tp<t<r, Hy,...,Hn€ B(E),

i=1
- E[( ()~ g(x) — | Ag(X:)as) rm[h,(xt,)}
t i=1

=0

where h; = H;o g.
@ Thus Z is a solution of the martingale problem for A.
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Equivalence

If Z is a solution of the martingale problem for A with
P(Z:€g(E)=1 V t>0 (1)

then X; = §~1(Z;) defines a solution to the martingale problem for

Lemma 3

|)

If the martingale problem for A is well - posed, then there exists a
unique solution Z to the martingale problem for A satisfying (1).
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Progressive measurability

Corollary 4

If D(A) is an algebra that separates points and if separability
condition holds, then well - posedness in the class of progressively
measurable processes implies well - posedness in the class of all
measurable processes.

Proof.
@ Let X be a measurable solution.
o Let Z = g(X¢). Z is a solution of the martingale problem for
A with Z; € g(E).
° §ince Eis compact, Z has a r.c.l.l. modification Z.
Zy € g(E) as.
o Y= g—l(Z) is a progressively measurable modification of X.
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Convergence of f.d.d.’s to those of a Markov Process

Theorem 5

Let D(A) - algebra, separating points in E, vanishing nowhere.
Assume separability condition. Suppose that the martingale
problem for A is well-posed.

Let X", X be progressively measurable solutions to the martingale
problems for A", A respectively. Suppose that X§ = Xo. Further,

suppose that {X[ : n > 1} is tight for all t > 0.
If for all f € D(A) there exist f, € D(A") such that

Ifs —fll = 0asn—oo; sup|A"h| < oo
n

sup |A"fo(x) — Af(x)] = 0 as n — oo, V compact K.
xeEK

then the finite dimensional distributions of the proceess X,
converge to those of X.
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Proof.
o Let {gx}k>1 be as in separability condition.
o Let Z" =g(X"), Z=g(X).
@ Then Z is a solution of the martingale problem for A.
°

Using Theorem 4, we get

2" = g(X") = (&u(X"), .., g(X"), ...)

is tight in D([0, o¢), E).
o Let 2™ = 7.
o Fix ucU,H; e C(E).
@ Definef =uog, hj=H;og
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Solution of martingale problem for A

<u(“,) —u(Z) - /trAu(Z)ds) EH,-(Z,) m

= lim E Ku(z,"k) —u(Z) - /trAu(Zs”*)ds> [1Hi(z

i=1

= lim E
k—o0

(rox - o - [ aroeas) 1 h,-(xsk)]
= lim E[((F = £,)06) = (F = f,)(X)

o) fsoe

i=1

< im <2|fnk ~ AT il + & [ 1A - A )06 dsHh,-(Xsk)>
e i—1 t =1
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Proof (Contd.)

@ The first term on the RHS above tends to zero by hypothesis.
(viz... ||fy, — ]| = 0)

@ Moreover

E[(Af — A", )(X5*)]
< sup [Af(x) = A", O+ (IAF] + [[A™ Fo [[) P (XS € K€)
S
which can be made arbitrarily small for large enough n (using
tightness of {X['}) for every s
@ DCT implies RHS above tends to zero

e Z is a solution of the martingale problem for A.
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Proof (Contd.)

o Let ucU. Then v’ € U.
o Let MY = u(Z;) — fOAu
o (MY M"); = fo (Au? —2uAu)( s)ds is continuous
@ Hence (M¥)>0 and (u(Z;))¢>0 are continuous in probability
o (u(Z;))e>0 has no fixed points of discontinuity for all u € U.
° (Z:)tzo cannot have any fixed points of discontinuity
@ For every t, Zt"k = 7,
o {X/ :n>1}istight in E for every t
e {Z:n>1}is tight in g(E) for every t

@ Hence y
P{Zteg(E)}:l V>0 (2)
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Proof (Contd.)

@ Recall Z = g(X)

@ Then Z as well Z are solutions of the martingale problem for
(A, o g7 1) satisfying (2) and hence have the same law

@ Hence
g(X") = &(Xx)
e We also have for all t1,...,t; and for all j,

(&(Xy), - &8(X5)) = (E(Xn),- - -, 8(Xy))

e Finally, since {X/ : n> 1} is tight and D(A) is a measure
determining class (an algebra that separates points) we have

(X4

o

XD = (X, X)),
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Weak Convergence to a Markov Process

Theorem 6

In addition to the hypotheses of Theorem 5, assume that D(A)
strongly separates points in E, (i.e. f(x,) — f(x)Vf € D(A)
implies x, — x). Then X" = X (as processes in D([0, >0), E)).

Proof.
@ Since D(A) strongly separates points in E, we get that

g71: g(E) — E is continuous

@ As before we get
g(X") = &(X)
@ This now implies the result
L]
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Stationary Distribution of a Markov Process

Definition 2.1

w € P(E) is a stationary distribution or an invariant measure for
the Markov process determined by A, if the solution X of the
martingale problem for (A, 1) is a stationary process,

ie, if P{Xe+s; € T1,..., Xexs, € [k} is independent of t > 0 for
all0< sy <sp<...<sk, [1,0,....,Tx €& and for all k > 1.

o In particular, P{X; € I'} = p(I") for all ¢
@ For the transition probability P

w(l) = /E P(t,x,Nu(dx) Yt>0,Te&
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Markov Processes

@ For the associated semigroup T;

/fdu_/ Tifdp ¥V feB(E),t>0
E E
@ For Generator L

/(Lf)d,u =0, VfeD(L)
E
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Markov Processes

@ For the associated semigroup T;
/fdu_/ Tifdp YV feB(E),t>0
E E
e For Generator L
/(Lf)d,u =0, VfeD(L)
E

@ Can generator L be replaced by operator A for which X is a
unique solution of its martingale problem?
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Existence of a stationary solution

Theorem 7

Let D(A) be an algebra that separates points and vanishes
nowhere. Suppose A satisfies the separability condition and that
for all v € P(E), there exists a solution to the D([0, ), E)
-martingale problem for (A,v). Suppose that . € P(E) satisfies

/Afd,u:O vV f € D(A).
E

Then on some probability space, there exists a filtration (G¢)>0
and a (G¢)t>0- progressively measurable process X such that X is
a stationary process and that X is a solution of the martingale
problem for (A, ) w.r.t. (G¢)e>o.
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Yosida Approximations

Proof.

@ Since the martingale problem for (A, ) admits a solution for
all x € E, A satisfies

(A=A > A||f]| VfeD(A),x>0

Hence (/ — n7A) = n=1(n — A) is one to one
For n > 1 define A, on R(/ — n"tA) by

Anf = n[(l —n A — I)f

For f € D(A), define f, := (I — n L A)f
Then A,f, = Af & ||f, —f|] =0
For g = (I — n1A)f ,f € D(A),

/A,,gd,u = / Afdy = 0.
E E
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Construction of a suitable transition probability function

@ Construct a probability measure v on E x E and transition
function n : E x B(E) — [0, 1] satisfying

V(Ex B)=v(B x E)=u(B)

v(B1 x Bp) :/B n(x, B2)u(dx)

/E gOn(x.dy) = (1 — n*A) g(x) pu— as.

@ Then
Aof = n(1 — 0" A) L~ 1)f = n /E (F(y) — F())(x. dy)
@ Moreover

[ Bl = w(E x B) = u(B)
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Stationary solutions for A,

o Let Yo, Y1,..., Yk,... be an E-valued Markov chain with
initial distribution p and transition function 7.

Then {Y\ : k > 0} is a stationary sequence

Let V be an independent Poisson process with parameter n
Define X[ =Yy,

Then X" is a stationary Markov (Jump) Process with initial
distribution , and a solution of the martingale problem for A,

Since L(X{") = p, {X{ : n> 1} is tight for all ¢
@ Hence as in Theorem 5 we get (via subsequential limits on

8(E)) a progressively measurable solution of the martingale
problem for A

o Further X is stationary
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A criterion for Invariant measures

Theorem 8

Let D(A) be an algebra that separates points and vanishes
nowhere. Suppose A satisfies the separability condition. Suppose
that the D([0, ), E)- martingale problem for (A, dx) is well posed
for all x € E. Let (T;)e>0 be the semigroup associated with the
martingale problem for A.

Further suppose that every progressively measurable solution to the
martingale problem for (A, 1) admits an r.c.l.l. modification.

If i € P(E) satisfies

/Afdu:O V f € D(A)
E

then p is an invariant measure for the semigroup (T¢)¢>0.
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The Kolmogorov's forward equation

@ Suppose f(X;) — fo Af(Xs)ds is a martingale for all f € D(A)
o Taking expectations and denotlng L(X:) = v, we get

/Efdyt:/ot (/EAfdu5> ds+/Ede0 vfeD(A) (3)

Equation (3) is called the Kolmogorov's Forward equation or
the Fokker-Planck equation

@ When v; = u the above equation reduces to

/ Afdy =0 Vf € D(A)
E
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A perturbed evolution equation

o Let A € Gy(E).
o Let M(E) be the set of all positive finite measures on (E,£).

e Consider

/fdz/t /fduo—i—/ (/ (Af — X )f)dus> ds, fe D(A)

(4)

@ A collection {v¢}+>0 C M(E) is a solution of (3) (or (4)) if

Q {v:i}e>0 satisfies (3) (or (4))
@ and
t +— v¢(B) is measurable VB € £
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Feynman-Kac

o If (Xt)e>o is a solution of the D([0, c0), E)-martingale
problem for (A, 1p) then (using integration by parts)

f(Xt)exp{—/ot)\(Xs)ds} —/Ot{exp{—/os )\(Xu)du}

(Af(Xs) - )\(Xs)f(Xs))] ds

is a martingale.

w(B) = E (HB(Xt) exp {— /Ot )\(Xs)ds}> .

@ (vt)e>0 is a solution of the perturbed evolution equation

@ Define

@ Uniqueness?
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o Let {yt}r>0 be a solution of (4) and define u) = pre®
@ Then for f € D(A)

/Efd,u’t:/Efduﬁ—l-/ot (/E(Af—A(-)Haf)dué) ds

Conversely if {u}}e>0 C M(E) satisfies the above equation
then u; = phe™ satisfies (4).

So without loss of generality we consider A > 0
Operator A — A
Killing Intensity A(x)
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Theorem 9

Suppose that for all x € P(E), there exists a solution to the

D([0, c0), E)-martingale problem for (A, dx). Further suppose that
every progressively measurable solution admits a r.c.l.l.
modification.

If {v:} C P(E) and {pt} C P(E) are solutions of (3) with

Vo = lo, then vy = s for all t > 0.

Proof. Let Eg = E x {—1,1}, 5> 0,1p € P(E).
Let D(B) C Cp(Ep) be the linear span of

{Afh: i € D(A), L e C{-1,1})}.
Bfify(x,v) = K(v)Af(x) + B(f(—v) /E fdvy — f(x)f(v)).
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Proof (Contd.)

e D(B) is an algebra that separates points in E
@ B satisfies the separability condition.

@ Since B is a jump perturbation of A we know that the
martingale problem for (B, d(y ,)), admits a r.c.l.Il. solution for
every (x,v) € Ep.

o Let u € P(E®) = yy x 4, where py € P(E), v € {—1,1}.

e Let (Y, V) be a progressively measurable solution to the
martingale problem for B with V/(0) = v.

o Let Zt :g(yt)
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Proof (Contd.)

@ Define
D(B) = {uh:uel,h e C({-1,1})}
Bufy(z,v) = fr(v)Au(z) —f—ﬁ(fg(—v)/ udig — fh(v)u(z))
E
where
7o = vo(&~ (T N&(E))).
e (Z,V) is a solution of the martingale problem for 5.

e Let (Z, V) denote its r.c.l.l. modification
@ Define

D(C)={uh:uecl,hec C(Z)}

Cuh(z, n) = h(n)Au(z) + B(h(n+1) /E udig — h(n)u(z))
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Proof (Contd.)

@ Define

70 =0, TkEinf{t>Tk_1:Vt:(—1)kv}; k>1
Ny = k ika§t<Tk+1.

@ (Z,N)is a r.c.ll. solution of the martingale problem for C.
@ The one dimensional distributions of (Z, N¢)e>o are uniquely

determined by Yp, 3, 7% and (Ts)s>o, the semigroup
corresponding to the martingale problem for A.

@ In turn, the one dimensional distributions of V and of Y are
uniquely determined by Yp,(Ts)s>0, [ and .

The martingale problem for B is well - posed.
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Proof (Contd.)

o Let (v+)t>0 be a solution of (3).
@ Define

1 1
v = /3/ Pundt) x (501 + 301).

Jg, Bfdv =0 for all f € D(B).

@ Hence v is an invariant measure for the Markov process
characterised by B.

If {7+} denotes the one dimensional distributions for the
solution of the D([0, 00), Eg)-martingale problem for
(B, x 1) and (Y, V) is any stationary solution to the
D([0, 00), Eg)-martingale problem for B, then

(]

t
P(Ys,Vs€T)= lim t~ / yu(l)du ¥ s.
0

t—oo
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Proof (Contd.)

@ Stationary distribution for B is unique.

@ Thus if (ut)e>0 C P(E) is another solution, y defined by

> 1 1
= (ﬁ/ e uedt) x (301 + 351)
0

is a stationary distribution

@ Uniqueness implies

o o0
/ e_Btl/tdt = / e_ﬁt/.lltdt.
0 0

@ Since 3 > 0 was arbitrary, we get vy = u: V t > 0.
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Cemetery

@ Assume 1 € D(A) with A1 = 0.
o Choose a point A ¢ E and let EA = EU{A}
o Define a metric d’ on E2 by
d'(A,A) =0, d'(A,x)=d'(x,A) =1,
d'(x,y) =d(x,y) A1l for x,y € E
@ Define
MA)=0,A(x)=Ax) ¥ x€E
D(A%) = {f € Gy(E®) : f|e € D(A)}
ABF(A)=0; ABFf(x)=Af(x) V¥ x€E,f e D(A?)
Cf(x) = Mx)(f(A) — f(x)) Vfe C(ER),x e EA
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The operator A® + C

o D(A) algebra = D(A®) is an algebra

o D(A) separates points = D(A%) is separates points
@ Separability condition for A = the same for A®

@ Well-posedness of the martingale problem for A implies
Well-posedness of the martingale problem for A%

C is a Jump Operator with all jumps going to A

Existence of a solution to the D([0, ), E) - martingale
problem for (A, dx) for all x = existence of a solution to the
D([0, o), E2)- martingale problem for (A2 + C,4,) for all y
Solution X of the martingale problem for A2 + C:

o X; evolves as a solution of A until it is killed

o At the time of Death it jumps to cemetery A and stays there

o If X; =y, the process is killed (independntly) at time t with

intensity A(y).

Abhay G. Bhatt Chapter 3



Existence of Solutions
Uniqueness
Evolution Equations The perturbed operator

Well-posedness of A® + C

Theorem 10
The martingale problem for A® + C is well-posed.

Proof.
o Let (T2):>0 be the semigroup associated with the well-posed
martingale problem for A2,
@ Let X be a measurable solution to the martingale problem for
AR+ C.
e Since Ig € D(A2 + C) and (A2 + C)Ig = —Alg = — X, we
get

M, = Tg(X;) + /Ot A(Xs)ds

is a martingale.
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Proof (Contd.)

A>0 = Ig(X;) is a supermartingale.

@ Get an r.c.l.l. modification (N;) of Ig(X¢)
o Let

T =inf{t > 0: N; = 0}.
@ Then N, =0foru>rT as.

Thus Tg(Xt) = I~y ass.

Integration by parts implies

t
[(7>ey exp {/ )‘(Xs)ds}
0

is a martingale.
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Existence of Solutions
Uniqueness
Evolution Equations The perturbed operator

Proof (Contd.)

o Consider the compact embedding into E

Cu(z) = Au(z) + M) (u(@(A)) — u(2).

Then Z; = g(X:) is a solution of the martingale problem for C.
Let Z be the r.c.l.l. modification of Z

We get
~ t ~ P
Mt = ]I{T>t} exp {/ )\(Zs)dS}
0

is a non-negative mean one martingale.

N

@ Fix T > 0. Define Q on D([0, ), E) by
m ~
Q(etl S rl, "'70tm S rm) - EP HHF;(Zt,-)Mt
i=1
forall0<ty < ... <ty <T,l1,...,Thm.
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Proof (Contd.)

The following are martingales
o f(X¢)— fo AfX)— A(Xs)f(Xs)ds

f(Xe) exp{ Jy M(Xs)ds} — [o AF(Xs) exp{ 5 A(Xu)du}ds
f(Xe)l(r>ep exp{ [y M(Xe)ds} — [y AF(Xs )H{T>s} exp{ [ A(X,)du}ds
u(Z)My — fo Au(Zs)Msds

Hence, for 0 < t; < ... < tjmy1 < T, h1, ..., hy € C(E)

u(@s)ds> 11 hk(étk)]

tmy1

tmt1

EQ

(000 ) -

tm

Au(Z)M, ds) 11 h(2)

tm k=1

=EF l(“(ztmﬂ)/wtm - U(ztm)th+1 -

=0.

Abhay G. Bhatt Chapter 3



Existence of Solutions
Uniqueness
Evolution Equations The perturbed operator

Proof (Contd.)

o Under Q, 0 is a solution of the martingale problem for A with
Q(f; € g(E”)) =1 VYt

o X!:= g (f;) is a solution of the martingale problem for A2.
e For u e B(E)

E%[u(f,)] = E%uog(X{)] = BT (uog))(X5)] = EF[[ T (u0)](Xo)]

o EF[u(Z:) exp{ [y M(Z:)dr}L(,~n] = EF[TA(u o £)(Xo)] for all

0<t<T.
@ Arguing exactly similarly for the process Xs . we get
B\ ltru(2) ool | A(2)rH i) = BT (0o ))(X,)

1"’ora||sgtgs—i-'l',l:e}“s2
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Evolution Equations The perturbed operator

Proof (Contd.)

Thusforall s<t<s+ T

t o
B u(Z) el | MZ)dr) L F2] = T2 (w0 )(X) as.
S
Choosing u = fog™!

B - EATRF00) = [ EFICTA, F(X)las
0

B X)) = BEITEF00) + [ BITACTA,(Xo)lds
0

t S
+ / / EF[CTA,CTA )f(X,)]drds
0 0

and so on.
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Existence of Solutions
Uniqueness
Evolution Equations The perturbed operator

Proof (Contd.)

Thus the distribution of X; is completely determined determined
by C, (TSA)SZO and Xo.
Hence we have uniqueness of one-dimensional marginals. O

If {pt}e>0 C M(E) and {vt}e>0 C M(E) are solutions of (4)
with pg = v, then s = vy for all t > 0.

Proof. Theorem 9 implies uniqueness of solution to

t
/ fiye = / iy + / ( / (AD } C)fd.)ds.
EA EA 0 EA

Since 1 € D(A) with A1 =0, we get

ve(E) = wo(E) — [y [ Advsds < 1.

Set 7:(U) = ve(UNE) + (1 — ve(E))Ly(A)

Then 7 is a solution to (4). O
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