Martingale Problems

Abhay G. Bhatt Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi

Lectures on Probability and Stochastic Processes III Indian Statistical Institute, Kolkata

20-24 November 2008

Outline

Weak Convergence

- Preliminary Results
- Compact Embedding
- The Martingale Problem Approach

2 Invariant Measures

- Invariant Measures & Markov semi-groups
- A criterion for Invariant measures

3 Evolution Equations

- Existence of Solutions
- Uniqueness
- The perturbed operator

A ■

Preliminary Results Compact Embedding The Martingale Problem Approach

< □ > < □ > < □ > < □

-≣->

Modulus of continuity

Definition 1.1

The modulus of continuity w is defined by

$$w(x,\delta,T) = \inf_{\{t_i\}} \max_{i} \sup_{s,t \in [t_{i-1},t_i)} d(x_t,x_s)$$

where $x \in D([0,\infty), E), \delta > 0, T < \infty$, and $\{t_i\}$ ranges over all partitions

$$0 = t_0 < t_1 < \ldots < t_{n-1} \le T < t_n; \min_{1 \le i \le n} (t_i - t_{i-1}) > \delta, n \ge 1$$

Preliminary Results Compact Embedding The Martingale Problem Approach

イロト イヨト イヨト イヨト

Compact Sets of $D([0,\infty), E)$

Theorem 1

Let (E, d) be a complete and separable metric space. Then \overline{F} is compact in $D([0, \infty), E)$ if and only if the following two conditions hold.

For every rational t ≥ 0, there exists a compact set Γ_t ⊂ E such that x_t ∈ Γ_t for all x ∈ F.

$$\lim_{\delta\to 0}\sup_{x\in F}w(x,\delta,T)=0.$$

Preliminary Results Compact Embedding The Martingale Problem Approach

<ロ> <同> <同> <同> < 同> < 同>

Relative Compactness of Processes

Theorem 2

Let $\{X^n\}$ be a sequence of processes with sample paths in $D([0,\infty), E)$. Then $\{X^n\}$ is relatively compact if and only if the following two conditions hold.

• For every $\eta > 0$ and rational $t \ge 0$, there exists a compact set $\Gamma_{\eta,t} \subset E$ such that

$$\liminf_{n\to\infty} \mathbb{P}\left\{X_t^n \in \Gamma_{\eta,t}\right\} \geq 1-\eta.$$

2 For every $\eta > 0$ and T > 0, there exists a $\delta > 0$ such that

$$\limsup_{n\to\infty} \mathbb{P}\left\{w(X^n,\delta,T)\geq\eta\right\}\leq\eta.$$

Preliminary Results Compact Embedding The Martingale Problem Approach

A Conditional Modulus of Continuity

Theorem 3

Let Y^n be a sequence of $D([0,\infty),\mathbb{R})$ -valued processes. Suppose

• for every $\epsilon > 0$ and $t \ge 0$, \exists a compact set $K_{\epsilon,t} \subset E$ such that

 $\mathbb{P}\left\{Y_t^n \in K_{\epsilon,t}\right\} \geq 1 - \epsilon \quad \forall \ n.$

 for each T > 0, ∃ a family {γ_n(δ) : 0 < δ < 1, n ≥ 1} of nonnegative random variables and β > 0 satisfying

 $\lim_{\delta\to 0}\limsup_{n\to\infty}\mathbb{E}[\gamma_n(\delta)]=0$

$$\mathbb{E}\left[\left|Y_{t+u}^{n}-Y_{t}^{n}\right|^{\beta}|\mathcal{F}_{t}^{Y^{n}}\right] \leq \mathbb{E}\left[\gamma_{n}(\delta)|\mathcal{F}_{t}^{Y^{n}}\right]$$

for $0 \le t \le T$, $0 \le u \le \delta$. Then $\{Y^n\}$ is relatively compact.

Theorem 4

Suppose that $D(A) \subset C_b(E)$ is an algebra. Let A_n be operators on B(E), n = 1, 2, ..., and X^n be solutions to the $D([0, \infty), E)$ -martingale problem for A_n .

Suppose that for every $f \in D(A)$, there exists $f_n \in D(A_n)$ satisfying

$$\lim_{n \to \infty} \mathbb{E} \left[\sup_{t \in [0,T]} |f_n(X_t^n) - f(X_t^n)| \right] = 0$$
$$\lim_{n \to \infty} \mathbb{E} \left[||A_n f_n \circ X^n||_{p,T} \right] < \infty \text{ for some } p \in (1,\infty].$$
Then $\{f \circ X^n\}_{n \ge 1}$ is relatively compact for each $f \in D(A)$.
More generally, $\{(g_1, g_2, \dots, g_k) \circ X^n\}_{n \ge 1}$ is relatively compact in $D([0,\infty), \mathbb{R}^k)$ for all $g_1, g_2, \dots, g_k \in D(A), 1 \le k \le \infty$.

<ロ> <同> <同> <同> < 同> < 同>

Proof

Proof.

- Note $f \in D(A)$ implies f^2 also belongs to D(A).
- Choose f_n 's and h_n 's in $D(A_n)$ for f and f^2 respectively and for some p and p'.

Note

$$(f(X_{t+u}^{n}) - f(X_{t}^{n}))^{2} = f^{2}(X_{t+u}^{n}) - f^{2}(X_{t}^{n}) - 2f(X_{t}^{n}) [f(X_{t+u}^{n}) - f(X_{t}^{n})], f^{2}(X_{t+u}^{n}) - f^{2}(X_{t}^{n}) = (f^{2}(X_{t+u}^{n}) - h_{n}(X_{t+u}^{n})) - (f^{2}(X_{t}^{n}) - h_{n}(X_{t}^{n})) + (h_{n}(X_{t+u}^{n}) - h_{n}(X_{t}^{n})), f(X_{t+u}^{n}) - f(X_{t}^{n}) = (f(X_{t+u}^{n}) - f_{n}(X_{t+u}^{n})) - (f(X_{t}^{n}) - f_{n}(X_{t}^{n})) + (f_{n}(X_{t+u}^{n}) - f_{n}(X_{t}^{n}))$$

< ≣ >

Proof (Contd.)

۲

For
$$0 < u < \delta$$
,

$$\mathbb{E}\left[\left(f(X_{t+u}^n) - f(X_t^n)\right)^2 |\mathcal{G}_t^n\right] \le \mathbb{E}\left[\gamma_n(\delta)|\mathcal{G}_t^n\right]$$

where

$$\gamma_n(\delta) = 2 \sup_{s \in [0, T+1]} |f^2(X_s^n) - h_n(X_s^n)| + 4 ||f|| \sup_{s \in [0, T+1]} |f(X_s^n) - f_n(X_s^n)| + \delta^{1/q'} ||A_n h_n||_{\rho', T+1} + 2 ||f|| \delta^{1/q} ||A_n f_n||_{\rho, T+1}.$$

• From the hypothesis

$$\lim_{\delta\to 0}\limsup_{n\to\infty}\mathbb{E}[\gamma_n(\delta)]=0$$

・ロ・ ・ 日・ ・ 田・ ・ 田・

æ

Proof (Contd.)

- Relative compactness of $f(X^n)$ follows
- For $f_1, f_2, \ldots, f_k \in D(A)$, define $\gamma_n^j(\delta)$ for each f_j as above
- Set $\gamma_n(\delta) = \sum_{j=1}^k \gamma_n^j(\delta)$.
- Result follows for all $k < \infty$
- Relative compactness for $k = \infty$ follows

イロト イヨト イヨト イヨト

Compactification of state space

- A be an operator on $C_b(E)$.
- Let $\{g_k\} \subset D(A)$ be as in the separability condition *i.e.*

 $\{(f,Af): f \in D(A)\} \subset \text{ bp-closure } (\{(g_k,Ag_k): k \geq 1\}$

- Let $||g_k|| = a_k$ and $\hat{E} = \prod_{k=1}^{\infty} [-a_k, a_k]$
- Define $\hat{g}: E \to \hat{E}$ by

$$\hat{g}(x) = (g_1(x), ..., g_k(x),)$$

イロト イヨト イヨト イヨト

- \hat{g} is continuous & one-to-one if $\{g_k\}$ separate points
- $\hat{g}(E)$ is Borel & $\hat{g}^{-1}: \hat{g}(E) \to E$ is measurable
- Extend \hat{g}^{-1} to \hat{E} by setting $\hat{g}^{-1}(z) = e$ for $z \notin \hat{g}(E)$.

Embedding

 $\bullet\,$ Let ${\mathcal U}$ be the algebra generated by

$$\{u_k \in C(\hat{E}) : u_k((z_1,...,z_k,....)) = z_k\}.$$

 \bullet Define operator ${\cal A}$ with domain ${\cal U}$ as follows.

$$\mathcal{A}(cu_{i_1}u_{i_2}...u_{i_k})(z) = egin{cases} cAg_{i_1}g_{i_2}...g_{i_k}(x) & ext{if } z = \hat{g}(x) \ 0 & ext{otherwise.} \end{cases}$$

Note

$$u_k(\hat{g}(x)) = g_k(x)$$
 and $\mathcal{A}u_k(\hat{g}(x)) = Ag_k(x)$.

Lemma 1

Let X be a solution of the martingale problem for A. Let $Z_t = \hat{g}(X_t)$ for all t. Then Z is a solution to the martingale problem for A.

Proof of Lemma 1

Proof:

- Z is a $\hat{g}(E)$ valued process.
- Let $u \in \mathcal{U}$ with $u(\hat{g}(x)) = g(x)$.
- For $0 \le t_1 < t_2 < \cdots < t_m < t < r, \ H_1, \dots, H_m \in B(\hat{E}),$

$$\mathbb{E}\left[\left(u(Z_r) - u(Z_t) - \int_t^r \mathcal{A}u(Z_s)ds\right)\prod_{i=1}^m H_i(Z_{t_i})\right]$$
$$= \mathbb{E}\left[\left(g(X_r) - g(X_t) - \int_t^r \mathcal{A}g(X_s)ds\right)\prod_{i=1}^m h_i(X_{t_i})\right]$$
$$= 0$$

イロン スポン イヨン イヨン

where $h_i = H_i \circ \hat{g}$.

• Thus Z is a solution of the martingale problem for A.

Equivalence

Lemma 2

If Z is a solution of the martingale problem for \mathcal{A} with

$$\mathbb{P}(Z_t \in \hat{g}(E)) = 1 \quad \forall \ t \ge 0 \tag{1}$$

イロト イヨト イヨト イヨト

then $X_t = \hat{g}^{-1}(Z_t)$ defines a solution to the martingale problem for A.

Lemma 3

If the martingale problem for A is well - posed, then there exists a unique solution Z to the martingale problem for A satisfying (1).

Preliminary Results Compact Embedding The Martingale Problem Approach

・ロン ・回 と ・ 回 と ・ 回 と

Progressive measurability

Corollary 4

If D(A) is an algebra that separates points and if separability condition holds, then well - posedness in the class of progressively measurable processes implies well - posedness in the class of all measurable processes.

Proof.

- Let X be a measurable solution.
- Let $Z_t = \hat{g}(X_t)$. Z is a solution of the martingale problem for \mathcal{A} with $Z_t \in \hat{g}(E)$.
- Since \hat{E} is compact, Z has a r.c.l.l. modification \hat{Z} . $\hat{Z}_t \in \hat{g}(E)$ a.s.
- $Y_t = \hat{g}^{-1}(\hat{Z}_t)$ is a progressively measurable modification of X.

Convergence of f.d.d.'s to those of a Markov Process

Theorem 5

Let D(A) - algebra, separating points in E, vanishing nowhere. Assume separability condition. Suppose that the martingale problem for A is well-posed.

Let X^n , X be progressively measurable solutions to the martingale problems for A^n , A respectively. Suppose that $X_0^n \Rightarrow X_0$. Further, suppose that $\{X_t^n : n \ge 1\}$ is tight for all $t \ge 0$. If for all $f \in D(A)$ there exist $f_n \in D(A^n)$ such that

$$\|f_n - f\| \to 0 \text{ as } n \to \infty; \quad \sup_n \|A^n f_n\| < \infty$$
$$\sup_{x \in K} |A^n f_n(x) - Af(x)| \to 0 \text{ as } n \to \infty, \quad \forall \text{ compact } K$$

then the finite dimensional distributions of the proceess X_n converge to those of X.

Proof

Proof.

- Let $\{g_k\}_{k\geq 1}$ be as in separability condition.
- Let $Z^n = \hat{g}(X^n), \quad Z = \hat{g}(X).$
- Then Z is a solution of the martingale problem for A.
- Using Theorem 4, we get

$$Z^n = \hat{g}(X^n) = (g_1(X^n), \ldots, g_k(X^n), \ldots)$$

is tight in $D([0,\infty), \hat{E})$.

- Let $Z^{n_k} \Rightarrow \tilde{Z}$.
- Fix $u \in \mathcal{U}, H_i \in C(\hat{E})$.
- Define $f = u \circ \hat{g}$, $h_i = H_i \circ \hat{g}$

・ロト ・回ト ・ヨト ・ヨト

2

Weak Convergence	Preliminary Results
Invariant Measures	Compact Embedding
Evolution Equations	The Martingale Problem Approach

Solution of martingale problem for \mathcal{A}

$$\mathbb{E}\left[\left(u(\tilde{Z}_{r})-u(\tilde{Z}_{t})-\int_{t}^{r}\mathcal{A}u(\tilde{Z}_{s})ds\right)\prod_{i=1}^{m}H_{i}(\tilde{Z}_{t_{i}})\right]$$

$$=\lim_{k\to\infty}\mathbb{E}\left[\left(u(Z_{r}^{n_{k}})-u(Z_{t}^{n_{k}})-\int_{t}^{r}\mathcal{A}u(Z_{s}^{n_{k}})ds\right)\prod_{i=1}^{m}H_{i}(\tilde{Z}_{t_{i}}^{n_{k}})\right]$$

$$=\lim_{k\to\infty}\mathbb{E}\left[\left(f(X_{r}^{n_{k}})-f(X_{t}^{n_{k}})-\int_{t}^{r}\mathcal{A}f(X_{s}^{n_{k}})ds\right)\prod_{i=1}^{m}h_{i}(X_{t_{i}}^{n_{k}})\right]$$

$$=\lim_{k\to\infty}\mathbb{E}\left[\left((f-f_{n_{k}})(X_{r}^{n_{k}})-(f-f_{n_{k}})(X_{t}^{n_{k}})-\int_{t}^{r}(\mathcal{A}f-\mathcal{A}^{n_{k}}f_{n_{k}})(X_{s}^{n_{k}})ds\right)\prod_{i=1}^{m}h_{i}(X_{t_{i}}^{n_{k}})\right]$$

$$\leq\lim_{k\to\infty}\left(2\|f_{n_{k}}-f\|\prod_{i=1}^{m}\|h_{i}\|+\mathbb{E}\int_{t}^{r}|(\mathcal{A}f-\mathcal{A}^{n_{k}}f_{n_{k}})(X_{s}^{n_{k}})|ds\prod_{i=1}^{m}h_{i}(X_{t_{i}}^{n_{k}})\right)$$

Proof (Contd.)

- The first term on the RHS above tends to zero by hypothesis. (viz.,. $\|f_{n_k} f\| \to 0$)
- Moreover

$$\mathbb{E} |(Af - A^{n_k} f_{n_k})(X_s^{n_k})| \\ \leq \sup_{x \in K} |Af(x) - A^{n_k} f_{n_k}(x)| + (||Af|| + ||A^{n_k} f_{n_k}||) \mathbb{P} (X_s^{n_k} \in K^c)$$

which can be made arbitrarily small for large enough n (using tightness of $\{X_s^n\}$) for every s

イロン イヨン イヨン イヨン

- DCT implies RHS above tends to zero
- \tilde{Z} is a solution of the martingale problem for A.

Proof (Contd.)

- Let $u \in \mathcal{U}$. Then $u^2 \in \mathcal{U}$.
- Let $M_t^u = u(\tilde{Z}_t) \int_0^t \mathcal{A}u(\tilde{Z}_s) ds$.
- $\langle M^{u}, M^{u} \rangle_{t} = \int_{0}^{t} (Au^{2} 2uAu)(\tilde{Z}_{s}) ds$ is continuous
- Hence $(M_t^u)_{t\geq 0}$ and $(u(\tilde{Z}_t))_{t\geq 0}$ are continuous in probability
- $(u(\tilde{Z}_t))_{t\geq 0}$ has no fixed points of discontinuity for all $u \in \mathcal{U}$.
- $(\tilde{Z}_t)_{t\geq 0}$ cannot have any fixed points of discontinuity
- For every $t, \ \tilde{Z}_t^{n_k} \Rightarrow \tilde{Z}_t$
- $\{X_t^n : n \ge 1\}$ is tight in E for every t
- $\{Z_t^n : n \ge 1\}$ is tight in $\hat{g}(E)$ for every t

• Hence

$$\mathbb{P}\left\{\tilde{Z}_t\in\hat{g}(E)\right\}=1\quad\forall\ t\geq 0. \tag{2}$$

イロン イ部ン イヨン イヨン 三日

Proof (Contd.)

- Recall $Z = \hat{g}(X)$
- Then Z as well \tilde{Z} are solutions of the martingale problem for $(\mathcal{A}, \mu \circ \hat{g}^{-1})$ satisfying (2) and hence have the same law
- Hence

$$\hat{g}(X^n) \Rightarrow \hat{g}(X)$$

• We also have for all t_1, \ldots, t_j and for all j,

$$(\hat{g}(X_{t_1}^n),\ldots,\hat{g}(X_{t_j}^n))\Rightarrow (\hat{g}(X_{t_1}),\ldots,\hat{g}(X_{t_j}))$$

 Finally, since {X_tⁿ : n ≥ 1} is tight and D(A) is a measure determining class (an algebra that separates points) we have

$$(X_{t_1}^n,\ldots,X_{t_j}^n) \Rightarrow (X_{t_1},\ldots,X_{t_j}).$$

(日) (四) (三) (三) (三)

Preliminary Results Compact Embedding The Martingale Problem Approach

A B > A B >

- ∢ ≣ ▶

Weak Convergence to a Markov Process

Theorem 6

In addition to the hypotheses of Theorem 5, assume that D(A)strongly separates points in E, (i.e. $f(x_n) \rightarrow f(x) \forall f \in D(A)$ implies $x_n \rightarrow x$). Then $X^n \Rightarrow X$ (as processes in $D([0, \infty), E)$).

Proof.

- Since D(A) strongly separates points in E, we get that $\hat{g}^{-1}: \hat{g}(E) \mapsto E$ is continuous
- As before we get

$$\hat{g}(X^n) \Rightarrow \hat{g}(X)$$

• This now implies the result

Invariant Measures & Markov semi-groups A criterion for Invariant measures

Outline

Weak Convergence

- Preliminary Results
- Compact Embedding
- The Martingale Problem Approach

2 Invariant Measures

- Invariant Measures & Markov semi-groups
- A criterion for Invariant measures

3 Evolution Equations

- Existence of Solutions
- Uniqueness
- The perturbed operator

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Stationary Distribution of a Markov Process

Definition 2.1

 $\mu \in \mathcal{P}(E)$ is a stationary distribution or an invariant measure for the Markov process determined by A, if the solution X of the martingale problem for (A, μ) is a stationary process, i.e., if $\mathbb{P}\{X_{t+s_1} \in \Gamma_1, \ldots, X_{t+s_k} \in \Gamma_k\}$ is independent of $t \ge 0$ for all $0 \le s_1 < s_2 < \ldots < s_k$, $\Gamma_1, \Gamma_2, \ldots, \Gamma_k \in \mathcal{E}$ and for all $k \ge 1$.

• In particular, $\mathbb{P}{X_t \in \Gamma} = \mu(\Gamma)$ for all t

• For the transition probability P

$$\mu(\Gamma) = \int_{E} P(t, x, \Gamma) \mu(dx) \quad \forall \ t > 0, \Gamma \in \mathcal{E}$$

Invariant Measures & Markov semi-groups A criterion for Invariant measures

<ロ> (日) (日) (日) (日) (日)

æ

Markov Processes

• For the associated semigroup T_t

$$\int_{E} f d\mu = \int_{E} T_{t} f d\mu \quad \forall \ f \in B(E), t > 0$$

• For Generator L

$$\int_E (Lf)d\mu = 0, \quad \forall f \in D(L)$$

Invariant Measures & Markov semi-groups A criterion for Invariant measures

- ∢ ≣ ▶

Markov Processes

• For the associated semigroup T_t

$$\int_{E} f d\mu = \int_{E} T_{t} f d\mu \quad \forall \ f \in B(E), t > 0$$

• For Generator L

$$\int_E (Lf)d\mu = 0, \quad \forall f \in D(L)$$

• Can generator *L* be replaced by operator *A* for which *X* is a unique solution of its martingale problem?

Invariant Measures & Markov semi-groups A criterion for Invariant measures

イロン イヨン イヨン イヨン

Existence of a stationary solution

Theorem 7

Let D(A) be an algebra that separates points and vanishes nowhere. Suppose A satisfies the separability condition and that for all $\nu \in \mathcal{P}(E)$, there exists a solution to the $D([0,\infty), E)$ -martingale problem for (A, ν) . Suppose that $\mu \in \mathcal{P}(E)$ satisfies

$$\int_E Afd\mu = 0 \quad \forall \ f \in D(A).$$

Then on some probability space, there exists a filtration $(\mathcal{G}_t)_{t\geq 0}$ and a $(\mathcal{G}_t)_{t\geq 0}$ - progressively measurable process X such that X is a stationary process and that X is a solution of the martingale problem for (A, μ) w.r.t. $(\mathcal{G}_t)_{t\geq 0}$.

Yosida Approximations

Proof.

 Since the martingale problem for (A, δ_x) admits a solution for all x ∈ E, A satisfies

$$\|(\lambda - A)f\| \ge \lambda \|f\| \quad \forall f \in D(A), \lambda > 0$$

• Hence $(I - n^{-1}A) = n^{-1}(n - A)$ is one to one • For $n \ge 1$ define A_n on $\mathcal{R}(I - n^{-1}A)$ by

$$A_n f = n[(I - n^{-1}A)^{-1} - I]f$$

- For $f \in D(A)$, define $f_n := (I n^{-1}A)f$
- Then $A_n f_n = Af \& ||f_n f|| \to 0$
- For $g = (I n^{-1}A)f$, $f \in D(A)$,

$$\int_E A_n g d\mu = \int_E A f d\mu = 0.$$

Construction of a suitable transition probability function

• Construct a probability measure ν on $E \times E$ and transition function $\eta : E \times \mathcal{B}(E) \rightarrow [0, 1]$ satisfying

$$\nu(E \times B) = \nu(B \times E) = \mu(B)$$
$$\nu(B_1 \times B_2) = \int_{B_1} \eta(x, B_2) \mu(dx)$$
$$\int_E g(y) \eta(x, dy) = (I - n^{-1}A)^{-1}g(x) \quad \mu - \text{ a.s}$$

Then

$$A_n f = n[(I - n^{-1}A)^{-1} - I]f = n \int_E (f(y) - f(x))\eta(x, dy)$$

Moreover

$$\int_E \eta(x,B)\mu(dx) = \nu(E \times B) = \mu(B)$$

Invariant Measures & Markov semi-groups A criterion for Invariant measures

+ - > + - - > + - = > + - = >

Stationary solutions for A_n

- Let Y₀, Y₁,..., Y_k,... be an E-valued Markov chain with initial distribution μ and transition function η.
- Then $\{Y_k : k \ge 0\}$ is a stationary sequence
- Let V be an independent Poisson process with parameter n
- Define $X_t^n = Y_{V_t}$
- Then Xⁿ is a stationary Markov (Jump) Process with initial distribution μ, and a solution of the martingale problem for A_n
- Since $\mathcal{L}(X^n_t) = \mu$, $\{X^n_t : n \ge 1\}$ is tight for all t
- Hence as in Theorem 5 we get (via subsequential limits on *ĝ*(E)) a progressively measurable solution of the martingale problem for A
- Further X is stationary

Invariant Measures & Markov semi-groups A criterion for Invariant measures

イロト イヨト イヨト イヨト

A criterion for Invariant measures

Theorem 8

Let D(A) be an algebra that separates points and vanishes nowhere. Suppose A satisfies the separability condition. Suppose that the $D([0,\infty), E)$ - martingale problem for (A, δ_x) is well posed for all $x \in E$. Let $(T_t)_{t\geq 0}$ be the semigroup associated with the martingale problem for A. Further suppose that every progressively measurable solution to the

Further suppose that every progressively measurable solution to the martingale problem for (A, μ) admits an r.c.l.l. modification. If $\mu \in \mathcal{P}(E)$ satisfies

$$\int_{E} Afd\mu = 0 \quad \forall \ f \in D(A)$$

then μ is an invariant measure for the semigroup $(T_t)_{t\geq 0}$.

Weak Convergence	Existence of Solutions
Invariant Measures	Uniqueness
Evolution Equations	The perturbed operator

Outline

1 Weak Convergence

- Preliminary Results
- Compact Embedding
- The Martingale Problem Approach

2 Invariant Measures

- Invariant Measures & Markov semi-groups
- A criterion for Invariant measures

3 Evolution Equations

- Existence of Solutions
- Uniqueness
- The perturbed operator

Weak Convergence Invariant Measures Evolution Equations The perturbed operator

The Kolmogorov's forward equation

- Suppose $f(X_t) \int_0^t Af(X_s) ds$ is a martingale for all $f \in D(A)$
- Taking expectations and denoting $\mathcal{L}(X_t) = \nu_t$, we get

$$\int_{E} f d\nu_{t} = \int_{0}^{t} \left(\int_{E} A f d\nu_{s} \right) ds + \int_{E} f d\nu_{0} \quad \forall f \in D(A) \quad (3)$$

Equation (3) is called the Kolmogorov's Forward equation or the Fokker-Planck equation

• When $\nu_t = \mu$ the above equation reduces to

$$\int_{E} A f d\mu = 0 \quad \forall f \in D(A)$$

イロト イヨト イヨト イヨト

Existence of Solutions Uniqueness The perturbed operator

イロン イヨン イヨン イヨン

A perturbed evolution equation

- Let $\lambda \in C_b(E)$.
- Let $\mathcal{M}(E)$ be the set of all positive finite measures on (E, \mathcal{E}) .
- Consider

$$\int_{E} f d\nu_{t} = \int_{E} f d\nu_{0} + \int_{0}^{t} \left(\int_{E} (Af - \lambda(\cdot)f) d\nu_{s} \right) ds, \quad f \in D(A)$$
(4)

A collection {v_t}_{t≥0} ⊂ M(E) is a solution of (3) (or (4)) if
{v_t}_{t≥0} satisfies (3) (or (4))
and
t ↦ v_t(B) is measurable ∀B ∈ E

 Weak Convergence
 Existence of Solutions

 Invariant Measures
 Uniqueness

 Evolution Equations
 The perturbed operator

Feynman-Kac

 If (X_t)_{t≥0} is a solution of the D([0,∞), E)-martingale problem for (A, ν₀) then (using integration by parts)

$$f(X_t) \exp\left\{-\int_0^t \lambda(X_s) ds\right\} - \int_0^t \left[\exp\left\{-\int_0^s \lambda(X_u) du\right\}\right] ds$$
$$\left(Af(X_s) - \lambda(X_s)f(X_s)\right) ds$$

is a martingale.

Define

$$u_t(B) = \mathbb{E}\left(\mathbb{I}_B(X_t)\exp\left\{-\int_0^t \lambda(X_s)ds\right\}\right).$$

<ロ> (日) (日) (日) (日) (日)

(*ν*_t)_{t≥0} is a solution of the perturbed evolution equation
Uniqueness?

 Weak Convergence
 Existence of Solutions

 Invariant Measures
 Uniqueness

 Evolution Equations
 The perturbed operator

$\lambda \geq \mathbf{0}$

- Let $\{\mu_t\}_{t\geq 0}$ be a solution of (4) and define $\mu_t'=\mu_t e^{lpha t}$
- Then for $f \in D(A)$

$$\int_{E} f d\mu'_{t} = \int_{E} f d\mu'_{0} + \int_{0}^{t} \left(\int_{E} \left(Af - \lambda(\cdot)f + \alpha f \right) d\mu'_{s} \right) ds$$

- Conversely if $\{\mu'_t\}_{t\geq 0} \subset \mathcal{M}(E)$ satisfies the above equation then $\mu_t = \mu'_t e^{-\alpha t}$ satisfies (4).
- So without loss of generality we consider $\lambda \geq 0$
- Operator $A \lambda$
- Killing Intensity $\lambda(x)$

イロト イヨト イヨト イヨト

3

Weak Convergence	Existence of Solutions
Invariant Measures	Uniqueness
Evolution Equations	The perturbed operator

Theorem

Theorem 9

Suppose that for all $x \in \mathcal{P}(E)$, there exists a solution to the $D([0,\infty), E)$ -martingale problem for (A, δ_x) . Further suppose that every progressively measurable solution admits a r.c.l.l. modification. If $\{\nu_t\} \subset \mathcal{P}(E)$ and $\{\mu_t\} \subset \mathcal{P}(E)$ are solutions of (3) with $\nu_0 = \mu_0$, then $\nu_t = \mu_t$ for all $t \ge 0$.

Proof. Let $E_0 = E \times \{-1, 1\}, \ \beta > 0, \nu_0 \in \mathcal{P}(E)$. Let $D(B) \subset C_b(E_0)$ be the linear span of

$$\{f_1f_2: f_1 \in D(A), f_2 \in C(\{-1,1\})\}.$$

$$Bf_1f_2(x,v) = f_2(v)Af_1(x) + \beta(f_2(-v)\int_E f_1d\nu_0 - f_1(x)f_2(v)).$$

Proof (Contd.)

- D(B) is an algebra that separates points in E_0
- *B* satisfies the separability condition.
- Since B is a jump perturbation of A we know that the martingale problem for (B, δ_(x,v)), admits a r.c.l.l. solution for every (x, v) ∈ E₀.
- Let $\mu \in \mathcal{P}(E^0) = \mu_1 \times \delta_v$, where $\mu_1 \in \mathcal{P}(E)$, $v \in \{-1, 1\}$.
- Let (Y, V) be a progressively measurable solution to the martingale problem for B with V(0) = v.
- Let $Z_t = \hat{g}(Y_t)$

(ロ) (同) (E) (E) (E)

Proof (Contd.)

Define

$$D(\mathcal{B}) = \{ uf_2 : u \in \mathcal{U}, f_2 \in C(\{-1, 1\}) \}$$
$$\mathcal{B}uf_2(z, v) = f_2(v)\mathcal{A}u(z) + \beta(f_2(-v)\int_{\hat{E}} ud\tilde{\nu}_0 - f_2(v)u(z))$$

where

$$ilde{
u}_0=
u_0(\hat{g}^{-1}(\Gamma\cap\hat{g}(E))).$$

- (Z, V) is a solution of the martingale problem for \mathcal{B} .
- Let (\hat{Z}, \hat{V}) denote its r.c.l.l. modification

Define

$$D(\mathcal{C}) = \{uh : u \in \mathcal{U}, h \in C_b(\mathbb{Z}^+)\}$$
$$Cuh(z, n) = h(n)\mathcal{A}u(z) + \beta(h(n+1)\int_{\hat{E}} ud\tilde{\nu}_0 - h(n)u(z))$$

Proof (Contd.)

Define

$$egin{aligned} & au_0\equiv 0, \quad au_k\equiv \inf\{t> au_{k-1}: V_t=(-1)^kv\} \ ; \quad k\geq 1\ &N_t=k \quad ext{ if } au_k\leq t< au_{k+1}. \end{aligned}$$

- (\hat{Z}, N) is a r.c.l.l. solution of the martingale problem for C.
- The one dimensional distributions of (*Ĉ_t*, *N_t*)_{t≥0} are uniquely determined by *Y*₀, β, *ν̃*₀ and (*T_s*)_{s≥0}, the semigroup corresponding to the martingale problem for *A*.
- In turn, the one dimensional distributions of V and of Y are uniquely determined by $Y_0, (T_s)_{s \ge 0}, \beta$ and $\tilde{\nu}_0$.
- The martingale problem for *B* is well posed.

・ロト ・回ト ・ヨト ・ヨト

Weak Convergence	Existence of Solutions
Invariant Measures	Uniqueness
Evolution Equations	The perturbed operator

- Let $(\nu_t)_{t\geq 0}$ be a solution of (3).
- Define

$$u = (\beta \int_0^\infty e^{-\beta t} \nu_t dt) \times (\frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}).$$

- $\int_{E_0} Bfd\nu = 0$ for all $f \in D(B)$.
- Hence ν is an invariant measure for the Markov process characterised by *B*.
- If {γ_t} denotes the one dimensional distributions for the solution of the D([0,∞), E₀)-martingale problem for (B, ν₀ × δ₁) and (Y, V) is any stationary solution to the D([0,∞), E₀)-martingale problem for B, then

$$P(Y_s, V_s \in \Gamma) = \lim_{t \to \infty} t^{-1} \int_0^t \gamma_u(\Gamma) du \,\forall \, s.$$

(《圖》 《문》 《문》 - 문

Proof (Contd.)

- Stationary distribution for *B* is unique.
- Thus if $(\mu_t)_{t\geq 0}\subset \mathcal{P}(E)$ is another solution, μ defined by

$$\mu = (\beta \int_0^\infty e^{-\beta t} \mu_t dt) \times (\frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1})$$

is a stationary distribution

Uniqueness implies

$$\int_0^\infty e^{-\beta t} \nu_t dt = \int_0^\infty e^{-\beta t} \mu_t dt.$$

イロト イヨト イヨト イヨト

æ

• Since $\beta > 0$ was arbitrary, we get $\nu_t = \mu_t \ \forall \ t \ge 0$.

Weak Convergence	Existence of Solutions
Invariant Measures	Uniqueness
Evolution Equations	The perturbed operator

Cemetery

- Assume $\mathbf{1} \in D(A)$ with $A\mathbf{1} = \mathbf{0}$.
- Choose a point $\Delta \not\in E$ and let $E^{\Delta} = E \cup \{\Delta\}$
- Define a metric d' on E^{Δ} by

$$egin{aligned} d'(\Delta,\Delta) &= 0, \ d'(\Delta,x) = d'(x,\Delta) = 1, \ d'(x,y) &= d(x,y) \wedge 1 \ ext{for} \ x,y \in E \end{aligned}$$

Define

$$\begin{split} \tilde{\lambda}(\Delta) &= 0, \tilde{\lambda}(x) = \lambda(x) \quad \forall \ x \in E \\ D(A^{\Delta}) &= \{ f \in C_b(E^{\Delta}) : f|_E \in D(A) \} \\ A^{\Delta}f(\Delta) &= 0; \quad A^{\Delta}f(x) = Af(x) \quad \forall \ x \in E, f \in D(A^{\Delta}) \\ Cf(x) &= \tilde{\lambda}(x)(f(\Delta) - f(x)) \quad \forall f \in C_b(E^{\Delta}), x \in E^{\Delta} \end{split}$$

イロン イヨン イヨン イヨン

æ

Weak Convergence	Existence of Solution
Invariant Measures	Uniqueness
volution Equations	The perturbed opera

tor

The operator $A^{\Delta} + C$

- D(A) algebra $\implies D(A^{\Delta})$ is an algebra
- D(A) separates points $\implies D(A^{\Delta})$ is separates points
- Separability condition for $A \implies$ the same for A^{Δ}
- Well-posedness of the martingale problem for A implies Well-posedness of the martingale problem for A^{Δ}
- C is a Jump Operator with all jumps going to Δ
- Existence of a solution to the D([0,∞), E) martingale problem for (A, δ_x) for all x ⇒ existence of a solution to the D([0,∞), E^Δ)- martingale problem for (A^Δ + C, δ_y) for all y
- Solution X of the martingale problem for $A^{\Delta} + C$:
 - X_t evolves as a solution of A until it is killed
 - ${\scriptstyle \bullet}\,$ At the time of Death it jumps to cemetery Δ and stays there
 - If X_t = y, the process is killed (independntly) at time t with intensity λ(y).

Well-posedness of $A^{\Delta} + C$

Theorem 10

The martingale problem for $A^{\Delta} + C$ is well-posed.

Proof.

- Let (T[∆]_t)_{t≥0} be the semigroup associated with the well-posed martingale problem for A[△].
- Let X be a measurable solution to the martingale problem for $A^{\Delta} + C$.
- Since $\mathbb{I}_E \in D(A^{\Delta} + C)$ and $(A^{\Delta} + C)\mathbb{I}_E = -\tilde{\lambda}\mathbb{I}_E = -\tilde{\lambda}$, we get

$$M_t = \mathbb{I}_E(X_t) + \int_0^t \tilde{\lambda}(X_s) ds$$

(ロ) (同) (E) (E) (E)

is a martingale.

Weak Convergence	Existence of Solutions
Invariant Measures	Uniqueness
Evolution Equations	The perturbed operator

- $\tilde{\lambda} \ge 0 \implies \mathbb{I}_E(X_t)$ is a supermartingale.
- Get an r.c.l.l. modification (N_t) of $\mathbb{I}_E(X_t)$

Let

$$\tau = \inf\{t > 0 : N_t = 0\}.$$

- Then $N_u = 0$ for $u \ge \tau$ a.s.
- Thus $\mathbb{I}_{E}(X_{t}) = \mathbb{I}_{\{\tau > t\}}$ a.s.
- Integration by parts implies

$$\mathbb{I}_{\{\tau>t\}}\exp\left\{\int_0^t \tilde{\lambda}(X_s)ds\right\}$$

<**●** ► < **■** ►

∢ 문 ▶ - 문

is a martingale.

Weak Convergence	Existence of Solutions
Invariant Measures	Uniqueness
Evolution Equations	The perturbed operator

• Consider the compact embedding into \hat{E}

•
$$Cu(z) = Au(z) + \hat{\lambda}(z)(u(\hat{g}(\Delta)) - u(z)).$$

- Then $Z_t = \hat{g}(X_t)$ is a solution of the martingale problem for C.
- Let \hat{Z} be the r.c.l.l. modification of Z
- We get

$$\widetilde{M}_t = \mathbb{I}_{\{\tau > t\}} \exp\left\{\int_0^t \hat{\lambda}(\hat{Z}_s) ds\right\}$$

is a non-negative mean one martingale.

• Fix T > 0. Define \mathbb{Q} on $D([0,\infty), \hat{E})$ by

$$\mathbb{Q}(\hat{\theta}_{t_1} \in \Gamma_1, ..., \hat{\theta}_{t_m} \in \Gamma_m) = \mathbb{E}^{\mathbb{P}}\left[\prod_{i=1}^m \mathbb{I}_{\Gamma_i}(\hat{Z}_{t_i})\widetilde{M}_t\right]$$

for all $0 \leq t_1 < \ldots < t_m \leq T, \Gamma_1, \ldots, \Gamma_m$

Proof (Contd.)

The following are martingales

•
$$f(X_t) - \int_0^t (Af(X_s) - \lambda(X_s)f(X_s)) ds$$

- $f(X_t) \exp\{\int_0^t \tilde{\lambda}(X_s) ds\} \int_0^t Af(X_s) \exp\{\int_0^s \tilde{\lambda}(X_u) du\} ds$
- $f(X_t)\mathbb{I}_{\{\tau>t\}}\exp\{\int_0^t \lambda(X_s)ds\} \int_0^t Af(X_s)\mathbb{I}_{\{\tau>s\}}\exp\{\int_0^s \lambda(X_u)du\}ds$
- $u(\hat{Z}_t)\widetilde{M}_t \int_0^t \mathcal{A}u(\hat{Z}_s)\widetilde{M}_s ds$

Hence, for $0 \le t_1 < ... < t_{m+1} \le T, h_1, ..., h_m \in C(\hat{E})$,

$$\mathbb{E}^{\mathbb{Q}}\left[\left(u(\hat{\theta}_{t_{m+1}})-u(\hat{\theta}_{t_{m}})-\int_{t_{m}}^{t_{m+1}}\mathcal{A}u(\hat{\theta}_{s})ds\right)\prod_{k=1}^{m}h_{k}(\hat{\theta}_{t_{k}})\right]$$
$$=\mathbb{E}^{\mathbb{P}}\left[\left(u(\hat{Z}_{t_{m+1}})\widetilde{M}_{t_{m}}-u(\hat{Z}_{t_{m}})\widetilde{M}_{t_{m+1}}-\int_{t_{m}}^{t_{m+1}}\mathcal{A}u(\hat{Z}_{s})\widetilde{M}_{s}ds\right)\prod_{k=1}^{m}h_{k}(\hat{Z}_{t_{k}})\right]$$
$$=0.$$

イロン イ部ン イヨン イヨン 三日

Weak Convergence	Existence of Solutions
Invariant Measures	Uniqueness
Evolution Equations	The perturbed operator

 $\bullet\,$ Under ${\it Q},\,\hat{\theta}$ is a solution of the martingale problem for ${\cal A}$ with

$$\mathbb{Q}(\hat{ heta}_t \in \hat{g}(E^{\Delta})) = 1 \quad \forall \ t.$$

• $X'_t := \hat{g}^{-1}(\hat{\theta}_t)$ is a solution of the martingale problem for A^{Δ} . • For $u \in B(\hat{E})$

 $\mathbb{E}^{\mathbb{Q}}[u(\hat{\theta}_t)] = \mathbb{E}^{\mathbb{Q}}[u \circ \hat{g}(X'_t)] = \mathbb{E}^{\mathbb{Q}}[[T_t^{\Delta}(u \circ \hat{g})](X'_0)] = \mathbb{E}^{\mathbb{P}}[[T_t^{\Delta}(u \circ \hat{g})](X_0)]$

- $\mathbb{E}^{\mathbb{P}}[u(\hat{Z}_t)\exp\{\int_0^t \hat{\lambda}(\hat{Z}_r)dr\}\mathbb{I}_{\{\tau>t\}}] = \mathbb{E}^{\mathbb{P}}[T_t^{\Delta}(u \circ \hat{g})(X_0)]$ for all $0 \le t \le T$.
- Arguing exactly similarly for the process $X_{s+.}$ we get

$$\mathbb{E}^{\mathbb{P}}[\mathbb{I}_{\mathcal{F}}u(\hat{Z}_{t})\exp\{\int_{s}^{t}\hat{\lambda}(\hat{Z}_{r})dr\}\mathbb{I}_{\{\tau>t\}}]=\mathbb{E}^{\mathbb{P}}[\mathbb{I}_{\mathcal{F}}[\mathcal{T}_{t-s}^{\Delta}(u\circ\hat{g})](X_{s})]$$

for all $s \leq t \leq s + T, F \in \mathcal{F}_s^{\hat{Z}}$

Weak Convergence
Invariant MeasuresExistence of Solutions
UniquenessEvolution EquationsThe perturbed operator

Proof (Contd.)

Thus for all
$$s \leq t \leq s + T$$

$$\mathbb{E}^{\mathbb{P}}[u(\hat{Z}_t)\exp\{\int_s^t \hat{\lambda}(\hat{Z}_r)dr\}\mathbb{I}_{\{\tau>t\}}|\mathcal{F}_s^{\hat{Z}}] = T_{t-s}^{\Delta}(u \circ \hat{g})(X_s) \text{ a.s.}$$

Choosing $u = f \circ \hat{g}^{-1}$

$$\mathbb{E}^{\mathbb{P}}[f(X_t)] - \mathbb{E}^{\mathbb{P}}[T_t^{\Delta}f(X_0)] = \int_0^t \mathbb{E}^{\mathbb{P}}[CT_{t-s}^{\Delta}f(X_s)]ds.$$

$$\mathbb{E}^{\mathbb{P}}[f(X_t)] = \mathbb{E}^{\mathbb{P}}[T_t^{\Delta}f(X_0)] + \int_0^t \mathbb{E}^{\mathbb{P}}[T_s^{\Delta}CT_{t-s}^{\Delta}f(X_0)]ds + \int_0^t \int_0^s \mathbb{E}^{\mathbb{P}}[CT_{s-r}^{\Delta}CT_{t-s}^{\Delta})f(X_r)]drds$$

æ

and so on.

Proof (Contd.)

Thus the distribution of X_t is completely determined determined by $C, (T_s^{\Delta})_{s \ge 0}$ and X_0 .

Hence we have uniqueness of one-dimensional marginals.

Theorem 11

If $\{\mu_t\}_{t\geq 0} \subset \mathcal{M}(E)$ and $\{\nu_t\}_{t\geq 0} \subset \mathcal{M}(E)$ are solutions of (4) with $\mu_0 = \nu_0$, then $\mu_t = \nu_t$ for all $t \geq 0$.

Proof. Theorem 9 implies uniqueness of solution to

$$\int_{E^{\Delta}} f d\gamma_t = \int_{E^{\Delta}} f d\tilde{\nu}_0 + \int_0^t (\int_{E^{\Delta}} (A^{\Delta} + C) f d\gamma_s) ds.$$

Since $1 \in D(A)$ with A1 = 0, we get $\nu_t(E) = \nu_0(E) - \int_0^t \int_E \lambda d\nu_s ds \le 1.$ Set $\tilde{\nu}_t(U) = \nu_t(U \cap E) + (1 - \nu_t(E))\mathbb{I}_U(\Delta)$ Then $\tilde{\nu}_t$ is a solution to (4).