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Definition

Definition 1.1

An operator A is said to satisfy the positive maximum principle if
for f ∈ D(A) and x0 ∈ E,

f (x0) = sup
y∈E

f (y) ≥ 0

then Af (x0) ≤ 0.

Lemma 1

Suppose that A is an operator on Cb(E ) and that for every x ∈ E,
there exists a solution (X x

t ) for the D([0,∞),E ) martingale
problem for (A, δx). Then A satisfies the positive maximum
principle.
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Proof

Proof.

Suppose f ∈ D(A) attains its maximum at x ∈ E .

Then

E [f (X x
t )]− f (x) = E

[∫ t

0
Af (X x

s )ds

]
Thus

1

t

∫ t

0
E [Af (X x

s )] ds ≤ 0.

Since s 7→ E [Af (X x
s )] is right continuous,

Af (x) = lim
t→0

1

t

∫ t

0
E [Af (X x

s )] ds ≤ 0
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Invariant measures

Theorem 1

Suppose A is an operator on Cb(E ) such that D(A) is an algebra
that separates points in E , 1 ∈ D(A), and satisfying

the positive maximum principle

Separability condition

Suppose µ ∈ P(E ) is such that∫
E

Afdµ = 0 ∀ f ∈ D(A).

Then there exists a progressively measurable, stationary solution
(Xt)t≥0 to the martingale problem for (A, µ).
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Evolution Equation

Recall the evolution equation∫
E

fdνt =

∫ t

0

(∫
E

Afdνs

)
ds +

∫
E

fdν0 ∀f ∈ D(A)

A collection {νt}t≥0 ⊂M(E ) which satisfies the above evolution
equation, and such that

t 7→ νt(B) is measurable ∀B ∈ E

is a solution.
Also, recall νt = ν for all t implies

∫
Afdν = 0.
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Mimicking one dimensional distributions

Theorem 2

Suppose A is an operator on Cb(E ) such that D(A) is an algebra
that separates points in E , 1 ∈ D(A), and satisfying

the positive maximum principle

Separability condition

If {µt : 0 ≤ t ≤ T} ⊂ P(E ) is a solution of

〈f , µt〉 = 〈f , µ0〉+

∫ t

0
〈Af , µr 〉dr , t ≤ T , f ∈ D(A).

Then there exists a progressively measurable solution (Xt)t<T to
the martingale problem for (A, µ0), with L(Xt) = µt for all t < T .
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Space-time process

Corollary 2

In addition, if the martingale problem for (A, µ0) is well-posed,
then the evolution equation admits a unique solution.

Proof of Theorem 2.

Let g ∈ C 1
0 ([0,∞)), f ∈ D(A), t ≤ T . Then integration by

parts argument implies

g(t)〈f , µt〉 = g(0)〈f , µ0〉+
∫ t

0

{
g ′(r)〈f , µr 〉+ g(r)〈Af , µr 〉

}
dr .

Let E1 = [0,∞)× E and Γ(s) = T (1− e−s),
νs = δΓ(s) ⊗ µΓ(s).
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Introducing Auxillary Jumps

Define
D(A1) = linear span {g ⊗ f : g ∈ C 1

0 ([0,∞)), f ∈ D(A)},

A1(g ⊗ f )(s, x) = e−s

(
∂g

∂s
(s)f (x) + g(s)Af (x)

)
.

Then

〈f1, νs〉 = 〈f1, ν0〉+
∫ s

0
〈A1f1, νr 〉dr , 0 ≤ s < ∞, f1 ∈ D(A1).

Define an operator B on Cb(E1 × {−1, 1}):

D(B) = linear span {f1 ⊗ h : f1 ∈ D(A1), h ∈ C ({−1, 1})}

B(f1 ⊗ h)(s, x , n) = h(n)(A1f1)(s, x)

+

{
h(−n)

∫
E1

f1(s, y)ν0(dsdy)− h(n)f1(s, x)

}
.
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Let ν ∈ P(E1 × {−1, 1}) be defined by

ν =

(∫ ∞

0
e−sνsds

)
⊗

(
1

2
δ{1} +

1

2
δ{−1}

)
.

Then ∫
E1×{−1,1}

(BF )dν = 0 ∀F ∈ D(B).

∃ a progressively measurable stationary solution (α̃s , X̃s , Ñs)
to the martingale problem for (B, ν).

W.l.o.g., assume that the stationary process is defined for
−∞ < s < ∞
(α̃s , Ñs) admit an r.c.l.l. modification, say (αs ,Ns).

Compact embedding Ê ,A,A1,B and measure ν̂:

Get (αs ,Zs ,Ns), an r.c.l.l. solution to the martingale problem
for (B, ν̂) and (αs ,Zs ,Ns)−∞<s<∞ is a stationary process.
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Solution of the Martingale Problem for A1

Define
τ−1 = sup{t < 0 : Nt 6= N0},

τ1 = inf{t > 0 : Nt 6= N0},

τ2 = inf{t > τ1 : Nt 6= Nτ1}.

Let α̂s = αs+τ1 , Ẑs = Zs+τ1 , F̂s = Fs+τ1 .

Define Qt on (Ω, F̂t) by

dQt =
1

τ1 − τ−1
I{Nt+τ1 6=Nτ1}dP.

Then ∃ a measure Q on Ω such that
its restriction to F̂t is Qt

(α̂s , Ẑs) is a solution to the (A1, ν̂0) martingale problem with
respect to (F̂t) on (Ω,F , Q).

Abhay G. Bhatt Chapter 4



Evolution Equations
Charachterization of Markovian Generators

Extensions

Maximum Principle
From Evolution Equation to Martingale Problem
Evolution equation and Generator

Solution of the Martingale Problem for A

Further for every F ∈ Cb([0,∞)× Ê ),

E
Z ∞

0

e−sF (α̂s , Ẑs)ds =

Z
[0,∞)×Ê

Fd ν̂

=

Z ∞

0

Z
e−sF (α, z)ν̂s(dαdz)ds

=

Z ∞

0

Z
e−sF (α, z)δΓ(s)(dα)µΓ(s) ◦ ĝ−1(dz)ds.

Then α̂s = Γ(s).

Define µ∗t = µt ◦ ĝ−1 and Z ∗t = ẐΓ−1(t), for 0 ≤ t < T .

Then Z ∗ is an r.c.l.l. solution to the martingale problem for
(A, µ∗0).
Changing variables

E
∫ T

0

F (t,Z∗
t )dt =

∫ T

0

F (t, z)µ∗t (dz)dt
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Solution of Martingale Problem

Clearly (µ∗t ) satisfies

〈G , µ∗t 〉 = 〈G , µ∗0〉+

∫ t

0
〈AG , µ∗r 〉dr ∀G ∈ D(A).

D(A) being convergence determining, this implies t 7→ µ∗t is
weakly continuous.

Further
L(Z ∗t ) = µ∗t for all t, 0 ≤ t < T .

In particular, Q(Z ∗t ∈ ĝ(E )) = 1 for all t.

Define X ∗
t = ĝ−1(Z ∗t ).

Then L(X ∗
t ) = µt and X ∗

t is a progressively measurable
solution to the martingale problem for (A, µ0).
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The Hille-Yosida Theorem

Let X be a Markov process with associated semigroup
(Tt)t≥0.

Let L be its generator.

X is a solution of the martingale problem for L.

Hille-Yosida Theorem

A linear operator L on Cb(E ) is the generator of a strongly
continuous contraction semigroup on Cb(E ) if and only if

1 D(L) is dense in Cb(E )

2 L is dissipative i.e. ‖λf −Af ‖ ≥ λ‖f ‖ for all f ∈ D(A), λ > 0.

3 Range(λ− L) = Cb(E ) for all λ > 0.
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Evolution equation - Uniqueness

Theorem 3

If {νt}, {µt} both solve the evolution equation∫
fdρt =

∫
fdρ0 +

∫ t

0

∫
E

Lfdρsds

with µ0 = ν0, then µt = νt for all t ≥ 0.

Proof. Multiplying by λe−λt , integrating w.r.t. t, rearranging
terms and using Fubini’s theorem, we get∫

fdρ0 =

∫ ∞

0

∫
E

e−λs(λf − Lf )dρsds∫ ∞

0

∫
E

e−λs(λf − Lf )dνs =

∫ ∞

0

∫
E

e−λs(λf − Lf )dµs
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Uniqueness (contd.)

Since Range (λ− L) = Cb(E ), we get equality of the measures∫ ∞

0
e−λsνsds =

∫ ∞

0
e−λsµsds

These are uniquely determined by the measure ρ0

Uniqueness of Laplace transform implies νt = µt .

Corollary 3

The martingale problem for L is well-posed.

Let (Yt) be any other solution with L(Y0) = L(X0).
Let νt = L(Xt), µt = L(Yt). We get, from the above theorem
νt = µt for all t.
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Dissipativity

Recall that a linear operator A is dissipative if

‖λf − Af ‖ ≥ λ‖f ‖ for all f ∈ D(A), λ > 0

Dissipativity ⇒ (λ− A) is one-to-one

A satisfies the positive maximum principle ⇒ A is dissipative

Suppose f ∈ D(A) attains its maximum at x ∈ E
let x0 be such that f (x0) = ‖f ‖.
Then Af (x0) ≤ 0.
‖λf − Af ‖ ≥ λf (x0)− Af (x0) ≥ λf (x0) = λ‖f ‖
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Charachterization of Generators of Markov Processes

Let P =
{

µ ∈ P(E ) : ∃η ∈ P(E ) such that for all f ∈ D(A),∫
(λ− A)fdµ = λ

∫
fdη

}
Theorem 4

Suppose that A is a linear operator with D(A) being an
algebra and 1 ∈ D(A) and A1 = 0.

Suppose that the separability condition is satisfied

Then the martingale problem for A is well-posed if and only if

1 D(A) is measure determining

2 A satisfies the positive maximum principle

3 Range (λ− A) is measure determining over P
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Existence

Proof.

Consider the compact embedding of the martingale problem
into Ê ,A
A satisfies the positive maximum principle, since A does

∴ A is dissipative

(λ−A) is one-to-one on its range.

(λ−A)−1 is well defined on Range (λ−A).

Dissipitivaty =⇒ that (λ−A)−1 is a contraction

A1 = 0 =⇒ that (λ−A)−1 is a positive operator.

(I − λ−1A)−1 is a positive contraction operator

∴ ∀z , (I − λ−1A)−1g(z) defines a positive linear functional on
Range (λ−A).
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Existence (contd.)

Extend to C (Ê ) by Hahn-Banch Theorem.

Riesz Representation Theorem =⇒ ∃ some transition
function µλ

(I − λ−1A)−1g(z) =

∫
g(w)µλ(z , dw)

Since Iĝ(E) ∈ D(A), we get µλ(z , ĝ(E )) = 1 for all z ∈ ĝ(E ).

Get ĝ(E ) valued Markov processes Zn corresponding to µn

Note: X n = ĝ−1Zn is a solution of the martingale problem for
An = n

[
(I − n−1A)−1 − I

]
{Zn} has some weak subsequential limit Z

X = ĝ−1Z is a progressively measurable solution of the
martingale problem for A.
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Uniqueness

Let X and Y be two solutions of the martingale problem for A
with L(X0) = L(Y0) = ρ0.

Then µt = L(Xt) and νt = L(Yt) both satisfy the
corresponding forward equation

As in Theorem 3, but now using the fact that Range(λ−A) is
measure determining we get uniqueness of solution to the
evolution equation.

This implies that the µt = νt for all t ≥ 0.

Hence the martingale problem for A is well-posed.
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Domain of A

Let µ, ν be such that

∫
fdµ =

∫
fdν ∀f ∈ D(A)

Let X ,Y be solutions of the (A, µ) and (A, ν) martingale
problems respectively

Let µt = L(Xt) and νt = L(Yt)

Then ∫
fdµt =

∫
fdµ +

∫ t

0

(∫
Afdµs

)
∫

fdνt =

∫
fdν +

∫ t

0

(∫
Afdνs

)
Well-posedness ⇒ uniqueness for evolution equation

∴ µt = νt for all t

Hence µ = ν

Thus D(A) is measure determining
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Positive maximum principle

By hypothesis there exists a solution of the martingale
problem for (A, δx) for each x ∈ E .

Hence there exists a r.c.l.l. solution for the martingale
problem for (A, δz) for each z ∈ Ê .

Hence A satisfies the positive maximum principle

It follows that A satisfies the positive maximum principle

For if f ∈ D(A) attains a positive maximum at x ∈ E ,
u = f ◦ ĝ−1 attains its positive maximum at ĝ(x) ∈ Ê
Then Af (x) = Au(ĝ(x)) ≤ 0.
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Range(λ− A)

Let µ, ν ∈ P with∫
(λ− A)fdµ =

∫
(λ− A)fdν ∀f ∈ D(A)

By definition of P, ∃η ∈ P(E ) such that the common value
above is = λ

∫
fdη

Let

E0 = E × {−1, 1}
D(Bη) = {f1f2 : f1 ∈ D(A), f2 ∈ C ({−1, 1})
Bηf1f2(x , n) = f2(n)Af1(x) + λ

(
f2(−n)

∫
f1dη − f1(x)f2(n)

)
The martingale problem for Bη is well-posed
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Range(λ− A) (Contd.)

Let

µ0 = µ⊗
(

1

2
δ1 +

1

2
δ−1

)
; ν0 = ν ⊗

(
1

2
δ1 +

1

2
δ−1

)
Further ∫

Bηfdµ =

∫
Bηfdν = 0 ∀f ∈ D(Bη)

This implies that µ and ν are invariant measures for the
Markov process charachterised via the martingale problem for
Bη

Uniqueness stationary distribution!!

µ = ν
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Stochastic Control

State space - E
Control space - U,V = P(U)
A : D(A) ⊂ Cb(E ) → M(E × U)

Definition 3.1

An E × U - valued process (Xt , ut)t≥0 defined on some probability
space (Ω,F , P) is a solution to the controlled martingale problem
for (A, µ) with respect to a filtration (Ft)t≥0 if

1 L(X0) = µ,

2 For f ∈ D(A),

f (Xt)−
∫ t

0
Af (Xs , us)ds,

is a (Ft)- martingale.
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Relaxed Control

Definition 3.2

An E × V - valued process (Xt , πt)t≥0 defined on some probability
space (Ω,F , P) is a solution to the relaxed controlled martingale
problem for (A, µ) with respect to a filtration (Ft)t≥0 if

1 L(X (0)) = µ,

2 for f ∈ D(A),

f (Xt)−
∫ t

0

∫
U

Af (Xs , u)πs(du)ds

is a (Ft)-martingale.
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Cost criteria

Let k be a running cost function

Ergodic cost

lim sup
t→∞

1

t

∫ t

0
E

∫
U

[k(Xs , u)πs(du)] ds

Discounted Cost

E
[∫ ∞

0
e−αs

∫
U

k(Xs , u)πs(du)ds

]
, α > 0

Finite Horizon Cost

E
[∫ T

0

∫
U

k(Xs , u)πs(du)ds

]
,T > 0

Minimize cost over a class of controls
Find the optimal control
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Occupation measures

Let (X , π) be a solution of the relaxed control martingale
problem for A.

Ergodic occupation measure If (X , π) is stationary with
L(Xt , πt) = µ. Then the associated cost is

∫
kdµ.

µ is called the ergodic occupation measure

Discounted occupation measure∫
fdµ = αE

[∫ ∞

0

∫
U

e−αt f (Xt , u)πt(du)dt

]
Finite time occupation measure∫

fdµ = T−1E
[∫ T

0

∫
U

f (Xt , u)πt(du)dt

]
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Conditions on A

1 Separability Condition is satisfied
2 D(A) is an algebra that separates points in E and contains

constant functions. Furthermore, A1 = 0
3 For each u ∈ U, Auf ≡ Af (·, u) satisfies the positive

maximum principle

Theorem 5

Suppose µ ∈ P(E × U) satisfy∫
Afdµ = 0 ∀f ∈ D(A).

Then there exists a stationary solution (X , π) of the relaxed
controlled martingale problem for A such that µ = L(Xt , πt) for all
t ≥ 0.
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More results

Theorem 6

Suppose µ ∈ P(E × U) satisfy∫
Afdµ = α

(∫
fdµ−

∫
fdν0

)
∀f ∈ D(A).

Then there exists a solution (X , π) of the relaxed controlled
martingale problem for A such that µ is the discounted occupation
measure for this process.

Similar result holds finite time occupation measures

Finding the optimal control is now equivalent to optimising
over a class of occupation measures
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Martingale Problem with discontinuous Af

A : Cb(E ) → B(E )

Separability condition & Positive maximum principle

There exists a complete separable metric space U, an operator
Â : D(A) → Cb(E × U) and a transition function η from
(E , E) into (U,B(U)) such that

(Af )(x) =

∫
U

Âf (x , u)η(x , du).

Results carry over to this set-up
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An example

Consider the following well-posed SDE

dXt = a(Xt)dt + b(Xt)dWt

where

a, b are measurable functions & W is a Standard Brownian
Motion

Then (t,Xt ,Yt) is a Markov process.

X is then the unique solution of the martingale problem for A
where Af (x) = a(x)f ′(x) + 1

2b2(x)f ′′(x)

Let U = R2, η(x , du) = δa(x) ⊗ δb(x)

Â (x , (u1, u2)) = u1f
′(x) + 1

2u2
2f
′′(x)
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