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Definition

Definition 1.1

An operator A is said to satisfy the positive maximum principle if
for f € D(A) and xp € E,

f(xo) =sup f(y) >0
y€eE

then Af(xp) < 0.

Suppose that A is an operator on Cp(E) and that for every x € E,
there exists a solution (X{*) for the D([0, c0), E) martingale
problem for (A, dx). Then A satisfies the positive maximum
principle.
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Proof.
@ Suppose f € D(A) attains its maximum at x € E.
@ Then .
EIF(X2)] — F(x) = E { / Af(XsX)ds]
0
@ Thus

1t i
t/o E[Af(XX)] ds < 0.

@ Since s — E[Af(X[)] is right continuous,
t—0

1 )
AF(x) = lim t/o E[AF(X2)] ds < 0

O
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Invariant measures

Theorem 1

Suppose A is an operator on Cy(E) such that D(A) is an algebra
that separates points in E, 1 € D(A), and satisfying

@ the positive maximum principle
@ Separability condition

Suppose j € P(E) is such that
/ Afdu=0 Ve D(A).
E

Then there exists a progressively measurable, stationary solution
(Xt)e>0 to the martingale problem for (A, ).
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Evolution Equation

Recall the evolution equation

t
/fdut:/ </ Afdus> ds+/ fdvy Vf € D(A)
E 0 E E

A collection {v}e>0 C M(E) which satisfies the above evolution
equation, and such that

t — v¢(B) is measurable VB € £

is a solution.
Also, recall vy = v for all t implies [ Afdv = 0.
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Mimicking one dimensional distributions

Theorem 2
Suppose A is an operator on Cp(E) such that D(A) is an algebra
that separates points in E, 1 € D(A), and satisfying
@ the positive maximum principle
o Separability condition
If {pe : 0 <t < T} CP(E) is a solution of

t
(F, e) = (F o) +/ (Af,u)dr,  t<T, feD(A).
0

Then there exists a progressively measurable solution (Xt)i<T1 to
the martingale problem for (A, po), with L(X;) = p¢ for all t < T.
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Space-time process

In addition, if the martingale problem for (A, 1) is well-posed,
then the evolution equation admits a unique solution.

Proof of Theorem 2.

o Let g € C}([0,00)), f € D(A),t < T. Then integration by
parts argument implies

g()(f, pe) = g(0)<f,uo>+/0t {&'(N(F, pr) + &(r)(AF, pir) } dr.

o Let £ =[0,00) X E and I'(s) = T(1 —e™®),
Vs = Or(s) @ pr(s)-
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Introducing Auxillary Jumps

@ Define
D(A1) = linear span {g ® f : g € C}([0,0)), f € D(A)},

Aillg @ f)(s,x)=e"*° (g‘i(s)f(x) —i—g(s)Af(x)) )
@ Then
(fi,vs) = <f1,Vo>+/O (A1fi,v,)dr,  0<s<oo,f € D(A).

@ Define an operator B on Cp(E; x {—1,1}):
D(B) = linear span {fA® h:f € D(A1),he C({-1,1})}

B(fi ® h)(s,x,n) = h(n)(A1f1)(s, x)
n {h(—n) [ ilsywolosar) - h(n)ﬁ(s,x>} |
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Let v € P(E1 x {—1,1}) be defined by
o 1 1
V= (/0 e sl/sd5> X (25{1} + 25{_1}> .

(BF)dv=0  VF e D(B).
E1><{—1,1}

Then

3 a progressively measurable stationary solution (&575(5’ NS)
to the martingale problem for (B, v).

W.l.o.g., assume that the stationary process is defined for
—00 < § < 0

(&s, Ng) admit an r.c.ll. modification, say (o, Ns).

Compact embedding E, A, A1, B and measure ©:

Get (as, Zs, Ns), an r.c.l.l. solution to the martingale problem
for (B,7) and (as, Zs, Ns)—co<s<oo IS a Stationary process.
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Solution of the Martingale Problem for A

@ Define
7_1 =sup{t <0: Ny # No},

71 = inf{t > 0: N¢ # No},
Ty = inf{t > 11 N 75 NTI}.

A

o Let s = asyr, Zs = Lsiry, Fo= Fsir-
o Define Q! on (Q, F;) by

1
t __
dQ* = p— Tilﬂ{NHTl#NTI}dIP’.
@ Then J a measure Q on € such that
o its restriction to Fis QF
o (As,Zs) is a solution to the (A1, D9) martingale problem with
respect to (F;) on (2, F,Q).
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Solution of the Martingale Problem for A

o Further for every F € Cy([0, ) x E),
E/oo e *F(&s, Zs)ds = / Fdp
0 [0,00)x E

/ / *F(a, z)0s(dadz)ds

_ / / e~ F (1, 2)0r() (da)pr(s) 0 & (dz)ds.
0

@ Then as =T(s).

o Define yif = peo g™t and Zf = Zr-a(y, for 0< t < T.

@ Then Z* is an r.c.l.l. solution to the martingale problem for
(A, 1)

@ Changing variables

T T
E/ F(t,Zt*)dt:/ F(t,z)p;(dz)dt
0 0
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Solution of Martingale Problem

o Clearly (p3) satisfies

(6.1 = (Gu1i) + [ (AG.up)dr VG < D(A).

D(.A) being convergence determining, this implies t — uj is
weakly continuous.
Further

L(Z)=p; forallt,0<t<T.
In particular, Q(Z;} € g(E)) =1 for all t.
Define X; = g~ 1(Z}).

Then L£(X;) = pr and X;" is a progressively measurable
solution to the martingale problem for (A, o).

Bl
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The Hille-Yosida Theorem

@ Let X be a Markov process with associated semigroup
(Te)eo0-
o Let L be its generator.

@ X is a solution of the martingale problem for L.
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The Hille-Yosida Theorem

@ Let X be a Markov process with associated semigroup
(Te)eo0-
o Let L be its generator.

@ X is a solution of the martingale problem for L.

Hille-Yosida Theorem

A linear operator L on Cp(E) is the generator of a strongly
continuous contraction semigroup on Cp(E) if and only if

© D(L) is dense in Cp(E)
Q L is dissipative i.e. ||\f — Af|| > A[|f]| for all f € D(A),A > 0.
© Range(A — L) = Cp(E) for all A > 0.
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Evolution equation - Uniqueness

If {ve},{u+} both solve the evolution equation

t
/ fdpe = / fdpo + / / Lfdpsds
0 E

with po = v, then uy = vy for all t > 0.

Proof. Multiplying by Ae™*t, integrating w.r.t. t, rearranging

terms and using Fubini's theorem, we get

/fdpoz/oo/ e (N — Lf)dpsds
/ / e (N — Lf)dvs = / / AN — Lf)dps
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Uniqueness (contd.)

@ Since Range (A — L) = Cp(E), we get equality of the measures

o oo
/ e Musds = / e M usds
0 0

@ These are uniquely determined by the measure pg

@ Uniqueness of Laplace transform implies vy = p. []

The martingale problem for L is well-posed.

Let (Y:) be any other solution with £(Yp) = L(Xo).
Let vy = L(Xt), ur = L(Y:). We get, from the above theorem
vy = ut for all t. ]
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Dissipativity

@ Recall that a linear operator A is dissipative if

INF — Af|| > A|If]|  forall f € D(A),A >0

e Dissipativity = (A — A) is one-to-one

@ A satisfies the positive maximum principle = A is dissipative
Suppose f € D(A) attains its maximum at x € E

let xo be such that f(xp) = ||f]|.

Then Af(xp) < 0.

IAf = Af[| = M (x0) — Af(x0) > Af(x0) = Allf]|
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Charachterization of Generators of Markov Processes

Let P = {,u € P(E) : 3n € P(E) such that for all f € D(A),

/()\ — AYfdy = A/ fdn}

@ Suppose that A is a linear operator with D(A) being an
algebra and 1 € D(A) and A1 = 0.

@ Suppose that the separability condition is satisfied
Then the martingale problem for A is well-posed if and only if
@ D(A) is measure determining

@ A satisfies the positive maximum principle

© Range (A — A) is measure determining over P

’
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Existence
Proof.

° ConsiAder the compact embedding of the martingale problem
into E, A

o A satisfies the positive maximum principle, since A does

o . Ais dissipative

@ (A — A) is one-to-one on its range.

o (A — A)7!is well defined on Range (A — A).

e Dissipitivaty = that (A — A)~! is a contraction

e Al =0 = that (A —.A)"! is a positive operator.

o (/ —A71A)~1is a positive contraction operator

o .Vz,(I — A7 A)"lg(z) defines a positive linear functional on
Range (A — A).
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Existence (contd.)

Extend to C(E) by Hahn-Banch Theorem.

Riesz Representation Theorem = d some transition
function gy

(- A72A) g(2) = / g (W) (. dw)

(]

Since Iz(g) € D(A), we get 1\(z,8(E)) = 1 for all z € g(E).
Get g(E) valued Markov processes Z" corresponding to pup

Note: X" = g~1Z" is a solution of the martingale problem for
A" =n[(l—ntA)"t — 1]

{Z"} has some weak subsequential limit Z

X = g7 1Z is a progressively measurable solution of the
martingale problem for A. O
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Uniqueness

@ Let X and Y be two solutions of the martingale problem for A
with E(Xo) = E( Yo) = po-

@ Then uy = L(X;) and vy = L(Y:) both satisfy the
corresponding forward equation

@ As in Theorem 3, but now using the fact that Range(A — A) is
measure determining we get uniqueness of solution to the
evolution equation.

@ This implies that the u; = v for all t > 0.

@ Hence the martingale problem for A is well-posed.
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Domain of A

o Let 11, v be such that /fdu :/fdy Vf € D(A)

Let X, Y be solutions of the (A, ;1) and (A, v) martingale
problems respectively
Let Mt = E(Xt) and Vi = ;C( Yt)

o /fd,ut :/fdu+/ot </Afdus>
/fdut:/fdy+/0t </Afdus>

Well-posedness = uniqueness for evolution equation
cope =y forall t

Hence p=v
Thus D(A) is measure determining O
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Positive maximum principle

@ By hypothesis there exists a solution of the martingale
problem for (A, dy) for each x € E.

@ Hence there exists a r.c.l.l. solution for the martingale
problem for (A, 4,) for each z € E.

@ Hence A satisfies the positive maximum principle

@ It follows that A satisfies the positive maximum principle

o For if f € D(A) attains a positive maximum at x € E,
u = f o g1 attains its positive maximum at g(x) € E
o Then Af(x) = Au(g(x)) <O0.
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Range(A — A)

o Let p,v € P with
/()\—A)fd,u_/()\—A)fdu W € D(A)

e By definition of P, In € P(E) such that the common value
above is = X [ fdn
o Let
o Ey=FE x{-1,1}
o D(B") = {fifh: f € D(A), , € C({—1,1})
o BUhih(x,n) = h(nAR(X) + A ((—n) [ fidn— A(x)A(n)

@ The martingale problem for B" is well-posed
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Range(A — A) (Contd.)

@ Further

/B"fd,u: /B”fdu =0 VfeD(B")

This implies that ;2 and v are invariant measures for the
Markov process charachterised via the martingale problem for
B"

Uniqueness stationary distribution!!

p=v
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Extensions

Stochastic Control

@ State space - E
e Control space - U,V = P(U)
e A:D(A) C Cp(E) — M(E x U)

Definition 3.1
An E x U - valued process (Xt, ut)¢>0 defined on some probability
space (2, F,P) is a solution to the controlled martingale problem
for (A, i) with respect to a filtration (F¢)¢>o if

Q L(Xo) = p,

@ Forf € D(A),

t
F(X0) — / AF(Xe, us)ds,
0

is a (F¢)- martingale.
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Relaxed Control

Definition 3.2
An E x V - valued process (X:, 7+)e>0 defined on some probability
space (2, F,P) is a solution to the relaxed controlled martingale
problem for (A, i) with respect to a filtration (Fy)e>o if

Q L(X(0)) =,

Q for f € D(A),

F(Xe) — /0 t /U AF(Xe, u)res(du)ds

is a (Ft)-martingale.
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Cost criteria

Let k be a running cost function

Ergodic cost

t—00

1 t

Iimsup/ E/ [k(Xs, u)ms(du)] ds
tJo U

Discounted Cost

E UOOO eas/uk(Xs, u)ﬂs(du)ds} a0

Finite Horizon Cost

E [/OT/Uk(XS, u)TrS(du)ds] T>0

Minimize cost over a class of controls
Find the optimal control
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Occupation measures

@ Let (X, ) be a solution of the relaxed control martingale
problem for A.

Ergodic occupation measure If (X, ) is stationary with
L(X¢,7) = p. Then the associated cost is [ kdp.
1 is called the ergodic occupation measure

Discounted occupation measure

/ fdy = o [ /0 b /U e_o‘tf(Xt,u)m(du)dt]

Finite time occupation measure

/fdu: TR [/OT/Uf(Xt,u)Trt(du)dt}
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Conditions on A

@ Separability Condition is satisfied

@ D(A) is an algebra that separates points in E and contains
constant functions. Furthermore, A1 =0

© For each u € U, Af = Af(-, u) satisfies the positive
maximum principle

Theorem 5
Suppose p € P(E x U) satisfy

/Afdu =0 Vf e D(A).

Then there exists a stationary solution (X, m) of the relaxed

controlled martingale problem for A such that u = L(X, ) for all
t > 0.
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More results

Suppose i € P(E x U) satisfy

/Afdu _ </ fdy — / fduo> Vf € D(A).

Then there exists a solution (X, ) of the relaxed controlled
martingale problem for A such that y is the discounted occupation
measure for this process.

@ Similar result holds finite time occupation measures

@ Finding the optimal control is now equivalent to optimising
over a class of occupation measures
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Martingale Problem with discontinuous Af

o A: Gy(E) — B(E)
@ Separability condition & Positive maximum principle

@ There exists a complete separable metric space U, an operator
A: D(A) — Cp(E x U) and a transition function 7 from
(E,€&) into (U, B(U)) such that

(Af)(x) = /U Af (x, u)n(x, du).
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Martingale Problem with discontinuous Af

o A: Gy(E) — B(E)
@ Separability condition & Positive maximum principle

@ There exists a complete separable metric space U, an operator
A: D(A) — Cp(E x U) and a transition function 7 from
(E,€&) into (U, B(U)) such that

(Af)(x) = /U Af (x, u)n(x, du).

@ Results carry over to this set-up
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An example

Consider the following well-posed SDE
dX: = a(Xt)dt + b(X:)dW,

where

@ a, b are measurable functions & W is a Standard Brownian
Motion

@ Then (t, X, V:) is a Markov process.

@ X is then the unique solution of the martingale problem for A
where Af(x) = a(x)f'(x) + %b2(x)f”(x)

o Let U=R?, 5(x,du) = da(x) @ Ip(x)

o A(x, (u1,u)) = uf'(x) + Tu2f"(x)
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THANK YOU
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