Evolution Equations Charachterization of Markovian Generators Extensions

Martingale Problems

Abhay G. Bhatt Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi

Lectures on Probability and Stochastic Processes III Indian Statistical Institute, Kolkata

20-24 November 2008

Outline

1 Evolution Equations

- Maximum Principle
- From Evolution Equation to Martingale Problem
- Evolution equation and Generator

2 Charachterization of Markovian Generators

- Hille-Yosida type theorem for Markov processes
- Proof of Sufficiency
- Proof of Necessity

3 Extensions

- Controlled Martingale Problem
- Discontinuous Coefficients

Definition

Definition 1.1

An operator A is said to satisfy the positive maximum principle if for $f \in D(A)$ and $x_0 \in E$,

$$f(x_0) = \sup_{y \in E} f(y) \ge 0$$

then $Af(x_0) \leq 0$.

Lemma 1

Suppose that A is an operator on $C_b(E)$ and that for every $x \in E$, there exists a solution (X_t^x) for the $D([0,\infty), E)$ martingale problem for (A, δ_x) . Then A satisfies the positive maximum principle.

Proof

Proof.

• Suppose $f \in D(A)$ attains its maximum at $x \in E$.

• Then

$$E[f(X_t^{\times})] - f(x) = \mathbb{E}\left[\int_0^t Af(X_s^{\times}) ds\right]$$

Thus

$$\frac{1}{t}\int_0^t \mathbb{E}\left[Af(X_s^{\scriptscriptstyle X})\right]ds \leq 0.$$

• Since $s \mapsto \mathbb{E}\left[Af(X_s^{\times})\right]$ is right continuous,

$$Af(x) = \lim_{t \to 0} rac{1}{t} \int_0^t \mathbb{E} \left[Af(X_s^x)
ight] ds \leq 0$$

・ロト ・回ト ・ヨト

_∢ ≣ ≯

Invariant measures

Theorem 1

Suppose A is an operator on $C_b(E)$ such that D(A) is an algebra that separates points in E, $\mathbf{1} \in D(A)$, and satisfying

- the positive maximum principle
- Separability condition

Suppose $\mu \in \mathcal{P}(E)$ is such that

$$\int_E Afd\mu = 0 \qquad \forall \ f \in D(A).$$

Then there exists a progressively measurable, stationary solution $(X_t)_{t\geq 0}$ to the martingale problem for (A, μ) .

イロト イヨト イヨト イヨト

Evolution Equation

Recall the evolution equation

$$\int_{E} f d\nu_{t} = \int_{0}^{t} \left(\int_{E} A f d\nu_{s} \right) ds + \int_{E} f d\nu_{0} \quad \forall f \in D(A)$$

A collection $\{\nu_t\}_{t\geq 0} \subset \mathcal{M}(E)$ which satisfies the above evolution equation, and such that

 $t \mapsto \nu_t(B)$ is measurable $\forall B \in \mathcal{E}$

is a solution.

Also, recall $\nu_t = \nu$ for all t implies $\int Afd\nu = 0$.

イロト イヨト イヨト イヨト

Mimicking one dimensional distributions

Theorem 2

Suppose A is an operator on $C_b(E)$ such that D(A) is an algebra that separates points in E, $\mathbf{1} \in D(A)$, and satisfying

- the positive maximum principle
- Separability condition

If $\{\mu_t : 0 \le t \le T\} \subset \mathcal{P}(E)$ is a solution of

$$\langle f, \mu_t \rangle = \langle f, \mu_0 \rangle + \int_0^t \langle Af, \mu_r \rangle dr, \qquad t \leq T, \ f \in D(A).$$

Then there exists a progressively measurable solution $(X_t)_{t < T}$ to the martingale problem for (A, μ_0) , with $\mathcal{L}(X_t) = \mu_t$ for all t < T.

・ロン ・回と ・ヨン・

Space-time process

Corollary 2

In addition, if the martingale problem for (A, μ_0) is well-posed, then the evolution equation admits a unique solution.

Proof of Theorem 2.

• Let $g \in C_0^1([0,\infty)), f \in D(A), t \leq T$. Then integration by parts argument implies

$$g(t)\langle f,\mu_t\rangle = g(0)\langle f,\mu_0\rangle + \int_0^t \left\{g'(r)\langle f,\mu_r\rangle + g(r)\langle Af,\mu_r\rangle\right\} dr.$$

<ロ> <同> <同> <同> < 同>

- ∢ ≣ ▶

• Let
$$E_1 = [0, \infty) \times E$$
 and $\Gamma(s) = T(1 - e^{-s})$,
 $\nu_s = \delta_{\Gamma(s)} \otimes \mu_{\Gamma(s)}$.

Introducing Auxillary Jumps

• Define

$$D(A_1) = \text{ linear span } \{g \otimes f : g \in C_0^1([0,\infty)), f \in D(A)\},$$

$$A_1(g \otimes f)(s,x) = e^{-s} \left(\frac{\partial g}{\partial s}(s)f(x) + g(s)Af(x)\right).$$

Then

$$\langle f_1, \nu_s \rangle = \langle f_1, \nu_0 \rangle + \int_0^s \langle A_1 f_1, \nu_r \rangle dr, \qquad 0 \leq s < \infty, f_1 \in D(A_1).$$

• Define an operator *B* on $C_b(E_1 \times \{-1, 1\})$: $D(B) = \text{ linear span } \{f_1 \otimes h : f_1 \in D(A_1), h \in C(\{-1, 1\})\}$ $B(f_1 \otimes h)(s, x, n) = h(n)(A_1f_1)(s, x)$ $+ \left\{h(-n)\int_{E_1} f_1(s, y)\nu_0(dsdy) - h(n)f_1(s, x)\right\}.$

• Let $\nu \in \mathcal{P}(\mathcal{E}_1 \times \{-1,1\})$ be defined by

$$\nu = \left(\int_0^\infty e^{-s}\nu_s ds\right) \otimes \left(\frac{1}{2}\delta_{\{1\}} + \frac{1}{2}\delta_{\{-1\}}\right)$$

Then

$$\int_{E_1 imes \{-1,1\}} (BF) d
u = 0 \qquad orall F \in D(B).$$

- \exists a progressively measurable stationary solution $(\tilde{\alpha}_s, \tilde{X}_s, \tilde{N}_s)$ to the martingale problem for (B, ν) .
- $\bullet\,$ W.l.o.g., assume that the stationary process is defined for $-\infty < s < \infty$
- $(\tilde{\alpha}_s, \tilde{N}_s)$ admit an r.c.l.l. modification, say (α_s, N_s) .
- Compact embedding $\hat{E}, \mathcal{A}, \mathcal{A}_1, \mathcal{B}$ and measure $\hat{\nu}$:
- Get (α_s, Z_s, N_s) , an r.c.l.l. solution to the martingale problem for $(\mathcal{B}, \hat{\nu})$ and $(\alpha_s, Z_s, N_s)_{-\infty < s < \infty}$ is a stationary process.

Solution of the Martingale Problem for \mathcal{A}_1

Define

$$\tau_{-1} = \sup\{t < 0 : N_t \neq N_0\},$$

$$\tau_1 = \inf\{t > 0 : N_t \neq N_0\},$$

$$\tau_2 = \inf\{t > \tau_1 : N_t \neq N_{\tau_1}\}.$$

• Let $\hat{\alpha}_s = \alpha_{s+\tau_1}, \hat{\mathcal{Z}}_s = Z_{s+\tau_1}, \hat{\mathcal{F}}_s = \mathcal{F}_{s+\tau_1}.$
• Define \mathbb{Q}^t on $(\Omega, \hat{\mathcal{F}}_t)$ by

$$d\mathbb{Q}^t = \frac{1}{1} \mathbb{I}_{\{N_{t+1} \neq N_{t+1}\}} d\mathbb{P}$$

$$d\mathbb{Q}^t = \frac{1}{\tau_1 - \tau_{-1}} \mathbb{I}_{\{N_{t+\tau_1} \neq N_{\tau_1}\}} d\mathbb{P}.$$

- $\bullet~$ Then $\exists~$ a measure $\mathbb Q$ on Ω such that
 - its restriction to $\hat{\mathcal{F}}_t$ is \mathbb{Q}^t
 - $(\hat{\alpha}_s, \hat{Z}_s)$ is a solution to the $(\mathcal{A}_1, \hat{\nu}_0)$ martingale problem with respect to $(\hat{\mathcal{F}}_t)$ on $(\Omega, \mathcal{F}, \mathbb{Q})$.

Solution of the Martingale Problem for \mathcal{A}

• Further for every $F \in C_b([0,\infty) \times \hat{E})$,

$$\mathbb{E}\int_{0}^{\infty} e^{-s}F(\hat{\alpha}_{s},\hat{Z}_{s})ds = \int_{[0,\infty)\times\hat{E}}Fd\hat{\nu}$$

= $\int_{0}^{\infty}\int e^{-s}F(\alpha,z)\hat{\nu}_{s}(d\alpha dz)ds$
= $\int_{0}^{\infty}\int e^{-s}F(\alpha,z)\delta_{\Gamma(s)}(d\alpha)\mu_{\Gamma(s)}\circ\hat{g}^{-1}(dz)ds.$

- Then $\hat{\alpha}_s = \Gamma(s)$.
- Define $\mu_t^* = \mu_t \circ \hat{g}^{-1}$ and $Z_t^* = \hat{Z}_{\Gamma^{-1}(t)}$, for $0 \le t < T$.
- Then Z^* is an r.c.l.l. solution to the martingale problem for (\mathcal{A}, μ_0^*) .
- Changing variables

$$\mathbb{E}\int_0^T F(t, Z_t^*) dt = \int_0^T F(t, z) \mu_t^*(dz) dt$$

Solution of Martingale Problem

• Clearly (μ_t^*) satisfies

$$\langle G, \mu_t^* \rangle = \langle G, \mu_0^* \rangle + \int_0^t \langle \mathcal{A}G, \mu_r^* \rangle dr \quad \forall G \in D(\mathcal{A}).$$

- D(A) being convergence determining, this implies t → μ^{*}_t is weakly continuous.
- Further

$$\mathcal{L}(Z_t^*) = \mu_t^*$$
 for all $t, 0 \le t < T$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- In particular, $\mathbb{Q}(Z_t^* \in \hat{g}(E)) = 1$ for all t.
- Define $X_t^* = \hat{g}^{-1}(Z_t^*)$.
- Then $\mathcal{L}(X_t^*) = \mu_t$ and X_t^* is a progressively measurable solution to the martingale problem for (A, μ_0) .

The Hille-Yosida Theorem

- Let X be a Markov process with associated semigroup $(T_t)_{t \ge 0}$.
- Let *L* be its generator.
- X is a solution of the martingale problem for L.

< ≣ >

æ

The Hille-Yosida Theorem

- Let X be a Markov process with associated semigroup $(T_t)_{t \ge 0}$.
- Let *L* be its generator.
- X is a solution of the martingale problem for L.

Hille-Yosida Theorem

A linear operator L on $C_b(E)$ is the generator of a strongly continuous contraction semigroup on $C_b(E)$ if and only if

- **1** D(L) is dense in $C_b(E)$
- 2 L is dissipative i.e. $\|\lambda f Af\| \ge \lambda \|f\|$ for all $f \in D(A), \lambda > 0$.

イロン イ部ン イヨン イヨン 三日

• Range $(\lambda - L) = C_b(E)$ for all $\lambda > 0$.

Evolution Equations Maximum Principle Charachterization of Markovian Generators Extensions

From Evolution Equation to Martingale Problem Evolution equation and Generator

Evolution equation - Uniqueness

Theorem 3

If $\{\nu_t\}, \{\mu_t\}$ both solve the evolution equation

$$\int f d\rho_t = \int f d\rho_0 + \int_0^t \int_E L f d\rho_s ds$$

with
$$\mu_0 = \nu_0$$
, then $\mu_t = \nu_t$ for all $t \ge 0$.

Proof. Multiplying by $\lambda e^{-\lambda t}$, integrating w.r.t. t, rearranging terms and using Fubini's theorem, we get

$$\int f d\rho_0 = \int_0^\infty \int_E e^{-\lambda s} (\lambda f - Lf) d\rho_s ds$$
$$\int_0^\infty \int_E e^{-\lambda s} (\lambda f - Lf) d\nu_s = \int_0^\infty \int_E e^{-\lambda s} (\lambda f - Lf) d\mu_s$$

Evolution Equations	Maximum Principle
Charachterization of Markovian Generators	From Evolution Equation to Martingale Problem
Extensions	Evolution equation and Generator

Uniqueness (contd.)

• Since Range $(\lambda - L) = C_b(E)$, we get equality of the measures

$$\int_0^\infty e^{-\lambda s}
u_s ds = \int_0^\infty e^{-\lambda s} \mu_s ds$$

- These are uniquely determined by the measure ho_0
- Uniqueness of Laplace transform implies $\nu_t = \mu_t$.

Corollary 3

The martingale problem for L is well-posed.

Let (Y_t) be any other solution with $\mathcal{L}(Y_0) = \mathcal{L}(X_0)$. Let $\nu_t = \mathcal{L}(X_t), \mu_t = \mathcal{L}(Y_t)$. We get, from the above theorem $\nu_t = \mu_t$ for all t.

イロン イヨン イヨン イヨン

Evolution Equations Charachterization of Markovian Generators Extensions Hille-Yosida type theorem for Markov processes Proof of Sufficiency Proof of Necessity

Outline

Evolution Equations

- Maximum Principle
- From Evolution Equation to Martingale Problem
- Evolution equation and Generator

2 Charachterization of Markovian Generators

- Hille-Yosida type theorem for Markov processes
- Proof of Sufficiency
- Proof of Necessity

3 Extensions

- Controlled Martingale Problem
- Discontinuous Coefficients

Dissipativity

• Recall that a linear operator A is dissipative if

$$\|\lambda f - Af\| \ge \lambda \|f\|$$
 for all $f \in D(A), \lambda > 0$

- Dissipativity $\Rightarrow (\lambda A)$ is one-to-one
- A satisfies the positive maximum principle \Rightarrow A is dissipative
 - Suppose $f \in D(A)$ attains its maximum at $x \in E$
 - let x_0 be such that $f(x_0) = ||f||$.
 - Then $Af(x_0) \leq 0$.
 - $\|\lambda f Af\| \ge \lambda f(x_0) Af(x_0) \ge \lambda f(x_0) = \lambda \|f\|$

イロン イヨン イヨン ・

Evolution Equations Charachterization of Markovian Generators Extensions Extensions Hille-Yosida type theorem for Markov processes Proof of Sufficiency Proof of Necessity

Charachterization of Generators of Markov Processes

Let
$$\mathcal{P} = \Big\{ \mu \in \mathbb{P}(E) : \exists \eta \in \mathbb{P}(E) \text{ such that for all } f \in D(A), \Big\}$$

$$\int (\lambda - A) f d\mu = \lambda \int f d\eta \Big\}$$

Theorem 4

/

- Suppose that A is a linear operator with D(A) being an algebra and $\mathbf{1} \in D(A)$ and $A\mathbf{1} = \mathbf{0}$.
- Suppose that the separability condition is satisfied

Then the martingale problem for A is well-posed if and only if

- **1** D(A) is measure determining
- **2** A satisfies the positive maximum principle
- **③** Range (λA) is measure determining over \mathcal{P}

Existence

Proof.

- \bullet Consider the compact embedding of the martingale problem into \hat{E}, \mathcal{A}
- $\mathcal A$ satisfies the positive maximum principle, since $\mathcal A$ does
- $\therefore \mathcal{A}$ is dissipative
- (λA) is one-to-one on its range.
- $(\lambda \mathcal{A})^{-1}$ is well defined on Range $(\lambda \mathcal{A})$.
- Dissipitivaty \implies that $(\lambda \mathcal{A})^{-1}$ is a contraction
- $A\mathbf{1} = \mathbf{0} \implies$ that $(\lambda \mathcal{A})^{-1}$ is a positive operator.
- $(I \lambda^{-1} \mathcal{A})^{-1}$ is a positive contraction operator
- $\therefore \forall z, (I \lambda^{-1}A)^{-1}g(z)$ defines a positive linear functional on Range (λA) .

Evolution Equations Charachterization of Markovian Generators Extensions Extensions Hille-Yosida type theorem for Markov processes Proof of Sufficiency Proof of Necessity

Existence (contd.)

- Extend to $C(\hat{E})$ by Hahn-Banch Theorem.
- Riesz Representation Theorem $\implies \exists$ some transition function μ_{λ}

$$(I - \lambda^{-1}A)^{-1}g(z) = \int g(w)\mu_{\lambda}(z, dw)$$

- Since $\mathbb{I}_{\hat{g}(E)} \in D(\mathcal{A})$, we get $\mu_{\lambda}(z, \hat{g}(E)) = 1$ for all $z \in \hat{g}(E)$.
- Get $\hat{g}(E)$ valued Markov processes Z^n corresponding to μ_n
- Note: $X^n = \hat{g}^{-1}Z^n$ is a solution of the martingale problem for $A^n = n \left[(I n^{-1}A)^{-1} I \right]$
- $\{Z^n\}$ has some weak subsequential limit Z
- $X = \hat{g}^{-1}Z$ is a progressively measurable solution of the martingale problem for A.

Uniqueness

- Let X and Y be two solutions of the martingale problem for A with L(X₀) = L(Y₀) = ρ₀.
- Then $\mu_t = \mathcal{L}(X_t)$ and $\nu_t = \mathcal{L}(Y_t)$ both satisfy the corresponding forward equation
- As in Theorem 3, but now using the fact that Range(λ − A) is measure determining we get uniqueness of solution to the evolution equation.
- This implies that the $\mu_t = \nu_t$ for all $t \ge 0$.
- Hence the martingale problem for A is well-posed.

・ロト ・回ト ・ヨト ・ヨト

Evolution Equations Charachterization of Markovian Generators Extensions Extensions Hille-Yosida type theorem for Markov processes Proof of Sufficiency Proof of Necessity

Domain of A

- Let μ, ν be such that $\int f d\mu = \int f d\nu \quad \forall f \in D(A)$
- Let X, Y be solutions of the (A, μ) and (A, ν) martingale problems respectively
- Let $\mu_t = \mathcal{L}(X_t)$ and $\nu_t = \mathcal{L}(Y_t)$

Then

$$\int f d\mu_{t} = \int f d\mu + \int_{0}^{t} \left(\int A f d\mu_{s} \right)$$
$$\int f d\nu_{t} = \int f d\nu + \int_{0}^{t} \left(\int A f d\nu_{s} \right)$$

() < </p>

- Well-posedness \Rightarrow uniqueness for evolution equation
- $\therefore \mu_t = \nu_t$ for all t
- Hence $\mu = \nu$
- Thus D(A) is measure determining

Positive maximum principle

- By hypothesis there exists a solution of the martingale problem for (A, δ_x) for each x ∈ E.
- Hence there exists a r.c.l.l. solution for the martingale problem for (A, δ_z) for each z ∈ Ê.
- $\bullet\,$ Hence ${\cal A}$ satisfies the positive maximum principle
- It follows that A satisfies the positive maximum principle
 - For if f ∈ D(A) attains a positive maximum at x ∈ E, u = f ∘ ĝ⁻¹ attains its positive maximum at ĝ(x) ∈ Ê

• Then
$$Af(x) = \mathcal{A}u(\hat{g}(x)) \leq 0.$$

(本間) (本語) (本語)

Evolution Equations Charachterization of Markovian Generators Extensions Proof of Nuficiency Proof of Necessity

$$\mathsf{Range}(\lambda - A)$$

• Let
$$\mu, \nu \in \mathcal{P}$$
 with

$$\int (\lambda - A) f d\mu = \int (\lambda - A) f d\nu \quad \forall f \in D(A)$$

- By definition of \mathcal{P} , $\exists \eta \in \mathbb{P}(E)$ such that the common value above is $= \lambda \int f d\eta$
- Let

•
$$E_0 = E \times \{-1, 1\}$$

• $D(B^{\eta}) = \{f_1 f_2 : f_1 \in D(A), f_2 \in C(\{-1, 1\})$
• $B^{\eta} f_1 f_2(x, n) = f_2(n) A f_1(x) + \lambda (f_2(-n) \int f_1 d\eta - f_1(x) f_2(n))$

イロト イヨト イヨト イヨト

æ

• The martingale problem for B^{η} is well-posed

Evolution Equations Charachterization of Markovian Generators Extensions Extensions Hille-Yosida type theorem for Markov processes Proof of Sufficiency Proof of Necessity

$\mathsf{Range}(\lambda - A)$ (Contd.)

Let

$$\mu^{\mathsf{0}} = \mu \otimes \left(\frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}\right); \qquad \nu^{\mathsf{0}} = \nu \otimes \left(\frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}\right)$$

Further

$$\int B^\eta f d\mu = \int B^\eta f d
u = 0 \quad orall f \in D(B^\eta)$$

- This implies that μ and ν are invariant measures for the Markov process charachterised via the martingale problem for B^η
- Uniqueness stationary distribution!!
- $\mu = \nu$

・ロト ・回ト ・ヨト ・ヨト

Evolution Equations Charachterization of Markovian Generators Extensions

Controlled Martingale Problem Discontinuous Coefficients

Outline

Evolution Equations

- Maximum Principle
- From Evolution Equation to Martingale Problem
- Evolution equation and Generator
- 2 Charachterization of Markovian Generators
 - Hille-Yosida type theorem for Markov processes
 - Proof of Sufficiency
 - Proof of Necessity

3 Extensions

- Controlled Martingale Problem
- Discontinuous Coefficients

Stochastic Control

- State space E
- Control space $U, V = \mathcal{P}(U)$
- $A: D(A) \subset C_b(E) \to M(E \times U)$

Definition 3.1

An $E \times U$ - valued process $(X_t, u_t)_{t>0}$ defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a solution to the controlled martingale problem for (A, μ) with respect to a filtration $(\mathcal{F}_t)_{t>0}$ if

- $\bigcirc \mathcal{L}(X_0) = \mu,$
- **2** For $f \in D(A)$,

$$f(X_t) - \int_0^t Af(X_s, u_s) ds,$$

is a (\mathcal{F}_t) - martingale.

イロン イヨン イヨン イヨン

Relaxed Control

Definition 3.2

An $E \times V$ - valued process $(X_t, \pi_t)_{t \ge 0}$ defined on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a solution to the relaxed controlled martingale problem for (A, μ) with respect to a filtration $(\mathcal{F}_t)_{t \ge 0}$ if

2 for $f \in D(A)$,

$$f(X_t) - \int_0^t \int_U Af(X_s, u) \pi_s(du) ds$$

is a (\mathcal{F}_t) -martingale.

Cost criteria

Let k be a running cost function Ergodic cost

$$\limsup_{t\to\infty}\frac{1}{t}\int_0^t\mathbb{E}\int_U[k(X_s,u)\pi_s(du)]\,ds$$

Discounted Cost

$$\mathbb{E}\left[\int_0^\infty e^{-\alpha s}\int_U k(X_s,u)\pi_s(du)ds\right],\alpha>0$$

Finite Horizon Cost

$$\mathbb{E}\left[\int_0^T\int_U k(X_s,u)\pi_s(du)ds\right], T>0$$

Minimize cost over a class of controls Find the optimal control

Occupation measures

 Let (X, π) be a solution of the relaxed control martingale problem for A.

Ergodic occupation measure If (X, π) is stationary with $\mathcal{L}(X_t, \pi_t) = \mu$. Then the associated cost is $\int k d\mu$. μ is called the ergodic occupation measure

Discounted occupation measure

$$\int f d\mu = \alpha \mathbb{E} \left[\int_0^\infty \int_U e^{-\alpha t} f(X_t, u) \pi_t(du) dt \right]$$

Finite time occupation measure

$$\int f d\mu = T^{-1} \mathbb{E} \left[\int_0^T \int_U f(X_t, u) \pi_t(du) dt \right]$$

Conditions on A

- Separability Condition is satisfied
- **2** D(A) is an algebra that separates points in E and contains constant functions. Furthermore, $A\mathbf{1} = 0$
- For each $u \in U$, $A^u f \equiv Af(\cdot, u)$ satisfies the positive maximum principle

Theorem 5

Suppose $\mu \in \mathcal{P}(E \times U)$ satisfy

$$\int Afd\mu = 0 \quad \forall f \in D(A).$$

Then there exists a stationary solution (X, π) of the relaxed controlled martingale problem for A such that $\mu = \mathcal{L}(X_t, \pi_t)$ for all $t \ge 0$.

More results

Theorem 6

Suppose $\mu \in \mathcal{P}(E \times U)$ satisfy

$$\int A f d\mu = lpha \left(\int f d\mu - \int f d
u_0
ight) \quad orall f \in D(A).$$

Then there exists a solution (X, π) of the relaxed controlled martingale problem for A such that μ is the discounted occupation measure for this process.

- Similar result holds finite time occupation measures
- Finding the optimal control is now equivalent to optimising over a class of occupation measures

イロン イ団 とくほと くほとう

Martingale Problem with discontinuous Af

- $A: C_b(E) \rightarrow B(E)$
- Separability condition & Positive maximum principle
- There exists a complete separable metric space U, an operator $\hat{A}: D(A) \rightarrow C_b(E \times U)$ and a transition function η from (E, \mathcal{E}) into $(U, \mathcal{B}(U))$ such that

$$(Af)(x) = \int_U \hat{A}f(x, u)\eta(x, du).$$

イロト イヨト イヨト イヨト

Martingale Problem with discontinuous Af

- $A: C_b(E) \rightarrow B(E)$
- Separability condition & Positive maximum principle
- There exists a complete separable metric space U, an operator $\hat{A}: D(A) \rightarrow C_b(E \times U)$ and a transition function η from (E, \mathcal{E}) into $(U, \mathcal{B}(U))$ such that

$$(Af)(x) = \int_U \hat{A}f(x, u)\eta(x, du).$$

• Results carry over to this set-up

《曰》《聞》《臣》《臣》

An example

Consider the following well-posed SDE

$$dX_t = a(X_t)dt + b(X_t)dW_t$$

where

- *a*, *b* are measurable functions & *W* is a Standard Brownian Motion
- Then (t, X_t, \mathcal{Y}_t) is a Markov process.
- X is then the unique solution of the martingale problem for A where $Af(x) = a(x)f'(x) + \frac{1}{2}b^2(x)f''(x)$
- Let $U = \mathbb{R}^2$, $\eta(x, du) = \delta_{a(x)} \otimes \delta_{b(x)}$
- $\hat{A}(x,(u_1,u_2)) = u_1 f'(x) + \frac{1}{2} u_2^2 f''(x)$

Evolution Equations Charachterization of Markovian Generators Extensions

Controlled Martingale Problem Discontinuous Coefficients

æ

THANK YOU