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Directed Trees

1.1 Drainage Network Model

Let Ω = {0, 1}Zd
and F the σ algebra generated by finite dimensional cylinder sets. Fix

0 < p < 1. On (Ω,F) we assign a product probability measure Pp which is defined by

its marginals as

Pp{ω : ω(u) = 1} = 1− Pp{ω : ω(u) = 0} = p, for u ∈ Zd.

Let {Uu,v : u, v ∈ Zd, v(d) = u(d) + 1} be i.i.d. uniform (0, 1] random variables on

some probability space (Ξ,S, µ). Here and subsequently we express the co-ordinates of

a vector u as u = (u(1), . . . , u(d)).

Consider the product space (Ω × Ξ,F × S,P := Pp × µ). For (ω, ξ) ∈ Ω × Ξ let

V(= V(ω, ξ)) be the random vertex set defined by

V(ω, ξ) = {u ∈ Zd : ω(u) = 1}.

Note that if u ∈ V(ω, ξ) for some ξ ∈ Ξ then u ∈ V(ω, ξ′) for all ξ′ ∈ Ξ and thus we say

that a vertex u is open in a configuration ω if u ∈ V(ω, ξ) for some ξ ∈ Ξ.

For u ∈ Zd let

Nu = Nu(ω, ξ) =
{
v ∈ V(ω, ξ) : v(d) = u(d) + 1 and

d∑
i=1

|v(i)− u(i)| =

min
{ d∑

i=1

|w(i)− u(i)| : w ∈ V(ω, ξ), w(d) = u(d) + 1
}}
.

Note that Nu is non-empty almost surely and that Nu is defined for all u, irrespective

of it being open or closed. For u ∈ Zd let

M(u) ∈ Nu(ω, ξ) be such that Uu,M(u)(ξ) = min{Uu,v(ξ) : v ∈ Nu(ω, ξ)}. (1.1)
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Figure 1.1: The drainage network model

For each u ∈ Zd, M(u) is open, almost surely unique and M(u)(d) = u(d) + 1. On

V(ω, ξ) we assign the edge set E = E(ω, ξ) := {〈u,M(u)〉 : u ∈ V(ω, ξ)}.
Consider that graph G = (V , E) consisting of the vertex set V and edge set E . From

any vertex u ∈ V(ω, ξ), there is exactly one edge going up from u; thus the graph G
contains no loops almost surely. Hence, the graph G consists of only trees. Then we

have

Thoerem 1.1. For d = 2 and d = 3, G consists of one single tree P–almost surely; while

for d ≥ 4, G is a forest consisting of infinitely many disjoint trees P–almost surely.

Regarding the geometric structure of the graph G we have

Thoerem 1.2. For any d ≥ 2, the graph G contains no bi-infinite path P–almost surely.

1.1.1 Proof of Theorem 1.1

For u ∈ Zd, let us define M0(u) = u and for n ≥ 1, Mn(u) = M(Mn−1(u)). For

any u ∈ Zd, set u(1; d − 1) as the (d − 1)-dimensional vector having the first (d − 1)

co-ordinates of u, while u(d) will represent the dth co-ordinate of u.

For u ∈ Zd, define Xu(n) = Mn(u)(1; d − 1) for n ≥ 0. Now, observe that for

u ∈ Zd, Xu(n) has the same distribution as u(1; d − 1) +
∑n

i=1 Ii, where I1, I2, . . . are

i.i.d. copies of X0(1)(1; d− 1) and 0 = (0, 0, . . . , 0) is the origin. Hence {Xu(n) : n ≥ 0}



Drainage Network Model 5

b

b b

b b

bb

b

b b b

bb

b

b

b

Figure 1.2: The graph of drainage network

is a symmetric random walk starting at (u(1),u(2), . . . ,u(d− 1)), with i.i.d. steps, each

step size having distribution X0(1)(1; d− 1). We will refer the step size random variable

I(d−1).

For k ≥ 0 let ∆k := {v ∈ Zd−1 : ||v||1 ≤ k} denote the (d− 1)-dimensional diamond

of radius k and let δ∆k := {v ∈ Zd−1 : ||v||1 = k} denote its boundary. The distribution

of the step size random variable I(d−1) is given by

P(I(d−1) = v) = pv =

p if v = o

(1−p)|∆k−1|(1−(1−p)|δ∆k|)
|δ∆k|

for v ∈ δ∆k, k ≥ 1
(1.2)

where o = (0, 0, . . . , 0) is the origin in the Zd−1.

However, for u,v ∈ Zd, the corresponding walks (or paths) from u(1; d − 1) and

v(1; d − 1) are not independent. Let u, v ∈ Zd−1, set u = (u, 0) and v = (v, 0).

Though the random walks Xu and Xv are not independent, they are jointly Markov,

i.e., {(Xu(n), Xv(n)) : n ≥ 1} is a Markov chain taking values in Zd−1 × Zd−1. Fur-

thermore, setting Zn(= Zn(u, v)) := Xu(n) − Xv(n), we observe that {Zn : n ≥ 0}
is a time-homogeneous Markov chain with state space S ⊆ Zd−1. This follows on the

Markov property of the process {(Xu(n), Xv(n)) : n ≥ 0} and the spatial invariance of

the model.

The connectedness or otherwise of the graph G, is equivalent to whether or not the

walks Xu and Xv hit for every pair of point u,v ∈ Zd. From the description of the
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model, it is clear that it is enough to consider points u and v such that u(d) = v(d) = 0.

Thus we need to show that for points u, v ∈ Zd−1, the Markov chain Zn is absorbed at

the origin. Again, by spatial invariance of the model, we can take u as the origin in

Zd−1. For d = 2 and 3 we show that Zn gets absorbed at the origin with probability 1;

while for d ≥ 4, Zn is a transient Markov chain and hence has a positive probability of

not being absorbed.

In this connection observe that instead of the above Zn if we had considered a

modified Markov chain Z̃n where the origin o is no longer an absorbing state, but from

the origin we move in one step to some fixed vertex u 6= o with probability 1 and the

other transition probabilities are kept unchanged, then to show that the original process

Zn is absorbed at o almost surely, it suffices to show that the modified Markov process

Z̃n is recurrent. A more formal argument for this would require Zn and Z̃n to be coupled

together until they hit the origin, which occurs almost surely if the modified process is

recurrent. For the case d = 3, we will show that Z̃n is recurrent. The proof is divided

into three subsections according as d = 2, d = 3 and d ≥ 4.

Case d = 2

Fix i < j and observe that X(i,0)(n) ≤ X(j,0)(n) for every n ≥ 1. Thus the Markov chain

Zn := X(j,0)(n) − X(i,0)(n) with Z0 = j − i has as its state space the set of all non-

negative integers. Since the marginal distributions of the increments of both X(i,0)(n)

and X(j,0)(n) is given by the distribution I(1) (see (1.2)) and hence identical having finite

means, {Zn : n ≥ 0} is a non-negative martingale. Hence, by the martingale convergence

theorem (see Theorem 35.4, Billingsley [1979] pg. 416), Zn converges almost surely as

n → ∞. Since {Zn : n ≥ 0} is also a time-homogeneous Markov chain with 0 as the

only absorbing state, we must have, Zn → 0 as n→ ∞ with probability 1. Since this is

true for all i < j, we have the result for d = 2.

Case d = 3

Throughout this subsection the letters u, v in bold font denote vectors in Z3, u, v in

roman font denote vectors in Z2 and u, v in slanted font denote integers. Fix two vectors

u := (u, 0) and v := (v, 0) in Z2 ×{0} and let Z̃n(= Z̃n(u, v)) be the time-homogeneous

Markov chain with state space Z2 as defined at the beginning of this section. We shall

exhibit, by a Lyapunov function technique, that this Markov chain Z̃n is recurrent,
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thereby showing that Zn is absorbed at the origin with probability 1.

Consider the function f : R2 → [0,∞) defined by f(x) :=
√
log(1 + ‖x‖22) where

‖.‖2 is the standard L2 norm (Euclidean distance). Since f(x) → ∞ as ‖x‖2 → ∞,

by Foster’s criterion (see Asmussen [1987] Proposition 5.3 of Chapter I, pg. 18) the

following lemma implies that Z̃n is recurrent.

Lemma 1.1. For all n ≥ 0, there exists n0 ≥ 0 such that, for all ‖x‖2 ≥ n0, we have

E
(
f(Z̃n+1)− f(Z̃n)|Z̃n = x

)
< 0.

Proof : Let g : [0,∞) → [0,∞) be defined as g(x) :=
√

log(1 + x). Clearly g(x) ≥ 0

for all x ≥ 0 and g(x) → ∞ as x → ∞. Also, for x, y ≥ 0, the Taylor series expansion

yields

g(x)− g(y) ≤ (x− y)g(1)(y) +
(x− y)2

2
g(2)(y) +

(x− y)3

6
g(3)(y), (1.3)

which holds because the fourth derivative

g(4)(s) = − 3

(1 + s)4g(s)
− 11

4(1 + s)4(g(s))3
− 18

8(1 + s)4(g(s))5
− 15

16(1 + s)4(g(s))7
< 0

for s > 0. The first three derivatives of g are

g(1)(s) =
1

2(1 + s)g(s)

g(2)(s) = − 1

2(1 + s)2g(s)
− 1

4(1 + s)2(g(s))3

g(3)(s) =
1

(1 + u)3g(s)
+

3

4(1 + s)3(g(s))3
+

3

8(1 + s)3(g(s))5
.

Note that, for all s large,

g(3)(s) ≤ 3

(1 + s)3g(s)
.

Assuming for the moment that (we will prove this shortly) for some α > 0

E
(
‖Z̃n+1‖22 − ‖Z̃n‖22

∣∣Z̃n = x
)
= α + o(‖x‖−2

2 ) (1.4)

E
((

‖Z̃n+1‖22 − ‖Z̃n‖22
)2∣∣Z̃n = x

)
≥ 2α‖x‖22 (1.5)

E
((

‖Z̃n+1‖22 − ‖Z̃n‖22
)3∣∣Z̃n = x

)
= O(‖x‖22) (1.6)
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as ‖x‖2 → ∞; and using the above estimates and expression for derivatives we have, for

all β := ‖x‖22 large and for some non-negative constants C1 and C2,

E
(
f(Z̃n+1)− f(Z̃n) | Z̃n = x

)
≤ α + C1/β

2(1 + β)
√
log(1 + β)

− 2αβ

4(1 + β)2
√

log(1 + β)

− 2αβ

8(1 + β)2
√(

log(1 + β)
)3 +

3C2β

(1 + β)3
√

log(1 + β)

=
1

8(1 + β)2
√

log(1 + β)

[
4α + 4C1 + 4C1/β + 24C2β/(1 + β)

− 2αβ/ log(1 + β)
]
.

The term inside the square braces tends to −∞ as β → ∞; therefore, for all sufficiently

large β, the term is negative. Thus to complete the proof of the lemma we need to show

(1.4), (1.5) and (1.6).

Since P(||I(2)||1 > k) has an super exponential decay (in k), all moments of I(2) exist.

For any k ≥ 1 and i, j ≥ 0, define

mi :=
∑

u:=(u1,u2)∈Z2

ui1 pu and mi,j :=
∑

u:=(u1,u2)∈Z2

ui1u
j
2 pu

mi(k) :=
∑

u:=(u1,u2)∈Dk

ui1 pu and mi,j(k) :=
∑

u:=(u1,u2)∈Dk

ui1u
j
2 pu

where pu = P(I(2) = u). Since (−u1,−u2), (−u1, u2) and (u1,−u2) are in Dk whenever

(u1, u2) ∈ Dk with P(I(2) = (−u1,−u2)) = P(I(2) = (−u1, u2)) = P(I(2) = (u1,−u2)) =
P(I(2) = (u1, u2)), it is clear that, for every k ≥ 1 we have

mi = mi(k) = 0 for all odd i, and mi,j = mi,j(k) = 0 whenever either i or j is odd.

(1.7)

By the exponential decay of the tail, we have, when both i and j are even, mi(k) → mi

and mi,j(k) → mi,j as k → ∞. Moreover, k2(m2 − m2(k)) ≤ k2
∑

u:(u1,u2)6∈Dk
u21pu ≤∑∞

j=k+1 j
4(1− p)1+2j(j−1) → 0 as k → ∞ since the sum

∑∞
j=1 j

4(1− p)1+2j(j−1) <∞. A

similar result holds for m0(k) and so we have

m2(k) = m2 + o(k−2) and m0(k) = m0 + o(k−2) as k → ∞. (1.8)
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Now we proceed to compute the expectations.

E
(
‖Z̃n+1‖22 − ‖Z̃n‖22

∣∣Z̃n = x
)

=
∑

a,b∈Z2

(‖x + a− b‖22 − ‖x‖22)P{Xx(1) = x + a, Xo(1) = b
∣∣Xo(0) = o, Xx(0) = x},

(1.9)

where we have used the spatial invariance of the model.

To calculate the above sum we let k := ‖x‖2/4. Note for a, b ∈ Dk we have P{Xx(1) =

x + a, Xo(1) = b
∣∣Xo(0) = o, Xx(0) = x} = papb, thus, using (1.7) and (1.8),

T1(1) :=
∑

a,b∈Dk

(‖x + a− b‖22 − ‖x‖22)P{Xx(1) = x + a, Xo(1) = b
∣∣Xo(0) = o, Xx(0) = x}

=
∑

a,b∈Dk

[
(a1 − b1)

2 + 2x1(a1 − b1) + (a2 − b2)
2 + 2x2(a2 − b2)

]
papb

= 4m2(k)m0(k) = 4m2 + o(k−2) as k → ∞. (1.10)

Also, if b 6∈ Dk then, taking ‖b‖1 = k + l for some l ≥ 1, the occurrence of the

event {Xo(1) = b} requires that all the vertices in the diamond Dk+l−1 be closed and

that at least one vertex of δDk+l be open — an event which occurs with probability

(1 − p)1+2(k+l−1)(k+l) − (1 − p)1+2(k+l)(k+l+1). Moreover, if {Xo(1) = b} occurs then

Xx(1) must lie in the smallest diamond centred at x which contains the vertex b, thus

‖Xx(1)−Xo(1)‖2 ≤ ‖Xx(1)‖1+‖Xo(1)‖1 ≤ (‖x‖1+‖b‖1)+‖b‖1 = 6k+2l. Now noting

that there are 4(k+ l) vertices on δDk+l and that an argument similar to the above may

be given when a 6∈ Dk, we have

T2(1)

:=
∑

a6∈Dk or b6∈Dk

(‖x + a− b‖22 − ‖x‖22)P{Xx(1) = x + a, Xo(1) = b
∣∣Xo(0) = o, Xx(0) = x}

≤ 2
∑
l≥1

4(k + l)
(
(6k + 2l)2 + (4k)2

)
(1− p)1+2(k+l−1)(k+l)

[
1− (1− p)4(k+l)

]
= o(k−2) as k → ∞. (1.11)

This establishes (1.4) with α = 4m2.

Similar calculations establish (1.6) and completes the proof of Lemma 1.1.
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Case d ≥ 4

For notational simplicity we present the proof only for d = 4. Throughout this subsection

the letters u, v in bold font denote vectors in Z4, u, v in roman font denote vectors in

Z3 and u, v in slanted font denote integers. We first show that on Z4 the graph G admits

two distinct trees with positive probability, i.e.,

P{G is disconnected} > 0. (1.12)

For u,v ∈ Z4, we have already noted that the random walks Xu and Xv are not

independent and so, to obtain our theorem, we cannot use the fact that with positive

probability two independent random walks on Z3 do not intersect. Nonetheless, if u and

v are sufficiently far apart their dependence on each other is weak. In the remainder of

this section we formalize this notion of weak dependence by coupling two independent

random walks and the processes {Xu(n), Xv(n) : n ≥ 0} and obtain the desired result.

For v = (v, 0), given ε > 0 define the event

An,ε(v) := {Xv(n
4) ∈ X0(n

4) + (∆n2(1+ε) \∆n2(1−ε)),

Xv(i) 6= X0(i) for all i = 1, . . . , n4}, (1.13)

where 0 := (0, 0, 0, 0).

Lemma 1.2. For 0 < ε < 1/3 there exist constants C, β > 0 and n0 ≥ 1 such that, for

all n ≥ n0,

inf
v∈∆n1+ε\∆n1−ε

P(An,ε(v)) ≥ 1− Cn−β.

Assuming the above lemma we proceed to complete the proof of (1.12). We shall

return to the proof of the lemma later.

For i ≥ 1 and n ≥ n0, let τi(= τi(n)) := 1 + n4 + (n4)2 + · · · + (n4)2
i−1

and take

τ0 = 1. For fixed v, we define

B0 = B0(v) := {Xv(1) ∈ X0(1) + (∆n1+ε \∆n1−ε)},

and having defined B0, . . . , Bi−1 we define

Bi = Bi(v) := {Xv(τi) ∈ X0(τi) + (∆n2i(1+ε) \∆n2i(1−ε)) and

Xv(j) 6= X0(j) for all τi−1 + 1 ≤ j ≤ τi}.
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Clearly,

P{M j(v) 6=M j(0) for all j ≥ 1}

= P{Xv(j) 6= X0(j) for all j ≥ 1} ≥ P(∩∞
i=0Bi)

= lim
i→∞

P(∩i
j=0Bj) = lim

i→∞

i∏
l=1

P(Bl| ∩l−1
j=0 Bj)P(B0). (1.14)

Since P(B0) > 0, from (1.14) we have that P(M j(v) 6= M j(0) for all j ≥ 1) > 0 if∑∞
l=1 1− P(Bl| ∩l−1

j=0 Bj) <∞.

For fixed l ≥ 1, let u1 := X0(τl) and v1 := Xv(τl). Set u1 = (u1, 0) and v1 = (v1, 0).

For (ω, ξ) ∈ Bl(v), since v1 ∈ u1 + (∆
n2l(1+ε) \∆n2l(1−ε)). Since {

(
X0(n), Xv(n)

)
: n ≥ 0}

is a Markov process, we have

P
(
Bl+1| ∩l

j=0 Bj) = P
{
Xv(τl+1) ∈ X0(τl+1) + (∆n2i(1+ε) \∆n2i(1−ε))

and Xv(j) 6= X0(j) for all τl + 1 ≤ j ≤ τl+1

∣∣∣∩l
j=0Bj

}
= P

{
Xv(τl+1) ∈ X0(τl) + (∆n2i(1+ε) \∆n2i(1−ε)) and Xv(j) 6= X0(j)

for all τl + 1 ≤ j ≤ τl+1

∣∣∣Xv(τl) ∈ X0(τl) + (∆
n2l(1+ε) \∆n2l(1−ε))

}
= P

{
Xv1

(
(n4)2

l) ∈ Xu1

(
(n4)2

l)
+ (∆

n2l+1(1+ε) \∆n2l+1(1−ε)) and Xv1(j) 6= Xu1(j)

for all 1 ≤ j ≤ (n4)2
l
∣∣∣Xv1(0) ∈ Xu1(0) + (∆

n2l(1+ε) \∆n2l(1−ε))
}

= P
{
Xv1

(
(n4)2

l) ∈ X0

(
(n4)2

l)
+ (∆

n2l+1(1+ε) \∆n2l+1(1−ε)) and Xv1(j) 6= X0(j)

for all 1 ≤ j ≤ (n4)2
l
∣∣∣Xv1(0) ∈ X0(0) + (∆

n2l(1+ε) \∆n2l(1−ε))
}

≥ inf
v2∈(∆

n2l(1+ε)
\∆

n2l(1−ε)
)
P
(
A

n2l ,ε
(v2, 0)

)
≥ 1− C(n2l)−β. (1.15)

Thus
∑∞

l=1

(
1− P(Bl| ∩l−1

j=0 Bj)
)
≤ C

∑∞
l=1(n

2l)−β < ∞; thereby completing the proof

of (1.12).

To prove Lemma 1.2, we have to compare the trees {Mn(0)} and {Mn(v)} and

independent “random walks” {0 + (
∑n

i=1 I
(3)
1 (i), n)} and {v + (

∑n
i=1 I

(3)
2 (i), n)} where

{I(3)1 (i) : i ≥ 1} and {I(3)2 (i) : i ≥ 1} are independent collections of i.i.d. copies of the

random variable I(3) given in (1.2).

We now describe a method to couple the trees and the independent random walks.

Before embarking on the formal details of the coupling procedure we present the main

idea.
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From a vertex 0 we construct the ‘path’ {0 + (
∑n

i=1 I
(3)
1 (i), n)}. Now consider the

vertex v with v = (v1, v2, v3, 0). In case the diamond D := {u ∈ Z3 : ||u||1 ≤ ||I(3)1 (1)||1}
is disjoint from the diamond D′ := {u ∈ Z3 : ||u − (v1, v2, v3)||1 ≤ ||I(3)2 (i)||1} then

we take M1(v) = {v + (I
(3)
1 (i), 1)}. While if the two diamonds are not disjoint, then

we have to define M1(v) taking into account the configuration inside the diamond D.

Similarly, we may obtain M2(v) by considering the diamonds {u ∈ Z3 : ||u− I
(3)
1 (i)||1 ≤

||I(3)2 (i)||1} and {u ∈ Z3 : ||u − M1(v)||1 ≤ ||I(3)2 (2)||1}. Note that if, for each i =

1, . . . , n the two diamonds involved at the ith stage are disjoint, then the growth of the

tree {(M i(0),M i(v)) : 0 ≤ i ≤ n} is stochastically equivalent to that of the pair of

independent ‘random walks’ (0+ (
∑n

i=1 I
(3)
1 (i), n),v + (

∑n
i=1 I

(3)
2 (i), n)).

We start with two vertices u := (u, 0) and v := (v, 0) in Z4 with u, v ∈ Z3. Let

{Uu
1 (z) : z ∈ Z3}, {Uu

2 (z) : z ∈ Z3} and {Uv
1 (z) : z ∈ Z3}, {Uv

2 (z) : z ∈ Z3} be four

independent collections of i.i.d. random variables, each of these random variables being

uniformly distributed on [0, 1].

Let ku and lv be defined as

ku := min{k : Uu
1 (z) < p for some z ∈ (u + ∆k)}

lv := min{l : Uv
1 (z) < p for some z ∈ (v + ∆l)}.

Now define mv as

mv := min{m : either Uv
1 (z) < p for some z ∈ (v + ∆m) \ (u + ∆ku)

or Uu
1 (z) < p for some z ∈ (v + ∆m) ∩ (u + ∆ku)}.

Also, define the sets

Nu := {z ∈ (u + ∆ku) : U
u
1 (z) < p}

N1
v := {z ∈ (v + ∆lv) : U

v
1 (z) < p}

N2
v := {z ∈ (v + ∆mv) \ (u + ∆ku) : U

v
1 (z) < p}

∪ {z ∈ (v + ∆mv) ∩ (u + ∆ku) : U
u
1 (z) < p}.

We pick

(a) φ(u) ∈ Nu such that Uu
2 (φ(u)) = min{Uu

2 (z) : z ∈ Nu};

(b) ζ(v) ∈ N1
v such that Uv

2 (ζ(v)) = min{Uv
2 (z) : z ∈ N1

v};
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(c) ψ(v) ∈ N2
v such that Uv

2 (ψ(v)) = min{Uv
2 (z) : z ∈ N2

v}.

Taking φ0(u) = u, φn(u) = φ(φn−1(u)), and similarly for ζn(v) and ψn(v), we

note that the distribution of
{(

(φn(u), n), (ζn(v), n)
)
: n ≥ 0

}
is the same as that

of
{(

(u+
∑n

i=1 I
(3)
1 (i), n), (v+

∑n
i=1 I

(3)
2 (i), n)

)
: n ≥ 0

}
, i.e. two independent “random

walks” one starting from (u, 0) and the other starting from (v, 0). Also the distribution

of {(Mn(u, 0),Mn(v, 0)) : n ≥ 0} and that of {((φn(u), n), (ψn(v), n)) : n ≥ 0} are

identical. Thus, the procedure described above may be used to construct the trees from

(u, 0) and (v, 0).

Now observe that {(φn(u), n)} describes both the random walk and the tree starting

from (u, 0). Also if ∆ku ∩∆mv = ∅, then mv = lv and, more importantly, ζ(v) = ψ(v).

Hence the ‘random walk’ and the tree from (u, 0) are coupled and so are the ‘random

walk’ and the tree from (v, 0). In particular, this happens when both ku < [||u− v||1/2]
and mv < [||u− v||1/2]. Let k0 = ||u− v||1/2. From the above discussion we have

P
{
ζ(v) 6= ψ(v)

}
≤ P

[{
(Uu

1 (z)) > p for all z ∈ (u + ∆k0)
}∪{

(Uv
1 (z)) > p for all z ∈ (v + ∆k0)

}]
≤ 2P

{
(Uu

1 (z)) > p for all z ∈ (u + ∆k0)
}
≤ 2(1− p)#∆k0 .

Since (1/2)k3 ≤ #∆k ≤ 2k3, the above inequality gives

P
{
ζ(v) = ψ(v)

}
≥ 1− C1 exp(−C2||u− v||31) (1.16)

for constants C1 = 2 and C2 = (1/2)| log(1− p)|.
With the above estimate at hand, we look at the process {(φn(u), ζn(v)) : n ≥ 0}.

Without loss of generality we take u = o. For ε > 0 and constant K > 0 (to be specified

later) define

Bn,ε(v) := {ζn4

(v) ∈ φn4

(o) + (∆n2(1+ε) \∆n2(1−ε)),

||ζ i(v)− φi(o)||1 ≥ K log n for all i = 1, . . . , n4}. (1.17)

This event is an independent random walk version of the event An,ε(v, 0) defined in

(1.13), except that here we require that the two random walks come no closer than

K log n at any stage.

We will show that there exists α > 0 such that

sup
v∈(∆

n(1+ε)\∆n(1−ε) )

P
(
(Bn,ε(v))

c
)
< C3n

−α (1.18)
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for some constant C3 > 0.

Since (Bn,ε(v))
c ⊆ En,ε(v) ∪ Fn,ε(v) ∪Gn,ε(v) where

En,ε(v) :=
{
||ζ i(v)− φi(o)||1 ≤ K log n for some i = 1, . . . , n4

}
,

Fn,ε(v) :=
{
ζn

4

(v) 6∈ φn4

(o) + ∆n2(1+ε)

}
,

Gn,ε(v) :=
{
ζn

4

(v) ∈ φn4

(o) + ∆n2(1−ε)

}
,

to prove (1.18) it suffices to show

Lemma 1.3. There exist α > 0 and constants C4, C5, C6 > 0 such that for all n suffi-

ciently large we have

(a) supv∈(∆
n(1+ε)\∆n(1−ε) )

P(En,ε(v)) < C4n
−α,

(b) supv∈(∆
n(1+ε)\∆n(1−ε) )

P(Fn,ε(v)) < C5n
−α,

(c) supv∈(∆
n(1+ε)\∆n(1−ε) )

P(Gn,ε(v)) < C6n
−α.

The proof of this lemma is straightforward using the estimates from random walk

and central limit theorem (see the paper version for the proof).

Proof of Lemma 1.2 : Let v := (v, 0) ∈ Z4. Observe that An,ε(v) ⊇ Bn,ε(v)∩{M i(0) =∑i
j=1Xj, M

i(v) = v +
∑i

j=1 Yj for all 1 ≤ i ≤ n4}. Hence

P
(
An,ε(v)

)
≥ P

[
Bn,ε(v) ∩

{
X0(i) =

i∑
j=1

I
(3)
1 (j), Xv(i) = v +

i∑
j=1

I
(3)
2 (j) for 1 ≤ i ≤ n4

}]
= P

[
Bn,ε(v) ∩

{
X0(i) =

i∑
j=1

I
(3)
1 (j), Xv(i) = v +

i∑
j=1

I
(3)
2 (j) for 1 ≤ i ≤ n4 − 1

}]

× P
[
X0(n

4) =
n4∑
j=1

I
(3)
1 (j), Xv(n

4) = v +
n4∑
j=1

I
(3)
2 (j)

∣∣∣∣ Bn,ε(v) ∩
{
X0(i) =

i∑
j=1

I
(3)
1 (j),

Xv(i) = v +
i∑

j=1

I
(3)
2 (j) for 1 ≤ i ≤ n4 − 1

}]
≥ P

[
Bn,ε(v) ∩

{
X0(i) =

i∑
j=1

I
(3)
1 (j), Xv(i) = v +

i∑
j=1

I
(3)
2 (j) for 1 ≤ i ≤ n4 − 1

}]
×

(
1− C1 exp

(
−C2(K log n)3

))
,
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where the last inequality follows from (1.16) after noting that given Bn,ε(v), X0(i) =∑i
j=1 I

(3)
1 (j) and Xv(i) = v+

∑i
j=1 I

(3)
2 (j) hold for all 1 ≤ i ≤ n4− 1, we have ||X0(n

4−
1) − Xv(n

4 − 1)||1 ≥ K log n. The above argument may be used iteratively for i =

1, . . . , n4 − 1 and together with (1.18) we have

P
(
An,ε(v)

)
≥

(
1− C1 exp(−C2(K log n)3)

)n4

P
(
Bn,ε(v)

)
≥

(
1− C1n

4 exp(−C2K
3 log n)

)(
1− C3n

−α
)

≥
(
1− C1n

4n−C2K3
)(

1− C3n
−α

)
=

(
1− C1n

−C2K3+4
)(

1− C3n
−α

)
.

Taking K such that C2K
3 > 4 (i.e. K3 > 8| log(1− p)|−1) we have

P
(
An,ε(v)

)
≥ 1− C1n

−C2K3+4 − C3n
−α ≥ 1− Cn−β,

for some constant C > 0 and β := min{α,C2K
3 − 4} > 0. This completes the proof of

Lemma 1.2.

Finally to complete the theorem we need to show that G admits infinitely many trees

almost surely. For k ≥ 2, define Dk(n, ε) := {(u1,u2, . . . ,uk) : ui ∈ Z4 such that n1−ε ≤
||M0(ui) −M0(uj)||1 ≤ n1+ε for all i 6= j}. Define the event A(n, ε,u1,u2, . . . ,uk) :=

{n2(1−ε) ≤ ||Mn4
(ui) −Mn4

(uj)||1 ≤ n2(1+ε) and M t(ui) 6= M t(uj) for all t = 1, . . . , n4

and for all i 6= j}. Using Lemma 1.2, we can easily show, for 0 < ε < 1/3 and for all

large n

inf
{
P(A(n, ε,u1,u2, . . . ,uk) : (u1,u2, . . . ,uk) ∈ Dk(n, ε)

}
≥ 1− Ck

nβ
(1.19)

where Ck is a constant independent of n (depending on k) and β is as in Lemma 1.2.

We may now imitate the method following the statement of Lemma 1.2 to obtain

P
{
M t(ui) 6=M t(uj) for all t ≥ 1 and for 1 ≤ i 6= j ≤ k

}
> 0.

Thus, by translation invariance and ergodicity, we have that for all k ≥ 2

P
{
G contains at least k trees

}
= 1.

This shows that G contains infinitely many trees almost surely.
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1.1.2 Geometry of the graph G

We now prove Theorem 1.2 for d = 2; with minor modifications the same argument

carries through for any dimensions.

For t ∈ Z consider the set Ot := G ∩ {y = t}, the set of open vertices on the line

{y = t}. For x ∈ Ot and n ≥ 0 let Cn
t (x) := {y ∈ Ot−n : Mn(y) = x} be the set of the

nth order children of the vertex x ∈ Ot. Now consider the set of vertices in Ot which

have nth order children, i.e., M
(n)
t := {x ∈ Ot : C

n
t (x) 6= ∅}. Clearly, M

(n)
t ⊆ M

(m)
t for

n > m and so Rt := limn→∞M
(n)
t = ∩n≥0M

(n)
t is well defined. Moreover, this is the set

of vertices in Ot which have bi-infinite paths. We want to show that P(Rt = ∅) = 1 for

all t ∈ Z. Since {Rt : t ∈ Z} is stationary, it suffices to show that P(R0 = ∅) = 1.

Suppose that P(|R0| = 0) < 1. Then, we claim:

P(|R0| = 0) + P(|R0| = 1) < 1.

Suppose P(|R0| = 0) + P(|R0| = 1) = 1. Fix N > 0 and for any n > 0,

P(R0 ∩ [−N,N ] = ∅) = P(Rn ∩ [−N,N ] = ∅)

= P(R0 = ∅) + P(Rn ∩ [−N,N ] = ∅||R0| = 1)P(|R0| = 1).

We observe that given |R0| = 1, Rn is given by a symmetric random walk (with finite

moments) starting at R0. Letting n→ ∞ and noting that the random walk will escape

any finite set, we conclude that

lim
n→∞

P(Rn ∩ [−N,N ] = ∅||R0| = 1) = 1.

Thus, we have P(R0 ∩ [−N,N ] = ∅) = 1 for any N > 0. Letting N → ∞, we have

P(R0 = ∅) = 1 which is a contradiction. So, P(|R0| ≥ 2) > 0.

Definition 1.1. A vertex x ∈ Rt is called a branching point if

|(C1
t (x) ∩Rt+1)| ≥ 2,

i.e, x has at least two distinct infinite branches of progeny.

Note that this notion of ‘branching point’ is similar to that of ‘encounter point’ of

Burton and Keane [1989].

We denote the set of branching points at level t by Bt. Since, P(|R0| ≥ 2) > 0, we

have P(|R−1| ≥ 2) > 0. Fix N so large that

P(A(N)) := P(|R−1 ∩ [−N,N ]| ≥ 2) > 0.
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Figure 1.3: Branching point

The event says that there are at least two distinct vertices in [−N,N ]×{−1} which has

infinite set of progeny. and depends only on points {(i, j) : j ≤ −1}. Consider, now

B(N) := {(0, 0) open and no other points in

[−2N − 2, 2N + 2]× {0} is open}.

P(B(N)) > 0. Further, A(N) and B(N) are independent. Then,

P(0 ∈ B0) ≥ P(A(N) ∩B(N)) > 0. (1.20)

Further, by spatial invariance of the model, P(x ∈ B0) is independent of x.

Now, we define r0(n) := |(R0 ∩ ([−n, n]× {0})| and r1(n) := |R1 ∩ ([−n, n]× {1})|.
We arrange the points of R1 ∩ ([−n, n] × {1}) as u1, . . . , ur1(n), in an increasing order

of the x-co-ordinates . By our construction of G, neither u2 nor ur1(n)−1 nor any of the

vertices between them can be connected to a vertex in R0 which lies outside [−n, n]×{0}.
Thus, each of the vertices u2, u3, . . . , ur1(n)−1 will have at least one ancestor in the set

R0 ∩ ([−n, n] × {0}). Moreover, each of the branching points in u2, . . . , ur1(n)−1, has at

least two distinct ancestors in the set R0∩ ([−n, n]×{0}). Thus, if r(2)1 (n) is the number

of branching points in [−n, n]× {1}, we must have have

r0(n) ≥ (r1(n)− 2− r
(2)
1 (n)) + 2(r

(2)
1 (n)− 2) = r1(n) + r

(2)
1 (n)− 6. (1.21)

But, by stationarity we have E(r1(n)) = E(r0(n)) for all n ≥ 1. Thus, for n sufficiently

large, from (1.20) we have

0 = E(r0(n)− r1(n)) ≥ E(r(2)1 (n))− 6 = (2n+ 1)P(0 ∈ B0)− 6 > 0.

This contradiction establishes Theorem 1.2.
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1.2 Directed Spanning Forest

We consider a homogeneous Poisson point process N on R2 with intensity 1. In the

original version, Coupier and Tran, [2011] considered Directed Spanning Forest in the

direction along the x-axis; to be consistent, here, we will consider along y-axis.

For each point x ∈ N , let M(x) be the unique point of N which is closest in the L2

norm in the upper half plane at x. The point M(x) will be called the mother vertex of

x. We join the edges between every point x and its mother M(x). This defines a graph

with vertex set V = N and edge set E = {〈x,M(x)〉 : x ∈ N}. For x ∈ N , define γx as

the path starting at x. Clearly this path can be written as an union of line segments,

each finite in length, i.e., γx =
∪∞

i=0[xi,M(xi)] where x0 = x and for i ≥ 1, xi =M(xi−1)

and is identified as a subset of R2.

It is easy to observe that this graph does not have a loop. From any vertex, x ∈ N ,

it continues infinitely in the positive direction of y-axis. Furthermore, two paths γx and

γy, starting from two points x, y ∈ N , either coincides with each other at some point

z ∈ N and continues together from that point onwards or they do not cross and are

disjoint subsets of R2. Therefore, the graph is composed of disjoint infinite trees.

b

b

b

b

x

M(x)

M3(x)

M2(x)
ey

Figure 1.4: Construction of DSF from a point of x ∈ N .

Thoerem 1.3. The DSF constructed on the homogeneous PPP N is almost surely a

tree.

A similar model in discrete version has been considered by RSS, where they prove in

dimension 2 or 3, the discrete version is almost surely a tree, and in dimension 4 onwards

this is a forest. Furthermore, when suitably scaled, the two dimensional model converge

to the Brownian web.
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The proof is inspired by the literature from Percolation theory. The strategy here is

to show that if the probability that there are at least two infinite trees is positive, then

there are special points with positive density. This will allow us to use Burton-Keane

type argument from percolation theory giving comparison between volume and surface

area.

Let us define, η as the number of disjoint infinite paths of the DSF. As we have

noted the DSF is identified as a subset of R2, the number of disjoint infinite paths η is

the number of components (topological) of this set. The statement of the theorem is

equivalent to showing P(η = 1) = 1. Contrary to that we assume

P(η ≥ 2) > 0.

Note here, that this event {η ≥ 2} is translation invariant and the ergodicity of the

PPP will actually imply that the above prob is either 0 or 1, and here 1 under the

assumption. However, we do not require this.

1.2.1 Main Lemma

For m1,m2 ≥ 1, let Cm1,m2 = [−m1,m1)× [−m2,m2). Let Fm1,m2 be the following event:

there exists a path γx in the DSF with x ∈ Cm1,m2 ∩ N which does not meet any other

path γz for all z ∈ {(u, v) ∈ R2 : v < m2} \ Cm1,m2 . More precisely,

Fm1,m2 =
{
there exists x ∈ N ∩ Cm1,m2 such that

for all z ∈ N ∩ {(u, v) ∈ R2 : v < m2} \ Cm1,m2 , γx ∩ γz = ∅
}
.

Lemma 1.4. If P(η ≥ 2) > 0, then there exists m1,m2 ≥ 1 such that P(Fm1,m2) > 0.

First we prove the theorem assuming lemma. Fix L ≥ 1. Now consider the lattice

ZL,m1,m2 = {z = (2m1k, 2m2l) : −L ≤ k, l ≤ L}

having (2L+ 1)2 points and the rectangular region

<L,m1,m2 = ∪
z∈ZL,m1,m2

(
z + Cm1,m2

)
where

(
z + Cm1,m2

)
is obtained by translating the cell Cm1,m2 to z ∈ ZL,m1,m2 . Define

F z
m1,m2

as the event Fm1,m2 translated to the cell z + Cm1,m2 .
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b

b

b

b
b

b

m2

−m2

−m1 m1

x

Figure 1.5: The event Fm1,m2 .

Clearly, by translation invariance of PPP,

P(F z
m1,m2

) = P(Fm1,m2) for all z ∈ ZL,m1,m2 .

Clearly, if both F z
m1,m2

and F z′
m1,m2

occurs for z, z′ ∈ ZL,m1,m2 , z 6= z′, then there are

at least two distinct paths (infinite) in the DSF, one starting in the cell
(
z + Cm1,m2

)
and the other starting in the cell

(
z′ +Cm1,m2

)
. Therefore, the number of events Fm1,m2

occurring simultaneously, will be dominated by the number of distinct (infinite) paths

starting from inside <L,m1,m2 which is, in turn, dominated by the number edges of the

DSF going out of the rectangle <L,m1,m2 .

Define, ηL,m1,m2 as the number of edges of the DSF going out of the rectangle <L,m1,m2 .

Thus, by the above observation,

ηL,m1,m2 ≥ Σz∈ZL,m1,m2
1F z

m1,m2
. (1.22)

Hence, by taking expectation, for m1,m2 and L ≥ 1,

E
(
ηL,m1,m2

)
≥ E

(
Σz∈zL,m1,m2

1F z
m1,m2

)
= Σz∈zL,m1,m2

P(F z
m1,m2

) = (2L+ 1)2P(Fm1,m2). (1.23)

Next, we show that, the number of edges going out of the rectangle <L,m1,m2 cannot

grow faster than L3/2, in the expected sense.
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Lemma 1.5. For all m1,m2 ≥ 1, there exists a constant C(= C(m1,m2)) such that for

all L, large enough, we have

E
(
ηL,m1,m2

)
≤ CL3/2. (1.24)

Clearly, from (1.22) and (1.24), we have a contradiction, if P(Fm1,m2) > 0, which

proves the result.

Proof of Lemma 1.5: We decompose the set of edges, going out of <L,m1,m2 , into

two sets; one whose length are more than
√
L and the other whose length are no more

than
√
L. We show that the expected number of edges in both sets are of the order of

L3/2. It should be noted that the edges going out of <L,m1,m2 , essentially depend on the

perimeter of the rectangle.

We define η<L,m1,m2
, η>L,m1,m2

as the number of edges going out of <L,m1,m2 which are

shorter than
√
L and larger than

√
L, respectively.

For the edges which are shorter than
√
L and going out of <L,m1,m2 must start in

a strip of width
√
L as shown in the Figure 1.6. Thus, the number of edges of length

shorter than
√
L in η<L,m1,m2

is dominated by the number of points in the strip, clearly.

√
L

Figure 1.6: Edges in η<L,m1,m2
starting in a strip of width

√
L.

Clearly the expected number of points in the strip is given by the area, which is

dominated by C1L
3/2, for some constant C1(= C1(m,M)). Hence, we have

E(η<L,m1,m2
) ≤ C1(m,M)L3/2. (1.25)

For the number of edges which are larger than
√
L, we note that each such edge will

be associated with a Poisson point x ∈ N ∩ <L,m1,m2 for which the semi-circular region

of radius
√
L centered at x will contain no Poisson points.
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b

b

b

b

b

b

b

b

b

b

b √
L

Figure 1.7: Poisson points with semi circular region of radius
√
L containing no Poisson

points.

Let Z be the number of such points of Poisson process in <L,m1,m2 such that for each

a semi-circular region of radius
√
L contains no other Poisson points. Thus, we have

η>L,m1,m2
≤ Z. (1.26)

It is easy to compute the expectation of Z. Indeed,

E(Z) ≤ C2(m,M)L2 exp(−πL/2) (1.27)

for suitable choice of C2(m,M). Combining we have the desired result of Lemma 2.

1.2.2 Proof of Main Lemma

Next, we prove the main lemma. This divided into two parts. First, we show that if

P(η ≥ 2) > 0, then there exist m1,m2 ≥ 1 such that the probability that box Cm1,m2

will contain three disjoint infinite paths starting points is positive. This will imply that

the path in the middle is sandwiched on both sides by two paths which are disjoint

from it and all the paths starting from the box. The main lemma will then follow by

manipulating the realization of the Poisson points to create a shield so that the paths

starting from below the bottom line of the box cannot coalesce with the path in the

middle.

For m1,m2 ≥ 1, define Tm1,m2 be the top edge of the box Cm1,m2 , i.e.,

Tm1,m2 = {(x, y) : y = m2,−m1 ≤ x ≤ m1}.
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Now, for δ > 0 and m1,m2 ≥ 1, we define the event

Aδ
m1,m2

=
{
there exist u, v ∈ N ∩ Cm1,m2such that γu ∩ γv = ∅

(γu ∪ γv) ∩ ∂(Cm1,m2) ⊂ Tm1,m2 ,N ∩ Cδ,T
m1,m2

= ∅
}

where Cδ,T
m1,m2

= (−m1,m1]× (m2 − δ,m2]. This event says that there exist two Poisson

points in Cm1,m2 from which two infinite disjoint paths emerge which touch only the

top edge of the box Cm1,m2 and a strip of width δ at the top edge does not contain any

Poisson points.

b

b

δ

m2

−m2

−m1 m1

u
v

Figure 1.8: The event Aδ
m1,m2

. The shaded region δ strip contain no Poisson points.

Lemma 1.6. If P(η ≥ 2) > 0, then there exists 1 ≤ m2 ≤ m1 and δ > 0 such that

P
(
Aδ

m1,m2

)
> 0.

Proof : We have

0 < P(η ≥ 2) = P
[ ∞∪
m=1

{
there exist u, v ∈ Cm,m ∩N such that γu ∩ γv = ∅

}]
≤

∞∑
m=1

P
{
there exist u, v ∈ Cm,m ∩N such that γu ∩ γv = ∅

}
.

Since the sum is strictly positive, we can choose m ≥ 1 such that

P
{
there exist u, v ∈ Cm,m ∩N such that γu ∩ γv = ∅

}
> 0.
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The path between two lines of = m and y = −m is a compact set in R2. Now, we have

0 < P
{
there exist u, v ∈ Cn,m ∩N such that γu ∩ γv = ∅

}
= P

[ ∞∪
n=m+1

{
there exist u, v ∈ Cn,m ∩N such that γu ∩ γv = ∅,

(γu ∪ γv) ∩ ∂(Cn,m) ⊆ Tn,m
}]

≤
∞∑

n=m+1

P
{
there exist u, v ∈ Cn,m ∩N such that γu ∩ γv = ∅,

(γu ∪ γv) ∩ ∂(Cn,m) ⊆ Tn,m
}
.

So, we can choose n ≥ m+ 1, such that

P
{
there exist u, v ∈ Cn,m ∩N such that γu ∩ γv = ∅,

(γu ∪ γv) ∩ ∂(Cn,m) ⊆ Tn,m
}
> 0.

Again, in any given box, there are almost surely only finitely many points of the

process. Hence the distance of them from a fixed given line is almost surely positive.

Thus, taking δk =
1
k
, we have

0 < P
{
there exist u, v ∈ Cn,m ∩N such that γu ∩ γv = ∅,

(γu ∪ γv) ∩ ∂(Cn,m) ⊆ Tn,m
}

= P
[ ∞∪
k=1

{
there exist u, v ∈ Cn,m ∩N such that γu ∩ γv = ∅,

(γu ∪ γv) ∩ ∂(Cn,m) ⊆ Tn,m,N ∩ Cδk,T
n,m = ∅

}]
≤

∞∑
k=1

P(Aδk
n,m).

So, we choose δk such that

P(Aδk
n,m) > 0.

For R ≥ n, define the event

Aδ,R
n,m =

{
there exist u, v ∈ Cn,m ∩N such that γu ∩ γv = ∅, (γu ∪ γv) ∩ ∂(Cn,m) ⊆ Tn,m,

N ∩ Cδk,T
n,m = ∅, |N ∩ Cδ,R

n,m,R| ≥ 1, |N ∩ Cδ,L
n,m,R| ≥ 1

}
where Cδ,R

n,m,R = [n,R)× [m− δ,m) and Cδ,L
n,m,R = [−R,−n)× [m− δ,m) and |B| denote

the cardinality of the set B. This event says that there exists at least one Poisson point
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in the strips [n,R)× [m− δ,m) and [−R,−n)× [m− δ,m) along with the occurrence of

Aδ
m,M .

Lemma 1.7. If P(η ≥ 2) > 0, then there exists 1 ≤ m < n < R and δ > 0 such that

P(Aδ,R
n,m) > 0.

The proof follows similarly as in Lemma 1.6, using the fact that the infinite strips

(−∞,−n)× [m− δ,m) and [n,∞)× [m− δ,m) must contain at least one Poisson point

almost surely.

The most important observation is that the event Aδ,R
n,m depend only on the configu-

ration of the Poisson process in R× [m,∞) ∪ CR,m.

b

b

δ
m

−m
−n n

u
v

b

b b b

−R R

Figure 1.9: The event Aδ,R
n,m.

Now, we show that at least two of these events will occur simultaneously with positive

probability. Define, for i ≥ 0,

Aδ,R,i
n,m =

{
there exist u, v ∈

(
(2iR, 0) + Cn,m

)
∩N such that γu ∩ γv = ∅,

(γu ∪ γv) ∩ ∂
(
(2iR, 0) + Cn,m

)
⊆

(
(2iR, 0) + Tn,m

)
,N ∩

(
(2iR, 0) + Cδk,T

n,m

)
= ∅,∣∣N ∩

(
(2iR, 0) + Cδ,R

n,m,R)
)∣∣ ≥ 1,

∣∣N ∩
(
(2iR, 0) + Cδ,L

n,m,R)
)∣∣ ≥ 1

}
.

In other words, Aδ,R,i
n,m is the event Aδ,R

n,m translated to the box
(
(2iR, 0) + Cn,m

)
.

Lemma 1.8. If P(η ≥ 2) > 0, then there exists 1 ≤ m < n < R, δ > 0 and i ≥ 1 such

that

P(Aδ,R,0
n,m ∩ Aδ,R,i

n,m ) = P(Aδ,R
n,m ∩ Aδ,R,i

n,m ) > 0.



26 Directed Trees

Proof : Choose m,n,R and δ as in Lemma 1.7. Clearly, by translation invariance of

the Poisson process, we have, for any i ≥ 1,

P(Aδ,R
n,m) = P(Aδ,R,0

n,m ) = P(Aδ,R,i
n,m ).

If P(Aδ,R,i1
n,m ∩ Aδ,R,i2

n,m ) = 0 for all pairs i1, i2 ≥ 0, we have

1 ≥ P
( ∞∪
i=0

Aδ,R,i
n,m

)
=

∞∑
i=0

P
(
Aδ,R,i

n,m

)
= ∞.

This proves the Lemma, by translation invariance.

Now we are in a position to prove the main lemma.

Proof of main lemma : Choose m,n,R, δ and i as in Lemma 1.8 so that P(Aδ,R
n,m ∩

Aδ,R,i
n,m ) > 0. On the event Aδ,R,0

n,m ∩Aδ,R,i
n,m , we have two pairs of points (u1, v1) ∈ Cm,m and

(u2, v2) ∈
(
(2iR, 0) + Cm,m

)
such that γu1 ∩ γv1 = ∅ and γu2 ∩ γv2 = ∅. Since the paths

are non-crossing, we must have at least 3 paths with positive probability.

Furthermore, the event Aδ,R
n,m ∩ Aδ,R,i

n,m depend only on the configuration of Poisson

points on the region

D =
(
R× (m,∞)

)∪
CR,m

∪(
(2iR, 0) + CR,m

)
.

We now manipulate the realization of the Poisson point pair on Dc to create a shield

so that no path from bottom can coalesce with the middle path, constructed above.

We consider three isosceles triangles with base on y = m and the inclined sides being

parallel to each other, in such a way that the region CR,m∪
(
(2iR, 0)+CR,m

)
is contained

within the inner triangle and the distances between the corresponding inclined sides

being 2δ and δ/2 respectively between the inner and the middle triangle and between

the middle triangle and the outer triangle.

Now, we consider two trapezoidal regions, joined at the top between the middle

triangle and the outer triangle. For each such region, we select a set of finitely many

disjoint squares {B1
1 , B

1
2 , . . . , B

1
N1
} and {B2

1 , B
2
2 , . . . , B

2
N2
}. Each of these squares has

side length δ/16 are chosen so that bottom line of square B1
i lies above top line of

B1
i+1 for i = 1, . . . , N1 − 1 and bottom line of square B2

i lies above top line of B2
i+1 for

i = 1, . . . , N2 − 1. Furthermore, we select the squares so that the centres of squares B1
i

and B1
i+1 and B2

i and B2
i+1 are at most δ/4 distance away and the centres of B1

1 and

B2
1 are also at most δ/4 distance away and the centres of B1

N1
and B2

N2
are at most δ/4

distance away from the y = m line (See Figure 1.10)
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Figure 1.10: Poisson points with semi circular region of radius
√
L containing no Poisson

points.

Now, consider the event

E =
{
Each of squares B1

i , i = 1, . . . , N1 and B2
i , i = 1, . . . , N2 has at least

one Poisson point and there are no Poisson points in the remaining

trapezoidal region between the outer triangle and the inner triangle
}
.

Clearly, P(E) > 0 and the event depend upon the configuration of the Poisson process

in Dc. Thus, we have

P
(
(Aδ,R

R,m ∩ Aδ,R,i
R,m ) ∩ E

)
> 0.

Choosing m1 and m2 suitably, we now have

Fm1,m2 ⊆ (Aδ,R
R,m ∩ Aδ,R,i

R,m ) ∩ E,

which proves the lemma.
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1.3 Infinite Oriented Cluster

We consider the oriented lattice in Z2
even = {(m,n) ∈ Z2 : m + n is even} and oriented

edges from (m,n) to (m + 1, n + 1) and to (m − 1, n + 1). The oriented edges from u

to v is denoted by [u, v〉. As usual, each edge is open with probability p and closed with

probability 1− p, independently of all other edges. We denote by Pp, the corresponding

product measure and by Ep, the corresponding expectation with respect to Pp.

For u, v ∈ Z2
even, we say that v can be reached from u, if there is a finite sequence of

vertices and edges, v0 = u, e1, v1, e2, . . . , vm−1, em, vm = v such that ei = [vi−1, vi〉 is open
for 1 ≤ i ≤ m. We denote this by {u 7−→ v}. If there is no such sequence, then we say

that v cannot be reached from u, and we denote this by {u 67−→ v}. For (x, y) ∈ Z2
even,

we denote oriented percolation cluster at (x, y), by

C(x,y) =
{
(z, w) ∈ Z2

even : (x, y) 7−→ (z, w)
}
.

Let Ω(x,y) =
{
|C(x,y)| = ∞

}
and θ(p) = P(Ω(0,0)). Define

−→pc = sup{p : θ(p) = 0}.

It is well known that [Durrett 1985]

0 < −→pc < 1.
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Figure 1.11: Configuration of oriented percolation
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By definition

θ(p)

= 0 for p < −→pc

> 0 for p > −→pc .

Furthermore, Bezuideninout and Grimmett [1990] has shown that θ(p) = 0 if and only

if p ≤ −→pc .
Now, we say (x, y) ∈ Z2

even, is a percolation point if |C(x,y)| = ∞. If p ≤ −→pc , there are
no percolation points, however if p > −→pc , there are infinitely many percolation points.

Let

K = {(x, y) ∈ Z2
even : |C(x,y)| = ∞}.
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Figure 1.12: Graph consisting of rightmost infinite paths

Since from any (x, y) ∈ Z2
even, the rightmost (u, v) ∈ Z2

even, with v = y + n, which

is reachable from (x, y) must have the property that u ≤ x + n, we can define a right-

most infinite path γ(x,y) from (x, y) ∈ K. More precisely, for (x, y) ∈ K, the right-

most infinite path γ(x,y) is an infinite sequence of vertices and open edges, (x, y) =

v0, e1, v1, e2, . . . , envn, . . . with vn = (xn, yn) and en = [vn−1, vn〉 such that, for each

n ≥ 1,

{k ≥ 1 : (x, y) 7−→ (xn + k, yn) ∈ K} = ∅.

Similarly we define a leftmost infinite path as l(x,y) for (x, y) ∈ K. Thus, the infinite

oriented cluster of C(x,y) will be contained inside the random cone generated by γ(x,y)

and l(x,y).

For any (finite or infinite) path Γ, let V (Γ) and E(Γ) denote the set of vertices

in Γ and the set of edges in Γ respectively. Let G be the random graph consisting
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of edges in γ(x,y) for (x, y) ∈ K. In other words, the vertex set of G, V (G) = K and

E(G) = {(x, y) : [x, y〉 ∈ E(Γu), u ∈ K}. Clearly, there are no loops in G, hence it is a

forest.

For any infinite oriented path Γ and v ∈ Γ (note Γ may not be the rightmost infinite

path, it is just one fixed path), we define

br(v,Γ) =
{
u ∈ Z2

even \ V (Γ) : u lies to the right of Γ and v 7−→ u uses no edges of Γ
}
,

b`(v,Γ) =
{
u ∈ Z2

even \ V (Γ) : u lies to the left of Γ and v 7−→ u uses no edges of Γ
}
.

These are called right and left bud of Γ planted at v. (See figure 1.13). Given two

vertices u, v of Γ such that u 7−→ v in Γ, i.e., there exists a finite sequence v0 =

u, e1, v1, . . . , en, vn = v such that vi ∈ V (Γ) and ei ∈ E(Γ), we define by Γ[u, v] as the

piece between u and v.

Further, let

Cr(Γ[u, v)) =
∪

v′∈V (Γ[u,v]\v)

br(v
′,Γ)

Cl(Γ[u, v)) =
∪

v′∈V (Γ[u,v]\v)

br(v
′,Γ).

Clearly, if Γ is rightmost infinite path, then the right buds of Γ are finite, hence

Cr(Γ([u, v))) is also finite. Similarly left buds are finite if Γ is leftmost infinite path.

For each u ∈ Z2
even, two edges are adjacent to u, which are above, namely if u =

(u1, v1), then the edges (u1 + 1, v1 + 1), (u1 − 1, v + 1). These will be called upper

edges of u. There are two edges which are lower edges to u, namely (u1 + 1, v1 − 1) and

(u1 − 1, v1 − 1). Since G consists of oriented paths which contain no loops, each vertex

u = (u1, v1) of G must be adjacent to only one upper edge. We say that the vertex at the

upper edge at u is called the mother M(u) of u. On the other hand, at most two vertices

of G, can have the same mother u, in other words, D(u) = {v ∈ GV (G) :M(v) = u}. If
D(u) has two vertices, then they are called sisters and they are of the form (u1−1, v1−1)

and (u+1, v1−1). The vertex (u1−1, v1−1) will be called older sister and (u1+1, u1−1)

is called the younger sister.

Define, M0(u) = u and for n ≥ 1, Mn(u) = M(Mu−1(u)), the nth ancestor of u.

Define, Dn(ua) = {v ∈ K :Mn(v) = u} for n ≥ 0 and D(u) = ∪
n≥0

Dn(u). The set Dn(u)

is the nth generation descendants of u and D(u) is the set of all descendants of u.
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We say that two vertices u,v ∈ K are connected if they have common ancestor, i.e.,

there exists m,n ≥ 0 such that Mm(u) = Mn(v). This defines an equivalence relation

and equivalence classes are connected trees.

Thoerem 1.4. For p ∈ (−→pc , 1),

(a) G has a unique connected component

(b) D for all u, D(u) is finite

(c) For each u ∈ V (G), there is an ancestor with a younger sister almost surely.

1.3.1 Kuczek’s Construction

For A ⊂ (−∞,∞), we denote a random subset by ξAn = {x : there exists x′ ∈
A such that (x′, 0) → (x, n)} for n > 0. The right most point at level n is defined

by rn = sup ξn(−∞,∞] where sup ∅ = −∞. Thus, rn is rightmost point on the nth level

which is reachable from some point in (−∞, 0]× {0}.
It is known that

lim
n→∞

rn
n

= inf
{Ep(rn)

n
: n ≥ 1

}
= α(p) a. s. and in L1.

Furthermore, it is known

α(p) =


−∞ if p < −→pc

0 ifp = −→pc

> 0 ifp > −→pc .

Now, we define

ξ10 = ξ
{0}
0

and for all n ≥ 0,

ξ1n+1 =

{x : (y, n) → (x, n+ 1) for some y ∈ ξ1n} if the set is non-empty

(n+ 1) otherwise

and finally set r1n = sup ξ1n.

It is easy to observe that on the event, Ω0,0 = {(0, 0) ∈ K},

r1n = rn ≥ γ(0,0)(n), where γ(0,0)(n) ∈ Z satisfies (γ(0,0)(n), n) ∈ γ(0,0).
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Let T0 = 0 and Tm = inf{n ≥ Tm−1 + 1 : (r1n, n) ∈ K} for m ≥ 1. Define τ0 = 0

and τ1 = T1 and τ2 = T2 − T1, . . . , τm = Tm − Tm−1 where τi = 0 if Ti−1 = Ti = ∞.

The collection of points {(r1Tm
, Tm) : m ≥ 0} are called the break points for path from

(0, 0). Observe that, on Ω(0,0), we must have (r1Tm
, Tm) ∈ γ(0,0) for all m ≥ 1. Also,

define X0 = 0, and X1 = r1T1
, X2 = r1T2

− r1T1
, . . . , Xm = r1Tm

− r1Tm−1
where Xi = 0 if

Ti−1 = Ti = ∞.

Proposition 1.1. (Kuczek) For p ∈ (−→pc , 1), on Ω(0,0), {(Xm, τm) : m ≥ 1} are in-

dependently and identically distributed with all moments and
γ(0,0)(n)−α(p)n√

nσ2
converges to

N(0, 1) in distribution as n→ ∞ for some σ > 0.

On Ω(0,0), the rightmost infinite path γ(0,0) is well defined and all break points

(r1τm , Tm) : m ≥ 1 are well defined. By Proposition 1.1, on the event Ω(0,0), we de-

fine an integer-valued random walk ξ(0,0) = {ξ(0,0)(t) : t ≥ 0} as follows: ξ(0,0)(0) = 0 and

ξ(0,0)(t) =
∑N(t)

i=1 Xi for t > 0, where N(t) is the largest integer m such that Tm ≤ t. In

the same way, we define the random walk ξ(x,y) = {ξ(x,y)(t) : t ≥ y} on the event Ω(x,y),

(x, y) ∈ Z2
even.
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Figure 1.13: This figure represent right bud at u on γu and note that the break points

form random walk ξu.
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Proposition 1.2. For any p ∈ (−→pc , 1) and any pair u1, u2 ∈ Z2
even, conditioned on the

event Ωu1 ∩ Ωu2 , the following statements are equivalent.

(a) ξu1 meets ξu2 , i.e., for some t0 ≥ min(u1(2), u2(2)), ξu1(t0) = ξu2(t0).

(b) The rightmost infinite paths γu1 and γu2 meet.

Proof : Clearly, (a) implies (b). So, enough to show (b) implies (a).

Let Γ1 and Γ2 be two realizations of γu1 and γu2 respectively. Suppose that Γ1

and Γ2 meet at u1,2 ∈ K. So, for i, j ≥ 0, u1,2 = M i(u1) = M j(u2). We assume that

M i−1(u1)(1) < M j−1(u2)(1) where u(1) denote the first co-ordinate of the point u ∈
Z2

even. Note that u1,2 is a break point for u1, as all the branches of Γ1 are bounded on the

right by Γ2 and consequently no point on the right of u1,2 is reachable from u1. However,

u1,2 need not be a break point for u2 (See figure 1.13). We need to show, that there is a

point v1,2 ∈ Γ1 ∩ Γ2 such that v1,2 is a common jump point of both ξu1 and ξu2 .

Let {vm = (xm, ym) : m ≥ 0} be the jump points of ξu2 , ordered by their y-co-

ordinate. By definition, each vm is also a break point of Γ2. If u1,2 is a jump point of ξu2 ,

then we have nothing to show. If not, there is a k st. u1,2 ∈ Γ2([vk−1, vk)). By definition of

break point, yk the second co-ordinate of vk, is greater than y for (x, y) ∈ Cr(Γ2(u1,2, vk)).

Since Cr(Γ1(u1,2, vk)) = Cr(Γ2(u1,2, vk)) ⊆ Cr(Γ2(uk−1, vk)), we have that vk is a break

point, hence a jump point of ξu1 . Hence, the proposition follows.

We define Rα(p) as the line (in R2) defined by the equation y = x/α(p). Conditioned

on Ω(0,0), we have the following property of γ(0,0).

Proposition 1.3. Suppose p ∈ (−→pc , 1). Then conditioned on the event Ω(0,0), almost

surely, the rightmost infinite path γ(0,0) crosses the line Rα(p) infinitely many times.

The proof of this a direct consequence of the Proposition 1.1 by Kuczek. Since
γ(0,0)(n)−α(p)n√

nσ2
converges to a normal distribution, both the events lim infn→∞{γ(0,0)(n) ≥

α(p)n} and lim infn→∞{γ(0,0)(n) ≤ α(p)n} has probability 0.

1.3.2 Proof of Theorem 1.4

We introduce some more notations. For u ∈ Z2
even, we define ∧u as 45◦-degree cone

starting at u. Thus, Vu consists of all vertices v such that there is an oriented path (not

considering open or closed edges) from u to v. Thus, Cu ⊆ ∧u. Similarly, we define Λu
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as the inverted 45◦ cone at u. Then, Λu is the set of all vertices v such that there is an

oriented path from v to u.

For any n ≥ 0 and u = (x, y), let

Λn(u) = {v = (x′, y′) ∈ Λu : y − y′ ≤ n}

For any finite set A ⊆ Z2
even, contained in a horizontal line, we define

ΛA =
{
v ∈ Z2

even : there is a oriented path from , v to some u ∈ A
}
=

∪
u∈A

Λu

and ΛA(n) = {v = (x′, y′) ∈ ΛA : y−y′ ≤ n} for n ≥ 0, where y is the second co-ordinate

of some point in A. Given u ∈ Z2
even and v ∈ Λu, we say that there is an anti-oriented

open path from u to v, if v 7→ u. For u ∈ Z2
even, we define

Canti
u := {v ∈ Z2

even : v 7→ u},

as anti-oriented cluster of u. clearly it is a random subset of Λu. On the event {|Canti
u | =

∞}, we define lantiu for the leftmost anti-oriented infinite open path from u.When p > −→pc ,
we have

Pp(|Canti
u | = |Cu| = ∞) = θ(p)2 > 0 for u ∈ Z2

even. (1.28)

This follows from the fact that {|Cu| = ∞} depends only on edges ∧u while {|Canti
u | =

∞} depends only of the edges in Λu, hence they are independent. Now, reversing the

orientation of each of the edges in Λu, we see that {|Canti
u | = ∞} has the same probability

as that {|Cu| = ∞}. The vertices u, satisfying {|Canti
u | = ∞, |Cu| = ∞} are called bi-

directional percolation points. Let K̃ denote the set of bi-directional percolation points.

Proof of Theorem : It suffices to prove the result for any two vertices u1 = (x1, y1)

and u2 = (x2, y2), with y1 = y2, conditioned on the event Ωu1 ∩ Ωu2 , since it is always

possible to find two vertices which are ancestors of u1 and u2, on the same horizontal

line. Furthermore, by translation invariance, it is enough to consider u2 = (0, 0) and

u1 = (−n0, 0) for some n0 ≥ 1.

Let Γ be a realization of γ(0,0). By Proposition 1.3, Γ crosses the line Rα(p) infinitely

many times. For some vertex v ∈ V (Γ), let e = [u, v) be the lower edge of v in Γ. We

call v, a crossing point if [u, v〉 ∩Rα(p) 6= ∅.
Given a realization of Γ, we define a sequence of independent events E(K,Γ), for

k ≥ 1. Fix ε0 > 0 such that Φ(−ε0) > 1
3
. By Proposition 1.1, we choose N0 ≥ 1 such

that

Pp

(
γ(0,0)(n

2)− α(p)n2 < −nσε0|Ω(0,0)

)
≥ 1

3
(1.29)
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Figure 1.14: Crossing points.

for all n ≥ N0.

Set v0(Γ) = (x0, y0) = (0, 0).We choose the first crossing point v1(Γ) = (x1, y1) which

satisfy the following condition

y1 > max{n0/(ε0σ), N0}2.

Having chosen v1(Γ), . . . , vk−1(Γ), we choose vk(Γ) = (xk, yk), the first crossing point of

Γ after vk−1(Γ), satisfying the following condition

yk − yk−1 > max{2yk−1/(ε0σ), N0}2. (1.30)

Now, we define E(1,Γ) as

E(1,Γ) =
{
there is an anti-oriented open path from v1(Γ)

to the half line (−∞, n0)× {0}
}
.

Iteratively, for k ≥ 2, we define E(k,Γ) as

E(k,Γ) =
{
there is an anti-oriented open path from vk(Γ) to the half line

(−∞, xk−1 − 2yk−1]× {yk−1} and to the line(−∞,∞)× {0}
}
.

Define Area(K,Γ) = Λvk(Γ)(yk − yk−1) ∪ ΛAk
(yk−1) where

A1 = {u = (x, y) ∈ Λv1(Γ)(y1) : x ≤ −n0, y = 0}
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and, for k ≥ 2,

Ak =
{
u = (x, y) ∈ Λvk(Γ)(yk − yk−1) : x ≤ xk−1 − 2yk−1, y = yk−1

}
.

See figure 1.15 to observe that {Area(K,Γ) : k ≥ 1} are edge disjoint. Thus, for a fixed

given path Γ, the events {E(K,Γ) : k ≥ 1} are independent.

b

b

b

A2

A1

Area(1,Γ)

ΓRα(p)

v2(Γ)

v1(Γ)

(0, 0)

∧A2(y1)

∧v2(Γ)(y2 − y1)

Area(2,Γ) = ∧v2(Γ)(y2 − y1) ∪ ∧A2(y1)

Figure 1.15: This figure represents v1(Γ), v2(Γ), Area(1,Γ)(darker shaded region) and

Area(2,Γ) (lighter shaded region). Note that Area(1,Γ) and Area(2,Γ) are edge-disjoint

areas.

Now, using (1.28) and (1.29), used on leftmost anti-oriented path from vk(= vk(Γ)),

we have

Pp(E(k,Γ)) ≥ P
(
|Canti

vk
| = ∞, lantivk

∩ Ak 6= ∅
)

= Pp

(
lantivk

∩ Ak 6= ∅||Canti
vk

| = ∞
)
P
(
|Canti

vk
| = ∞

)
≥ 1

3
θ(p) > 0. (1.31)

We note here that in the above calculations Γ was used only to find the vertices

vk(Γ). On the event {γ(0,0) = Γ}, let E∗(1,Γ) be the event that there is an anti-oriented

open from Γ(0, v1(Γ)) to A1 and let E∗(K,Γ) be the event that there is anti-oriented

open path Γ(vk−1(Γ), vk(Γ)) to Ak and then to (−∞,+∞)× {0}.
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On the event {γ(0,0) = Γ}, the event E∗(K,Γ) only depends on the edges of Area

(K,Γ) which are lying to the left of Γ, since the edges of Γ are open.

Now, we define two events,

F (Γ) = {Γ is open} and G(Γ) = {v 67→ ∞ in R(Γ) for each v ∈ Γ}

where R(Γ) is the set of edges lying to the right of Γ. Clearly, we have

{γ(0,0) = Γ} = F (Γ) ∩G(Γ).

Now, G(Γ) depends only on the edges which are to the right of Γ. Thus, the events

E∗(k,Γ) and G(Γ), conditioned on F (Γ), are independent for each k ≥ 1. Now, we

observe that

E∗(k,Γ) ∩ F (Γ) = E(k,Γ) ∩ F (Γ).

Thus,

Pp(E
∗(k,Γ)|γ(0,0) = Γ) = Pp(E

∗(k,Γ)|F (Γ)) = Pp(E(k,Γ)|F (Γ)). (1.32)

Now, for any k ≥ 1, the event Fk(Γ) be the event all edges in Γ(vk−1(Γ), vk(Γ)) are

open. Clearly, Fk(Γ) is increasing. By FKG inequality,

Pp(E(k,Γ)|F (Γ)) = Pp(E(k,Γ)|Fk(Γ)) ≥ Pp(E(k,Γ)). (1.33)

On the other hand, E∗(k,Γ) depends only on edges in Area(k,Γ) which are lying to

the left of Γ. Since Area(k,Γ) are edge disjoint for different k, we have E∗(k,Γ) are

independent for k ≥ 1. Furthermore, from (1.30), (1.31), (1.32) and (1.33), we have

Pp(E
∗(k,Γ)|γ(0,0)) ≥ θ(p)/3.

for k ≥ 1. Thus, by second Borel-Cantelli lemma, E∗(k,Γ) must occur infinitely often.

This proves that for some u = (u′, 0) with u′ ≤ −n0, there is a open path from u to

vk(Γ) for some k ≥ 1. Thus, by the definition of rightmost path, γu1 and γu2 must meet.

Proof of Theorem (b): For any u ∈ K, by definition of D(u,G), it is clear that

D(u,G) ⊆ Canti
u . So, if u ∈ K \ K̃, i.e., u is a percolation point but not a bi-directional

percolation point, then |Canti
u | <∞, hence |D(u,G)| <∞. Thus, it suffices to prove the

result only for u ∈ K̃. By translation invariance, it is enough to show

|D(u,G)| <∞ when (0, 0) ∈ K̃.
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Let lanti(0,0) be the leftmost anti-oriented infinite open path from (0, 0) and Lanti be a

possible realization of lanti(0,0), which crosses Rα(p) infinitely many times. We want to show

that, |D((0, 0), G)| <∞ on the event {lanti(0,0) = Lanti}.
By part (a), we know that, on the event {lanti(0,0) = Lanti}, with probability 1, for all

n ≥ 1, there exists some point vn(L
anti) in Lanti, from which there is an oriented open

path to [n,∞)× {0}. On the other hand, by ergodic theorem, with probability 1, there

exists infinitely many m > 0 such that (m, 0) ∈ K̃. Thus, on the event {lanti(0,0) = Lanti},
with probability 1, there exists m0 > 0 and v′ ∈ Lanti such that (m0, 0) ∈ K̃ and there is

an oriented path from v′ to v′′ ∈ [m0,∞)×{0}. Let us denote this path by π = π(v′, v′′)

(see figure 1.16).

b

b

b

A2

A1

v2(Γ)

v1(Γ)

(0, 0)

E∗(2,Γ)

E∗(1,Γ)

Figure 1.16: On the event {γ(0,0) = Γ}, the event E∗(k,Γ) depends only on the edges of

Area(k,Γ) which are to the left of Γ.

Define

Λ(0,0)(L
anti, π) = {u ∈ Λ(0,0) \ Lanti : u lies to the right of Lanti and above π}.

and

Cl(L
anti(v, (0, 0))) = {w 6∈ Lanti : w lies to the left of Lanti and for some

z ∈ Lanti(v′, (0, 0)), z 6= v′ and w 7→ z uses no edges of Lanti}.
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We claim

D((0, 0), G) ⊆ Cl(L
anti(v′, (0, 0)))

∪
Lanti(v, (0, 0))

∪
Λ(0,0)(L

anti, π). (1.34)

Indeed, if u ∈ Canti
(0,0) and u does not belong to the right hand side of (1.34), then it is

easy to find a path from u to (m0, 0), implying that the rightmost infinite open path

from u does not lead to (0, 0). Hence u 6∈ D((0, 0), G).

By definition of leftmost anti oriented infinite path, we have

|C`(L
anti(v′, (0, 0)))| <∞.

Clearly, |Lanti(v′, (0, 0))| <∞ and |Λ(0,0)(L
anti, π)| <∞. This proves the result.

Proof of Theroem (c) : This is easy. For any (x, y) ∈ K, by ergodicity, there exists

(x′, y) ∈ K where x′ > x. Since γ(x,y) and γ(x′,y) meet almost surely at v ∈ K1 (say), v

must have two daughters.
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Brownian Web

2.1 Introduction

We begin with a metric space (R̄2, ρ) where R̄2 is the compactification of R2 under the

metric ρ, with

ρ
(
(x1, t1), x2, t2)

)
=

∣∣∣tanh(x1)
1 + |t1|

− tanh(x2)

1 + |t2|

∣∣∣ ∨ ∣∣tanh(t1)− tanh(t2)
∣∣. (2.1)

The space R̄2 can be viewed as the image of the compact space [−∞,∞]× [−∞,∞]

under the mapping

(x, t) → (Φ(x, t), ψ(t))

where

Φ(x, t) =
tanh(x)

1 + |t|
and ψ(t) = tanh(t). (2.2)

For t0 ∈ [−∞,∞], let C(t0) denote the set of all functions f from [t0,∞] to [−∞,−∞]

such that Φ(f(t), t) is continuous. Now, define

Π =
∪

t0∈[−∞,∞]

C[t0]× {t0}.

Now (f, t0) ∈ Π, represents a path in R̄2 with starting point at (f(t0), t0) ∈ R̄2. The

space Π is given the following metric

d((f1, t1), (f2, t2)) =
(

sup
t∈[−∞,∞]

∣∣Φ(f̂1(t), t)− Φ(f̂2(t), t)
∣∣) ∨ |ψ(t1)− ψ(t2)| (2.3)

where, for i = 1, 2,

f̂1(t) =

fi(t) if t ≥ ti

fi(ti) if t < ti.

41
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t

t

t
t

t
(∗,−∞)

(∗,+∞)

(0, 0)

(+∞, 2)

(−∞,−1)

Figure 2.1: The compactification R̄2 of R2.

We observe now that (fn, tn) ∈ Π converges to (f, t) ∈ Π if both the terms in (2.3)

converges to 0. This implies ψ(tn) → ψ(t) i.e., tn → t. (in the usual distance). For the

first term, observe that when t → ±∞, ψ(x, t) → 0. Thus the convergence of the first

term to 0 is equivalent to that the supremum taken over t ∈ [−M,M ],M ≥ 0 converges

to 0, i.e.,

sup
t∈[−M,M ]

∣∣∣tanh(f̂n(t))− tanh(f̂(t))

1 + |t|

∣∣∣ → 0

for all M. This, in turn, is equivalent to sup
t∈[−M,M ]

∣∣∣f̂n(t) − f(t)
∣∣∣ → 0 as n → ∞ for all

M > 0. So, convergence in this topology is equivalent to the convergence of starting

points of the paths as well as uniform convergence of the paths to the limiting path on

compact intervals.

Proposition 2.1. The space Π is complete and separable under the metric d.

Next, we defineH as space of all compact subsets of (Π, d), equipped with the induced

Hausdorff metric dH i.e.,

dH(K1, K2) = supg1∈K1
infg2∈K2d(g1, g2) ∨ supg2∈K2

infg1∈K1d(g1, g2).

Proposition 2.2. The space H is complete and separable under the metric dH.

Let (Ω,F ,P) be a probability space where we have a family of i.i.d. Brownian motion

{Bi : i ≥ 1} is defined. Now, suppose D = {xj, tj : j ≥ 1} be any countable dense set in
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(R̄2, ρ). Define, for (xj, tj) ∈ D, and t ≥ tj

Wj(t) = xj +Bj(t− bj), for j ≥ 1.

Thus, Wj’s are independent Brownian motions starting at xj at time bj. Note, (Wj, tj) ∈
Π, for each j ≥ 1. Now, we define coalescing Brownian motion paths from this family

{Wj, j ≥ 1} as follows:

When two paths meet for the first time, they coalesce into a single path, which is

the path of the Brownian motion having lower index. More mathematically, define

W̃1(t) = W1(t) for t ≥ t1.

Having defined W̃1, W̃2, . . . , W̃k(t), we define W̃k+1 as follows: let τk+1(τk+1 ≥ tk+1) be

the first time Wk+1(t) hit one of W̃1, . . . , W̃k(t) and let j be the index, j ∈ {1, . . . , k} of

path which is hit by Wk+1. Then, define

W̃k+1(t) =

Wk+1(t) for t ≤ τk+1

W̃j(t) for t > τk+1.

We define Wk = Wk(D) = {W̃j : 1 ≤ j ≤ k} and W = W(D) =
∪
k≥1

Wk(D).

Proposition 2.3. The subset W is compact almost surely in (Π, d) where W is the

closure of W in (Π, d).

It is therefore the case that W ∈ H. Note for any k ≥ 1, Wk ∈ H since it is a finite

set.

Remark. It can also be shown that all the paths in W are Hölder continuous with

exponent α, for any α < 1
2
.

Thoerem 2.1. The H-valued random variable W satisfies the following properties:

(a) For any (x, t) ∈ R2, almost surely there is a unique element Wx,t ∈ W , starting at

the point (x, t).

(b) For any n ≥ 1 and (xx1,t1), (x2, t2), . . . , (xn, tn), the joint distribution of (Wx1,t1 , . . . ,

Wxn,tn) is the same as that of coalescing Brownian motions with unit diffusion

constants starting at points (x1, t1), (x2, t2), . . . , (xn, tn) .
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(c) For any countable dense subset D of R2, almost surely W =
∪

(xn,tn)∈D
{Wxn,tn}.

Remark. It is furthermore known that the Brownian web is characterized by the three

properties (a), (b) and (c) above. In other words, for any (H, dH)-valued random variable

satisfying the properties (a), (b) and (c), must be the same in distribution as that of W .

2.2 Path counting

For t > 0 and t0, a, b ∈ R with a < b, let η(t0; t; a, b) be the number of distinct points in

R× {t0 + t} that are touched by paths W which also touch some point in [a, b]× {t0}.
Also, define η̂ = (t0; t; a, b) = η(t0; t; a, b)− 1.

Proposition 2.4. The distribution of η̂ is same as that of the number of points in

[a, b]× {t0 + t} which are touched by some paths in W which also touch R× {t0}.

The proof uses a duality argument (see paper by Fontes et. al. [arxive version]).

Proposition 2.5. Let η̂ = (t0; t; a, b) be the counting random variable for W . Then,

P(η̂ ≥ k) ≤
[
θ(b− a, t)

]k
for k ≥ 1, where θ(b − a, t) is the probability that two independent Brownian motions

starting at a distance b− a apart have not met before time t.

In fact, it is known that

P(η̂ ≥ k) ≤ P(η̂ ≥ k − 1)P(η̂ ≥ 1) ≤
[
P(η̂ ≥ 1)

]k
=

[
θ(b− a, t)

]k
where the first inequality follows by using FKG inequality.

Thoerem 2.2. Let W ′ be H-valued random variable. Suppose that conditions a), b)

hold. Further

c′) suppose that η̂W ′(t0; t; a, b)
d
= η̂W(t0; t; a, b) for all t > 0, t0, a, b ∈ R, a < b.

Then W ′ has the same distribution as the W .

There is further minimality property of the Brownian web. In fact, the condition (c′)

can be replaced by
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c′′) for all t > 0, t0, a, b ∈ R, a < b, ηW′ is stochastically dominated by ηW , i.e., for all

k ≥ 1,

P(ηW ′ ≥ k) ≤ P(ηW ≥ k).

It has further been proved that (c′′) can be replaced by

c′′′) for all t > 0, t0, a, b ∈ R, a < b,

E(ηW ′) ≤ E(ηW).

It is also known that

E(ηW) = 1 +
(b− a)√

πt
.

2.3 Convergence Criteria

Let K be a H-valued random variable. For t > 0, and t0, a, b ∈ R, a < b, we define

Kt0,t[a, b] =
{
x ∈ [a, b] : there exists y ∈ R and a path in K

which touches both (x, t0) and (y, t0 + t)
}
.

Set

lt0,t[a, b] = inf{Kt0,t[a, b]} and rt0,t[a, b] = sup{Kt0,t[a, b]}.

We now define

Nt0,t[a, b] =
{
y ∈ R : there exists x ∈ [a, b] and a path in K

which touches (x, t0) and (y, t0 + t)
}

N−
t0,t

[a, b] =
{
y ∈ R : there exists x ∈ [a, b] and a path in K

which touches (lt0,t[a, b], t0) and (y, t0 + t)
}

N+
t0,t

[a, b] =
{
y ∈ R : there exists x ∈ [a, b] and a path in K

which touches (rt0,t[a, b], t0) and (y, t0 + t)
}
.

Observe that ∣∣Nt0,t[a, b]
∣∣ = η(t0; t; a, b).

Suppose {χm} be a sequence of H-valued random variables with distribution µm. We

define two conditions (B1′) and (B2′) as follows:
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(B1′) For β > 0,

limε↓0lim supm→∞supt>βsup(t0,a)∈R2µm

(∣∣Nt0,t[a− ε, a+ ε]
∣∣ > 1

)
= 0.

(B2′) For β > 0,

limε↓0
1

ε
lim supm→∞supt>βsup(t0,a)∈R2µm

(
Nt0,t[a− ε, a+ ε] 6=

N+
t0,t

[a− ε, a+ ε]
∪

N−
t0,t

[a− ε, a+ ε]
)
= 0.

We define the criteria for convergence of finite dimensional distribution. Let D be a

countable dense subset of R2.

(I1) For y ∈ R2, there exists θyn ∈ χn such that for any deterministic collection

y1, y2, . . . , ym ∈ D, the distribution of (θy1n , . . . , θ
ym
n ) converges to the distribution

of coalescing Brownian motions starting at (y1, . . . , ym).

Thoerem 2.3. Convergence Theorem : Suppose {µm} is tight. If conditions (I1)

and (B1′) and (B2′) hold, then {χm} converges in distribution to the Brownian web W .

Suppose {χm} have only non-crossing paths, the conditions (B1′) and (B2′) are im-

plied by

(B1) For all t > 0,

limε↓0lim supm→∞supt>βsup(t0,a)∈R2µm(η(t0; t; a, a+ ε) ≥ 2) = 0.

(B2) For all t > 0,

limε↓0lim supm→∞supt>βsup(t0,a)∈R2 µm(η(t0; t; a, a+ ε) ≥ 3) = 0.

If further {χm} is spatially stationary, one can take (t0, a) = (0, 0). as

sup
(a,t0)∈R2

µm(η(t0; t; a, a+ ε) ≥ 2) = µm(η(0; t; 0, ε) ≥ 2)

and

sup
(a,t0)∈R2

µm(η(t0; t; a, a+ ε) ≥ 3) = µm(η(00; t; 0, ε) ≥ 3).

There is also an alternative convergence criteria developed Newman et. al. [2005],

which replaces conditions (B1) and (B2) by a density bound using the dual counting

variable η̂ and the minimality of the Brownian web. This is more robust than the

previous criteria and more useful in non-overlapping cases.
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Thoerem 2.4. Let (χm)m≥1 be a sequence of H-valued random variables having µm as

the distribution of chi. Suppose that {µm} is tight and the condition (I1) holds. Then

Xn converges in distribution to the standard Brownian web W:

(E) If X is any subsequential weak limit of (Xn)n≥1, then for all t > 0 and t0, a, b ∈ R
with a < b, we have E[η̂X (t0, t; a, b)] ≤ E[η̂W(t0, t; a, b)] =

b−a√
πt
.

To verify condition (E) in Theorem 2.4 for Xn, by following the strategy : we show

that for any δ > 0 and for any subsequential limit, the paths (in the subsequential limit)

starting below y = t0 ∈ R with have locally finitely many intersection with the line

y = t0 + δ. Furthermore, the distribution of the paths in the subsequential limit after

t0 + δ is the same as coalescing Brownian motions starting at those points. Under the

assumption of condition (I1), the second part is standard and holds generally. For a

proof see Newman et. al. [2005].

In what follows, for any s < t and K ∈ H, we will denote

Ks := {π ∈ K : σπ = s}, Ks− := {π ∈ K : σπ ≤ s},

K(s) := {π(s) : π ∈ K}, Kt := {πt : π ∈ K},
(2.4)

where πt denotes the path obtained from π by restricting π to the time interval [t,∞).

We will also denote Kt
s− := (Ks−)

t.

It was further proved that condition (E) can be replaced by condition

(E’) For any t0 ∈ R, if Z is a subsequential weak limit of (Xn,t−0
)n∈N, where Xn,t−0

:=

(Xn)t−0 , then for all t > 0 and a < b, we have

E[η̂Z(t0, t; a, b)] ≤ E[η̂W(t0, t; a, b)] =
b− a√
πt
. (2.5)

Condition (E’) simplifies (E) by effectively singling out the subset of paths in X starting

before or at time t0, which are the only relevant paths for verifying condition (E).

Assume that for a subsequence nk, we have Xnk,t
−
0
converges weakly to Z. To verify

(E’), it suffices to prove (2.5), which will follow from the next two lemmas.

Lemma 2.1. Let Z be the weak limit of Xnk,t
−
0
. Then for any δ > 0, Z(t0 + δ) is a.s. a

locally finite subset of R.

Lemma 2.2. Let Z be the weak limit of Xnk,t
−
0
. Then for any δ > 0, Z t0+δ has the same

distribution as that of Wt0+δ,Z := {π ∈ W : σπ = t0 + δ, π(t0 + δ) ∈ Z(t0 + δ)}, where W
is a standard Brownian web independent of Z.
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Lemma 2.2 implies that

E[η̂Z(t0, t; a, b)] = E
[
η̂Zt0+δ(t0 + δ, t− δ; a, b)

]
≤ E[η̂W(t0 + δ, t− δ; a, b)] =

b− a√
π(t− δ)

,

from which (2.5) follows by letting δ ↓ 0.

2.3.1 Tightness condition

Let ΛL,T = [−L,L] × [−T, T ] ⊆ R2. For C(χ0t0) ∈ R2 and u, t > 0, let R(χ0, t0, u, t)

denote the rectangle [x0 − u, x0 + u] × [t0, t0 + t] ⊆ R2. Define At,u(x0, t0) to be event

that K contains a path touching both R(x0, t0,
u
2
, t) and (at a later time) either the left

boundary or the right boundary of a bigger triangle R(x0, t0, u, 2t).

(T1) g̃(t, u, L1, T ) =
1
t
sup

lim sup
sup

(x0,t0)∈ΛL,T

µm(Atu(x0, t0))

Proposition 2.6. If for every u, L, T > 0, lim
t↓0
g̃(t, u;L, T ) = 0, then {µm} is tight.

Thus, the general convergence theorem can be modified as

Corollary 2.4.1. Suppose {χm} is a sequence of H-valued random variables having

distribution µm which satisfy the conditions (I1), (T1), (B1′) and (B2′), then {χm}
converges in distribution to the Brownian web W .

Thoerem 2.5. Suppose {χm} is a sequence of H-valued random variables, whose paths

are non-crossing. Suppose, further, for any countable dense set D.

I1′ For each y ∈ D, there is a path θym ∈ χm such that θym converges in distribution to

a Brownian motion Zy, starting at y.

Then, the family {χm} is tight.

Thus, for a family having non-crossing paths, the convergence theorem simplifies to

Corollary 2.5.1. Suppose {χm} is a sequence of H-valued random variables whose paths

are non-crossing. Suppose that the conditions (I1), (B1) and (B2) are satisfied. Then,

χm converges in distribution to the Brownian web W .

Corollary 2.5.2. Suppose {χm} is a sequence of H-valued random variables whose

paths are non-crossing. Suppose that the condition (I1) and (E) is satisfied. Then, χm

converges in distribution to the Brownian web W .



Convergence of coalescing random walks 49

2.4 Convergence of coalescing random walks

Consider the nearest neighbour discrete random walk starting from every vertex (x, t) ∈
Z2

even. If the two walks meet, they coalesce from that point onwards. Let Y denote the

collection of all discrete time coalescing random walks in Z, starting from every vertex of

Z2
even. In other words, supposeXz be the random walk path starting at z = (x, t) ∈ Z2

even.

Then,

Y = {Xz : z ∈ Z2
even}.

Fix δ > 0 and scale the set of random walks using the usual diffusive scaling, i.e., scale

the space by δ and time by δ2. We denote by Yδ, the scaled collection of paths, i.e.,

Yδ = {(δx1, δ2x2) ∈ R2 : (x1, x2) ∈ Y }.

The closure of Yδ is almost surely compact in (Π, d).

Remark. If general random walks (not necessarily nearest neighbour walks, and hence

paths could cross each, without coalescing) are considered, then Yδ is almost surely com-

pact in (Π, d) of the increment random variable of the random walk has finite absolute

first moment.

�
�	

@
@R

�
�	

�
�	

@
@R

@
@R

�
�	

�
�	

�
�	

@
@R

@
@R

�
�	

�
�	

@
@R

�
�	

�
�	

@
@R

�
�	

@
@R

�
�	

@
@R

@
@R

@
@R

�
�	

@
@R

�
�	

�
�	

@
@R

@
@R

�
�	

@
@R

�
�	

�
�	

@
@R

@
@R

�
�	

�
�	

�
�	

@
@R

�
�	

@
@R

@
@R

@
@R

�
�	

�
�	

�
�	

@
@R

�
�	

Figure 2.2: Nearest neighbour independent random walk system

Remark. The closure of Yδ is obtained by adding paths of the form (f, t), where t ∈
δ2Z ∪ {−∞,∞} and f = +∞ or f = −∞.

Thoerem 2.6. For any sequence δm ↓ 0, Y δm converges in distribution to W .
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Proof : It is enough to verify (I1), (B1) and (B2). The condition (I1) follows the

Donsker’s invariance principle. For (B1) and (B2), we have the following proposition.

Let X1, X2, . . . , Xn be n independent simple symmetric coalescing random walks on

Z, starting on points l1 < l2 < · · · < ln respectively. We can assume that li’s are all even.

Let T ≥ 1 and η :=
(
η(X1, . . . , Xn)

)
= |{X1(T ), X2(T ), . . . , Xn(T )}|, as the number of

random walk remaining at time T .

Proposition 2.7. For the coalescing random walks, we have, for any k ≥ 1,

P(η ≥ k + 1) ≤ P(η ≥ k)P(η ≥ 2) ≤
[
P(η ≥ 2)

]k
. (2.6)

Proof : Fix m such that k ≤ m ≤ n and consider a simple random walks Ym starting

at lm. Suppose ξ1, ξ2, . . . , ξm−1 are non-crossing paths having coalescing properties such

that η(ξ1, ξ2, . . . , ξn−1) = k − 1 starting at l1, l2, . . . , lm−1 respectively. Suppose the

collection of such paths be denoted by Π1. Furthermore ξn be another path of simple

symmetric random walk starting at ln. Denote by Π2 the collection of such paths. Note

that both the collections are finite. Then, we have

P(η ≥ k + 1)

=
n−1∑
m=k

∑
(ξ1,ξ2,...,ξm−1)∈Π1,ξn∈Π2

P
{
(X1, X2, . . . , Xm−1) = (ξ1, ξ2, . . . , ξm−1),

Xn = ξn, ξm−1(t) < Ym(t) < ξn(t) for 0 ≤ t ≤ T
}

=
n−1∑
m=k

∑
(ξ1,ξ2,...,ξm−1)∈Π1,ξn∈Π2

P
{
ξm−1(t) < Ym(t) < ξn(t) for 0 ≤ t ≤ T

∣∣
(X1, X2, . . . , Xm−1) = (ξ1, ξ2, . . . , ξm−1), Xn = ξn

}
× P

{
(X1, X2, . . . , Xm−1) = (ξ1, ξ2, . . . , ξm−1), Xn = ξn

}
=

n−1∑
m=k

∑
(ξ1,ξ2,...,ξm−1)∈Π1,ξn∈Π2

P
{
ξm−1(t) < Ym(t) < ξn(t) for 0 ≤ t ≤ T

}
× P

{
(X1, X2, . . . , Xm−1) = (ξ1, ξ2, . . . , ξm−1)

}
P
{
Xn = ξn

}
.

Consider the events, A = {Ym(t) > ξM(t) : 0 ≤ t ≤ T} and B = {Ym(t) < ξm(t) : 0 ≤
t ≤ T}. Suppose the increments of Ym are given by the random variables {Ii : i ≥ 0}
where Ii’s are i.i.d. and taking values in {−1,+1} with probability 1/2 each. Consider

the sample space {−1,+1}T and the product probability measure with 1/2 probability
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for −1 and +1. Clearly the event

A =
{
lm +

t∑
j=1

Ii > ξm−1(t) : 0 ≤ t ≤ T
}

is increasing. Similarly, the event

B =
{
lm +

t∑
j=1

Ii < ξn(t) : 0 ≤ t ≤ T
}

is decreasing. Thus, by FKG inequality, P (A ∩B) ≤ P (A)P (B).

Now summing over all possible values of ξn, we have

∑
ξn∈Π2

P
{
Xn = ξn

}
P
{
lm +

t∑
j=1

Ii < ξn(t) : 0 ≤ t ≤ T
}

≤ P
(
Ym(t) < Xn(t) for 0 ≤ t ≤ T

)
≤ P

(
η(X1, . . . , Xn) ≥ 2

)
.

Therefore, summing over all possible ξ1, ξ2, . . . , ξm−1, we have the result.

We now complete the proof of Theorem 2.6. We scale it back to δ = 1, and observe

that P{µm(0; t; 0, ε) ≥ 2} is dominated by two random walks starting at (0, 0) and (n, 0)

do not coalesce by time t/δ2m where n = 2
([

t
2δm

]
+ 1

)
. As δm → 0, by Donsker’s

invariance principle, this probability converges to

θ(ε, t) = P
(
Two independent brownian motions starting at distance ε

do not coalesce before time t
)
≤ Cε√

t

for some C > 0. This completes the proof.

Remark. The Proposition 2.5 follows from Proposition 2.7 and Theorem 2.6.

Remark. If the random walk increments satisfy the condition of finiteness of fifth absolute

moment, then, diffusively scaled random walks paths converge to the Brownian web.

2.5 Convergence of two-dimensional drainage net-

work

For z = (z1, z2) ∈ Z2, we define the path Xz = {Xz(s) : s ≥ z2} in R as the linearly

interpolated line composed of all edges {[zi, zi+1] : i ≥ 0} where z0 = z andM(zi) = zi+1
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is the mother of zi. Clearly X
z is a continuous path starting at (z1, z2). We let

χ = {Xz : z ∈ Z2}

which we also call the drainage network. We consider the diffusive scaling of χ, i.e., for

δ > 0,

χδ = {(δx1, δ2x2) ∈ R2 : (x1, x2) ∈ χ}.

Again, it can be shown that χδ is a compact set in (Π, d).

Thoerem 2.7. The scaled drainage network χδ converges in distribution to the Brownian

web W .

Let u,v ∈ Z2 be such that u(1) < v(1) and u(2) = v(2). Consider Xu and Xv and

for t ≥ u(2) and define

Zt = Zt(u,v) = Xv(t)−Xu(t). (2.7)

Note that, Zu(2) = v(1)− u(1).

It has already been shown that {Zt(u,v) : t ≥ u(2)} is a non-negative L2 martingale.

Further, Zt(u,v) → 0 as t→ ∞ almost surely. Define

τ(u,v) = inf{t− u(2) : t ≥ u(2), Zt(u,v) = 0}.

Thoerem 2.8. There exists a constant C > 0 such that

P(τ(u,v) ≥ t) ≤
C
(
v(2)− u(2)

)
√
t

(2.8)

for t ≥ 1.

Thoerem 2.9. Let (y1, s1), . . . , (yk, sk+1) be (k + 1) distinct points in R2 such that

s1 ≤ · · · ≤ sk and if si−1 = si for some i = 1, . . . , k, then yi−1 < yi. Let Z
(i)
n =

{Z(i)
n (t) = n−1/2Xby

√
nc,bsnc

σ
(bntc) : t ≥ si} where σ2 = Var(I(1))|. Then,

{Z(i)
n : i = 1, . . . , k} ⇒ {W (i) : i = 1, . . . , k}

as n→ ∞.
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2.6 Convergence of supercirtical oriented percola-

tion

Given a fixed p ∈ (pc, 1), let α := α(p) > 0 and σ := σ(p) > 0 be as introduced earlier.

We know that, conditioned on the event that o := (0, 0) being a percolation point,
γo(n)−αn

σ
√
n

converges in distribution to a standard normal.

For each percolation point z = (x, i) ∈ K, we first extend the definition of the

rightmost infinite open path γz from the domain {i, i + 1, . . .} to [i,∞] such that γz

interpolates linearly between consecutive integer times and γz(∞) = ∗. With this ex-

tended definition of γz, which we still denote by γz for convenience, it becomes a path

in the space (Π, d). We will then let Γ := {γz : z ∈ K} denote the set of extended

rightmost infinite open paths in the percolation configuration. Since paths in Γ are a.s.

equicontinuous, Γ, the closure of Γ in (Π, d), is a.s. compact and hence Γ is a random

variable taking values in (H,BH), the space of compact subsets of (Π, d). Note that Γ\Γ
only contains paths of the form π : [σπ,∞] → [−∞,∞] ∪ {∗} with either σπ ∈ R and

π(t) ≡ ±∞ for all t ≥ σπ; or σπ = ∞; or σπ = −∞, in which case for any t > −∞, there

exists some γ ∈ Γ such that π = γ on [t,∞]. In other words, taking the closure of Γ in

(Π, d) does not alter the configuration of paths in Γ restricted to any finite space-time

region. Therefore it suffices to study properties of Γ instead of Γ in our analysis.

To remove a common drift from all paths in Γ and perform diffusive scaling of space

and time, we define for any a ∈ R, b, ε > 0, a shearing and scaling map Sa,b,ε : R̄2 → R̄2

with

Sa,b,ε(x, t) :=


(√

ε
b
(x− at), εt

)
if (x, t) ∈ R2,

(±∞, εt) if (x, t) = (±∞, t) with t ∈ R,

(∗,±∞) if (x, t) = (∗,±∞),

(2.9)

where a is the drift that is being removed by a shearing of R2
c , ε is the diffusive scaling

parameter, and b determines the diffusion coefficient in the diffusive scaling. When t is

understood to be a time, we will define

Sa,b,εt := εt. (2.10)

Note that Sa,b,ε can be obtained by first applying the shearing map Sa,1,1 and then the

diffusive scaling map S0,b,ε. By identifying a path π ∈ Π with its graph in R2
c , we can

also define Sa,b,ε : (Π, d) → (Π, d) by applying Sa,b,ε to each point on the graph of π.
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Similarly, if K ⊂ Π, then Sa,b,εK := {Sa,b,επ : π ∈ K}. If K ∈ H, then it is clear that

also Sa,b,εK ∈ H. Therefore Sα,σ,εΓ is also an (H,BH)-valued random variable.

We can now formulate the main result of this paper.

Thoerem 2.10. [Convergence to the Brownian web] Let p ∈ (pc, 1) and let Γ be

defined as above. There exist α, σ > 0 such that as ε ↓ 0, the sequence of (H,BH)-valued

random variables Sα,σ,εΓ converges in distribution to the standard Brownian web W.


