Chetan Ghate Macrodynamics Indian Statistical Institute Spring 2004

Problem Set 1: Due Jan 21,2004.

1. Consider the following basic real business cycle model

$$MaxE\sum_{t=0}^{\infty}\beta^{t}[lnc_{t}+\nu lnh_{t}]$$

subject to

$$c_{t} + i_{t} = w_{t}(1 - \tau_{h})h_{t} + k_{t}(r_{t} - \delta)(1 - \tau_{k}) + TR_{t}$$
$$k_{t+1} = (1 - \delta)k_{t} + i_{t}$$
$$h_{t} + l_{t} = 1$$
$$z_{t+1} = \gamma z_{t} + \epsilon_{t+1}$$

with k(0) given. The variables c_t , i_t , k_t , h_t , l_t , w_t are the time t values of consumption, investment, the capital stock, labor supply, leisure, and the wage rate, respectively. r_{t+1} denotes the return on capital from t to t+1. The household knows the stochastic shock parameter, $0 < \gamma < 1$, the depreciation rate, δ , and the tax rates on the return to capital, τ_k , and labor income, τ_h . The innovation to the technology shock ϵ is $N(0, \sigma_{\epsilon}^2)$.

There are a continuum of competitive firms, with the total number of firms normalized to unity, each of which produces output by the technology

$$Y_t = e^{z_t} K_t^{\alpha} H_t^{1-\alpha}.$$

The government in this economy transfers all tax revenue back to households in a lump sum fashion

$$TR_t = \tau_h w_t H_t + \tau_t (r_t - \delta) K_t.$$

Assign the following parameter values: $\beta = .99, \alpha = .36, \gamma = .95, \delta = .025, \nu = 2, \sigma_{\epsilon} = .007, \tau_h = .23, \tau_k = .5.$

- Program this problem in Gauss using a quadratic approximation of the value function around the steady state. Find the optimal decision variables for H_t and I_t as a function of the state variables, z_t and K_t . Show that the steady state obtained from these decision rules is the same that is found analytically. Before you do this however, derive the analytical expressions for steady state k and h by taking the first order conditions with respect to k_{t+1} and h_t .
- Do you obtain the same decision rules from the previous problem set (Macro II) when $\tau_k = \tau_h = 0$?.
- Start the economy at the steady state and graph the response of H_t , C_t , I_t , to a one standard deviation shock in ϵ_t .
- Starting again from the steady state, simulate the economy for 100 periods and plot the results for H_t , C_t , K_t , Y_t , and I_t .