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Abstract

We propose a new cost allocation rule for minimum cost spanning tree games.

The new rule is a core selection and also satisfies cost monotonicity. We also

give characterization theorems for the new rule as well as the much-studied Bird

allocation. We show that the principal difference between these two rules is in

terms of their consistency properties. JEL Classification Numbers: D7

Keywords: spanning tree, cost allocation, core selection, cost monotonicity, con-

sistency.
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1 Introduction

There is a wide range of economic contexts in which “aggregate costs” have to be

allocated amongst individual agents or components who derive the benefits from

a common project. A firm has to allocate overhead costs amongst its different

divisions. Regulatory authorities have to set taxes or fees on individual users for a

variety of services. Partners in a joint venture must share costs (and benefits) of

the joint venture. In many of these examples, there is no external force such as the

market, which determines the allocation of costs. Thus, the final allocation of costs

is decided either by mutual agreement or by an “arbitrator” on the basis of some

notion of fairness.

A central problem of cooperative game theory is how to divide the benefits of

cooperation amongst individual players or agents. Since there is an obvious analogy

between the division of costs and that of benefits, the tools of cooperative game

theory have proved very useful in the analysis of cost allocation problems.1 Much of

this literature has focused on “general” cost allocation problems, so that the ensuing

cost game is identical to that of a typical game in characteristic function form. This

has facilitated the search for “appropriate” cost allocation rules considerably given

the corresponding results in cooperative game theory.

The purpose of this paper is the analysis of allocation rules in a special class of

cost allocation problems. The common feature of these problems is that a group of

users have to be connected to a single supplier of some service. For instance, several

towns may draw power from a common power plant, and hence have to share the

cost of the distribution network. There is a non-negative cost of connecting each

pair of users (towns) as well as a cost of connecting each user (town) to the common

supplier (power plant). A cost game arises because cooperation reduces aggregate

costs - it may be cheaper for town A to construct a link to town B which is “nearer”

to the power plant, rather than build a separate link to the plant. Clearly, an efficient

network must be a tree, which connects all users to the common supplier. That is
1Moulin[11] and Young [16] are excellent surveys of this literature.
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why these games have been labelled minimum cost spanning tree games.

Notice that in the example mentioned above, it makes sense for town B to demand

some compensation from A in order to let A use its own link to the power plant.

But, how much should A agree to pay? This is where both strategic issues as well as

considerations of fairness come into play. Of course, these issues are present in any

surplus-sharing or cost allocation problem. What is special in our context is that

the structure of the problem implies that the domain of the allocation rule will be

smaller than that in a more general cost problem. This smaller domain raises the

possibility of constructing allocation rules satisfying “nice” properties which cannot

always be done in general problems. For instance, it is known that the core of a

minimum cost spanning tree game is always non-empty.2

Much of the literature on minimum cost spanning tree games has focused on

algorithmic issues.3 In contrast, the derivation of attractive cost allocation rules or

the analysis of axiomatic properties of different rules has received correspondingly

little attention.4 This provides the main motivation for this paper. We show that the

allocation rule proposed by Bird [1], which always selects an allocation in the core

of the game, does not satisfy cost monotonicity. Cost monotonicity is an extremely

attractive property, and requires that the cost allocated to agent i does not increase

if the cost of a link involving i goes down, nothing else changing. Notice that if

a rule does not satisfy cost monotonicity, then it may not provide agents with the

appropriate incentives to reduce the costs of constructing links.

The cost allocation rule, which coincides with the Shapley value of the cost game,

satisfies cost monotonicity. However, the Shapley value is unlikely to be used in these

contexts because it may not lie in the core. This implies that some group of agents

may well find it beneficial to construct their own network if the Shapley value is used

to allocate costs. We show that cost monotonicity and the core are not mutually

exclusive5 by constructing a new rule, which satisfies cost monotonicity and also
2See, for instance, Bird[1], Granot and Huberman [7].
3See for instance Granot and Granot [5], Granot and Huberman [6], Graham and Hell [4].
4Exceptions are Feltkampf [3], Kar [10]. See Sharkey [14] for a survey of this literature.
5This is where the small domain comes in useful. Young [16] shows that in the context of

4



selects an allocation in the core of the game.

We then go on to provide axiomatic characterizations of the Bird rule as well

as the new rule constructed by us. An important type of axiom used by us is

closely linked to the reduced game properties which have been extensively used in

the axiomatic characterization of solutions in cooperative game theory.6 These are

consistency conditions, which place restrictions on how solutions of different but

related games defined on different player sets behave. We show that the Bird rule

and the new allocation rule satisfy different consistency conditions.

The plan of this paper is the following. In section 2, we define the basic structure

of minimum cost spanning tree games. The main purpose of Section 3 is the con-

struction of the new rule as well as the proof that it satisfies cost monotonicity and

core selection. Section 4 contains the characterization results. An appendix contains

the proofs of some lemmas.

2 The Framework

Let N = {1, 2, . . .} be the set of all possible agents. We are interested in graphs or

networks where the nodes are elements of a set N ∪ {0}, where N ⊂ N , and 0 is a

distinguished node which we will refer to as the source or root .

Henceforth, for any set N ⊂ N , we will use N+ to denote the set N ∪ {0}.

A typical graph over N+ will be represented by gN = {(ij)|i, j ∈ N+}. Two

nodes i and j ∈ N+ are said to be connected in gN if ∃(i1i2), (i2i3), . . . , (in−1in) such

that (ikik+1) ∈ gN , 1 ≤ k ≤ n−1, and i1 = i, in = j. A graph gN is called connected

over N+ if i, j are connected in gN for all i, j ∈ N+. The set of connected graphs

over N+ is denoted by ΓN .

Consider any N ⊂ N , where #N = n. A cost matrix C = (cij) represents the

cost of direct connection beween any pair of nodes. That is, cij is the cost of directly

transferable utility games, there is no solution concept which picks an allocation in the core of

the game when the latter is nonempty and also satisfies a property which is analogous to cost

monotonicity.
6See Peleg[12], Thomson [15].
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connecting any pair i, j ∈ N+. We assume that each cij > 0 whenever i 6= j. We

also adopt the convention that for each i ∈ N+, cii = 0. So, each cost matrix over

N+ is nonnegative, symmetric and of order n + 1. In this paper we will often use

the term matrix instead of cost matrix. The set of all matrices for N is denoted by

CN . However, we will typically drop the subscript N whenever there is no cause for

confusion about the set of nodes.

Consider any C ∈ CN . A minimum cost spanning tree (m.c.s.t.) over N+ satisfies

gN = argming∈ΓN

∑
(ij)∈g

cij . Note that an m.c.s.t. need not be unique. Clearly a

minimum cost spanning network must be a tree. Otherwise, we can delete an extra

edge and still obtain a connected graph at a lower cost.

An m.c.s.t. corresponding to C ∈ CN will typically be denoted by gN (C).

Example 1: Consider a set of three rural communities {A,B,C}, which have to

decide whether to build a system of irrigation channels to an existing dam, which

is the source. Each community has to be connected to the dam in order to draw

water from the dam. However, some connection(s) could be indirect. For instance,

community A could be connected directly to the dam, while B and C are connected

to A, and hence indirectly to the source.

There is a cost of building a channel connecting each pair of communities, as well

as a channel connecting each community directly to the dam. Suppose, these costs

are represented by the matrix C given below.

C =


0 2 4 1

2 0 1 3

4 1 0 2

1 3 2 0


The minimum cost of building the system of irrigation channels will be 4 units.

Our object of interest in this paper is to see how the total cost of 4 units is to be

distributed amongst A,B and C.

This provides the motivation for the next definition.

Definition 1: A cost allocation rule (or simply a rule) is a family of functions
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{ψN}N⊂N with N ⊂ N , ψN : CN → <N+ satisfying
∑
i∈N

ψNi (C) ≥
∑

(ij)∈gN (C)

cij for all

C ∈ CN .

We will drop the superscript N for the rest of the paper.

So, given any set of nodes N and any matrix C of order (|N |+1), a rule specifies

the costs attributed to agents in N . Note that the source 0 is not an active player,

and hence does not bear any part of the cost.

A rule can be generated by any single-valued game-theoretic solution of a trans-

ferable utility game. Thus, consider the transferable utility game generated by con-

sidering the aggregate cost of a minimum cost spanning tree for each coalition S ⊆ N .

Given C and S ⊆ N , let CS be the matrix restricted to S+. Then, consider a m.c.s.t.

gS(CS) over S+, and the corresponding minimum cost of connecting S to the source.

Let this cost be denoted by cS . For each N ⊂ N , this defines a cost game (N, c)

where for each S ⊆ N , c(S) = cS . That is, c is the cost function, and is analogous

to a TU game. Then, if Φ is a single-valued solution, Φ(N, c) can be viewed as the

rule corresponding to the matrix which generates the cost function c.7

One particularly important game-theoretic property, which will be used subse-

quently is that of the core. If a rule does not always pick an element in the core of

the game, then some subset of N will find it profitable to break up N and construct

its own minimum cost tree. This motivates the following definition.

Definition 2: A rule φ is a core selection if for all N ⊆ N and for all C ∈ CN ,∑
i∈S

φi(C) ≤ c(S), where c(S) is the cost of the m.c.s.t. for S, ∀S ⊆ N .

However, cost allocation rules can also be defined without appealing to the un-

derlying cost game. For instance, this was the procedure followed by Bird [1]. In

order to describe his procedure, we need some more notation.

The (unique) path from i to j in tree g, is a set U(i, j, g) = {i1, i2, . . . , iK}, where

each pair (ik−1ik) ∈ g, and i1, i2, . . . , iK are all distinct agents with i1 = i, iK =

j. The predecessor set of an agent i in g is defined as P (i, g) = {k|k 6= i, k ∈

U(0, i, g)}. The immediate predecessor of agent i, denoted by α(i), is the agent who
7See Kar [10] for an axiomatic characterization of the Shapley value in m.c.s.t. games.
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comes immediately before i, that is, α(i) ∈ P (i, g) and k ∈ P (i, g) implies either

k = α(i) or k ∈ P (α(i), g).8 The followers of agent i, are those agents who come

immediately after i; F (i) = {j|α(j) = i}.

Bird’s method is defined with respect to a specific tree. Let gN be some m.c.s.t.

corresponding to the matrix C. Then,

Bi(C) = ciα(i) ∀i ∈ N.

So, in the Bird allocation, each node pays the cost of connecting to its immediate

predecessor in the appropriate m.c.s.t.

Notice that this does not define a rule if C gives rise to more than one m.c.s.t.

However, when C does not induce a unique m.c.s.t., one can still use Bird’s method

on each m.c.s.t. derived from C and then take some convex combination of the

allocations corresponding to each m.c.s.t. as the rule. In general, the properties of

the resulting rule will not be identical to those of the rule given by Bird’s method

on matrices which induce unique m.c.s.t. s.

In section 4, we will use two domain restrictions on the set of permissible matrices.

These are defined below.

Definition 3: C1 = {C ∈ C|C induces a unique m.c.s.t.∀N ⊂ N}.

Definition 4: C2 = {C ∈ C1| no two edges of the unique m.c.s.t. have the same cost }.

Notice if C is not in C2, then even a “small” perturbation of C produces a matrix

with the property that no two edges have the same cost. Of course, such a matrix

must be in C2. So, even the stronger domain restriction is relatively mild, and the

permissible sets of matrices are large.

3 Cost Monotonicity

The Bird allocation is an attractive rule because it is a core selection. In addition,

it is easy to compute. However, it fails to satisfy cost monotonicity.
8Note that since g is a tree, the immediate predecessor must be unique.
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Definition 5: Fix N ⊂ N . Let i, j ∈ N+, and C,C ′ ∈ CN be such that ckl = c′kl for

all (kl) 6= (ij) and cij > c′ij . Then, the rule ψ satisfies Cost Monotonicity if for all

m ∈ N ∩ {i, j}, ψm(C) ≥ ψm(C ′).

Cost monotonicity is an extremely appealing property. The property applies to

two matrices which differ only in the cost of connecting the pair (ij), c′ij being lower

than cij . Then, cost monotonicity requires that no agent in the pair {i, j} be charged

more when the matrix changes from C to C ′.

Despite its intuitive appeal, cost monotonicity has a lot of bite.9 The following

example shows that the Bird rule does not satisfy cost monotonicity.

Example 2: Let N = {1, 2}. The two matrices are specified below.

(i) c01 = 4, c02 = 4.5, c12 = 3.

(ii) c′01 = 4, c′02 = 3.5, c′12 = 3.

Then, B1(C) = 4, B2(C) = 3, while B1(C ′) = 3, B2(C ′) = 3.5. So, 2 is charged more

when the matrix is C ′ although c′02 < c02 and the costs of edges involving 1 remain

the same.

The rule corresponding to the Shapley value of the cost game does satisfy cost

monotonicity. However, it does not always select an outcome which is in the core of

the cost game. Our main purpose in this section is to define a new rule which will

be a core selection and satisfy cost monotonicity. We are able to do this despite the

impossibility result due to Young because of the special structure of minimum cost

spanning tree games - these are a strict subset of the class of balanced games. Hence,

monotonicity in the context of m.c.s.t. games is a weaker restriction.

We describe an algorithm whose outcome will be the cost allocation prescribed by

the new rule. Our rule is defined for all matrices in C. However, in order to economise

on notation, we describe the algorithm for a matrix in C2. We then indicate how to

construct the rule for all matrices.
9In fact, Young [16] shows that an analogous property in the context of TU games cannot be

satisfied by any solution which selects a core outcome in balanced games.
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Fix some N ⊂ N , and choose some matrix C ∈ C2
N . Also, for any A ⊂ N , define

Ac as the complement of A in N+. That is Ac = N+ \A.

The algorithm proceeds as follows.

Let A0 = {0}, g0 = ∅, t0 = 0.

Step 1: Choose the ordered pair (a1b1) such that (a1b1) = argmin(i,j)∈A0×A0
c
cij .

Define t1 = max(t0, ca1b1), A1 = A0 ∪ {b1}, g1 = g0 ∪ {(a1b1)}.

Step k: Define the ordered pair (akbk) = argmin(i,j)∈Ak−1×Ak−1
c

cij , Ak = Ak−1∪{bk},

gk = gk−1 ∪ {(akbk)}, tk = max(tk−1, cakbk). Also,

ψ∗bk−1(C) = min(tk−1, cakbk). (1)

The algorithm terminates at step #N = n. Then,

ψ∗bn(C) = tn (2)

The new rule ψ∗ is described by equations (1), (2).

At any step k, Ak−1 is the set of nodes which have already been connected to the

source 0. Then, a new edge is constructed at this step by choosing the lowest-cost

edge between a node in Ak−1 and nodes in Ak−1
c . The cost allocation of bk−1 is

decided at step k. Equation (1) shows that bk−1 pays the minimum of tk−1, which is

the maximum cost amongst all edges which have been constructed in previous steps,

and cakbk , the edge being constructed in step k. Finally, equation (2) shows that bn,

the last node to be connected, pays the maximum cost.10

Remark 1: The algorithm has been described for matrices in C2. Suppose that

C 6∈ C2. Then, the algorithm is not well-defined because at some step k, two distinct

edges (akbk) and (āk b̄k) may minimise the cost of connecting nodes in Ak−1 and

Ak−1
c . But, there is an easy way to extend the algorithm to deal with matrices not in

C2. Let σ be a strict ordering over N . Then, σ can be used as a tie-breaking rule - for

instance, choose (akbk) if bk is ranked over b̄k according to σ. Any such tie-breaking

rule makes the algorithm well-defined. Now, let Σ be the set of all strict orderings
10From Prim[13], it follows that gn is also the m.c.s.t. corresponding to C.
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over N . Then, the eventual cost allocation is obtained by taking the simple average

of the “component” cost allocations obtained for each ordering σ ∈ Σ. That is, for

any σ ∈ Σ, let ψ∗σ(C) denote the cost allocation obtained from the algorithm when

σ is used as the tie-breaking rule. Then,

ψ∗(C) =
1

#Σ

∑
σ∈Σ

ψ∗σ(C). (3)

We illustrate this procedure in Example 5 below.

Remark 2: Notice that ψ∗ only depends on the m.c.s.t.s corresponding to any

matrix. This property of Tree Invariance adds to the computational simplicity of

the rule, and distinguishes it from rules such as the Shapley Value and nucleolus.

We now construct a few examples to illustrate the algorithm.

Example 3: Suppose C1 is such that the m.c.s.t. is unique and is a line. That is,

each node has at most one follower. Then the nodes can be labelled a0, a1, a2, . . . , an,

where a0 = 0, #N = n, with the predecessor set of ak, P (ak, g) = {0, a1, . . . , ak−1}.

Then,

∀ k < n, ψ∗ak
(C1) = min(max0≤t<kcatat+1 , cakak+1

) (4)

and

ψ∗an
(C1) = max

0≤t<n
catat+1 (5)

Example 4: Let N = {1, 2, 3, 4}, and

C2 =



0 4 5 5 5

4 0 2 1 5

5 2 0 5 5

5 1 5 0 3

5 5 5 3 0


There is only one m.c.s.t. of C2.

Step 1: We have (a1b1) = (01), t1 = c01 = 4, A1 = {0, 1}.

Step 2: Next, (a2b2) = (13), ψ∗1(C
2) = min(t1, c13) = 1, t2 = max(t1, c13) = 4,

A2 = {0, 1, 3}.
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Step 3: We now have (a3b3) = (12), ψ∗3(C
2) = min(t2, c12) = 2, t3 = max(t2, c12) = 4,

A3 = {0, 1, 2, 3}.

Step 4: Next, (a4b4) = (34), ψ∗2(C
2) = min(t3, c34) = 3, t4 = max(t3, c34) = 4,

A4 = {0, 1, 2, 3, 4}.

Since A4 = N+, ψ∗4(C
2) = t4 = 4, and the algorithm is terminated.

So, ψ∗(C2) = (1, 3, 2, 4). This example shows that it is not necessary for a node

to be assigned the cost of its preceding or following edge. Here 2 pays the cost of

the edge (34), while 3 pays the cost of the edge (12).11

The next example involves a matrix which has more than one m.c.s.t. with edges

which cost the same.

Example 5: Let N = {1, 2, 3}, and

C3 =


0 4 4 5

4 0 2 2

4 2 0 5

5 2 5 0


C3 has two m.c.s.t.s - gN = {(01), (12), (13)} and g1

N = {(02), (12), (13)}. The

edges (12) and (13) have the same cost.12

Suppose the algorithm is first applied to gN . Then, we have b1 = 1. In step

2, a2 = 1, but b2 can be either 2 or 3. Taking each in turn, we get the vectors

x1 = (2, 2, 4) and x2 = (2, 4, 2).

Now, consider g1
N , which is a line. So, as we have described in Example 3, the

resulting cost allocation is x̂ = (2, 2, 4).

The algorithm will “generate” g1
N instead of gN for all σ ∈ Σ which ranks 2 over

1. Hence, the “weight” attached to g1
N is half. Similarly, the weight attached to x1

and x2 must be one-sixth and one-third respectively.

Hence, ψ∗(C3) = (2, 8
3 ,

10
3 ).

We now show that ψ∗ is a core selection and also satisfies Cost Monotonicity.
11See Figure 1 for the m.c.s.t. corresponding to C2.
12Figure 2 displays minimum cost spanning trees of C3.
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Theorem 1: The rule ψ∗ satisfies Cost Monotonicity and is a core selection.13

4 Characterization Theorems

In this section, we present characterizations of the allocation rules ψ∗ and B.14 These

characterization theorems will be proved for the restricted domains C1 for B and C2

for ψ∗. Examples 8 and 9 explain why we choose these domain restrictions.

We first describe the axioms used in the characterization.

Efficiency (EF):
∑
i∈N

ψi(C) =
∑

(ij)∈gN (C)

cij .

This axiom ensures that the agents together pay exactly the cost of the efficient

network.

Before moving on to our next axiom, we introduce the concept of an extreme point.

Let C ∈ CN be such that the m.c.s.t. gN (C) is unique. Then, i ∈ N is called an

extreme point of gN (C) (or equivalently of C), if i has no follower in gN (C).

Extreme Point Monotonicity (EPM): Let C ∈ CN , and i be an extreme point of C.

Let C̄ be the restriction of C over the set N+ \ {i}. A rule satisfies Extreme Point

Monotonicity if ψk(C̄) ≥ ψk(C) ∀k ∈ N \ {i}.

Suppose i is an extreme point of gN (C). Note that i is of no use to the rest

of the network since no node is connected to the source through i. Extreme Point

Monotonicity essentially states that no “existing” node k will agree to pay a higher

cost in order to include i in the network.

The next two axioms are consistency properties, analogous to reduced game proper-

ties introduced by Davis and Maschler [2] and Hart and Mas-Collel [9].15

13All proofs are contained in the appendix.
14See Feltkamp [3] for an alternative characterization of B.
15Thomson[15] contains an excellent discussion of consistency properties in various contexts. Gra-

not and Maschler[8] also use a reduced game property for a class of related (but different) cost

allocation problems.
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Consider any C with a unique m.c.s.t. gN (C), and suppose that (i0) ∈ gN (C).

Let xi be the cost allocation ‘assigned’ to i. Suppose i ‘leaves’ the scene (or stops

bargaining for a different cost allocation), but other nodes are allowed to connect

through it. Then, the effective reduced matrix changes for the remaining nodes. We

can think of two alternative ways in which the others can use node i.

(i) The others can use node i only to connect to the source.

(ii) Node i can be used more widely. That is, node j can connect to node k through

i.

In case (i), the connection costs on N+\{i} are described by the following equations:

For all j 6= i, c̄j0 = min(cj0, cji + ci0 − xi) (6)

If {j, k} ∩ {i, 0} = ∅, then c̄jk = cjk (7)

Equation 6 captures the notion that node j’s cost of connecting to the source is the

cheaper of two options - the first option being the original one of connecting directly

to the source, while the second is the indirect one of connecting through node i. In

the latter case, the cost borne by j is adjusted for the fact that i pays xi. Equation

7 captures the notion that node i can only be used to connect to the source.

Let Csrxi
represent the reduced matrix derived through equations 6, 7.

Consider now case (ii).

For all j, k ∈ N+ \ {i}, c̄jk = min(cjk, cji + cki − xi). (8)

Equation 8 captures the notion that j can use i to connect to any other node k,

where k is not necessarily the source.

Let Ctrxi
represent the reduced matrix derived through equation 8.

We can now define the two consistency conditions.

Source Consistency (SR): Let C ∈ C1
N , and (0i) ∈ gN (C). Then, the rule ψ satisfies

Source Consistency if ψk(Csrψi(C)) = ψk(C) for all k ∈ N \{i} whenever Csrψi(C) ∈ C
1
N\i.
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Tree Consistency (TR): Let C ∈ C2
N , and (0i) ∈ gN (C). Then, the rule ψ satisfies

Tree Consistency if ψk(Ctrψi(C)) = ψk(C) for all k ∈ N \ {i} whenever Ctrψi(C) ∈ C
2
N\i.

The two consistency conditions require that the cost allocated to any agent be the

same on the original and reduced matrix. This ensures that once an agent connected

to the source agrees to a particular cost allocation and then subsequently allows

other agents to use its location for possible connections, the remaining agents do not

have any incentive to reopen the debate about what is an appropriate allocation of

costs.

We now present a characterization of ψ∗ in terms of Tree Consistency, Efficiency

and Extreme Point Monotonicity.

Theorem 2 : Over the domain C2, a rule ψ satisfies TR, EF and EPM if and only

if ψ = ψ∗.

We now show that the three axioms used in the theorem are independent.

Example 6: We construct a rule φ which satisfies EPM and TR but violates EF.

Let φk(C) = ψ∗k(C) + ε ∀k, where ε >
∑

(ij)∈gN (C)
cij .

Since ψ∗ satisfies EPM, φ also satisfies EPM. Moreover, the restriction on the

value of ε ensures that the reduced matrices always lie outside C. So, TR is vacuously

satisfied by φ. Also, since
∑n
k=1 φk(C) =

∑n
k=1 ψ

∗
k(C) + nε > c(N), φ violates EF.

To construct the next example we need to define the concept of an m.c.s.t. partition.

Given C, let gN (C) be the (unique) m.c.s.t. of C. Suppose gN (C) = gN1 ∪

gN2 . . . ∪ gNK
, where each gNk

is the m.c.s.t. on Nk for the matrix C restricted to

N+
k , with ∪Kk=1Nk = N and Ni ∩Nj = ∅. We will call such a partition the m.c.s.t.

partition of N .

Example 7: We now construct a rule µ which satisfies EF and TR, but does

not satisfy EPM.

Let N = [N1, . . . , NT ] be the m.c.s.t. partition and #Nt = nt. Let Ct be the

restriction of C over N+
t . First, calculate ψ∗ separately for each Ct. Consider any

Nt. If nt = 1, µk(C) = ck0 where k ∈ Nt. For nt ≥ 2,
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(i) µk(C) = ψ∗k(C
t) ∀k 6= bnt−1, bnt .

(ii) µbnt−1(C) = ψ∗bnt−1(Ct) + ψ∗bnt (Ct) and µbnt (C) = 0.

EF is obviously satisfied. If nt > 2, µ satisfies TR because ψ∗ satisfies TR. If

nt = 2 then TR is vacuously satisfied as the reduced matrix lies outside C because

the reduced cost of connecting the singleton node to the source will be 0. But this

allocation violates EPM. In order to see the latter, consider the following matrix C.

C =


0 1 3

1 0 2

3 2 0

 .

Then, gN (C) = {(01), (12)}. Clearly, 2 is an extreme point of C. Let C̄ be the

restriction of C over {0,1}. Then, µ1(C) = 3 > 1 = µ1(C̄) and hence EPM is

violated.

We remark in the next theorem that the Bird rule B satisfies EF and EPM. Since

B 6= ψ∗, it follows that B does not satisfy TR. Here is an explicit example to show

that B violates TR.

C =


0 2 3.5 3

2 0 1.5 1

3.5 1.5 0 2.5

3 1 2.5 0


Then, B1(C) = 2, B2(C) = 1.5 and B3(C) = 1. The reduced matrix is CtrB1(C) is

shown below.

CtrB1(C) =


0 1.5 1

1.5 0 0.5

1 0.5 0

 .

Then, B2(CtrB1(C)) = 0.5 and B3(CtrB1(C)) = 1. Therefore TR is violated.

However, B does satisfy Source Consistency on the domain C1. In fact, we now

show that B is the only rule satisfying EF, EPM and SR.

Theorem 3 : Over the domain C1, a rule φ satisfies SR, EF and EPM iff φ = B.

We now show that the three axioms used in Theorem 3 are independent.
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A rule which violates EF but satisfies SR and EPM can be constructed using

example 6, ψ∗ being replaced by B.

The rule obtained by replacing ψ∗ with B in example 7, violates EPM but satisfies

EF and SR.

Finally, ψ∗ satisfies all the axioms but SR. Here is an example to show that our

rule may violates SR.

C =


0 2 3 4

2 0 1.5 1

3 1.5 0 3.5

4 1 3.5 0


Then, ψ∗1(C) = 1, ψ∗2(C) = 2 and ψ∗3(C) = 1.5. The reduced matrix is Ĉ,

Ĉ =


0 2.5 2

2.5 0 3.5

2 3.5 0


ψ∗2(Ĉ) = 2.5 and ψ∗3(Ĉ) = 2. Therefore SR is violated.

In Theorem 2, we have restricted attention to matrices in C2. This is because ψ∗

does not satisfy TR outside C2. The next example illustrates.

Example 8: Consider

C =


0 3 4 3

3 0 2 5

4 2 0 1

3 5 1 0


Then, g1

N (C) = {(10), (12), (23)} and g2
N (C) = {(30), (32), (21)} are the two m.c.s.t.

s corresponding to C. Taking the average of the two cost allocations derived from

the algorithm, we get ψ∗(C) = (2.5, 1.5, 2). If we remove 1, which is connected to 0

in g1
N , the reduced matrix Ĉ is:

Ĉ =


0 2.5 3

2.5 0 1

3 1 0
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Then, ψ∗2(Ĉ) = 1 and ψ∗3(Ĉ) = 2.5. So, TR is violated.

Remark 3: Note that in the previous example C lies outside C1. If we take

a matrix in C1 \ C2, then Lemma 2 will no longer be valid - the reduced matrix

may lie outside C1 even when a node connected to the source pays the minimum

cost amongst all its links. Thus, ψ∗ will satisfy TR vacuously. But there may exist

allocation rules other than ψ∗ which satisfies EF, TR and EPM over C1.

Similarly, B does not satisfy SR outside C1.

Example 9: Consider the same matrix as in Example 8. Recall that B(C) =

(2.5, 1.5, 2).

If we remove 1, which is connected to 0 in g1
N , the reduced matrix Ĉ is:

Ĉ =


0 2.5 3

2.5 0 1

3 1 0


Then, B2(Ĉ) = 2.5 and B3(Ĉ) = 1. Therefore SR is violated.

Remark 4: An interesting open question is the characterization of ψ∗ using cost

monotonicity and other axioms.
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Appendix

Proof of Theorem 1: We first show that ψ∗ satisfies Cost Monotonicity.

Fix any N ⊂ N . We give our proof for matrices in C2, and then indicate how the

proof can be extended to cover all matrices. Let C, C̄ ∈ C2 be such that for some

i, j ∈ N+, cij > c̄ij , and ckl = c̄kl for all other pairs (kl). We need to show that

ψ∗k(C) ≥ ψ∗k(C̄) for k ∈ N ∩ {i, j}.

In describing the algorithm which is used in constructing ψ∗, we fixed a specific

matrix, and so did not have to specify the dependence of Ak, tk, ak, bk etc. on the

matrix. But, now we need to distinguish between these entities for the two matrices

C and C̄. We adopt the following notation in the rest of the proof of the thorem. Let

Ak, tk, ak, bk, gN etc. refer to the matrix C, while Āk, t̄k, āk, b̄k, ḡN etc. will denote

the entities corresponding to C̄.

Case 1: (ij) 6∈ ḡN .

Then, ḡN = gN . Since the cost of all edges in gN remain the same, ψ∗k(C̄) = ψ∗k(C)

for all k ∈ N .

Case 2: (ij) ∈ ḡN .

Without loss of generality, let i be the immediate predecessor of j in ḡN . Since

the source never pays anything, we only consider the case where i is not the source.

Suppose i = b̄k−1. As the cost of all other edges remain the same, Ak−1 = Āk−1

and tk−1 = t̄k−1. Now, ψ∗i (C̄) = min(t̄k−1, c̄āk b̄k) and ψ∗i (C) = min(tk−1, cakbk).

Since c̄āk b̄k ≤ cakbk , ψ∗i (C̄) ≤ ψ∗i (C).

We now show that ψ∗j (C̄) ≤ ψ∗j (C). Let j = bl and j = b̄m. Note that l ≥ m,

and that Ām ⊆ Al, and tl ≥ t̄m.

Now, ψ∗j (C̄) = min(t̄m, c̄ām+1b̄m+1), while ψ∗j (C) = min(tl, cal+1bl+1). Since tl ≥

t̄m, we only need to show that c̄ām+1b̄m+1 ≤ cal+1bl+1 .

Case 2(a): Suppose al+1 ∈ Ām. Since bl+1 ∈ N+ \ Ām, c̄ām+1b̄m+1 ≤ c̄al+1bl+1 ≤

cal+1bl+1 .
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Case 2(b): Suppose al+1 6∈ Ām. Then, al+1 6= j. Also, al+1 ∈ Al, and so

cal+1bl+1 ≥ calbl (9)

We need to consider two sub-cases.

Case 2(bi): al ∈ Al−1 \ Ām−1.

Then, since Al = Al−1 ∪ {j} and Ām = Ām−1 ∪ {j}, al ∈ Al \ Ām.

Now since j ∈ Ām and al 6∈ Ām, c̄ām+1b̄m+1 ≤ c̄jal ≤ cjal = calbl . Using equation

9, cal+1bl+1 ≥ calbl ≥ c̄ām+1b̄m+1 .

Case 2(bii): al ∈ Ām−1 = Am−1.

Then, calbl ≥ cambm since m ≤ l.

Also, Ām ⊆ Al and al+1 ∈ Al \ Ām imply that #Ām < #Al. That is, l > m. So,

bm 6= j = bl. This implies bm 6∈ (Ām−1 ∪ {j}) = Ām.

Now, am ∈ Am−1 = Ām−1. So, am ∈ Ām. But am ∈ Ām and bm 6∈ Ām together

imply that c̄ām+1b̄m+1 ≤ c̄ambm ≤ cambm .

So, using equation 9, c̄ām+1b̄m+1 ≤ cambm ≤ calbl ≤ cal+1bl+1 .

Hence, ψ∗ satisfies cost monotonicity.16

We now show that for all C ∈ C, ψ∗(C) is an element in the core of the cost game

corresponding to C.

Again, we present the proof for any C ∈ C2 in order to avoid notational compli-

cations.17 We want to show that for all S ⊆ N ,
∑
i∈S

ψ∗i (C) ≤ c(S).

Without loss of generality, assume that for all i ∈ N, bi = i and denote cakbk = ck.

Claim 1: If S = {1, 2, . . .K} where K ≤ #N , then
∑
i∈S

ψ∗i (C) ≤ c(S).

Proof of Claim: Clearly, g = ∪Kk=1{akk} is a connected graph over S ∪ {0}.

Also, g is in fact the m.c.s.t. over S.
16Suppose C 6∈ C2. What we have shown above is that the outcome of the algorithm for each

tie-breaking rule satisfies cost monotonicity. Hence, the average must also satisfy cost monotonicity.
17Suppose instead that C 6∈ C2. Then, our subsequent proof shows that the outcome of the

algorithm is in the core for each σ ∈ Σ. Since the core is a convex set, the average (that is, ψ∗)

must be in the core if each ψ∗σ is in the core.
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So, c(S) =
K∑
k=1

ck. Also,
∑
i∈S

ψ∗i (C) =
K+1∑
k=1

ck − max
1≤k≤K+1

ck ≤
K∑
k=1

ck = c(S).

Hence, a blocking coalition cannot consist of an initial set of integers, given our

assumption that bk = k for all k ∈ N .

Now, let S be a largest blocking coalition. That is,

(i)
∑
i∈S

ψ∗i (C) > c(S).

(ii) If S ⊂ T , then
∑
i∈T

ψ∗i (C) ≤ c(T ).

There are two possible cases.

Case 1: 1 6∈ S.

Let K = minj∈S j. Consider T = {1, . . . ,K−1}. We will show that S ∪T is also

a blocking coalition, contradicting the description of S.

Now,∑
i∈T∪S

ψ∗i (C) =
∑
i∈S

ψ∗i (C)+
∑
i∈T

ψ∗i (C) > c(S)+
K∑
k=1

ck− max
1≤k≤K

ck ≥ c(S)+
K∑
k=1

ck−c0s,

where (0s) ∈ gS , the m.c.s.t. of S. Note that the last inequality follows from the

fact that ck ≤ c0s for all k ∈ {1, . . .K}.

Since g = (∪Kk=1a
kbk) ∪ (gS \ {(0s)}) is a connected graph over (T ∪ S ∪ {0}),

c(S) +
K∑
k=1

ck − c0s ≥ c(S ∪ T ). Hence,
∑

i∈S∪T
ψ∗i (C) > c(S ∪ T ), establishing the

contradiction that S ∪ T is a blocking coalition.

Case 2: 1 ∈ S.

From the claim, S is not an initial segment of the integers. So, we can partition

S into {S1, . . . , SK}, where each Sk consists of consecutive integers, and i ∈ Sk, j ∈

Sk+1 implies that i + 1 < j. Assume m = maxj∈S1 j and n = minj∈S2 j. Note that

n > m + 1. Define T = {m + 1, . . . , n − 1}. We will show that S ∪ T is a blocking

coalition, contradicting the assumption that S is a largest blocking coalition.

∑
i∈S∪T

ψ∗i (C) =
∑
i∈S

ψ∗i (C) +
∑
i∈T

ψ∗i (C)

> c(S) +
∑

i∈S1∪T
ψ∗i (C)−

∑
i∈S1

ψ∗i (C)
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= c(S) + (
n∑
i=1

ci − max
1≤i≤n

ci)− (
m+1∑
i=1

ci − max
1≤i≤m+1

ci)

= c(S) + (
n∑

i=m+2

ci + max
1≤i≤m+1

ci − max
1≤i≤n

ci)

≥ c(S) +
n∑

i=m+1

ci − max
1≤i≤n

ci

Since gS is a connected graph over S+, there is s2 ∈ S \ S1 and s1 ∈ S+
1 such that

(s1s2) ∈ gS . Moreover, cs1s2 ≥ max1≤i≤n c
i. Noting that ∪nk=m+1{(akbk)} ∪ [gS \

{(s1s2)}] is a connected graph over S ∪ T ∪ {0}, it follows that∑
i∈S∪T

ψ∗i (C) > c(S) +
n∑

i=m+1

ci − cs1s2

≥ c(S ∪ T ).

So, S ∪ T is a blocking coalition, establishing the desired contradiction.

This concludes the proof of the theorem.

The following lemmas will be used in the proofs of Theorems 2 and 3.

Lemma 1 : Let C ∈ C1
N , and i ∈ N . If cik = min

l∈N+\{i}
cil, then (ik) ∈ gN (C).

Proof : Suppose (ik) /∈ gN (C). As gN (C) is a connected graph over N+, ∃ j ∈

N+ \ {i, k} such that (ij) ∈ gN (C) and j is on the path between i and k. But,

{gN ∪ (ik)} \ {(ij)} is still a connected graph which costs no more than gN (C), as

cik ≤ cij . This is not possible as gN (C) is the only m.c.s.t. of C.

Lemma 2 : Let C ∈ C2
N , and (01) ∈ gN (C). Let ψ1(C) = mink∈N+\{1} c1k. Then,

Ctrψ1(C) ∈ C
2
N\{1}.

Proof : We will denote Ctrψ1(C) by C̄ for the rest of this proof.

Let ψ1(C) = mink∈N+\{1} c1k = c1k∗ (say).

Suppose there exists (ij) ∈ gN (C) such that i, j 6= 1. Without loss of generality

assume i precedes j in gN (C). Since (01), (ij) ∈ gN (C), (1j) /∈ gN (C). Then,

c1j > cij . As ψ1(C) ≤ ci1, ci1 + c1j − ψ1(C) ≥ c1j > cij . Hence c̄ij = cij∀(ij) ∈

gN (C), such that i, j 6= 1.

Now, suppose there is j ∈ N+ such that j 6= k∗ and (1j) ∈ gN (C). Since

(1j), (1k∗) ∈ gN (C), (jk∗) /∈ gN (C). Hence, c1j < ck∗j . Thus,
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c̄k∗j = min{(c1j + c1k∗ − ψ1(C)), ck∗j} = min(c1j , ck∗j) = c1j .

Next, let ḡN\{1}, be a connected graph over N+ \ {1}, defined as follows.

ḡN\{1} = {(ij)| either (ij) ∈ gN (C) s.t. i, j 6= 1 or (ij) = (k∗l) where (1l) ∈ gN (C)}.

Note that no two edges have equal cost in ḡN\{1}.

Also, ∑
(ij)∈ḡN\{1}

c̄ij =
∑

(ij)∈gN (C)

cij − c1k∗ . (10)

We prove that C̄ belongs to C2
N\{1} by showing that ḡN\{1} is the only m.c.s.t. of C̄.

Suppose this is not true, so that g∗N\{1} is an m.c.s.t. corresponding to C̄. Then,

using 10, ∑
(ij)∈g∗

N\{1}

c̄ij ≤
∑

(ij)∈gN (C)

cij − c1k∗ (11)

Let g∗N\{1} = g1 ∪ g2, where

g1 = {(ij)|(ij) ∈ g∗N\{1}, cij = c̄ij}

g2 = g∗N\{1} \ g
1

If (ij) ∈ g2, then

c̄ij = min(cij , c1i + c1j − ψ1(C))

= c1i + c1j − ψ1(C)

≥ max(c1i, c1j)

where the last inequality follows from the assumption that ψ1(C) = mink∈N+\{1} c1k.

So,

c̄ij = cij if (ij) ∈ g1

≥ max(c1i, c1j) if (ij) ∈ g2. (12)

Now, extend g∗N\{1} to a connected graph g′N over N+ as follows. Letting g =

{(1i)|(ij) ∈ g2, j ∈ U(i, k∗, g∗N\{1})}, define

g′N = g1 ∪ (1k∗) ∪ g.
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Claim: g′N is a connected graph over N+.

Proof of Claim: It is sufficient to show that every i ∈ N+ \ {1} is connected

to 1 in g′N . Clearly, this is true for i = k∗. Take any i ∈ N+ \ {1, k∗}. Let

U(i, k∗, g∗N\{1}) = {m0,m1, . . . ,mp+1}18 where m0 = i and mp+1 = k∗. If all these

edges (mtmt+1) ∀t ≤ p are in g1, then they are also in g′N , and there is nothing to

prove.

So, suppose there is (mtmt+1) ∈ g2 while all edges in {(m0m1), . . . , (mt−1mt)}

belong to g1. In this case, (mt1) as well as all edges in {(m0m1), . . . , (mt−1mt)}

belong to g′N . Hence, i is connected to 1.

To complete the proof of the lemma, note that

∑
(ij)∈g′N

cij =
∑

(ij)∈g1
cij + c1k∗ +

∑
(ij)∈g2

c1i.

Using (12),

∑
(ij)∈g′N

cij ≤
∑

(ij)∈g1
c̄ij + c1k∗ +

∑
(ij)∈g2

c̄ij =
∑

(ij)∈g∗
N\{1}

c̄ij + c1k∗

Finally, using (11), ∑
(ij)∈g′N

cij ≤
∑

(ij)∈gN (C)

cij .

But, this contradicts the assumption that gN (C) is the unique m.c.s.t. for C.

Lemma 3 : Let C ∈ C1
N , (10) ∈ gN (C). Suppose ψ1(C) = c01. Then Csrψ1(C) ∈

C1
N\{1}.

Proof : Throughout the proof of this lemma, we denote Csrψ1(C) by C̄.

We know ψ1(C) = c01. Suppose (ij) ∈ gN (C) such that {i, j}∩{0, 1} = ∅. Then

c̄ij = cij .

On the other hand if (i0) ∈ gN (C), and i 6= 1, then c̄0i = min{(ci1 + c10 −

ψ1(C)), c0i} = min(ci1, ci0) = ci0. Note that the last equality follows from the fact

that (i0) ∈ gN (C) but (i1) /∈ gN (C) implies that ci1 > ci0.
18This path exists because g∗N\{1} is a connected graph.
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If (i1) ∈ gN (C), then c̄i0 = min{(ci1 + c10 − ψ1(C)), ci0} = min(ci1, ci0) = ci1, as

(i1) ∈ gN (C) but (i0) /∈ gN (C).

Now we construct ḡN\{1}, a connected graph over N+ \ {1} as follows.

ḡN\{1} = {(ij)| either (ij) ∈ gN (C) s.t. i, j 6= 1 or (ij) = (l0) where (l1) ∈ gN (C)}

Then, ḡN\{1} must be the only m.c.s.t. of C̄. For if there is another g∗N\{1} which

is also an m.c.s.t. of C̄, then one can show that gN (C) cannot be the only m.c.s.t.

coresponding to C.19

Lemma 4: Suppose ψ satisfies TR, EPM and EF. Let C ∈ C2
N . If (i0) ∈ gN (C),

then ψi(C) ≥ mink∈N+\{i} cik.

Proof: Consider any C ∈ C2
N , (i0) ∈ gN (C), and ψ satisfying TR, EPM, EF. Let

ψ(C) = x, and cim = mink∈N+\{i} cik. We want to show that xi ≥ cim.

Choose j 6∈ N+, and define N̄ = N ∪ {j}. Let C̄ ∈ C2
N̄

be such that

(i) C̄ coincides with C on N+.

(ii) For all k ∈ N+ \ {i}, c̄jk > c̄ij >
∑

(pq)∈gN (C)

cpq.20

Hence, gN̄ (C̄) = gN (C) ∪ {(ij)}.

Notice that j is an extreme point of C̄. Denoting ψ(C̄) = x̄, EPM implies that

xk ≥ x̄k∀k ∈ N (13)

We prove the lemma by showing that x̄i ≥ c̄im = cim.

Let C̄trx̄i
= C ′, and N ′ = N̄ \ {i}, ψ(C ′) = x′. Assume x̄i < c̄im.

Case 1: C ′ ∈ C2
N ′ .

19The proof of this assertion is analogous to that of the corresponding assertion in Lemma 2, and

is hence omitted.
20Note that the exact lower bound on c̄ij will play no role in the subsequent proof. All that we

require is that c̄ij is “high” so that the reduced matrix C′, to be defined below, has appropriate

properties.
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Suppose there is some k ∈ N ′ such that (ik) 6∈ gN̄ (C̄). Let l be the predecessor

of k in gN̄ (C̄). Since (kl) ∈ gN̄ (C̄) and (ik) 6∈ gN̄ (C̄), c̄kl < c̄ki. Also, c̄il ≥ c̄im > x̄i.

Hence,

c′kl = min(c̄kl, c̄ki + c̄li − x̄i) = c̄kl (14)

Now, consider k ∈ (N ′ ∪{0}) \ {m, j} such that (ik) ∈ gN̄ (C̄). Note that (km) 6∈

gN̄ (C̄) since (im) ∈ gN̄ (C̄) from lemma 1. Hence, c̄km > c̄ik since (ik) ∈ gN̄ (C̄) and

(km) 6∈ gN̄ (C̄). So,

c′km = min(c̄km, c̄ik + c̄im − x̄i) > c̄ik (15)

Take any (kl) 6∈ gN̄ (C̄). Let U(k, l, gN̄ (C̄) = {s1, . . . , sJ}. Then either sj , sj+1 ∈

U(k, i, gN̄ (C̄)) or sj , sj+1 ∈ U(l, i, gN̄ (C̄)). Without loss of generality, assume sj , sj+1 ∈

U(k, i, gN̄ (C̄)). Then, c̄sjsj+1 < c̄kl and c̄sjsj+1 ≤ c̄ki. As x̄i < c̄il

c′kl = min(c̄ki + c̄il − x̄i, c̄kl) > c̄sjsj+1 (16)

Next, note that since c̄jm can be chosen arbitrarily high,

c′jm = min(c̄jm, c̄ij + c̄im − x̄i) = c̄ij + c̄im − x̄i (17)

Since for all t ∈ (N ′ ∪ {0}) \ {m, j}, c′jt = c̄ij + c̄it − x̄i > c′jm, (jm) ∈ gN ′(C ′).

From TR, we have x′k = x̄k for all k ∈ N ′. Using EF, and equations 14, 15, 16,

17, ∑
k∈N̄\{i}

x̄k =
∑
k∈N ′

x′k = c(gN ′(C ′)) > c(gN̄(C̄))− x̄i (18)

But, this violates EF since
∑
k∈N̄

x̄k > c(gN̄ (C̄)).

Case 2: C ′ /∈ C2
N ′ .

Let S1 = {(q1q2) ∈ gN̄ (C̄)|{q1, q2} ∩ {i} = ∅}. From equation 14, we have

c′q1q2 = c̄q1q2 (19)

Let S2 = {(kl)|k, l ∈ N ′+, (kl) /∈ S1}. If (kl) ∈ S2 then from equation 16 we get

c′kl > c̄sjsj+1∀sj , sj+1 ∈ U(k, l, gN̄ (C̄)) (20)
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For each (kl) ∈ S2, choose p(k, l) /∈ N̄+ such that p(k, l) 6= p(k′, l′) when (k, l) 6=

(k′, l′). Let N̂ = N̄ ∪ {p(k, l)|(k, l) ∈ S2}. Now define a new matrix Ĉ over N̂+ as

follows,

(i) Ĉ coincides with C̄ on N̄+.

(ii) ĉp(k,l)k = mint∈N̄+ ĉp(k,l)t and ĉp(k,l)k 6= c̄q1q2 for all (q1q2) ∈ S1

(iii) c′kl > ĉp(k,l)l > c̄sjsj+1∀sj , sj+1 ∈ U(k, l, gN̄ (C̄)) and ĉp(k,l)l 6= c̄q1q2 for all

(q1q2) ∈ S1.21

(iv) Costs of all the remaining edges are chosen ‘very’ high, for example strictly

greater than
∑

(t1t2)
c̄t1t2 .

(v) Costs of all the new edges, that is those which were not present in C̄, are

distinct.

Then, from specifications (ii) and (iv) we have g
N̂

(Ĉ) = gN̄ (C̄) ∪ {(p(k, l)k)|(kl) ∈

S2}, so that all p(k, l) are extreme points of Ĉ. Let ψ(Ĉ) = x̂. From EPM,

x̄i ≥ x̂i (21)

Now, consider the reduced matrix C̃ ≡ Ĉtr
x̂i

. We want to show that the edges which

will be connected in the m.c.s.t. of C̃ will be contained in S1∪{(p(k, l)k), (p(k, l), l)|(k, l) ∈

S2}. Since specifications (i), (ii), (iii) and (v) imply that all these costs are distinct,

we will get C̃ ∈ C2
N̂\{i}

.

Consider any (q1q2) ∈ S1 ∪ S2. Since x̄i ≥ x̂i, c̄q1i + c̄q2i − x̂i ≥ c̄q1i + c̄q2i − x̄i.

Thus, c̃q1q2 ≥ c′q1q2 , with equality holding if c̄q1q2 ≤ c̄q1i + c̄q2i − x̄i. Hence

c̃q1q2 = c̄q1q2 = c′q1q2 if (q1q2) ∈ S1, c̃q1q2 ≥ c′q1q2 otherwise (22)

Since x̂i < ĉik, and ĉp(k,l)k < ĉp(k,l)i,

c̃p(k,l)k = min(ĉp(k,l)k, ĉp(k,l)i + ĉik − x̂i) = ĉp(k,l)k.

21Note that this specification of costs is valid because (20) is true.
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Also, using specification (iv),

c̃p(k,l)l = min(ĉp(k,l)l, ĉp(k,l)i + ĉil − x̂i) = ĉp(k,l)l

It is easy to check that all other edges in C̃ have costs strictly greater than
∑

(t1t2) c̄t1t2 .

So, from specification (ii), c̃p(k,l)k = min
t∈N̂+\{p(k,l),i} c̃p(k,l)t. Hence, from lemma

1, (p(k, l)k) ∈ g
N̂\i(C̃).

Finally, specification (iii) implies c̃kl ≥ c′kl > ĉp(k,l)l = c̃p(k,l)l for all (kl) ∈ S2.

Thus for all (kl) ∈ S2, (p(k, l)k) is connected in a m.c.s.t of C̃ and c̃kl > c̃p(k,l)l.

So, (kl) cannot be an edge in the m.c.s.t. corresponding to C̃. This establishes that

the m.c.s.t. can only contain edges from S1 ∪ {(p(k, l)k), (p(k, l)l)|(kl) ∈ S2}.

Since C̃ ∈ C2
N̂\{i}

, we apply the conclusion of Case 1 of the lemma to conclude

that x̂i ≥ ĉim = c̄im. Equation 21 now establishes that x̄i ≥ c̄im.

Lemma 5: Suppose ψ satisfies SR, EPM and EF. Let C ∈ C2
N . If (i0) ∈ gN (C),

then ψi(C) ≥ min
k∈N+\{i}

cik.

The proof of Lemma 5 is almost identical to that of Lemma 4, and hence is

omitted.

Proof of Theorem 2 : First, we prove that ψ∗ satisfies all the three axioms.

Let C ∈ C2.

Efficiency follows trivially from the algorithm which defines the allocation.

Next, we show that ψ∗ satisfies TR.

Let (10) = argmink∈N ck0. Hence, the algorithm yields b1 = 1, and ψ∗1(C) =

min(c10, ca2b2). There are two possible choice of a2.

Case 1: a2 = 1. Then, we get c1b2 = mink∈N\{1} c1k. Therefore ψ∗1(C) = min(c10, c1b2) =

mink∈N+\{1} c1k.

Case 2: a2 = 0. Then, cb20 ≤ c1k ∀k ∈ N \ {1}. Since c10 ≤ cb20, we conclude

ψ∗1(C) = min(c10, cb20) = c10 = mink∈N+\{1} c1k.

So, in either case, 1 pays its minimum cost.

Let ψ∗1(C) = x1 = mink∈N+\{1} c1k = c1k∗ . Denoting Ctrx1
by C̄, we know from

Lemma 2, that C̄ ∈ C2. Hence, the algorithm is well defined on C̄.
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Let āk, b̄k, t̄k, etc denote the relevant variables of the algorithm corresponding to

C̄.

Claim: ∀i ∈ N \ {1}, ψ∗i (C) = ψ∗i (C̄). That is, ψ∗ satisfies Tree Consistency.

Proof of Claim: From the proof of lemma 2,

(i) c̄ij = cij ∀(ij) ∈ gN (C) s.t. i, j 6= 1.

(ii) c̄k∗j = c1j for j ∈ N+ \ {k∗} s.t. (1j) ∈ gN (C).

Also,

gN\{1}(C̄) = {(ij)|(ij) ∈ gN (C)if i, j 6= 1 and (ij) = (k∗l) if (1l) ∈ gN (C)}.

Let b2 = i. Either k∗ = 0 or k∗ = i. In either case, c̄0i < c̄0j for j 6∈ {0, 1, i}.

Hence, b̄1 = i.

Now, t2 = max(ca1b1 , ca2b2) = max(c10, ca2i) = c̄0i = t̄1.

Also, a3 ∈ {0, 1, i}, while b3 ∈ {0, 1, i}c. If a3 ∈ {0, i}, then ā2 = a3. If a3 = 1,

then ā2 = k∗. In all cases, b3 = b̄2, and ca3b3 = c̄ā2b̄2 . So,

ψ∗i (C) = min(t2, ca3b3) = min(t̄1, c̄ā2b̄2) = ψ∗i (C̄). (23)

The claim is established for {b3, . . . , bn} by using the strucure of gN\{1}(C̄), the

definition of C̄ given above, and the following induction hypothesis. The details are

left to the reader.

For all i = 2, . . . , k − 1,

(i) b̄i−1 = bi.

(ii t̄i−1 = ti.

(iii) āi−1 = ai if ai 6= 1, and āi−1 = k∗ if ai = 1.

We now have to show that ψ∗ satisfies EPM.

Let i ∈ N be an extreme point of gN (C), and Ĉ be the restriction of C over

N \ {i}. Of course, Ĉ ∈ C2.
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In order to differentiate between the algorithms on C and Ĉ, we denote the

outcomes corresponding to the latter by âk, b̂k, t̂k, etc.

Suppose bk = i. Clearly, the algorithm will produce the same outcomes till step

(k − 1), and so ψ∗j (C) = ψ∗j (Ĉ) for all j ∈ {b1, . . . , bk−2}, and tk−1 = t̂k−1.

Now, we calculate ψ∗j (C) where j = bk−1. As i is an extreme point of gN , and

(aki) ∈ gN , ak+1 6= i. Also, Ak = Ak−1 ∪ {i}. Hence, ak+1 ∈ Ak−1. This implies

caki ≤ cak+1bk+1 . But i /∈ Âk−1
c . Hence (âk b̂k) = (ak+1bk+1). Thus,

ψ∗j (C) = min(tk−1, caki) ≤ min(t̂k−1, cak+1bk+1) = ψ∗j (Ĉ) (24)

Also, t̂k = max(t̂k−1, cak+1bk+1) ≥ max(tk−1, caki, cak+1bk+1) = tk+1. The algorithm

on C determines the cost allocation for i in step (k+ 1). Since i is an extreme point

of gN , i 6= as for any s. Hence, the choice of aj and bj must be the same in C and Ĉ

for j ≥ k+1. So, for all j ∈ {k+1, . . . ,#N}, aj = âj−1, bj = b̂j−1, tj ≤ t̂j−1. Hence,

ψ∗bj (C) = min(tj , caj+1bj+1) ≤ min(t̂j−1, c
âj b̂j

) = ψ∗
b̂j−1

(Ĉ) (25)

Hence, we can conclude that ψ∗ satisfies Extreme Point Monotonicity.

Next, we will prove that only one rule over C2 satisfies all three axioms. Let ψ be

a rule satisfying all the three axioms. We will show by induction on the cardinality

of the set of nodes that ψ is unique.

Let us start by showing that the result is true for |N | = 2. There are several

cases.

Case 1: c12 > c10, c20. From Lemma 4, ψ1(C) ≥ c10, ψ2(C) ≥ c20. By EF,

ψ1(C) + ψ2(C) = c10 + c20. Thus ψ1(C) = c10, and ψ2(C) = c20. So, the allocation

is unique.

Case 2: c20 > c12 > c10. Introduce a third agent 3 and costs c20 < c̄13 <

min(c̄32, c̄30). Let the restriction of C̄ on {1, 2}+ coincide with C. Hence, g{1,2,3} =

{(01), (12), (13)}. Let ψ(C̄) = x̄. From Lemma 4, x̄1 ≥ c̄10 = c10.

Denote the reduced matrix C̄trx̄1
as Ĉ. Now, ĉ02 = min(c̄01 + c̄12 − x̄1, c̄02) =

c̄01+ c̄12−x̄1. Similarly, ĉ23 = min(c̄13+ c̄12−x̄1, c̄23). Noting that x̄1 ≥ c̄10, c̄23 > c̄12
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and c̄13 > c̄10, we conclude that

ĉ02 < ĉ23.

Analogously, ĉ03 = c̄01 + c̄13 − x̄1 < ĉ23.

Hence, g{2,3}(Ĉ) = {(02), (03)}. So, Ĉ ∈ C2. Using TR,

ψ2(Ĉ) = ψ2(C̄), ψ3(Ĉ) = ψ3(C̄) (26)

From Case 1 above,

ψ2(Ĉ) = c̄01 + c̄12 − x̄1, ψ3(Ĉ) = c̄01 + c̄13 − x̄1 (27)

From (26) and (27),

ψ2(C̄) + ψ3(C̄) = c̄01 + c̄12 − x̄1 + c̄01 + c̄13 − x̄1

or x̄1 + ψ2(C̄) + ψ3(C̄) = c̄01 + c̄12 + c̄13 + (c̄01 − x̄1)

But, from EF, x̄1 + ψ2(C̄) + ψ3(C̄) = c̄01 + c̄12 + c̄13. So, x̄1 = c̄01. So, ψ2(Ĉ) =

ψ2(C̄) = c̄12 = c12.

By EPM, x̄1 ≤ ψ1(C), and ψ2(C̄) ≤ ψ2(C). Using EF, it follows that ψ1(C) = c01

and ψ2(C) = c12. Hence, ψ is unique.

The case c10 > c12 > c20 is similar.

Case 3: c20 > c10 > c12.

We again introduce a third agent (say 3). Consider the matrix C̄, coinciding

with C on {1, 2}+, and such that

(i) c̄32 > c̄13 > c̄20.

(ii) c̄30 > c̄10 + c̄13.

Then, C̄ ∈ C2 since it has the unique m.c.s.t. gN (C̄) = {(01), (12), (13)}, where no

two edges have the same cost.

Note that 3 is an extreme point of the m.c.s.t. corresponding to C̄. Using EPM,

we get

ψ1(C) ≥ ψ1(C̄), ψ2(C) ≥ ψ2(C̄). (28)
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Consider the reduced matrix C̄tr
ψ1(C̄)

on {2, 3}. Denote C̄tr
ψ1(C̄)

= Ĉ for ease of

notation. Since ψ1(C̄) ≥ c̄12 from Lemma 4, it follows that c̄12 + c̄10−ψ1(C̄) ≤ c̄10 <

c̄20, and c̄12 + c̄13 − ψ1(C̄) ≤ c̄13 < c̄23. Hence,

ĉ20 = c̄12 + c̄10 − ψ1(C̄), ĉ23 = c̄12 + c̄13 − ψ1(C̄), ĉ30 = c̄13 + c̄10 − ψ1(C̄) (29)

Note that

c̄12 + c̄10 − ψ1(C̄) < c̄12 + c̄13 − ψ1(C̄) < c̄10 + c̄13 − ψ1(C̄)

Hence, g{23}(Ĉ) = {(02), (23)}.

Applying case 2, ψ2(Ĉ) = ĉ20 = c̄12 + c̄10 −ψ1(C̄) and ψ3(Ĉ) = ĉ23 = c̄12 + c̄13 −

ψ1(C̄). Using TR, ψ2(Ĉ) = ψ2(C̄), ψ3(Ĉ) = ψ3(C̄). Also, EF on C̄ gives,

ψ1(C̄) + ψ2(C̄) + ψ3(C̄) = c̄10 + c̄12 + c̄13

or ψ1(C̄) + (c̄12 + c̄10 − ψ1(C̄)) + (c̄12 + c̄13 − ψ1(C̄)) = c̄10 + c̄12 + c̄13

or ψ1(C̄) = c̄12

Hence ψ2(C̄) = c̄10, ψ3(C̄) = c̄13. From equation 28, ψ1(C) ≥ c̄12, ψ2(C) ≥ c̄10.

Using EF on C we can conclude that, ψ1(C) = c12 and ψ2(C) = c10, i.e. the

allocation is unique.

The case c10 > c20 > c12 is similar.

This completes the proof of the case |N | = 2.22

Suppose the theorem is true for all C ∈ C2
N , where |N | < m. We will show that

the result is true for all C ∈ C2
N such that |N | = m.

Let C ∈ C2
N . Without loss of generality, assume c10 = mink∈N ck0.23 Thus

(10) ∈ gN (C). There are two possible cases.

Case 1: c10 = mink∈N+\{1} c1k.

Then choose j ∈ N such that (j0) ∈ gN (C) or (j1) ∈ gN (C).

Case 2: c1j = mink∈N+\{1} c1k.

Then from Lemma 1, (1j) ∈ gN (C).
22Note that these three cases cover all possibilities since equality between different costs will result

in the matrix not being in C2
N .

23This is unique as C ∈ C2
N .
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In either Case 1 or 2, let C̄ denote the restriction of C on {1, j}. Then, from the

case when #N = 2, it follows that ψ1(C̄) = mink∈N+\{1} c1k.

Now, by iterative elimination of extreme points and repeated application of EPM,

it follows that ψ1(C) ≤ ψ1(C̄) = mink∈N+\{1} c1k. But, C ∈ C2
N , and ψ satisfies EF,

TR and EPM. So, from lemma 4, it follows that ψ1(C) ≥ mink∈N+\{1} c1k. Hence,

ψ1(C) = mink∈N+\{1} c1k = x1 (say).

We remove 1 to get reduced matrix Ctrx1
. From lemma 2, Ctrx1

∈ C2. By TR,

ψk(Ctrx1
) = ψk(C) ∀k 6= 1. From the induction hypothesis, the allocation is unique

on Ctrx1
and hence on C.

This completes the proof of the theorem.

Proof of Theorem 3 : We first show that B satisfies all the three axioms. EF and

EPM follow trivially from the definition. It is only necessary to show that B satisfies

SR.

Let (10) ∈ gN . Then, B1(C) = c01. Let us denote the reduced matrix CsrB1
by C̄.

From Lemma 3, C̄ ∈ C1. Also, the m.c.s.t. over N \ {1} corresponding to C̄ is

gN\{1} = {(ij)| either (ij) ∈ gN (C) with i, j 6= 1 or (ij) = (l0) where (1l) ∈ gN (C)}.

Also, for all i, j ∈ N \ {1}, c̄ij = cij if (ij) ∈ gN , and for k ∈ N \ {1}, c̄k0 = c1k

if (1k) ∈ gN (C). Hence, for all k ∈ N \ {1}, c̄kᾱ(k) = ckα(k), where ᾱ(k) is the

immediate predecessor of k in gN\{1}. So, Bk(C̄) = Bk(C) for all k ∈ N \ {1} and B

satisfies Source Consistency.

Next, we show that B is the only rule over C1 which satisfies all the three axioms.

This proof is by induction on the cardinality of the set of agents.

We remark that the proof for the case |N | = 2 is virtually identical to that of

Theorem 2, with SR replacing TR and Lemma 5 replacing Lemma 4.

Suppose B is the only rule satisfying the three axioms, for all C ∈ C1, where

|N | < m. We will show that the result is true for all C ∈ C1 such that |N | = m.

Let C ∈ C1. Without loss of generality, assume (10) ∈ gN (C). There are two

possible cases.
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Case 1 : There are at least two extreme points of C, say m1 and m2.

First, remove m1 and consider the matrix Cm1 , which is the restriction of C over

(N+ \{m1}). By EPM, ψi(C) ≤ ψi(Cm1) for all i 6= m1. As Cm1 has (m−1) agents,

the induction hypothesis gives ψi(Cm1) = ciα(i). So, ψi(C) ≤ ciα(i)∀i 6= m1. Similarly

by eliminating m2 and using EPM, we get ψi(C) ≤ ciα(i) ∀i 6= m2. Combining the

two, we get ψi(C) ≤ ciα(i) ∀i ∈ N .

But from EF, we know that
∑
i∈N ψi(C) = c(N) =

∑
i∈N ciα(i). Therefore

ψi(C) = ciα(i) ∀i ∈ N , and hence the allocation is unique.

Case 2: If there is only one extreme point of C, then gN (C) must be a line, i.e. each

agent has at most one follower. Without loss of generality, assume 1 is connected to

2 and 0. Let C̄ be the restriction of C over the set {0, 1, 2}. By iterative elimination

of the extreme points and use of EPM we get ψi(C) ≤ ψi(C̄). Using the induction

hypothesis, we get ψ1(C) ≤ c10 and ψ2(C) ≤ c12.

Suppose ψ1(C) = x1 = c10−ε, where ε ≥ 0. Now consider the reduced matrix Csrx1
,

which will be denoted by Ĉ. It can be easily checked that gN\{1} is also a line where 2

is connected to 0. Thus ψ2(Ĉ) = ĉ20 = min(c20, c12+c10−ψ1(C)) = min(c20, c12+ε).

So, ψ2(Ĉ) ≥ c12 with equality holding only if ε = 0. By SR, ψ2(C) = ψ2(Ĉ).

But from EPM ψ2(C) ≤ ψ2(C̄) = c12. This is possible only if ε = 0. Therefore,

ψ1(C) = c10. Using SR and the induction hypothesis, we can conclude that ψ = B.
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