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Abstract

We examine a model of price competition where the firms simulta-

neously decide on both price and quantity, and are free to supply less

than the quantity demanded. We demonstrate that if the tie-breaking

rule is ‘non-manipulable’, then, for a large class of rationing rules, there

is a unique equilibrium in pure strategies whenever the number of firms

is large enough. We then show that the ‘folk theorem’ of perfect com-

petition holds. Finally, we examine if the results go through when the

firms are asymmetric, or produce to order.
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1 Introduction

Let us consider a Bertrand duopoly where the firms decide on both their

price and output levels and the firms are free to supply less than the quantity

demanded. Edgeworth (1897) argues that in such models equilibria in pure

strategies may not exist.1 In this paper we seek to establish that if the

number of firms is large enough, then, for a ‘large’ class of residual demand

functions, there exists a unique equilibrium in pure strategies. Moreover,

this equilibrium exhibits some interesting limit properties.

We focus on the case where the firms make their price and output de-

cisions simultaneously, though we also examine the model where the firms

produce to order. We examine a class of residual demand function with

a rationing rule that is satisfied by almost ‘all’ rationing rules (except the

proportional one) and a ‘non-manipulable’ tie-breaking rule. Suppose that

several firms are charging the same price. We say that the tie-breaking rule

is ‘non-manipulable’ if, by increasing their output level, none of these firms

can increase the residual demand coming to it.

In this paper we allow the price level to vary over a grid, where the

size of the grid can be arbitrarily small. There are generally two problems

associated with the existence of pure strategy equilibrium under price com-

petition. The first reason is technical and has to do with the well known

open-set problem. The second one has to do with the fact that the profit

function of a firm may not be quasi-concave in its own price. The grid as-

sumption allows us to side-step the open set problem, and solve, at least

when the number of firms is large enough, what we believe is the essential

Edgeworth paradox. This assumption can also be motivated by appealing

to the practice of integer pricing, or to the fact that there are minimum cur-

rency denominations. Some other papers that model such discrete pricing
1See Dixon (1987), or Friedman (1988) for formal statements of the problem, often

referred to in the literature as the Edgeworth paradox.
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include, Dixon (1993), Harrington (1989), Maskin and Tirole (1988), Ray

Chaudhuri (1995), Roy Chowdhury (1999) and Roy Chowdhury (2002).2

We demonstrate that if the number of firms is large enough, then a

unique Nash equilibrium exists. We then discuss the limit properties of this

equilibrium as one takes the number of firms to infinity. However, relative

to market demand, firm size is kept constant.3 We find that in the limit

as the grid size becomes very small, and the number of firms becomes very

large, the price level approaches the competitive one and the output level of

each firm becomes vanishingly small.

This result is a vindication of the ‘folk theorem’ of perfect competi-

tion, which suggests that the perfectly competitive outcome can be inter-

preted as the limit of some oligopolistic equilibrium as the number of firms

becomes large. While this issue has been thoroughly investigated in the

context of Cournot competition,4 in the Bertrand framework this question

remains relatively unexplored. In our model the competitive price is ob-

tained in the limit even though firms are price-setters, thereby providing a

non-cooperative foundation for perfect competition in the context of price

competition.

We then go on to argue that similar results hold even if the firms play

a two stage game, where in stage 1 the firms decide on their price, and in

stage 2 they decide on their output.

We next examine the case where the cost functions are asymmetric.

The results for the symmetric case generalize in a natural fashion when the

marginal cost at zero is the same for all firms. If the marginal cost at zero

is different for different types, then the earlier results go through if it is the
2In models with discrete strategy spaces, Dasgupta and Maskin (1986a) discuss the

sensitivity of equilibrium outcomes to the size of the grid.
3Other papers to employ this limiting procedure include Ruffin (1971) (in case of

Cournot competition) and Tasnádi (1999a) (in case of price competition).
4See, for example, Novshek (1980) and Novshek and Sonnenschein (1983).
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number of ‘efficient’ firms that is taken to infinity. Otherwise, an equilibrium

may fail to exist.

We then relate our paper to the literature.

There are different ways of modelling a game of price competition. Un-

der the production to stock (or PTS) approach, the firms simultaneously

decide on both their price and output levels. One way to interpret this

game is as one with advance production, so that firms must decide on their

output levels before trading starts. Thus they make their price and output

decisions without knowing the price and output decisions of the other firms.

Retail markets are often characterized by such production conditions (see

Mestelman et al. (1987)).

This framework has been examined, among others, by Dixon (1987),

Dixon (1993) and Maskin (1986).5 While Maskin (1986) proves existence

in mixed strategies, Dixon (1987, 1993) look for equilibrium in pure strate-

gies. Dixon (1987) introduces the notion of menu costs and demonstrates

that in the presence of such costs there is an epsilon-Nash equilibrium in

pure strategies if the economy is replicated. Dixon (1993) examines the ex-

istence of pure strategy equilibria when costs are convex and price varies

discretely. There two papers, however, differ from our paper in several re-

spects. To begin with the replication procedure is quite different. While

under our approach the market demand is kept unchanged, Dixon (1987,

1993) replicate the market demand function as well, so that individual firms

become small relative to market demand. Moreover, while Dixon (1993)

examines a parallel residual demand function, our results apply to almost

‘all’ residual demand functions (except the proportional one), provided the

tie-breaking rule is ‘non-manipulable’. In terms of results, Dixon (1993)

finds that equilibria are non-unique and may not exist for some parameter
5In fact, Shubik (1955) formulates a production to stock game, but does not analyze

it, merely pointing out the difficulties in analyzing such a game. Of course, both Maskin

(1986) and Shubik (1955) also examine other game forms.
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values. Moreover, the highest equilibrium price could be arbitrarily far from

the competitive price. In contrast, we find that for large markets, equilib-

rium is unique, always exists and the equilibrium price approximates the

competitive price arbitrarily closely.6

Under the production to order (or PTO) approach, the firms first simul-

taneously decide on their price levels and then on their output levels. Papers

in this framework include Dixon (1990), Maskin (1986), Yoshida (2002) etc.

Maskin (1986) proves existence in mixed strategies, while Yoshida (2002)

characterizes the symmetric mixed strategy equilibrium for a duopoly with

identical, strictly convex costs. On the other hand, Dixon (1990) shows that

if there are costs of turning away customers then a pure strategy equilibrium

exists if the economy is replicated.

One interesting class of models assumes that cost functions are linear

and capacity constrained. Firms compete over prices and, given prices, are

willing to supply till capacity.7 Papers in this framework include Allen and

Hellwig (1986, 1993), Dasgupta and Maskin (1986b), Osborne and Pitchik

(1986), Vives (1986) etc.8 These papers solve for equilibria in mixed strate-

gies, sometimes using the fixed point theorems for discontinuous games de-

veloped by Dasgupta and Maskin (1986a).

In an interesting paper Mestelman et al. (1987) use laboratory exper-

iments to compare the PTS approach with the PTO one. They find that

under the PTS approach, market prices tend to be lower compared to the

PTO approach. Moreover, with repeated play, the market price under the
6Dixon (1992) examines a model where firms announces a price and the maximum

quantity it is willing to supply at that price. In such models even two firms are sufficient

to generate the competitive outcome.
7In fact, in some of these papers the cost of production is assumed to be zero. In that

case this class of models can be interpreted as one of price competition with a given stock

of output (see Dasgupta and Maskin (1986b)).
8Tasnádi (1999a) examines a PTS framework with linear and capacity constrained cost

functions.
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PTS approach converges quickly to the competitive one.

Finally, Davidson and Deneckere (1986) and Kreps and Scheinkman

(1983) assume that firms first decide on their capacity levels and then on

prices. This approach differs from the PTS approach in that the firms know

the capacity level of the other firms when they make their pricing decisions.

The rest of the paper is organized as follows. Section 2 introduces and

analyzes the basic model. Section 3 considers the production to order game.

Section 4 extends the analysis to the asymmetric case. Section 5 concludes.

Some of the technical details can be found in Appendix 1 and 2.

2 The Model

There are n identical firms, all producing the same homogeneous good.9 The

market demand function is q = d(p) and the common cost function of all

the firms is c(q).10

Throughout we maintain the following assumptions on the demand and

the cost functions.

Assumption 1. d(p) is negatively sloped and intersects the price axis

at some price pmax, where 0 < pmax < ∞.

Assumption 2. The cost function c(q) is twice differentiable, increasing

and strictly convex. Moreover, pmax > c′(0).

We assume that prices vary over a grid. Define the set of feasible prices

F = {p0, p1, · · ·}, where p0 = 0, and pi = pi−1 + α, ∀i ∈ {1, 2, · · ·}, where

α > 0.
9Another strand of the literature examines price competition with differentiated prod-

ucts, e.g. Benassy (1989), Friedman (1988), Simon (1987) etc.
10Like most of the literature, this paper is set in a partial equilibrium framework. Papers

that do analyze price competition in a general equilibrium framework include Dubey (1982)

and Simon (1984).
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The i-th firm’s strategy consists of simultaneously choosing both a price

pi ∈ F and an output qi ∈ [0,∞).11 All firms move simultaneously. We

solve for the pure strategy Nash equilibrium of this game.

We then specify the residual (or the contingent) demand function. Let

Ri(P,Q) denote the residual demand facing the i-th firm when the price and

the quantity vectors are given by P = {p1, · · · , pn}, and Q = {q1, · · · , qn}.
Define p to be the minimum element in P such that at least some of the

firms charging this price has a strictly positive level of output. Then if the

total production of all firms charging p is greater than d(p), then we assume

that all firms who charge a price greater than p obtain no demand, thus

ensuring that Ri(P,Q) is indeed a residual demand function. Moreover, for

any price p, the sum of the residual demands facing all the firms charging

this price p can be at most d(p).

We then impose some more structure on the residual demand function.

Assumption 3(i) is a restriction on the rationing rule, whereas Assumption

3(ii) is a restriction on the tie-breaking rule. (In Appendix 2 we provide an

example of a residual demand function satisfying Assumption 3.)

Assumption 3. (i) Let ri(pi, p, n) denote the residual demand facing the

i-th firm if, firm i charges a price pi ≥ p, and the other (n− 1) firms charge

p and produce d(p)
n . Then ri(pi, p, n) is twice differentiable, decreasing and

(weakly) concave in pi. Moreover, ∀p < pmax, limn→∞ r′i(pi, p, n)|pi=p < 0,

where r′i(pi, p, n) = ∂ri(pi,p,n)
∂pi

.

(ii) Consider a situation where m of the firms charge p̃, and all other

firms either charge prices that are strictly greater than p̃, or charge prices

that are strictly lower than p̃, but have an output level of zero. Then the

residual demand facing all the firms charging p̃ is at least d(p̃)
m .

(a) The residual demand facing the i-th firm charging p̃ is exactly d(p̃)
m

11Grossman (1981) and Mandy (1993), among others, consider a model where firms use

supply schedules as strategies.
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whenever the other firms charging p̃ supply at least d(p̃)
m .

(b) If k (≤ m) of the m firms charging p̃ supplies nothing, then the

residual demand facing the other m − k firms charging p̃ is at least d(p̃)
m−k .

The residual demand facing such a firm is exactly d(p̃)
m−k whenever the other

firms charging p̃ and supplying a positive amount, supply at least d(p̃)
m−k .

We next relate Assumption 3 to the literature.

To begin with we claim that Assumption 3(i) is satisfied by ‘all’ rationing

rules, except the proportional one. Using the combined rationing rule intro-

duced by Tasnádi (1999b), the residual demand ri(pi, p, n) can be expressed

as max{d(pi)− n−1
n d(p)[(1−λ)d(pi)

d(p) + λ], 0}, where λ ∈ [0, 1]. Note that for

λ = 1 we have the efficient rationing rule, whereas for λ = 0 we have the pro-

portional rationing rule. For intermediate values of λ other rationing rules

emerge.12 Clearly, if d(pi) is concave then ri(pi, p, n) is decreasing and con-

cave in pi.13 Moreover, notice that limn→∞ r′i(pi, p, n)|pi=p = λd′(p). Hence

∀λ > 0, limn→∞ r′i(pi, p, n)|pi=p < 0. Thus Assumption 3(i) is satisfied by

‘all’ rationing rules barring the proportional one.

We then consider Assumption 3(ii). Observe that the firms charging p̃

cannot increase the residual demand coming to them by increasing their

output level beyond d(p̃)
m . Thus Assumption 3(ii) formalizes the notion that

the residual demand function is ‘non-manipulable’.

It is easy to see that Assumption 3(ii) is not inconsistent with Maskin

(1986), which provides one of the most general formulations of the tie-

breaking rule.14 In fact, the second of the two examples of tie-breaking

12See Tasnádi (1999b) for an interpretation of the combined rationing rule.
13This follows since ri(pi, p, n) can be re-written as max{d(pi)[1 − n−1

n
(1 − λ)] −

λ(n−1)
n

d(p)], 0}.
14In fact papers that solve for mixed strategy price equilibria often imposes very weak

restrictions on the tie-breaking rule e.g. Allen and Hellwig (1986), Maskin (1986), Vives

(1986) etc., though there are some exceptions e.g. Allen and Hellwig (1993), Dasgupta

and Maskin (1986b), Osborne and Pitchik (1986), etc.
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rules in Maskin (1986) is very similar to Assumption 3(ii). If n = 2, and

both the firms charge p̃, then this tie-breaking rule specifies that the residual

demand facing the i-th firm is αid(p̃), where αi is some exogenously given

weight. Clearly, if the weights are symmetric then the residual demand is

simply d(p̃)
2 .15 In contrast to Assumption 3(ii), however, this formulation

does not allow for the possibility that if one of the firms supplies less than
d(p̃)
2 , then the unmet residual demand may spill-over to other firm, so that

the residual demand facing the other firm may be greater than d(p̃)
2 .

Such spill-overs of unmet residual demand is, in fact, explicitly allowed

for by Davidson and Deneckere (1986) and Kreps and Scheinkman (1983).16

Both these papers consider a duopoly model. The residual demand facing

firm i, when p1 = p2, is assumed to be max{d(pi)
2 , d(pi) − qj}. Clearly, the

residual demand facing firm i is independent of the amount produced by firm

i, so that it is ‘non-manipulable’. Moreover, if qj < d(pi)
2 , then the residual

demand facing firm i is strictly greater than d(pi)
2 . Thus the tie-breaking

rule adopted in the present paper can be considered to be a generalization

of the Davidson-Deneckere-Kreps-Scheinkman one.

While Assumption 3(ii) is consistent with much of the literature, it is, of

course, a serious restriction. There are quite a few papers in the literature

where the tie-breaking rule is ‘manipulable’, e.g. Allen and Hellwig (1993),

Osborne and Pitchik (1986) and Tasnádi (1999b).17

The supply function of a firm charging a price p is given by min{c′−1(p),

Ri(P,Q)}.18 Thus we follow Edgeworth (1897) in assuming that firms are
15This formulation is, in fact, adopted by Dixon (1984), Levitan and Shubik (1972)

and Yoshida (2002). It is also widely used in the literature on Bertrand-Chamberlin price

competition where the firms are assumed to supply the whole of the demand coming to

them, e.g. Dastidar (1995), Novshek and Roy Chowdhury (2003), Vives (1999), etc.
16This tie-breaking rule is also discussed in Vives (1999).
17Roy Chowdhury (2000) examines a Bertrand-Edgeworth model where the tie-breaking

rule is ‘manipulable’.
18Since the cost function is strictly convex, c′−1(p) is well defined.
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free to supply less than the quantity demanded, rather than Chamberlin

(1933), who assumes that firms meet the whole of the demand coming to

them.

Next let p∗ be the minimum p ∈ F such that p > c′(0).19 Thus p∗ is the

minimum price on the grid which is strictly greater than c′(0). Since p∗ ∈ F ,

let p∗ = pj for some integer j. We are going to argue that for n large, p∗

can be sustained as the unique Nash equilibrium price of this game.

Moreover, let q∗ = c′−1(p∗) and let n∗ be the smallest possible integer

such that ∀N ≥ n∗,
d(p∗)
N

< c′−1(p∗) = q∗.

Thus for all N greater than n∗, if a firm charges p∗ and sells d(p∗)
N , then the

price p∗ is strictly greater than marginal costs.

Next let n̂ be the smallest possible integer such that ∀N ≥ n̂,

r′i(p
∗, p∗, N)[p∗ − c′(

d(p∗)
N

)] +
d(p∗)
N

< 0.20

Definition. N1 = max{n∗, n̂}.

We next define π̃ to be the profit of a firm that charges p∗ and sells d(p∗)
n∗ .

Thus π̃ = p∗d(p∗)
n∗ − c(d(p∗)

n∗ ). Since d(p∗)
n∗ < q∗, it follows that π̃ > −c(0),

where −c(0) denotes the profit of a firm which does not produce at all.

Now consider some pi ∈ F , such that pi > p∗. Let qi satisfy pi = c′(qi).

Next consider a firm that charges pi and sells d(pi)
k . Clearly the profit of

such a firm is pi
d(pi)

k − c(d(pi)
k ).

We then define ni to be the smallest possible integer such that ∀k ≥ ni,
d(pi)

k < qi and

pi

d(pi)
k

− c(
d(pi)

k
) < π̃.21

19We assume that α is not too large in the sense that p∗ < pmax.
20Notice that limn→∞[r′i(p

∗, p∗, n){p∗ − c′( d(p∗)
n

)} + d(p∗)
n

] = limn→∞ r′i(p
∗, p∗, n)[p∗ −

c′(0)]. Since, p∗ > c′(0) and limn→∞ r′i(p
∗, p∗, n) < 0 (Assumption 3(i)), this term is

negative.
21Clearly the left hand side of this inequality is decreasing in k. Moreover, as k goes to
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Suppose that in any equilibrium the number of firms charging pi, say m̃,

is greater than or equal to ni. Then at least one of these firms would have

a residual demand that is less than or equal to d(pi)
m̃ . Since d(pi)

m̃ < c′−1(pi),

this firm would sell at most d(pi)
m̃ and have a profit less than π̃.

Let pk be the largest price belonging to F such that pk ≤ pmax.

Definition. N2 =
∑

i=j+1,···,k ni + n∗ − 1.22

Proposition 1 below provides a resolution of the Edgeworth paradox.

Proposition 1. Let n ≥ max{N1, N2}. Then the unique equilibrium

involves all the firms charging a price of p∗, and producing d(p∗)
n .

Proof. Existence. From the definition of p∗ undercutting is not prof-

itable. We then argue that for the i-th firm, charging a higher price, pi, is

not profitable either.

Notice that since n ≥ n∗, d(p∗)
n < c′−1(p∗). Hence for any pi ≥ p∗,

c′−1(pi) ≥ c′−1(p∗) >
d(p∗)

n
= ri(p∗, p∗, n) ≥ ri(pi, p

∗, n), (1)

where the equality follows from Assumption 3(ii)(a) and the last inequality

follows from Assumption 3(i). Since c′−1(pi) > ri(pi, p
∗, n), for any pi ≥ p∗,

the deviant firm always supplies the whole of the residual demand coming

to it. Hence the profit of a firm which charges a price pi (≥ p∗)

π(pi, ri(pi, p
∗, n)) = piri(pi, p

∗, n)− c(ri(pi, p
∗, n)). (2)

Clearly

∂π(pi, ri(pi, p
∗, n))

∂pi
= r′i(pi, p

∗, n)[pi − c′(ri(pi, p
∗, n))] + ri(pi, p

∗, n). (3)

infinity, this term goes to −c(0) ≤ 0. Thus ni is well defined.
22Notice that the assumption that the demand function intersects the price axis is

required for this definition, i.e. while proving uniqueness. It is not required in any of the

existence proofs.
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Next from equation (1) it follows that ∀pi ≥ p∗, pi > c′(ri(pi, p
∗, n)). Hence

from the concavity of ri(pi, p
∗, n) it follows that π(pi, ri(pi, p

∗, n)) is concave

in pi.23 Moreover,

∂π(pi, ri(pi, p
∗, n))

∂pi
|pi=p∗ = r′i(p

∗, p∗, n)[p∗ − c′(
d(p∗)

n
)] +

d(p∗)
n

. (4)

This follows since from Assumption 3(ii)(a) we know that ri(p∗, p∗, n) =
d(p∗)

n . Since n ≥ n̂, we have that ∂π(pi,ri(pi,p
∗,n))

∂pi
|pi=p∗ < 0. Next, from the

concavity of π(pi, ri(pi, p
∗, n)) it follows that ∀pi ≥ p∗, the profit of any

deviant firm is decreasing in pi.

Finally, given that all firms supply d(p∗)
n , the residual demand facing all

firms is exactly d(p∗)
n (Assumption 3(ii)(a)). Given that d(p∗)

n < c′−1(q∗), it

is optimal for all the firms to produce exactly d(p∗)
n .

Uniqueness. The proof is in several steps.

Step 1. We first claim that there cannot be an equilibrium where the

output level of some of the firms is zero. This follows since these firms can

always charge p∗ and obtain a residual demand of at least d(p∗)
n (Assumption

3(ii)). Since p∗ > c′(0), producing a small enough positive output would

increase their profit from −c(0).

Step 2. We then argue that there cannot be some pi (∈ F ) > p∗, such

that some of the firms charge pi and supply a positive amount.

Suppose to the contrary that such a price exists.

This implies that the total number of firms charging p∗, say ñ, can be

at most n∗ − 1. Otherwise the residual demand facing these firms would be

exactly d(p∗)
ñ .24 Since d(p∗)

ñ < c′−1(p∗), all such firms would supply d(p∗)
ñ and

23This follows since

∂2π(pi, ri(pi, p
∗, n))

∂p2
i

= r′′i (pi, p
∗, n)[pi − c′(ri(pi, p

∗, n))] + 2r′i(pi, p
∗, n)

− c′′(ri(pi, p
∗, n))r

′2
i (pi, p

∗, n).

24Given that d(p∗)
ñ

< c′−1(p∗), all firms must be supplying at least d(p∗)
ñ

. The assertion
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the residual demand at any higher price, pi, would be zero.

Now consider some pi > p∗. Clearly, the number of firms charging pi is

less than ni. Otherwise, some of these firms would have a profit less than

π̃. Hence such a firm would have an incentive to deviate to p∗, when it can

supply at least d(p∗)
n∗ and earn π̃. Thus the total number of firms producing

a strictly positive amount is less than N2, thereby contradicting step 1.

The idea behind the existence result is quite simple. Consider a market

price of p∗. If the number of firms is large then the residual demand com-

ing to every firm is very small, so that it is residual demand rather than

marginal cost which determines firm supply. In that case price would not

equal marginal cost, and firms may no longer have an incentive to increase

its price level. Assumption 3 specifies a set of conditions under which this

is indeed true.

We next examine the limit properties of the equilibrium as the grid size

becomes small and the number of firms becomes large. To begin with notice

that limα→0 p∗(α) = c′(0) and limn→∞
d(p∗(α))

n = 0. Thus in the limit the

equilibrium price approaches the competitive one and the output of each

firm becomes vanishingly small.

Hence our results provide a non-cooperative foundation for the the-

ory of perfect competition. In fact, given α, it is sufficient to take n ≥
max{N1(α), N2(α)} in order to ensure that the equilibrium price is p∗, so

that p∗ is sustainable for a finite number of firms.25 This is similar in spirit

to the well known result that with linear cost functions the competitive price

is obtained whenever n ≥ 2.

Allen and Hellwig (1986) demonstrate that if the firms are capacity con-

now follows from Assumption 3(ii)(a).
25However, under some simplifying assumptions it is easy to show that limα→0 N1(α) =

∞. Assume that infp∈[0,pmax] [limn→∞ r′i(p, p, n)] ≥ −B, where B > 0. (Note that this

condition is satisfied for the parallel residual demand function). It is now straightforward

to show that limα→0 n̂(α) = ∞.
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strained and the residual demand function is proportional, then, in the limit,

the mixed strategy equilibrium converges in distribution to the competitive

price. Vives (1986) proves that in case the residual demand is parallel, the

convergence is in support as well. For the parallel rationing rule Börgers

(1992) shows that iterated elimination of dominated strategies yields prices

close to the competitive price.

Dixon (1987, 1990, 1993) also study the limit properties of pure strategy

Bertrand equilibria when the economy is replicated. Dixon (1987) shows

that any epsilon-Nash equilibrium will be approximately competitive if ep-

silon is small enough and the industry is large enough. Dixon (1990) demon-

strates that if the industry is large enough then the competitive price will

be an equilibrium. Moreover, if costs of turning away consumers are small,

then all equilibria will be close to the competitive one. Dixon (1993) pro-

vides an example where the highest equilibrium prices could be arbitrarily

far from the competitive price.

Note that in the papers discussed above the limiting procedure involves

taking firm size, relative to market demand, to zero. In Allen and Hellwig

(1986) and Vives (1986) this is done by taking the capacity level of the firms

to zero, while in Dixon (1987, 1990, 1993) this is done by replicating the

market demand function. Under our approach, however, firm size is kept

unchanged.

3 A Two-stage Model

We then examine the case where the firms produce to order. Thus the firms

play a two stage game where, in stage 1, the firms simultaneously announce

their prices, and in stage 2, they simultaneously decide on their output levels.

In Proposition 2 below we solve for the subgame perfect Nash equilibrium

of this game (see Appendix 1 for the proof).
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Proposition 2. Assume that n ≥ max{n̂, n∗ + 1, N2}. Then the fol-

lowing strategies constitute the unique subgame perfect Nash equilibrium of

this game:

Stage 1. All firms charge a price of p∗.

Stage 2.

Case (i). Suppose that in stage 1 all the firms charge p∗. Then, in stage

2, all the firms produce d(p∗)
n .

Case (ii). Next suppose that in stage 1, (n − 1) of the firms charge

p∗, while one of the firms charges a price strictly greater than p∗. Then, in

stage 2, the firms charging p∗ produce d(p∗)
n−1 , while the output level of the

other firm is zero.26

In this case also limα→0 p∗(α) = c′(0) and limn→∞
d(p∗(α))

n = 0, so that

the ‘folk theorem’ goes through under this formulation as well.

4 Asymmetric Costs

In this section we examine the case where firms are asymmetric.

Deneckere and Kovenock (1996) is one of the very few papers that ex-

amine Bertrand-Edgeworth competition in an asymmetric framework. They
26Notice that in Proposition 2 we describe the equilibrium strategies in stage 2 for two

classes of histories only. Under some simplifying assumptions it is easy to write down the

equilibrium strategies in all possible subgames. Assume that the residual demand function

is symmetric, i.e. ri(pi, p, m) = r(pi, p, m), ∀i. Moreover, let the residual demand at any

price pi only depend on quantities produced by firms who charge prices less than pi. Now

consider the following algorithm.

Step 1. All firms that charge a price strictly less than p∗ produce no output.

Step 2. Let the number of firms charging p∗ be N∗. Then the equilibrium output level

of all such firms is min{c′−1(p∗), d(p∗)
N∗ }.

Step 3. Let the residual demand facing all firms who charge a price of pj+1 = p∗ + α

be at least Rj+1. Then the equilibrium output of all such firms is min{c′−1(pj+1), R
j+1}.

We can inductively write down the output level of the firms who charge higher prices.
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explore a price-setting duopoly with the efficient rationing rule where the

firms differ in terms of both their unit costs and capacities. They character-

ize the set of equilibria and then, as an application, re-examine the Kreps

and Scheinkman (1983) model with asymmetric costs, demonstrating that

the Cournot equilibrium capacity levels need not emerge in equilibrium. In

keeping with our approach, however, in this section we shall be interested

in the case where the number of firms is large.

Let there be m types of firms with the cost function of the l-th type

being cl(q). The number of type l firms is denoted by nl, where
∑

l nl = n.

Next let p∗l denote the minimum p ∈ F such that p > c′l(0). Let

ril(pi, p, n) denote the residual demand function facing the i-th firm of type

l, when it charges pi, and all other firms charge p (≤ pi) and supply d(p)
n .

The residual demand function satisfies an appropriately modified version of

Assumption 3.27 Next define n∗l , n̂l and N l
1 in a manner analogous to that

of n∗, n̂ and N1 respectively, only taking care to use the cost function of the

l-th type, cl(q), instead of c(q) in the definitions.

Definition. Ñ1 = maxl N
l
1 = max{n∗1, · · · , n∗m, n̂1, · · · , n̂m}.

We require some further notations. Let

π̃l =
p∗l d(p∗l )
maxq n∗q

− cl(
d(p∗l )

maxq n∗q
).

Next consider some px ∈ F , such that px > p∗l . Let qlx satisfy px =

c′l(qlx). Clearly if a type l firm charges px and sells d(px)
r , then the profit of

such a firm is px
d(px)

r − cl(
d(px)

r ).

We then define nlx to be the smallest possible integer such that ∀r ≥ nlx,
d(px)

r < qlx and

px
d(px)

r
− cl(

d(px)
r

) < π̃l.

27Assumption 3(i) should be modified so that ril(pi, p, n) is twice differentiable, de-

creasing and (weakly) concave in pi. Moreover, ∀p < pmax, limn→∞ r′il(pi, p, n)|pi=p < 0,

where r′il(pi, p, n) = ∂ril(pi,p,n)
∂pi

. Assumption 3(ii) requires no modification.
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Suppose that in any equilibrium the number of firms charging px, say

m̃, is greater than or equal to maxq nqx. Then at least one of these firms,

say of type l, would have a residual demand that is less than or equal to
d(px)

m̃ . Since d(px)
m̃ < c′−1

l (px), this firm would supply at most d(px)
m̃ and have

a profit less than π̃l.

For ease of exposition we shall focus on two cases.

Case (i). c′1(0) = c′2(0) = · · · = c′m(0).

Note that if, at a given price, any firm finds it profitable to produce a

strictly positive amount, then so will all other firms. For this case let us

redefine p∗ = p∗1 = · · · = p∗m.

Definition. Ñ2 =
∑

x=j+1,···,k maxl nlx + maxl n
∗
l − 1.

We can now state our next proposition (see Appendix 1 for the proof).

Proposition 3. Let c′1(0) = c′2(0) = · · · = c′m(0). If n ≥ max{Ñ1, Ñ2},
then the unique equilibrium involves all the firms charging a price of p∗, and

producing d(p∗)
n .

It is easy to see that the ‘folk theorem’ goes through in this case.

Case (ii). c′1(0) < c′2(0) < · · · < c′m(0).

Consider any p such that c′1(0) < p < c′2(0). While at this price pro-

ducing a small enough positive level of output is profitable for type 1 firms,

firms of other types will not find it profitable to supply a positive level of

output. Hence type 1 firms are, in some sense, the most efficient.

Let p∗1 = ph (say).

Definition. N̂2 =
∑

x=h+1,···,k n1x + n∗1 − 1.

Proposition 4 below solves for the equilibrium when the number of type

1 firms is large. The proof, which is quite simple, can be found in the

16



Appendix 1.

Proposition 4. Let c′1(0) < c′2(0) < · · · < c′m(0). Assume that α <

c′2(0) − c′1(0) and n1 ≥ max{N1
1 , N̂2}. Then the ‘unique’ equilibrium in-

volves all firms of type 1 charging p∗1 and producing d(p∗1)
n1 . Firms of all other

types have an output level of zero.

Interpreting c′1(0) as the competitive price, the ‘folk theorem’ goes through

in this case as well.

Next suppose that c′1(0) = c′2(0) = · · · = c′j(0) < c′j+1(0) ≤ · · · ≤ c′m(0).

Combining Propositions 3 and 4, it is easy to see that if the number of firms

of type 1 to j are large enough, then there is a unique equilibrium where all

firms of type 1 to j charge c′1(0), and all other firms have an output of zero.

Finally, consider the case when there are a large number of ‘inefficient’

firms and the ‘efficient’ firms are relatively few in number. Unfortunately,

no equilibrium may exist even if the number of inefficient firms is very large.

The following example illustrates the problems involved.

Example. Let there be two types of firms with c1(q) = q2 and c2(q) =

q + q2, so that c′1(0) < c′2(0). There are 2 firms of type 1 and n2 firms of

type 2. The demand function is q = 4−p, and the residual demand function

satisfies an appropriately modified version of Assumption 3. In fact, we

assume that the rationing rule is efficient. Let α = 0.01, so that p∗1 = 0.01

and p∗2 = 1.01.

First note that for n2 large enough, any possible equilibrium must in-

volve all firms of type 2 charging the price p∗2 and supplying the whole of

the residual demand coming to them.28 Given this, the only possible equi-

librium must involve both the type 1 firms charging c′2(0) = 1 and supplying

c′−1
1 (1) = 0.5 when they have a profit of 0.25 each.29 Moreover, since both

28The argument essentially mimics the uniqueness part of Proposition 1.
29Given that all type 2 firms are charging p∗2, in equilibrium the type 1 firms cannot be
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the type 1 firms supply c′−1
1 (1) = 0.5, the total amount supplied by the type

2 firms will be 1.99 (= 4−p∗2−1). Next suppose that a type 1 firms deviates

to 1.02 (= p∗2 + α). Given that the rationing rule is efficient, it can supply

the residual demand 0.49 (= 4− p∗2 − α− 1.99− 0.5) and increase its profit

level to 0.2597. Hence no equilibrium exists.30

5 Conclusion

In this paper we re-examine the non-existence problem associated with pure

strategy Nash equilibrium under price competition.

Comparison with Dixon (1993) suggests some interesting conclusions re-

garding the impact of the replication procedure on the equilibrium outcomes.

If one replicates firms but not demand, then the present paper shows that

for a sufficiently large market there is a unique Nash equilibrium. More-

over, in the limit, as the grid size goes to zero, and the number of firms

becomes large, the equilibrium price converges to the competitive one, i.e.

the ‘folk theorem’ of perfect competition holds. Whereas if one replicates

both demand and firms, then Dixon (1993) shows that the Nash equilibrium

is non-unique and it exists for a large parameter class whenever the industry

is large enough. Moreover, the ‘folk theorem’ fails, at least in some cases.

Thus the results are sensitive to the choice of the replication procedure.

charging a price strictly greater than p∗2, since in that case the type 1 firms will have no

demand. Whereas if they charge a price strictly lower than c′2(0), then their profit will

be lower compared to what they obtain from charging c′2(0). For n2 large enough, their

profit from charging c′2(0) is also lower, since they will have to share the demand at price

c′2(0) with the type 2 firms.
30The example extends in a straightforward manner to all α of the form 10−I , where I

is some positive integer greater than 1.
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6 Appendix 1

Proof of Proposition 2. Existence. We first argue that the quantity decisions

are optimal. Suppose that in stage 1 all the firms charge p∗. Then given that

all other firms produce d(p∗)
n , the residual demand facing firm i is also d(p∗)

n

(Assumption 3(ii)(a)). Moreover, it is optimal for the i-th firm to produce

this amount since d(p∗)
n < c′−1(p∗).

Next consider the case where (n − 1) of the firms charge p∗. Clearly,

given that all other firms produce d(p∗)
n−1 , the residual demand facing the i-th

firm charging p∗ is also d(p∗)
n−1 (Assumption 3(ii)(a)). Since n − 1 ≥ n∗, it

follows that d(p∗)
n−1 < c′−1(p∗). Hence it is optimal for the firms charging p∗

to produce d(p∗)
n−1 .

The pricing decision is also optimal since if any of the firms increase its

price then, in stage 2, the output level of the other firms are such that the

deviant firm has zero residual demand.

Uniqueness. It is easy to see that we cannot have an equilibrium where

the output level of some of the firms is zero, since it can always charge p∗

in stage 1 and supply d(p∗)
n in stage 2.

Next observe that the definitions of π̃, ni and n∗ are valid for this case

also. Hence we can mimic step 2 of the uniqueness part of Proposition 1 to

argue that the only price that is sustainable in equilibrium is p∗.

Proof of Proposition 3. Existence. Undercutting p∗ is clearly not prof-

itable. We then argue that for the i-th firm of type l, charging a higher

price, pi, is not profitable either.

Notice that since n ≥ n∗l ,
d(p∗)

n < c′−1
l (p∗). Hence for any pi ≥ p∗,

c′−1
l (pi) ≥ c′−1

l (p∗) >
d(p∗)

n
= ril(p∗, p∗, n) ≥ ril(pi, p

∗, n). (5)

Since c′−1
l (pi) > ril(pi, p

∗, n), the deviant firm supplies the whole of the

residual demand coming to it. Hence the profit of a firm which charges a
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price pi (≥ p∗)

πl(pi, ril(pi, p
∗, n)) = piril(pi, p

∗, n)− cl(ril(pi, p
∗, n)). (6)

Clearly

∂πl(pi, ril(pi, p
∗, n))

∂pi
= r′il(pi, p

∗, n)[pi − c′l(ril(pi, p
∗, n))] + ril(pi, p

∗, n). (7)

Next from equation (5) it follows that ∀pi ≥ p∗, pi > c′l(ril(pi, p
∗, n)).

Hence from the concavity of ril(pi, p
∗, n) it follows that πl(pi, ril(pi, p

∗, n))

is concave in pi. Moreover,

∂πl(pi, ril(pi, p
∗, n))

∂pi
|pi=p∗ = r′il(p

∗, p∗, n)[p∗ − c′l(
d(p∗)

n
)] +

d(p∗)
n

. (8)

This follows since from an analogue of Assumption 3(ii)(a) we know that

ril(p∗, p∗, n) = d(p∗)
n . Since n ≥ n̂l, we have that ∂πl(pi,ril(pi,p

∗,n))
∂pi

|pi=p∗ < 0.

Next, from the concavity of πl(pi, ril(pi, p
∗, n)) it follows that ∀pi ≥ p∗, the

profit of any deviant firm is decreasing in pi.

Finally, given that all other firms supply d(p∗)
n , the residual demand

facing all firms is exactly d(p∗)
n . Since d(p∗)

n < c′−1
l (q∗), ∀l, it is optimal for

all the firms to produce exactly d(p∗)
n .

Uniqueness. Step 1. We can first mimic the proof of Proposition 1 to

argue that there cannot be an equilibrium where the output level of some

of the firms is zero.

Step 2. We then demonstrate that there cannot be some py (∈ F ) > p∗,

such that some of the firms charge py and supply a positive amount.

Suppose to the contrary that such a price exists.

This implies that the total number of firms charging p∗, say ñ, can be at

most maxq n∗q − 1. Otherwise, ñ ≥ maxq n∗q and the residual demand facing

all these firms would be exactly d(p∗)
ñ .31 Since d(p∗)

ñ < c′−1
l (p∗), ∀l, all such

31Given that d(p∗)
ñ

< c′−1
l (p∗), ∀l, all firms must be supplying at least d(p∗)

ñ
. The

assertion now follows from an analogue of Assumption 3(ii)(b).
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firms would supply d(p∗)
ñ and the residual demand at any higher price would

be zero.

Now consider some py > p∗. Clearly, the number of firms charging py

is less than maxq nqy. Otherwise, some of these firms, say of type l, would

have a profit less than π̃l. Hence such a firm would have an incentive to

deviate to p∗, when it can supply at least d(p∗)
maxq n∗q

and earn π̃l. Thus the

total number of firms producing a strictly positive amount is less than Ñ2,

thereby contradicting step 1.

Proof of Proposition 4. In the proposition the term unique is within

quotes because the outcome is unique up to the strategies of type 1 firms.

Firms of all other types can charge any price and supply an output of zero.

This will not affect the outcome.

Existence. Notice that since α < c′2(0) − c′1(0), it follows that ∀i ≥ 2,

p∗1 < c′i(0). Thus no firm of type i, where i ≥ 2 can profitably charge a price

of p∗1 and produce a strictly positive output level. For type 1 firms we can

simply mimic the proof in Proposition 1 to claim that they cannot have a

profitable deviation.

Uniqueness. First note that there cannot be an equilibrium where the

output level of some of the type 1 firms is zero.

We then argue that there cannot be some px (∈ F ) > p∗1, such that some

of the type 1 firms charge px and supply a positive amount. Suppose to the

contrary that such a price exists.

This implies that the total number of type 1 firms charging p∗1, say ñ, can

be at most n∗1 − 1. Otherwise the residual demand facing these firms would

be exactly d(p∗1)
ñ .32 Since ñ ≥ n∗1, we have that d(p∗1)

ñ < c′−1
1 (p∗1). Hence all

such firms would supply d(p∗)
ñ and the residual demand at any higher price,

32First note that firms of type j > 1, even if they charge p∗1, would have an output of

zero. Thus the residual demand facing all firms of type 1 charging p∗1 is at least
d(p∗1)

ñ
(from

Assumption 3(ii)). Given that
d(p∗1)

ñ
< c′−1

1 (p∗), all such firms of type 1 must be supplying

at least
d(p∗1)

ñ
. The assertion now follows from an analogue of Assumption 3(ii)(a).

21



px, would be zero.

Next consider some px > p∗1. Clearly, the number of type 1 firms charging

px is less than n1x. Otherwise, one of the type 1 firms would have a residual

demand that is less than or equal to d(px)
n1x

. Since d(px)
n1x

< c′−1
l (px), this firm

would supply at most d(px)
n1x

and have a profit less than π̃1. Hence such a firm

would have an incentive to deviate to p∗1, when it can supply at least d(p∗1)
n∗1

and earn π̃1. Thus the total number of firms producing a strictly positive

amount is less than N̂2, a contradiction.

7 Appendix 2

In this appendix we provide an example of a residual demand function sat-

isfying Assumption 3 when there are three firms, 1, 2 and 3.

If #{k : pk = p1} = 1, then

R1(P,Q) = max[0, d(p1)−
∑

pj<p1

qj ].

If #{k : pk = p1} = 2, then

R1(P,Q) = max[0,
d(p1)−

∑
pj<p1

qj

2
, d(p1)−

∑
pj<p1

qj − qk|pk=p1, k 6=1].

If #{k : pk = p1} = 3 and either q2, q3 ≤ d(p1)
3 or q2, q3 > d(p1)

3 , then

R1(P,Q) = max[
d(p1)

3
, d(p1)− q2 − q3].

If #{k : pk = p1} = 3 and qj ≤ d(p1)
3 , qk > d(p1)

3 , j, k 6= 1, then

R1(P,Q) = max[
d(p1)− qj

2
, d(p1)− qj − qk].

It is clear that the associated rationing rule is efficient, while the asso-

ciated tie-breaking rule is a generalization the Davidson-Deneckere-Kreps-

Scheinkman one.
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