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This paper examines the effect of an increase in vertical diversity in workers’ skill on
the long run growth rate of an economy. It uses a two-sector model where the technology
of the consumption-good sector is supermodular and that of the R&D sector is submodu-
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1 Introduction

Diversity is a buzz word today. In attracting perspective students colleges and universities
advertise the diversity in their student population. To attract businesses and professionals
several cities pride themselves in diversity they offer. In the international context, for obvi-
ous reasons, there is an increasing realization to understand and appreciate diverse cultures.
Specifically, economists have recently asked how ethnic diversity affects long-run growth of
an economy. In their pioneering work Easterly and Levine (1997) have found that ethnic di-
versity has a negative impact on growth. Similar finding is reported by Zak and Knack (2001)
for example. However, in the context of recent growth experience of various cities in the U.S.,
Florida (2002, 2004) have found that diversity in ethnic and in other dimensions promotes
creativity and thereby enhances growth.1

The diversity described above can be termed as horizontal diversity – referring to people
with different cultures, ethnicity, religion etc. This paper, instead, is concerned with what can
be called vertical diversity – more specifically, vertical diversity in the workers’ skill or talent
– referring to the heterogeneity of the working population of a country in terms of ‘general’
education or skill. For instance, casual observation suggests that the working population
in countries like Italy and U.S. is very heterogenous, compared to say Germany or Japan.
Indeed, there are survey data available indicating significant differences across countries in
the dispersion of skills. Table 1 shows the inequality of adult literacy across countries over
1994-98.

Table 1: Ranking of Adult Literacy Rates across Countries: 1994-98
Country Literacy: 9th Decile/1st Decile
U.S.A. 1.90

Canada 1.78
U. K. 1.75

Switzerland 1.72
Ireland 1.71

Australia 1.69
Belgium (Flanders) 1.68

Finland 1.54
Germany 1.51
Sweden 1.51

Netherlands 1.48
Norway 1.44

Denmark 1.39
Adapted from OECD Statistics of Canada (2000, Table 4.13)

Note that the ranking is consistent with Grossman and Maggi’s (2000, Table 1), whose data
source is the same and which reports a subset of the countries listed here and provides sum-
mary statistics over 1994-95.2

The question posed in this paper is: How does vertical diversity in (intra-country) work-

1In the backdrop of the lacklustre performance of the Japanese economy in the recent decade, several writers
and long-run “vision” documents on Japan say that it is high time that basic creativity – rather than improvisation
or innovation – must constitute the fundamental source of persistent growth, and for this to happen, the country
must encourage diversity in terms of more liberal immigration policy. See, for example, Nipon Keidanren (2003).

2The indebtedness of the current paper to theirs will be apparent later.
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ers’ skill/talent affect long-run growth? If there are two countries and their average worker-
skill (human capital) level is the same, then will the country with larger dispersion of skill
achieve lower or higher long-run growth? Note that in addressing this issue, we completely
abstract from the implications of human capital accumulation towards growth, on which a
large and insightful literature exists (e.g. Lucas, 1988).

Our question begs another: What is the general process or mechanism through which
vertical diversity may affect an economy’s long-run growth? Let us view the economy as
having two sectors: one producing a consumable and the other, an R&D sector, producing
blueprints (ideas) a la Romer (1990). Let the technologies between the sectors be different
so as to imply different structures of talent-matching. Further, let the dispersion of talents
matter, especially in the production of the R&D sector which spells the growth rate.

More specifically let the consumption good be a manufacturing product, the technology
of which is supermodular. This technology has the central feature that inputs (talents) are
complementary to one another. If workers of varying talents are employed within a firm, in
the extreme case, the performance of workers as a group is as good as that of the team’s weak-
est link. A single mistake commited by any worker can jeopardise the entire output. There is
a premium on precision. Kremer’s (1993) O-ring technology is an example; see also Milgrom
and Roberts (1990). Because of complementarity, in equilibrium there is “skill-clustering”.
A firm employs workers of same skill (but different firms may employ different levels of
common skill). For a proof, see Kremer (1993) or Basu (1997). Skill-clustering and constant-
returns together imply that the industry output is dependent only the total talent allocated to
this sector, not its distribution.

Let the R&D sector be represented by submodular technology – which, in the extreme,
means that performance is as good as that of the strongest link. The inputs are substitutes of
each other. As an example, compared to a team with two average programmers, another hav-
ing a better than average programmer and a less than average one, such that the average talent
is same, fares better. Submodularity implies that efficiency is attained by cross-matching of
skills. Because of cross-matching, the aggregate output depends on total talent available to
this sector and its distribution.

In this scenario, a change in the diversity of worker skill will imply a change in the mix of
talents allocated to production in the R&D sector, hence a change in output of the blueprints
and thereby a change in the economy’s growth rate.

At this point the reader may notice the closeness between the model economy just outlined
and the model of ‘diversity and trade’ by Grossman and Maggi (2000), henceforth G-M. In the
context of trade among similar countries, G-M have posed the following interesting puzzle:
why do countries like Japan and Germany have comparative advantage in engineering goods
(e.g. compact discs), whereas why do countries like US and Italy have comparative advantage
in products like movies, software and designs? Their answer is that US and Italy have a
more vertically diverse workforce than do Japan or Germany. What is the causal link? They
view an economy as having two sectors: a supermodular sector and a submodular sector. It
is argued that the supermodular sector produces engineering goods such as compact discs,
which requires precision, whereas making of design, movies etc. is likely to be submodular,
thriving on the performance of a very few highly talented workers. At any given level of
diversity, the optimal allocation of talent between the two sectors is such that those whose
talents are relatively close to the average are employed in the compact disc sector, whereas
the design sector employs those whose talents are in the two tails of distribution, i.e. high
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talents are matched with low. It then follows that if there is a mean-preserving spread in the
distribution of talents, i.e., if the two tails become thicker, the (new) economy will produce
relatively more of the designs. In the international trade context it means that if there are
two countries between whom technologies and total talent available are the same but in one
the talent distribution is more diverse than in the other, the former will have comparative
advantage in the design sector.

One main innovation of this paper is to interpret G-M’s supermodular ‘compact disc sec-
tor’ as the consumption-good sector, and, more particularly, their submodular ‘design sector’
as the R&D sector. This is only natural. As they note “... such a [submodularity] property
may characterize some production processes, especially those requiring creativity or problem
solving.” “It is also true of many research activities, where an outstanding idea and some silly
ones are worth more than a set of reasonable but not sterling suggestions.” (Italics are added.)

In summary then vertical diversity affects growth through its effect on the matching of
talents in the submodular R&D sector. This is somewhat related but quite different from the
issue of allocation of talents examined by Murphy, Shleifer and Vishny (1991). In their model,
a person’s talent can be equally efficiently used in three different occupations: being a worker,
an entrepreneur and a lobbist. In the last two occupations there are increasing returns to
talent. Therefore, in equilibrium, relatively high-talent individuals become entrepreneurs or
lobbists, whereas low-talent ones become workers. The effect of a change in the distribution
of talents is not their focus however. A main point of theirs is that if a sufficiently large
number of highly talented individuals choose to become lobbists rather than entrepreneurs –
and since lobbying is directly unproductive – it may be detrimental to an economy’s growth.

We do not examine policies as such in our model. But it is important to keep in mind that
the effect of horizontal diversity on growth has implications for policies with respect to im-
migration, discrimination etc., whereas that of vertical diversity on growth has implications
largely for education policy: rigidity of the curriculum, the degree of emphasis on standard-
ized test scores in the curriculum and in entry decision into schools and colleges, resources
allocated to help top-end students to excel vis-a-vis resources for improving struggling stu-
dents, emphasis on higher, professional-level education relative to primary education, etc.3

The implicit message is that not just the level of average education but the type of the educa-
tion system matters for the growth of an economy.

2 Hypothesis of the Paper

Given our interpretation that the design sector of the G-M model is the R&D sector, their main
result can be translated into saying that an increase in diversity increases the relative output
of this sector. Indeed, we show that not only the relative output but also the absolute output
of the R&D sector increases from a mean-preserving spread of talents. Thereby, an increase in
vertical diversity enhances long-run growth. This is the starting hypothesis of our model.

The G-M model has the feature that very low talented workers can/do match with very
high talented workers in the R&D sector. This is rather extreme. Although there may be
substitutability among talents in this sector, a brilliant scientist or inventor may not be able
to deliver much with a group of technicians with very low skills. It is natural to think that
when the talent levels among workers differ greatly, they will have communication problems,

3Horizontal diversity can also be affected by selective immigration policy, e.g., whether to attract unskilled or
skilled labor from abroad.
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undermining output. The second – and the main – innovation of this paper is to introduce
the notion of communication gap among workers: output is adversely affected when the
talent difference among workers in a team is too large. Present such gaps, our model predicts
that growth rate may not be monotonically increasing in vertical diversity. There may be an
inverse-U shaped relation, as shown in Figure 1.

Long-Run
Growth Rate

Vertical Diversity

Figure 1: Vertical Diversity & Growth

This is the main hypothesis of this paper. Is it obvious? Suppose that communication gap
is prohibitively large, i.e., two workers with any difference in talent cannot communicate at all
and produce zero as a team. It then follows by assumption that talent clustering will also be
the outcome in the R&D sector. Therefore the distribution of talents wouldn’t matter: growth
rate will be neutral with respect to diversity (the line in Figure 1 will be flat). What we show
is that the inverse-U shape holds when the problem of communication is neither too severe
or nor too mild.4

In terms of international comparison, casual empiricism tells us that the education system
is relatively flexible in the West (at least in the US) and rigid in the East (in countries like Japan
and India). But, recently, we see a growing emphasis of standardized tests in the US and a
more flexible curriculum system in countries like Japan and India. In other words, we may
be witnessing a process of convergence. In view of Figure 1, it may be a good news!

In what follows, the basic model is introduced in section 3. Communication gap is ana-
lyzed in section 4. Income distributional implications of vertical diversity in the presence of
communication gap are considered in section 5. Section 6 concludes the paper.

3 The Basic Model

It is a straightforward adaptation of the G-M model to a growth scenario.

3.1 The Static Model

A closed economy has two sectors/goods: a consumption-good sector C and an R&D sector
S. There is one factor of production, labor. The total number of workers in the economy is

4If it is too mild, we are essentially in the G-M ‘world’ and the growth rate would monotonically increase with
vertical diversity.
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given, normalized to unity for notational ease. Each possesses one unit of labor, inelastically
supplied to the market. Workers differ in their skill or talent (n), measured in some unidi-
mensional unit along R̄+. Its distribution is symmetric with Φ(n) as the cumulative density
function and n̄ the mean.

A firm in either sector employs exactly two workers. Each is assigned to a task, A or
B. Technology is linearly homogeneous and a symmetric function of tasks performed. Any
worker can do either of the tasks. Let ti denote talent allocated to task i. A firm’s production
function in sector C , qc = AF c(tcA, t

c
B), is supermodular. The critical feature of this technol-

ogy is that the two tasks are complementary to each other: the cross partial F c
AB is positive.

Given constant-returns, each task is subject to diminishing returns. A standard CES function
with convex isoquants is an example. Competitive production in this sector leads to talent
clustering. In equilibrium each firm employs two workers of the same talent, but this com-
mon talent level can be different across firms. Hence the total output of good C (denotedQc)
is proportional to the total talent allocated to this sector, independent of the distribution of
talents working in this sector.

The R&D sector S produces Ȧ (the time derivate of A), which embodies an improvement
in technology for producing the consumption-good. These are the new blue-prints so-to-
speak. As in Romer (1990), the level of existing technology or the stock of blueprints positively
influences the output in sector S. In contrast to sector C , a firm’s technology in sector S, qs =
AF s(tsA, t

s
B), is submodular. Under this technology the tasks are substitutes, i.e., F s

AB < 0.
Constant returns to scale imply increasing returns to a task, i.e., F s

AA, F s
BB > 0. Also, (a) F s

B >
F s

A if and only if ρ =≡ tB/tA > 1. It can be further verified that (b) F s
AA + F s

BB + 2F s
AB > 0,

and if ρ > 1, (c) dF s
A/dρ < 0 < dF s

B/dρ and (d) d(F s
A + F s

B)/dρ < 0. The following is an
example:

qs = [(tsA)θ + (tsB)θ]1/θ, θ > 1. (1)

It is CES only in appearance; given θ > 1, own second derivatives are positive and the cross
derivative is negative. In this sector, cross-matching of talents is the optimal choice by the
firms. The total output depends on not just the total talent working in this sector but also on
its distribution.

What is the allocation pattern of workers to the two sectors? A key result, due to Grossman
and Maggi (2000), is that there exists a critical level of talent ñ ( < n̄) such that all workers in
the talent range (ñ, 2n̄−ñ) work in sectorC and the rest in sector S. This is exhibited in Figure
2. The talents in the ‘middle’ of the distribution go to the supermodular sector and those in
the two tails of the distribution work in the submodular sector. Furthermore, given symmetry
of talent distribution, in sector S, a worker of talent n (< n̄) is matched with a worker of skill
2n̄− n, i.e., the distance of talent n from the minimum talent is same as the distance of 2n̄− n
from the maximum talent.

Let Lc denote the total talent working in sector C . We have Lc =
∫ 2n̄−ñ
ñ ndΦ(n) =

n̄ [1 − 2Φ(ñ)]. Normalizing F c(1, 1) = 1, and recalling that a firm in either sector employs
two workers,

Qc = AGc, where Gc =
Lc

2
= n̄

[

1

2
− Φ(ñ)

]

. (2)

Next, denoting the lowest talent by n0,

Qs = Ȧ = AGs(ñ), where Gs(ñ) ≡

∫ ñ

n0

F s(n, 2n̄− n)dΦ(n). (3)
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n nn ~2 −n~

Sector S Sector S

Sector C

talent

Figure 2: Allocation of Talents

For later purposes we interpretGs(ñ) as the TFP-adjusted output in sector S, a function of total
talent and the pattern of cross-matching in the sector.

The production possibility frontier in this economy is strictly concave, with its slope given
by

−
dQc

dQs
= −

dGc/dñ

dGs/dñ
=

n̄

F s(ñ, 2n̄− ñ)
. (4)

This is equal to the competitive (relative) supply price of good S, say ps. At any t the marginal
talent ñ is determined by the market-clearing condition (to be specified).

For simplicity assume that there are no assets held by the private sector, and thus no
private savings.5 Households spend all of their net income on good C . But there is a gov-
ernment which taxes all income proportonately (a la Barro, 1990). The tax proceeds are used
to purchase the new blueprints Ȧ in a competitive market. The government then freely of-
fers these new blueprints (knowledge) to private producers in sector C . In other words, the
knowledge-wealth is financed indirectly by the households via the government taxing the
households. The tax rate, τ , is exogenous.

This is the simplest asset demand account in an economy one can think of, which helps
to abstract from intertemporal decision making by households and thereby to focus on the
problem of allocation of talents. The tax proceeds equal τ(Qc+pQs). Thus pQs = τ(Qc+pQs).
Or,

pd = Λ
Qc

Qs
, Λ ≡

τ

1 − τ
(5)

where pd is the demand price. Equating it to ps in (4), and substituting the expressions of Qc,
Qs, Gc and Gs, we obtain

1

F s(ñ, 2n̄− ñ)
= Λ

1/2 − Φ(ñ)
∫ ñ
n0
F s(n, 2n̄− n)dΦ(n)

. (6)

This is the market-clearing equation. It determines ñ and solves the model at any t. We see
that ñ is time-invariant.

5This assumption is different from G-M’s assumption on demand.
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3.2 Growth

In this closed economy the amount consumed of good C is equal to its amount produced,
whose expression is given in (2). Time-differentiating this and noting that ñ is independent
of t, the growth rate of consumption equals g = Ȧ/A. Since Qs = Ȧ, in view of (3), Ȧ/A =
Gs(ñ). Hence the economy’s growth rate is equal to the TFC-adjusted output of the R&D
sector:

g = Gs(ñ). (7)

The solution of ñ solves the growth rate as well. There is no transitional dynamics.

3.3 Diversity and Growth

Let a mean-preserving spread of the talent distribution reflect an increase in vertical diversity.
It will be modelled in an intuitive and simplest possible way. Fix the distribution Φ(n) and
define talent as n̄ + γ(n − n̄). It has mean n̄ for any value of γ. An increase in γ captures a
mean-preserving spread.6

With such parametric specification, we have, however, the same expressions for Gc and
hence the same expression for output in sector C as in (2).7 But, in sector S,

Gs(ñ, γ) =

∫ ñ

n0

F s[n̄− γ(n̄− n), n̄+ γ(n̄− n)]dΦ(n). (8)

Accordingly, the market-clearing eq. (6) can be rearranged to read as

n̄

F s[n̄− γ(n̄− ñ), n̄+ γ(n̄− ñ)]
= Λ

Gc(ñ)

Gs(ñ, γ)
(9)

⇔
1

1/2 − Φ(ñ)
=

F s[n̄− γ(n̄− ñ), n̄+ γ(n̄− ñ)]
∫ ñ
n0
F s[n̄− γ(n̄− n), n̄+ γ(n̄− n)]dΦ(n)

. (6′)

In Appendix 1 it is proved that dñ/dγ < 0. This implies that the total talent employed in
and hence the (TFP-adjusted) output of sector C increases in γ. We have dF s/dγ = (F s

B −
F s

A)(n̄− ñ− γdñ/dγ) > 0. Thus the l.h.s. of (9) falls, implying that the ratio Gc/Gs falls. Since
Gc increases, Gs must increase. In other words, the TFP-adjusted outputs in both sectors
expand. Given that sector S benefits from cross-matching, an increase in diversity, adding
more of very high talents and very low talents to an economy is equivalent to a technological
progress specific to sector S: the TFP-adjusted PPF shifts along the axis measuring good S.

The effects of an increase in diversity are illustrated in Figure 3. AsGs(·) increases, in view
of (7), the economy’s long-run growth is higher.

Proposition 1 An increase in vertical diversity (without any communcation gap) increases the growth
rate of the economy.

6A more general treatment is given in the G-M model.
72Gc(ñ, γ)

=

∫ 2n̄−ñ

ñ

[n̄ + γ(n − n̄)]φdn = (1 − γ)n̄[Φ(2n̄ − ñ) − Φ(ñ)] + γ

∫ 2n̄−ñ

ñ

nφ(n)dn

= (1 − γ)n̄[Φ(2n̄ − ñ) − Φ(ñ)] + γn̄[Φ(2n̄ − ñ) − Φ(ñ)]

= n̄[Φ(2n̄ − ñ) − Φ(ñ)] = n̄[1 − 2Φ(ñ)]

Thus Gc = n̄[1/2 − Φ(ñ)].
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sG

cG

Figure 3: Diversity & PPF in the Basic Model

4 Communication Gap

At any given level of diversity, the presence of communication gap among workers implies a
very different pattern of talent allocation between the two sectors from what is shown in
Figure 2. The shape of the PPF is different. There is a richer set of possible equilibria along the
PPF. An increase in diversity may impact differently on the shift of the PPF. Importantly, an
increase in vertical diversity may not be equivalent to a sector-specific technological progress
in the R&D sector. On one hand, the PPF tends to shift out as in case of no communication
gap. But, on the other, the C.G. problems becomes increasingly binding. This gives rise to the
possibility that the growth rate falls with diversity.

At a deeper level – yet in simpler terms – workers in the two tails of the talent distribution
may not be matched, and, in particular, workers in the right-hand (high-talent) tail may not
work in the R&D sector. Therefore, a mean-preserving spread of talents may not increase
output in this sector.

For tractability we impose the following restrictions.
First, the talent distribution is uniform, having the support n̄ ± β, where n̄ > 0 and β ∈

[0, n̄]. The density is equal to 1/(2β). An increase in β captures an increase in vertical diversity.
When β = n̄, the lowest talent is zero and the talent diversity is the highest.

Second, communication gap holds in the simplest possible way. For some k > 0, two
workers with a talent gap k or higher cannot communicate at all and output is zero if two
such workers work together in a firm. If k = 0, the communication gap is prohibitive. We will
presume that k ∈ [2n̄/3, n̄). That k ≤ n̄ means that in the case of highest diversity (β = n̄),
the most (or least) talented cannot communicate with anyone with below (or above) average
talent. In this sense the communication gap is not too mild. The role of k ≥ 2n̄/3 will be clear
later. For now it is sufficient to note that it represents not too severe communication gap.

Even with these assumptions the model is not fully amenable to analytical solution, but
all of its major features are. In what follows, at most places, the phrase ‘communication gap’
will be abbreviated by C.G.
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4.1 Various Ranges of Diversity

Given k, a natural classification of diversity, relative to the communication gap, emerges: low
diversity: β ≤ k/2, medium diversity: β ∈ (k/2, k) and high diversity: β ∈ [k, n̄]. This is
shown in Figure 4. In the low diversity case, the talent difference between the most talented
and the least talented, equal to 2β, doesn’t exceed k. Hence C.G. does not bind for any pair of
workers. Medium diversity case is the one where the most (least) talented can communicate
with a proper subset of workers having less (more) than average talent. In the high diver-
sity case, the most (least) talented cannot communicate with any one with less (higher) than
average talent.

k
n

3

2n0

β

High-diversity

2/k

Low-diversity
Medium-diversity

Figure 4: Degrees of Diversity

The last two cases are relevant for analysis.

4.2 Medium Diversity: β ∈ (k/2,k)

We first need to characterize the pattern of talent matching and talent allocation between the
two sectors at any given level of diversity. For the sake of brevity, the term ‘output’ below
will refer to TFP-adjusted output of a sector.

To begin with, suppose that all workers (talents) are used in sector S (although it will not
be so in equilibrium). In the absence of C.G., talent n̄− β + ε is matched with talent n̄+ β − ε,
for any ε ∈ [0, β]. But C.G. affects the matching of talents at the two ends of the distribution:
those in the ranges (n̄−β, n̄+β−k) and (n̄−β+k, n̄+β). Given that maximal cross-matching
is the most efficient way of assigning talents, n̄ − β + ε will be matched with n̄ − β + ε + k,
for 0 ≤ ε ≤ 2β − k. Such matchings are shown by S2-S2 and the straightline arrows in Figure
5. The rest of the talents are not constrained by C.G.: the matchings between n̄ − β + ε and
n̄ + β − ε continue to hold. These are shown by S1-S1, with bending arrows indicating the
pairs.

S2 S2

n β+n

kn +− βkn −+ β

S1S1

k
k

β−n

β2

1

Figure 5: All Talents in Sector S
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The patterns shown in Figure 5 facilitate the understanding of efficient talent allocation
when there is some production of good C :

Proposition 2 For any given level of diversity in the medium diversity range, the efficient talent
allocation pattern is as shown in Figure 6.

Proof: Consider panel (a). In view of Figure 5 it is clear that if a sufficiently small amount
of good C is to be produced, the most efficient way is that it be produced by talents in a
small neighborhood of n̄ (as in case of no C.G.). There is an intermediate range of high-talent
and low-talent workers (shown by S1-S1 and bent arrows) who combine to produce good S
and within whom there is no C.G. Finally, the rest of the workers in the two tails of talent
distribution are constrained by C.G. These are S2-S2, as in Figure 5. Since the C.G. is binding
for some workers in sector S, not all, we call this a case of communication gap being partially
binding. Ignore for now the marking “Stage 1.”

Good C

k

S3 S3Good C

kn +− βkn −+ β

k

β+n

β2

1

β−n n

S2 S2Good C

kn +− βkn −+ β

S1S1

k
k

β+n

β2

1

n~β−n n

S2 S2Good C

kn +− βkn −+ β

k

β+n

β2

1

β−n

kn +*

k

c. C.G.  Overly binding: Stage 3

a. C.G. Partially binding: Stage 1

b. C.G. Just fully binding: Stage 2

n

*n

Figure 6: Talent Allocation in the Medium Diversity Range

As we consider gradually higher production of good C , less aggregate talent is available
for sector S. This lowers the production of good S with areas S1-S1 in panel (a) gradually
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shrinking. Panel (b) shows the critical level of total talent allotment between the two sectors
such that the S1-S1 areas are zero. Communication gap is said to be just fully binding in sector
S in the sense that sector S employs all pairs of workers in the economy between whom the
talent difference is at least k and no other workers.

Finally, if more total talent is allocated to sector C , the production of good S has to be cut
further. Some pairs of workers, between whom the talent difference is k, have to leave this
sector. In this sense, communication gap can be said to be more than fully binding. Sector S can
accommodate only a proper subset of workers with talent difference k or higher and no other
workers. Which are these pairs? The following Lemmas lead to the answer.
Lemma 1: For any c > 0, F s(c − α, c + α)/c is a decreasing function in c. That is, the greater
the average talent of two workers employed by a firm in sector S, the less is the relative gain
in production from a given degree of cross-matching (i.e. given α).
Proof: Differentiation yields d[F s(c−α, c+α)/c]/dc = (1/c2)[c(F s

B −F s
A)−F s(c−α, c+α)] =

(1/c2)[c(F s
B − F s

A) − (c− α)F s
A − (c+ α)F s

B ] = −α(F s
B − F s

A)/c2 < 0, since c+ α > c− α and
thus F s

B > F s
A. �

This means F s(c−α, c+α)/cF s(1, 1) = F s(c−α, c+α)/F s(c, c) decreases with c. The last
ratio is simply the ratio of output from cross-matching to that without any cross-matching.
Lemma 1 is intuitive, because an increase in the average with a given α means less cross-
matching relative to the average and hence less production gain relative to that when the
same average talent is assigned to each task.
Lemma 2: Suppose all workers in the R&D sector S are constrained by C.G. The output of this
sector is given by R =

∫ y
x F

s(n, n+ k)dΦ(n), for some x and y. Suppose further that the total
availability of talent allocated to this sector is given, say equal to N0, i.e.,

∫ y
x (n+n+ k)φ(n) ≤

N̄0. Then the output monotonically decreases with x.
Proof: The total talent availability constraint gives y = y(x) with dy/dx = (x+k/2)φ(x)

(y+k/2)φ(y) . Using
this and totally differentiating the expression of R,

dR

dx
=

(x+ k/2)φ(x)

(y + k/2)φ(y)
F s(y, y + k)φ(y) − F s(x, x+ k)φ(x)

=

(

x+
k

2

)[

F s(c′ − k/2, c′ + k/2)

c′
−
F s(c− k/2, c + k/2)

c

]

φ(x),

where c′ ≡ y + k/2 > c ≡ x+ k/2

< 0, by virtue of Lemma 1. �

Intuitively, on one hand, an increase in x tends to increase output, because higher talents
than the earlier-best are now working. On the other, output produced by workers in the lower
end and their partners is lost. Total talent being given, the increase in total talents used in the
upper end must match the decrease in that in the lower end. Hence, whether the total output
increases or decreases depends on the relative output gain from cross-matching in the two
ends. The average talent in the upper end (y + k/2) exceeds that in the lower end (x + k/2).
Lemma 1 then implies an output loss in the net as the lowest talent (x) is moved to the right.

Lemma 2 implies that if the output of good C is high enough, such that the pairs of work-
ers with talent gap k or higher have to be rationed for work in sector S, the most efficient way
of producing good S is to pair workers in the lower (left-hand) end of the talent range with
those having higher talents by k units. Turning to panel (c) of Figure 6 it means that some
workers to the immediate left of n̄+ β − k and their partners in the very high-talent end now
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work in sector C . In other words, interestingly, good C is produced by a range of workers
whose talents are ‘around’ the average as well as by a range of most talented workers. Workers
in S3-S3 are paired to serve in sector S.

This completes the proof of Proposition 2.
Proposition 2 implies the following expressions for sectoral outputs, ‘supply prices’ (slope

of the PPF) and the market-clearing conditions.
Partially binding region: ∃ ñ > n̄+ β − k such that

Gc =
n̄(n̄− ñ)

2β
; Gs =

1

2β

[
∫ n̄+β−k

n̄−β
F s(n, n+ k)dn+

∫ ñ

n̄+β−k
F s(n, 2n̄− n)dn

]

(10)

pp
s = −

dGc/dñ

dGs/dñ
=

n̄

F s(ñ, 2n̄− ñ)
(11)

n̄

F s(ñ, 2n̄− ñ)
= Λ

Gc

Gs
=

Λn̄(n̄− ñ)
∫ n̄+β−k
n̄−β F s(n, n+ k)dn+

∫ ñ
n̄+β−k F

s(n, 2n̄− n)dn
. (12)

Just fully binding point: ñ = n̄+ β − k, so that

Gc =
n̄(k − β)

2β
; Gs =

1

2β

∫ n̄+β−k

n̄−β
F s(n, n+ k)dn. (13)

Overly binding region: ∃ n∗ ∈ (n̄− β, n̄+ β − k), such that

Gc =
1

2β

[

n̄(k − β) +

∫ n̄+β−k

n∗

(

n+
k

2

)

dn

]

; Gs =
1

2β

∫ n∗

n̄−β
F s(n, n+ k)dn (14)

po
s = −

dGc/dn∗

dGs/dn∗
=

n∗ + k/2

F s(n∗, n∗ + k)
(15)

n∗ + k/2

F (n∗, n∗ + k)
= Λ

n̄(k − β) + (n̄+ β − k)(n̄+ β)/2 − n∗(n∗ + k)/2
∫ n∗

n̄−β F
s(n, n+ k)dn

. (16)

Note that at the just fully binding point on the PPF, there is no unique supply price: it is
bound within pp

s and po
s, evaluated ñ = n∗ = n̆, where n̆ ≡ n̄ + β − k. We can check that

pp
s|ñ=n̆ > po

s|n∗=n̆.8

The output expressions imply that the PPF looks like the one in in Figure 7. When the out-
put of sectorC is small or large enough, sector S is respectively partially or overly constrained
by C.G. Inbetween, there is a kink where C.G. just fully binds.9

8pp
s |ñ=n̆ > po

s|n∗=n̆ is equivalent to

F s(n̄ + β − k, n̄ + β)

n̄ + β − k/2
>

F s(n̄ + β − k, n̄ − β + k)

n̄
⇔

F s(n̆, n̆ + k)

n̆ + k/2
>

F s(n̆, n̆ + 2v)

n̆ + v
,

where v ≡ k − β. Given k/2 > v, it is sufficient to show that ∂ F s(x,x+2y)
x+y

/∂y > 0, when 2y > x. Check that the

partial is equal to x(F s
B−F s

A)

(x+y)2
> 0.

9That is,there is a discrete increase in the marginal opportunity cost of producing good S. Intuitively, any ex-
pansion of output in the overly binding range occurs when there is relatively high cross-matching of talents (with
talent difference, k), whereas in the partially binding range the degree of cross-matching is less. Since submodular
technology rewards greater cross-matching, a unit increase in the output of good S entails less increase in total
talent in that sector in the overly binding range than in the partially binding range.
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Figure 7: Production Possibility Frontier: Medium Diversity

4.2.1 Increase in Diversity

As in the basic model the equilibrium growth rate is equal to the (TFP-adjusted) output of
sector S. The issue is how an increase in β affects the PPF, its shift and the equilibrium output
in sector S, Gs.

We begin to understand this by asking how the maximum Gs (when all workers are em-
ployed in sector S) changes with β. As proven in Appendix 2 it increases with β. Thus the PPF
shifts to the right on the Gs-axis. Therefore, the equivalence between an increase in vertical
diversity and a sector-specific technical progress in sector S holds. This would indicate that
an increase in diversity would raise the (TFP-adjusted) output in sector S and thus enhance
the growth rate.

We can derive from (13) thatGc and Gs at the just fully binding point respectively fall and
rise with β.10 Thus, as β increases, the kink moves down and to the right. Finally, at β = k,
the partially binding region disappears. Such shifts are shown in Figure 8.

We now characterize the effect of an increase in β in each region.
If β − k/2 is small enough, it is clear that the equilibrium must lie in the partially-binding

region, to the right of the kink on the PPF. We call this Stage 1. Comparative statics of the

10It is obvious that dGc/dβ < 0. Next, note that
∫ n̄+β−k

n̄−β
F s(n, n + k)dn < F s(n̄ + β − k, n̄ + β)

∫ n̄+β−k

n̄−β
dn =

(2β − k)F s(n̄ + β − k, n̄ + β). Now from (13),

2β2 dGs

dβ
= β[F s(n̄ + β − k, n̄ + β) + F s(n̄ − β, n̄ − β + k)] −

∫ n̄+β−k

n̄−β

F s(n, n + k)dn

> β[F s(n̄ + β − k, n̄ + β) + F s(n̄ − β, n̄ − β + k)] − (2β − k)F s(n̄ + β − k, n̄ + β)

= (k − β)F s(n̄ + β − k, n̄ + β) + βF s(n̄ − β, n̄ − β + k) > 0.
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Figure 8: Shifts of the PPF in the Medium Diversity Case as β increases

market-clearing condition (12) gives dñ/dβ < 0, and, d(Gc/Gs)/dβ > 0. These results are
same as in the G-M model. How does the growth rate change with β? It is proven in Appendix
3 that dGs/dβ > 0, i.e. the growth rate increases with diversity.

As β → k, Gs in (10) becomes negative, which is impossible. It then follows that, at some
β (< k), say β1, the economy ‘enters’ the just-fully binding point, say stage 2.11 In Appendix
4, it is shown that β1 is the solution to the following equation in β:

1

F s(n̄+ β − k, n̄− β + k)
=

Λ(k − β)
∫ n̄+β−k
n̄−β F s(n, n+ k)dn

.12 (17)

In stage 2 also, dGs/dβ > 0; see footnote 10.
When |β− k| is small enough, the economy’s equilibrium must shift to the overly binding

region before β assumes the value k. Because, if not, from (13), Qc = 0 at β = k, which is not
possible. We then call this Stage 3. Let β2 denote the critical β separating stage 2 and stage 3.
As shown in Appendix 4 also, it is the solution to the equation:

1 + (β − k/2)/n̄

F s(n̄+ β − k, n̄+ β)
=

Λ(k − β)
∫ n̄+β−k
n̄−β F s(n, n+ k)dn

. (18)

Full analytical characterization of stage 3 does not seem possible however. From the
market-clearing condition given in (16), dn∗/dβ ≷ 0.13 It is also hard to determine the sign
of dGs/dβ in general. However, simulations were carried out assuming (1) as the production
function in sector S. There are essentially three parameters, Λ (the demand parameter), β and
k.14 For all ranges of permissible parameter values, it turned out that dGs/dβ > 0. In any
event, the following proposition holds:

11Although Gc/Gs ratio falls, the kink falls faster such that entering this region is inevitable.
12A solution to β in (k/2, k) always exists and it is unique, since the l.h.s. is positive, finite and increasing in β,

where the r.h.s. decreases with β and tends to ∞ or 0 as β → k/2 or k.
13But it can be derived that dn∗/dβ < 1, implying that, as β increase, n∗ does not exceed or become equal to

n̄ + β − k. That is, a reversal of stage 3 to stage 2 cannot occur.
14Given constant returns, we can normalize n̄ to one.
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Proposition 3 Within the medium-diversity range, an increase in diversity is associated with an
increase in the growth rate in stages 1 and 2.

4.3 High Diversity: β > k

This is where an increase in vertical diversity can hurt the growth rate. We first characterize
the patterns of talent allocation, which are quite different from the medium-diversity case. It
will be handy to begin with the situation where there is no production of good C .
Lemma 3: Given β > k, if all talents are used in sector S, then talent n ∈ (n̄− β, n̄ − β + k) is
matched with talent n+ k ∈ (n̄− β + k, n̄− β + 2k), i.e., C. G. is binding for workers in these
two ranges of talent. It is not binding for the rest: talent n ∈ (n̄−β+2k, n̄+k

2 ) is matched with
talent 2(n̄+ k) − n ∈ ( n̄+k

2 , n̄+ k).15

This lemma essentially says that the efficient allocation dictates that workers at the high-
end of talent distribution be not constrained, i.e., they be paired with less talented workers
with a talent gap smaller than k, and, workers in the lower-end of the talent distribution be
constrained – matched with workers who talents are exactly k units higher.

Graphically, in Figure 15 in the Appendices, the point b− 2k coincides with n0. Together
with Lemma 2, Lemma 3 implies

Proposition 4 In the range of high-diversity, the talent allocation patterns are as shown in Figure 9.

Lemma 2 is the key behind Lemma 3 and Proposition 4: The less the average talent of two
workers, the greater is the output gain from cross-matching under submodular technology.
Starting from no production of good C , if there is some production of this good, some of the
workers in sector S for whom C.G. is not binding now work in sector C . As the output of
sector C further expands, the just fully binding point on the PPF is reached. There is a simple
but interesting partition of sectoral talent allocation in this case: There exists a critical talent
(n̄−β+2k) such that all talent below (above) it work in sector S (C). In keeping with Lemma
2, further expansion of good C is best accomplished by reallocating the ‘relatively’ high-end
workers and their partners in sector S to sector C .

Figure 9 leads to the following output and supply price expressions and the market-
clearing conditions.
Partially binding: ∃ ñ > n̄− β + 2k such that

Gc = 1
2β

∫ 2n̄+2k−ñ
ñ

n
2dn

Gs = 1
2β

[

∫ n̄−β+k
n̄−β F s(n, n+ k)dn+

∫ ñ
n̄−β+2k F

s(n, 2n̄+ 2k − n)dn
] (19)

pp
s =

n̄+ k

F s(ñ, 2n̄+ 2k − ñ)
(20)

n̄+ k

F s(ñ, 2n̄+ 2k − ñ)
= Λ

(n̄+ k)(n̄+ k − ñ)
∫ n̄−β+k
n̄−β F s(n, n+ k)dn+

∫ ñ
n̄−β+2k F

s(n, 2n̄+ 2k − n)dn
(21)

Just Fully binding: Here ñ = n̄− β + 2k. Thus

Gc =
1

2β

∫ n̄+β

n̄−β+2k

n

2
dn; Gs =

1

2β

∫ n̄−β+k

n̄−β
F s(n, n+ k)dn. (22)

15The proof is given in Appendix 5. Our assumption k > 2n̄/3 plays a role in this result. That is, there are
only two “batches” (intervals) of workers who are matched with one from each batch and for whom the C.G. is
binding. In other words, the difference between the talents n̄+β and n̄−β +2k equals 2β − 2k which is less than
k as long as k > 2n̄/3.
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Figure 9: Talent Allocation in the case of High Diversity

Overly binding: ∃ n∗ < n̄− β + k, such that

Gc =
1

2β

(
∫ n̄−β+k

n∗

n

2
dn+

∫ n̄+β

n∗+k

n

2
dn

)

; Gs =
1

2β

∫ n∗

n̄−β
F s(n, n+ k)dn (23)

po
s =

n∗ + k/2

F s(n∗, n∗ + k)
(24)

n∗ + k/2

F s(n∗, n∗ + k)
= Λ

∫ n̄−β+k
n∗

n
2dn+

∫ n̄+β
n∗+k

n
2dn

∫ n∗

n̄−β F
s(n, n+ k)dn

. (25)

Similar to the case of medium diversity, the PPF has a kink at the just-fully-binding point,
i.e. pp

s > po
k (proven in Appendix 6). Figure 10 illustrates the PPF. The pattern of shifts in the

PPF as β changes is however different.
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Increase in Diversity

We have already seen that near the end of medium diversity the economy operates in Stage
3 (the overly binding region). As β begins to ‘cross’ k, to which region in the high-diversity
range does the economy move to? Note from Figures 6 and 9 that, at β = k, the overly binding
regions in both medium-diversity and high-diversity situations collapse to one. Hence this
region is the only possibility. We continue to call this Stage 3.

Interestingly, starting with the overly binding region, the economy may move to the just-
binding point and then to the partially binding region – exactly the reverse of what happens in
the medium-diversity case. The reason behind this will be seen later. For now, as β increases
continuously and approaches n̄, there are three possibilities. The economy (i) stays in stage 3
throughout, (ii) moves to and stay in the just fully-binding point, Stage 4, for higher values of
β or (iii) it moves first to Stage 4 and then from Stage 4 to the partially binding region, Stage
5. Which one holds depends on the demand parameter Λ:

Proposition 5 Let

Λ1 ≡
3
∫ k
0 F

s(n, n+ k)dn

2(n̄2 − k2)F s(1, 2)
; Λ2 ≡

∫ k
0 F

s(n, n+ k)dn

2(n̄− k)F s(k, n̄)
.

Note that Λ1 < Λ2. The economy stays in stage 3 for all β ∈ [k, n̄] if Λ ≤ Λ1. If Λ ∈ (Λ1,Λ2),
there exists a critical value of β ∈ (k, n̄) such that for all β less than or equal to this critical value,
the economy operates in stage 3 and for β higher, the economy operates in stage 4. Finally, if Λ > Λ2,
there exist two critical values of β, say, β3 and β4, with k < β3 < β4 < n̄, such that the economy’s
equilibrium is respectively in stage 3, stage 4 and stage 5 as β ∈ (k, β3], β ∈ (β3, β4) and β ∈ [β4, n̄].

Proof: Evaluate the supply price in the overly binding region, po
s, at n∗ = n̄− β + k. Equate it

to ΛGc/Gs, where Gc and Gs are the respective expressions at the just fully binding point, i.e.,

n̄− β + 3k/2

F s(n̄− β + k, n̄− β + 2k)
= Λ

(n̄+ k)(β − k)
∫ n̄−β+k
n̄−β F s(n, n+ k)dn

. (26)

View this as an equation in β. If there exists β ∈ (k, n̄), which solves the above equation, then
the economy must enter stage 4 at that value of β. The l.h.s. of (26) is decreasing and the r.h.s.
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is increasing in β. Further, at β = k, the l.h.s. is positive, whereas the r.h.s. = 0. Hence the
condition required for the existence of such a β is that the r.h.s. ≥ l.h.s. at β = n̄. This is
equivalent to

Λ
n̄2 − k2

∫ k
0 F

s(n, n+ k)dn
≥

3

2F s(1, 2)
⇔ Λ ≥

3
∫ k
0 F

s(n, n+ k)dn

2(n̄2 − k2)F s(1, 2)
.

The r.h.s. of the last inequality is same as Λ1. Hence, as long as Λ > Λ1, there must exist some
β ∈ (k, n̄) beyond which there is a range of β such that the economy operates in stage 4. The
solution of β from (26) defines β3.

Analogous reasoning applied to the market-clearing equation in the partially binding re-
gion gives the following analog of (26).

n̄+ k

F s(n̄− β + 2k, n̄+ k)
= Λ

(n̄+ k)(β − k)
∫ n̄−β+k
n̄−β F s(n, n+ k)dn

. (27)

Substituting β = n̄ yields Λ = Λ2. If Λ > Λ2, there must exist β beyond which the equilibrium
lies in the partially binding region only; this is the solution to the eq. (27), defining β4.

Intuitively, how equilibrium moves from one region to another as β increases depends on
how the kink on the PPF shifts. Note from Figure 9 that, at the kink (the just fully binding
point), high-talent-end workers work in sector C and the rest in sector S and therefore an
increase in β increases the production of good C and lowers the production of sector S (ver-
ifiable from (22)). Hence, as β increases, the kink moves up and to the left. As a result, the
scope of equilibria on as well as to the right of the kink occurring in sequence increases. This
explains the transition of the equilibrium from the overly binding to the just binding region
and that from the just binding to the partially binding region.

How does the PPF shift? As discussed above the kink on it moves up and to the left. Im-
portantly, does the maximal output on the Gs-axis increases with β? It is proven in Appendix
7, it may not. It is because workers in the two tails of the distribution are not matched, and, more
specifically, workers in the high-end of talent distribution do not work in the R&D sector, while those
in the low-end do. This is indeed the key. An increase in vertical diversity is no more equiva-
lent to a sector-specific technical progress. It is quite plausible that higher diversity reduces
economic growth.16

We now characterize equilibrium in each stage individually. As in the medium-diversity
case, in stage 3, dn∗/dβ ≷ 0 and it is hard to sign dGs/dβ.17

Assume that Λ > Λ1, such that for some range of β, the economy operates in stage 4. In
this stage, a simple comparative statics yields dGs/dβ = β[−F s(n̄−β+k, n̄−β+2k)+F s(n̄−

β, n̄ − β + k)] −
∫ n̄−β+k
n̄−β F s(n, n + k)dn/(2β2) < 0. That is, the growth rate falls with higher

diversity.
16Indeed, we can simply observe and determine from (22) that as β increases and the equilibrium continues to

be at the fully-binding point, the growth rate falls unambiguously.
17The market-clearing equation (25) determines n∗. Totally differentiating it,

dn∗

dβ
=

Λ(β − k/2)F s(n∗, n∗ + k) − (n∗ + k/2)F s(n̄ − β, n̄ − β + k)
[

1 −
(n∗+k/2)[(F s

A
+F s

B
)|(n∗,n∗+k))

F s(n∗,n∗+k)

]

∫ n∗

n̄−β
F s(n, n + k)dn + (1 + Λ)(n∗ + k/2)F s(n∗, n∗ + k)

≷ 0,

as the denomenator is positive but the numerator is ambiguous in sign. Even though n∗ may fall, it is easy to
check that 1 + dn∗/dβ > 0, that is, the gap between n̄ − β + k and n∗ narrows as β increases. This indicates that
for higher values of β, stage 4 is the only other possibility.
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Now suppose Λ > Λ2 and β > β4. The economy operates in stage 5. We can inspect
from the market-clearly equation (21) that dñ/dβ < 0 and d(Gc/Gs)/dβ < 0. Importantly, in
this range the growth rate may decline with β also. As a sufficient condition, as proven in
Appendix 8, if the PPF shifts to the left on the Gs-axis, dGs/dβ < 0 in Stage 5.

In summary, the following overall pattern emerges:

Proposition 6 If Λ ∈ [Λ1,Λ2], stage 4 is the ‘terminal’ stage and within this stage the growth rate
decreases with diversity. If Λ ≥ Λ2, stage 5 is the terminal stage. In stage 4, growth declines with
diversity and the same holds in stage 5 if the PPF shifts to the left on Gs-axis.

The upshot is that in the presence of communication gap, beyond a critical level of diver-
sity, the growth rate may decrease with diversity. In what follows, this is illustrated through
a numerical example.

4.3.1 An Example

Normalize n̄ = 1. Choose k = 0.75 and θ = 5. This gives Λ2 = 4.86. Select Λ = 3Λ2 = 14.58.
The choice of Λ2 amply ensures that, as β increases from k, this economy must pass through
stages 1-5. We have β1 = 0.628, β2 = 0.636, β3 = 0.837 and β4 = 0.848. Figure 12 depicts the
resulting “diversity-growth” curve.

Note that the purpose of this example is to illustrate only the possibility of the inverse-
U shape relationship between vertical diversity and the growth rate. It is not to calibrate
an economy with ‘realistic’ parameters and variable-solutions; this will necessitate various
adjustments and extensions. For instance, the growth rate in the example moves in the 50
to 60% range. But this is a matter of unit. Redefine the technology in the R&D sector as
Qs = Ȧ = AηF s(·), where η is a technology constant that doesn’t change with R&D. It does
not affect the analysis at all, but changes the growth rate by a multiple of η. If, for instance,
we choose η = 0.1, the range of the growth rate is now 5-6%. Also, Λ = 14.58 implies a
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Figure 12: Diversity & Growth: An Example

savings rate (same as the tax rate), equal to 93%. However, if we allow, for instance, another
consumable sector, which is produced by some other inputs whose endowment is fixed (e.g.
land, natural resources or labor in a region from which migration to other regions/sectors is
negligible), then the total tax base will be higher. Assume that this sector benefits from R&D
as well. Denoting this sector’s TFP-adjusted output as V , from the market-clearing condition,
the relative demand price of the R&D sector is then Λ(Gc + V ). Higher V , the lower will be
the required value of Λ for which the economy will pass through stages 1-5.

5 Income Distribution

Income distribution is a derivative of vertical diversity. There are two questions here. What is
the pattern of wage distribution at any given level of diversity? How does this pattern change
as diversity increases and the economy passes through the various stages?

The level of diversity given, in the steady state all workers experience wage growth equal
to the growth rate of the economy. In looking into the pattern of distribution we can thus
suppress the growth aspect. In sector C , the zero-profit condition gives 2w(n) = An ⇒
w(n) = An/2, where recall that we have used the normalization F c(1, 1) = 1. Thus wages
increase linearly with talent employed in this sector.

In sector S, as shown by G-M, if the high- (low-) talent is assigned the task B (A), then
wage to the low-talent worker is such that dw/dn ≡ w ′(n) = F s

A and that to the high-talent
worker is such that w′(n) = F s

B . Their model further implies that in the absence of commu-
nication gap, w′′(n) > 0, that is wage function is convex for workers in both ends. This is
because an increase in talent in the high-talent end would increase the ratio of high-talent to
low-talent and this would increase the marginal product of talent (in the high-talent end). In
the low-talent end, an increase in talent would reduce the ratio of high-talent to low-talent,
which would also increase the marginal product of talent in the low-talent end.18

Compared to the absence of C.G., in the presence of C.G., there is no change in the pattern
of wage distribution in sector C , and no change in sector S as long as C.G. doesn’t bind. But,

18Algebraically, w′′(n) = dF s
A(·)/dn = F s

AA − F s
AB > 0 and w′′(n)|2n̄−n = F s

BB − F s
AB > 0.
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if it binds, there is a major difference in the wage function of talent employed in sector S:
it is convex among low-end workers but concave among high-end workers. It is because, as
talent is increased in either end, the ratio of high to low talent falls since the talent gap is
constant. This raises the marginal product of the lower talent but lowers that of the higher
talent. Algebraically, dF s

A(n, n + k)/dn = F s
AA + F s

AB > 0 while dF s
B(n, n + k)/dn = F s

BB +
F s

AB < 0.19

From talent matching and allocation patterns in various stages it is now straightforward
to characterize the shape of the wage function. It is shown in Figure 13. The central feature is
that the overall wage function is not convex.

Analytically, it is difficult to go beyond this and determine how an increase in β would
affect some index of inequality like the Gini or coefficient of variation. But it is expected
that inequality will increase. Together with the inverse-U link between vertical diversity
and growth, it also means an inverse-U link between inequality and growth. An increase
in inequality will be associated with higher (lower) growth if, originally, inequality is modest
(high). This relates to the recent literature on the inequality-growth nexus which finds that
there may be a non-monotonic relationship between equity and growth; see, for example,
Barro (2000) and Banerjee and Duflo (2003).

6 Concluding Remarks

This paper has analyzed the issue of vertical diversity and growth. Its bench-mark model is a
reinterpretation and a simple adaptation of Grossman and Maggi’s (2000) model of diversity
and trade. It predicts that an increase in diversity increases the long-run growth rate. The
main innovation of the paper lies in introducing the concept of communication gap among
workers with sufficiently high difference in talents and its bearing towards the effect of di-
versity on growth. In the presence of such a gap, talent allocation between the consumption-
good sector and the R&D sector has a very different – and a changing pattern – as diversity
increases. The PPF of the economy has a kink and its nature of shifts due to an increase in
diversity depends on the original degree of diversity. The submodular R&D sector employs
workers from the low-end of talent distribution but may not match them with workers in
the very high-end of the distribution. Hence an increase in vertical diversity in the form of
a mean-preserving spread may not be conducive to total production in the R&D sector and
therefore may not enhance economic growth.

The degree of diversity in relation to the communication gap matters. As diversity in-
creases within the medium-diversity range, growth rate increases at least over the initial two
stages. Within the high-diversity range, it unambiguously falls with diversity in one of the
stages and may very well decline with diversity over the last stage. An inverse-U relation-
ship between diversity and growth emerges as the main hypothesis: too little or too much of
diversity is not so good for growth.

The analysis of diversity and growth has proven itself to be much more complex in the
presence of communication gap compared to that of the baseline model. A number of simpli-
fying assumptions have been used (but hopefully without seriously compromising the core
issue of the paper). However, future research must attempt at generalizations. For instance,

19Given constant returns, we write the TFP-adjusted output as tAf(ρ) where ρ = tB/tA and f ′, f ′′ > 0. We have
F s

A = f(ρ) − ρf ′(ρ) and F s
B = f ′(ρ). Differentiating these, F s

AA + F s
AB = ρf ′(·)(tB − tA)/t2A and F s

BB + F s
AB =

−f ′(·)(tB − tA)/t2A. Given tB > tA, the former sum is positive, while the latter is negative.
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the model assumes a bang-bang cost of communication problems among workers. Instead,
one can consider a continuous, convex function of the communication gap: the higher the
talent gap, the greater is the marginal loss of output due to communcation problems. This is
likely to strengthen our main result: the analog of Figure 12 will be a smoother curve with the
declining phase of the curve starting early if the convexity of the cost function is high.

If a firm may employ more than two workers, there may be transitive relationship in
communicating. If tA > tB > tC and the tA-worker cannot directly communicate with
the tC -worker, it is still possible that both communicate with the tB-worker and via the tB
worker they can communicate indirectly. Ceteris paribus, this will weaken the inverse-U
hypothesis. However, it is reasonable to postulate that communication is imperfect and as
words/communications pass more hands, there is a dilution of the understanding of the orig-
inal content. This will tend to reinforce our hypothesis.

Considering non-uniform distribution is likely to be quite complex – because it gives rise
to the possibility that workers of same talent may not all work in the same sector. Accounting
for who works in which sector promises to be much more complicated than what is shown in
Figure 6 or Figure 9.

R&D has been assumed to be the main source of growth. However, it can be argued that
the right growth strategy may depend on a country’s level of development. At relatively low
level of development, it may not be realistic to bank on R&D as the main impetus to growth.
Probably, immitation and the emphasis on precision is the optimal strategy. Once a country
is sufficiently developed, it can focus on R&D. The rationality behind such a sequence of
strategy needs scrutiny.

There are of course standard growth-theoretic features, the implications of which need
to be examined – such as capital accumulation, private holding of blue prints as assets (a la
Romer) and endogenous saving rate via either an infinite-horizon or an over-lapping genera-
tions household framework.

Finally, from policy perspective, it will be most interesting to endogeneize education pol-
icy. But, all said, it is hoped that the analysis has offered some meaningful understanding of
the relationship between vertical diversity and growth.
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Appendix 1

We prove here that in the basic model, dñ/dγ < 0. Considering ( 6′), we first determine how
its r.h.s. changes as γ increases. The proportional changes with respect to an increase in γ in
the numerator and the denomenators are respectively

(F s
B − F s

A)(n̄− ñ)

F s[n̄− γ(n̄− ñ), n̄+ γ(n̄− ñ)]
≡ ξ1;

∫ ñ
n0

(F s
B − F s

A)(n̄− ñ)φ(n)dn
∫ ñ
n0
F s[γ(n− n̄) + n̄, 2n̄− γ(n− n̄) − n̄]φ(n)dn

≡ ξ2.

We have ñ < n̄, and, since the second argument of F s is greater than the first, F s
B − F s

A > 0.
Thus both ξ1 and ξ2 are positive. Next, we prove that the function

h(n) ≡
(F s

B − F s
A)(n̄− n)

F s(·)

decreases with n for any n ≤ ñ. Totally differentiating it and using F s = [n̄+ γ(n − n̄)]F s
A +

[n̄− γ(n− n̄)]F s
B ,

h′(n) =
−F s(·)(F s

B − F s
A) + γ(n̄− n)F s(·)(2F s

AB − F s
AA − F s

BB) + γ(n̄− n)(F s
B − F s

A)2

[F s(·)]2

= −
γ(n̄− n)F s(·)(F s

AA + F s
BB − 2F s

AB) + (F s
B − F s

A)[F s − γ(n̄− n)(F s
B − F s

A)]

[F s(·)]2

= −
γ(n̄− n)F s(·)(F s

AA + F s
AA − 2F s

AB) + n̄(F s
B − F s

A)(F s
A + F s

B)]

[F s(·)]2
< 0,

since F s
B > F s

A > 0, F s
AA, F

s
BB > 0 and FAB < 0. This implies that for any n < ñ,

(F s
B − F s

A)(n̄− ñ)

F s(·)
<

(F s
B − F s

A)(n̄− n)

F s(·)
=

(F s
B − F s

A)(n̄− n)φ(n)

F s(·)φ(n)

⇒
(F s

B − F s
A)(n̄− ñ)

F s(·)
<

∫ ñ
n0

(F s
B − F s

A)(n̄− n)φ(n)dn
∫ ñ
n0
F s(·)φ(n)dn

, i.e., ξ1 < ξ2.

Given this it immediately following from ( 6′) that dñ/dγ < 0.

Appendix 2

It is shown here that in the case of medium diversity, the PPF shifts to the right on theGs-axis.
In view of (10), the intercept on the Gs axis is given by

Ḡs =
1

2β

[
∫ n̄+β−k

n̄−β
F s(n, n+ k)dn+

∫ n̄

n̄+β−k
F s(n, 2n̄− n)dn

]

.

Totally differentiating it with respect to β, 2β2 dḠs

dβ = A1, where

A1 ≡ β[F s(n̄+ β − k, n̄+ β) + F s(n̄− β, n̄− β + k) − F s(n̄+ β − k, n̄− β + k)]

−

∫ n̄+β−k

n̄−β
F s(n, n+ k)dn−

∫ n̄

n̄+β−k
F s(n, 2n̄− n)dn. (A1)
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At β = k/2, this reduces to

k

2
F s

(

n̄−
k

2
, n̄+

k

2

)

−

∫ n̄

n̄−k/2
F s(n, 2n̄− n)dn

>
k

2
F s

(

n̄−
k

2
, n̄+

k

2

)

−

∫ n̄

n̄−k/2
F s(n̄− k/2, n̄+ k/2)dn,

since F s(n, 2n̄− n) < F s(n̄− k/2, n̄+ k/2)dn for n ∈ (n̄− k/2, n̄)

=
k

2
F s

(

n̄−
k

2
, n̄+

k

2

)

−
k

2
F s

(

n̄−
k

2
, n̄+

k

2

)

= 0,

i.e. A1 > 0 at β = k/2. Next,

1

β

dA1

dβ
= [{F s

A(·) + F s
B(·)}(n̄+β−k,n̄+β) − {F s

A(·) + F s
B(·)}(n̄−β,n̄−β+k)]

+ [{F s
B(·) − F s

A(·)}(n̄+β−k,n̄−β+k)].

The marginal products are functions of the ratio of the arguments and we have (n̄+ β)/(n̄ +
β − k) < (n̄− β + k)/(n̄− β). Hence property (d) of the production function listed in the text
implies that the term inside the former pair square brackets is positive. By property (c), the
term in the latter pair square brackets is positive also. Thus, A1 is increasing in β. Together
with A1 > 0 at β = k/2, it implies that A1 > 0, i.e., dḠs/dβ > 0.

Appendix 3

We prove that in the case of medium diversity, dGs/dβ > 0 in the partially binding region
(stage 1). Totally differenting the expression of Gs in (10),

dGs −
F s(ñ, 2n̄− ñ)

2β
dñ =

A2

2β2
dβ, where (A2)

A2 ≡ β[F s(n̄+ β − k, n̄+ β) + F s(n̄− β, n̄− β + k) − F s(n̄+ β − k, n̄− β + k)]

−

∫ n̄+β−k

n̄−β
F s(n, n+ k)dn−

∫ ñ

n̄+β−k
F s(n, 2n̄− n)dn.

(A3)

Observe that A2 > A1, where A1 is defined in Appendix 2. Since A1 > 0, we have A2 > 0.
Next, express (12) as

Gs =
Λ

2β
(n̄− ñ)F s(ñ, 2n̄− ñ), implying

dGs +
ΛA3

2β
dñ =

ΛA4

2β2
dβ, where (A4)

A3 ≡ F s(ñ, 2n̄− ñ) + (n̄− ñ)[F s
B(ñ, 2n̄− ñ) − F s

B(ñ, 2n̄− ñ)]

A4 ≡ −(n̄− ñ)F s(ñ, 2n̄− ñ).

Solving (A2) and (A4),

dGs

dβ
=

Λ

4β3∆

∣

∣

∣

∣

A2 −F s(ñ, 2n̄− ñ)
A4 A3

∣

∣

∣

∣

where ∆ > 0 is the determinant of the system.
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SubstitutingA3 and A4 into the above and noting that the term (n̄− ñ)[F s
B(·)−F s

A(·)]|(ñ,2n̄−ñ)

in A3 is positive,

dGs

dβ
>

ΛF s(ñ, 2n̄− ñ)

4β3∆
[A2 − (n̄− ñ)F s(ñ, 2n̄− ñ)] ≡

ΛF s(ñ, 2n̄− ñ)

4β3∆
A5(ñ).

It is sufficient to show that A5(ñ) > 0. First check that dA5/dñ > 0. Since ñ > n̄+ β − k, it
follows that A5(·) > A5(n̄+ β − k). It is then sufficient to prove that

A5(n̄+ β − k) = β[F s(n̄+ β − k, n̄+ β) + F s(n̄− β, n̄− β + k)]

−

∫ n̄+β−k

n̄−β
F s(n, n+ k)dn− kF s(n̄+ β − k, n̄− β + k) > 0.

Treat A5(n̄+ β − k) as A6(β). We have A6(k/2) = 0 and

A′

6(β) = β[F s
A(·) + F s

B(·)]|(n̄+β−k,n̄+β) − [F s
A(·) + F s

B(·)]|(n̄−β,n̄−β+k)]

+ k[F s
B(·) − F s

A(·)]|(n̄+β−k,n̄−β+k) > 0.

It is already proved in Appendix 2 that the coefficients of β and k are positive. This proves
A6(β) = A5(ñ) > 0 and thus dGs/dβ > 0.

Appendix 4

It refers to the medium-diversity case. Eqs. (17) and (18) are derived. Consider Figure 14(a).
It depicts the market-clearing condition (12) in the partially binding region. The l.h.s. and
the r.h.s. of the this equation (as functions of ñ) are respectively represented by the upward
sloping curve and the downward sloping curve. The solution of ñ equal to n̄+ β − k defines
β1. This holds when the vertical intercepts of the two curves at n̄+ β − k coincide. This gives
rise to eq. (17).

Similarly, Figure 14(b) shows the market-clearing condition (16) in the overly binding re-
gion. The upward and the downward sloping curves as functions of n∗ represent respectively
the l.h.s. and the r.h.s. of this equation. The solution of n∗ equal to n̄+ β − k defines β2. This
happens when the vertical intercepts of the two curves at n∗ = n̄+ β − k match. This yields
eq. (18).

Note that the r.h.s. of the eqs. (17) and (18) have the same expression and it is declining in
β. Thus β1 < β2 if the l.h.s. of (17) exceeds that of (18) at any β. This is indeed equivalent to
pp

s|ñ=n̆ > po
s|n∗=n̆, proved already in footnote 8.

Appendix 5

Lemma 3 is proved here. Define n0 ≡ n̄ − β, n1 ≡ n̄ + β. Turn now to Figure 15, in which
workers in a middle range, b−2k to b are constrained by C.G. and the rest are not. Accordingly,
the total output in sector S is given by 2βZ , where

Z(b) ≡

∫
n0+b−2k

2

n0

F s(n, n0+b−2k−n)dn+

∫ b−k

b−2k
F s(n, n+k)dn+

∫
b+n1

2

b
F s(n, n1+b−n)dn. (A5)
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Figure 14: Solution of ñ and n∗ in the Medium Diversity Case

Note that b can vary from n0 + 2k to n1. First, we show that Z(b) is a convex function, i.e.,
d2

Z

db2
> 0. We have

dZ

db
=

1

2
F s

(

n0 + b− 2k

2
,
n0 + b− 2k

2

)

+

∫

n0+b−2k
2

n0

F s
B(n, n0 + b− 2k − n)dn

+ F s(b− k, b) − F s(b− 2k, b − k)

+
1

2
F s

(

b+ n1

2
,
b+ n1

2

)

− F (b, n1) +

∫

b+n1
2

b
F s

B(n, n1 + b− n)dn. (A6)

1n

β2

1

0n bkb 2−

C.G. Binding
Talent n works with

Talent n+k

C.G.
Not binding

C.G.
Not binding

Figure 15: High Diversity: Talent Allocation if all Talents are used in Sector S
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Totally differentiating (A6),

d2Z

db2
=

[

∫

n0+b−2k
2

n0

F s
BB(n, n0 + b− 2k − n)dn+

∫

b+n1
2

b
F s

BB(n, n1 + b− n)dn

]

+





{

F s
A + F s

B

4
+
F s

B

2

}∣

∣

∣

∣

(

n0+b−2k
2

,
n0+b−2k

2

)

+

{

F s
A + F s

B

4
+
F s

B

2

}∣

∣

∣

∣

(

b+n1
2

,
b+n1

2

)

−{F s
A(·) + F s

B(·)}|(b,n1)

]

+
[

{F s
A(·) + F s

B(·)}|(b−k,b) − {F s
A(·) + F s

B(·)}|(b−2k,b−k)

]

.

The term inside the first pair of square brackets is obviously positive. When tA = tB = t,
F s

A and F s
B are equal and independent of t as tB/tA = 1. Utilizing this, the terms inside the

second pair of square brackets reduce to χ = (F s
A + F s

B)|(t,t) − {F s
A(·) + F s

B(·)}|(b,n1) for any
t > 1. By property (d) of the submodular production function, χ > 0. Hence the term inside
the second pair of square brackets is positive. By the same property, the term inside the last
pair of the square brackets is positive also. This completes the proof that d2Z/db2 ≥ 0.

Given that Z is convex, it attains maximum when b takes an extremal value. The upper
and lower bound of b are n0 + 2k and n1.20 Now, using n0 = n̄ − β, n1 = n̄ + β and for
notational simplicity, choosing n̄ = 1, we have, from (A5),

A ≡ Z|b=n0+2k =
∫ 1−β+k
1−β F s(n, n+ k)dn+

∫ 1+k
1−β+2k F

s(n, 2 + 2k − n)dn

B ≡ Z|b=n1 =
∫ 1−k
1−β F

s(n, 2 − 2k − n)dn+
∫ 1+β−k
1+β−2k F

s(n, n+ k)dn
(A7)

We show that A > B, which will prove Lemma 3.
Check that when β = k, A − B = 0. Since β ∈ [k, 1], it is then sufficient to prove that

d(A− B)/dβ > 0. From (A7),

d(A− B)

dβ
= −F s(1 − β + k, 1 − β + 2k) + F s(1 − β, 1 − β + k)

+F s(1 − β + 2k, 1 + β) − F s(1 + β − k, 1 + β)

+F s(1 + β − 2k, 1 + β − k) − F s(1 − β, 1 + β − 2k)

(A8)

State (A8) as

ψ(α) ≡ F s(1 − β, y + α) − F s(1 − β, y) + F s(x+ α, 1 + β) − F s(x, 1 + β) + F s(x, y)

− F s(x+ α, y + α), where x ≡ 1 + β − k, y ≡ 1 + β − 2k, α ≡ 3k − 2β. (A9)

Given that k ∈ [2/3, 1) and β ∈ [k, 1], α > 0. Also note that ψ(0) = 0. It is then sufficient to
prove that ψ′(α) > 0 ∀ α > 0. We have

ψ′(α) = F s
B(1 − β, y + α) + F s

A(x+ α, 1 + β) − [F s
A(·) + F s

B(·)]|(x+α,y+α). (A10)

20In the extreme submodularity case, there F s(tA, tB) = Max (tA, tB) and b = n0 + 2k or n1 yields the same
value of Z , equal to

k2 −
k(n1 − n0)

2
−

n2
0

8
+

3n2
1

8
−

n0n1

4
.

The relevant situation is where the lower talent has some contribution towards production.
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Define

ρ1 ≡
y + α

1 − β
> 1; ρ2 ≡

y + α

x+ α
> 1; ρ3 ≡

1 + β

x+ α
> 1.

We can state (A10) as ψ′(α) = F s
A(ρ3) − F s

A(ρ2) + F s
B(ρ1) − F s

B(ρ2). Verify that ρ1 > ρ2 > ρ3.
Property (c) of the submodular production function implies ψ ′(α) > 0.

Appendix 6

We show that in case of high-diversity, pp
s > po

s at the just-fully-binding point. We substitute
n̄− β + 2k for ñ and n̄− β + k for n∗. Then pp

s < po
s is equivalent to

n̄+ k

F s(n̄− β + 2k, n̄+ β)
>

n̄− β + 3k/2

F s(n̄− β + k, n̄− β + 2k)

⇔
F s(n̄− β + 2k, n̄+ β)

n̄+ k
<
F s(n̄− β + k, n̄− β + 2k)

n̄− β + 3k/2
.

The last inequalilty can be written in the form of

F s(x1, y1)

x1 + y1
<
F s(x2, y2)

x2 + y2
, where x1 ≡ n̄−β+2k > x2 ≡ n̄−β+k, y1 ≡ n̄+β > y2 ≡ n̄−β+2k.

Note that |y1 − y2| < |x1 − x2|. Hence it is sufficient to prove that dF s(x, y)/(x + y) > 0,
where x < y and dx < dy < 0. The last two inequalities imply xdy − ydx > 0. Now, on
differentiation,

d

[

F s(x, y)

x+ y

]

=
(F s

B − F s
A)(xdy − ydx)

(x+ y)2
> 0.

Appendix 7

Here we prove that in the high-diversity case, the PPF may shift inside on the Gs-axis. From
(19), if all workers are in sector S the output of this sector is given by

¯̄Gs =
1

2β

[
∫ n̄−β+k

n̄−β
F s(n, n+ k)dn+

∫ n̄+k

n̄−β+2k
F s(n, 2n̄+ 2k − n)dn

]

.

Totally differentiating it with respect to β,

2β2 d
¯̄Gs

dβ
= β [−F s(n̄− β + k, n̄− β + 2k) + F s(n̄− β, n̄− β + k) + F s(n̄− β + 2k, n̄+ β)]

−

[
∫ n̄−β+k

n̄−β
F s(n, n+ k)dn+

∫ n̄+k

n̄−β+2k
F s(n, 2n̄+ 2k − n)dn.

]

(A11)

Evaluated at β = n̄, and normalizing n̄ = 1 (for no loss of generality), the r.h.s. of (A11) is
equal to

−kF s(1, 2) + F s(0, k) + 2F s(k, 1) −

∫ k

0
F s(n, n+ k)dn−

∫ 1+k

2k
F s(n, 2 + 2k − n)dn ≷ 0.
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As an example, let F s(·) be the submodular function in (1). Then the above expression is
equal to

−k(1 + 2θ)1/θ + k + 2(kθ + 1)1/θ −

∫ k

0
[nθ + (n+ k)θ]1/θ −

∫ 1+k

2k
[nθ + (2 + 2k − n)θ]1/θ.

As k → n̄ = 1 and θ → ∞, it reduces to −2 + 1 + 2 −
∫ 1
0 (n+ 1)1/θdn = −0.5. This means that

if k and θ are high enough, ¯̄Gs falls with β in the neighborhood of β = n̄. Indeed, simulations
show that d̄̄G/dβ < 0 holds as long as k ≥ .75 and θ ≥ 2.4.

Appendix 8

We write the market-clearing condition (21) as

βGs =
Λ

2
(n̄+ k − ñ)F s(ñ, 2n̄+ 2k − ñ). (A12)

Regard this equation together with the expression of Gs in (19) as having two variables: Gs

and ñ. Taking the comparative statics of this system with respect to β,

2∆1

Λ

dGs

dβ
=

∣

∣

∣

∣

a1 a2

a3 a4

∣

∣

∣

∣

, (A13)

where, ∆1, the Jacobian of the system, is positive and

a1(ñ) = −
1

β

[
∫ n̄−β+k

n̄−β
F s(n, n+ k)dn+

∫ ñ

n̄−β+2k
F s(n, 2n̄+ 2k − n)dn

]

+ F s(n̄− β + 2k, n̄+ β) + F s(n̄− β, n̄− β + k) − F s(n̄− β + k, n̄− β + 2k) ≷ 0
(A14)

a2(ñ) = −F s(ñ, 2n̄+ 2k − ñ) < 0

a3(ñ) = −
1

β
(n̄+ k − ñ)F s(ñ, 2n̄+ 2k − ñ) < 0

a4(ñ) = (n̄+ k − ñ)[F s
B(·) − F s

A(·)]|(ñ,2n̄+2k−ñ) + F s(ñ, 2n̄+ 2k − ñ) > 0.

It is easy to derive that the r.h.s. of (A13) is increasing in ñ. In the partially binding region,
ñ ≤ n̄+ k. Thus the above determinant is less than

∣

∣

∣

∣

a1 a2

a3 a4

∣

∣

∣

∣

ñ=n̄+k

= a1a4,

since, at ñ = n̄+ k, a3 = 0. Given that a4 > 0, dGs/dβ < 0 if a1(n̄+ k) < 0. From (A14),

a1(n̄+ k) = −
1

β

[
∫ n̄−β+k

n̄−β
F s(n, n+ k)dn+

∫ n̄+k

n̄−β+2k
F s(n, 2n̄+ 2k − n)dn

]

+ F s(n̄− β + 2k, n̄+ β) + F s(n̄− β, n̄− β + k) − F s(n̄− β + k, n̄− β + 2k).

Note that this is exactly same as the r.h.s. of (A11), the sign of which determines that of
d ¯̄Gs/dβ. Thus if the PPF shrinks in on the Gs-axis, dGs/dβ < 0 in stage 5.
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